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One goal of Norway’s new primary teacher education programme of 2010 was
improved school placement: the relationship between the teacher education
Institution, practice schools and pre-service teachers was to be formalized as a
tripartite cooperation. However, in the area of mathematics education, cooperation is
not straightforward: tensions arise because of pre-service teachers’ prior experience
and beliefs, and differences between university college training and school practice.
This paper reports on questionnaire data and focus group interviews with first-year
pre-service teachers and their mentors following school placement. It illustrates the
complexity of the partnership and its impact on pre-service teachers’ professional
development in the area of mathematics.

BACKGROUND: THE SCHOOL-UNIVERSITY-PRE-SERVICE TEACHER
PARTNERSHIP

As mathematics teacher educators in Norway, we are obliged to focus on supporting an
idealised tripartite cooperation between teacher mentors, pre-service teachers and our
university college (hereafter HIOA). Based on national guidelines, HIOA developed a
plan for in-school placement, focusing on how to share responsibility for pre-service
teacher education between educators at HIOA and teacher mentors in partner schools.
This shared responsibility is underlined by the joint development of the pre-service
placement plan by teacher educators, mentors and pre-service teachers.

During the first year of the 4-year programme, the overall focus is on the teacher’s role.
However, students’ personal epistemologies of mathematics — what mathematics is,
and how it is developed in teaching and learning — frequently associate it with
memorized facts and rules, solution speed as an indicator of ability which is fixed and
which cannot be acquired/improved through effort, and the equation of mathematical
truth with teacher approval (see de Corte, Op’t Eynde & Verschaffel, 2002;
Schoenfeld, 1989; Smestad et al, 2012). Such beliefs are associated with
‘transmissionist’ rather than ‘connectionist’ styles of teaching (Pampaka et al, 2012).

While the university attempts to challenge such beliefs, the impact of school placement
can force a return to earlier embedded ideas, particularly when assessment, testing and
accountability are high on the agenda. Both pre-service teachers and teacher educators
can experience a number of tensions between school practice and university
theory/practice. Nolan (2012) reported on conflict between support for inquiry-based
pedagogies at university level, and instrumentalism in practice schools. She argues that
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this is not just due to the role of accountability and assessment in schools, but also to
pre-service teachers’ educational habitus and cultural routines associated with
teaching: ‘every adult knows what teaching and learning should look like because he or
she has spent thousands of hours as a student in school’ (Bullock & Russell, 2010, p.
93, cited in Nolan 2012). Allen (2009) also found that beginning teachers privileged
what they had learned on placement rather than university theory.

Goos (2009) analyses the gap between what pre-service teachers are taught at
university and what they actually do when they teach, focusing on the need to
understand how they interpret their teacher education programs, how (and why) they
appropriate certain aspects of those programs, and the nature of the different
influences on the execution of their teaching plans. So, for example, Arvold (2005),
like Nolan, uses the idea of habitus as an explanatory device, but in this case to argue
that pre-service teachers attend to different aspects of their teacher education programs
and make sense of them differently, through the lens of their prior experience of being
taught mathematics. Bednarz and Proulx (2005) also suggest that pre-service teachers
appropriate different things from their teacher education courses, resulting in different
views of what they about, which are in turn reflected in their own teaching practice.

In this paper, we examine the relationship between theory and practice held by the
different partners involved in the practicum. We focus on the tripartite cooperation in
the early stages of the project, addressing the following research question: How do
pre-service teachers and their mentors perceive the connection between what
pre-service teachers are taught about mathematics education in University College and
their learning from practice within the school placement?

Our analysis discusses the challenges of school placement, from the points of view of
both pre-service teachers and their mentors. We will suggest that pre-service teachers
do not necessarily take on the intended messages of their university teaching, partly
because these are filtered through their prior experience, but also because of the
difficulties of translating theory into practice when faced with diverse classroom
demands. We also explore how school placement experience plays a role in pre-service
teachers’ development as they reflect on these tensions.

METHOD

Two hundred and eight first-year pre-service teachers at HIOA completed
questionnaires after their school placement in 1°-4" grade. Information was gathered
on the influences of school and HiOA training on their teaching practice, and their
perceptions of mathematics and mathematics teaching and learning. For comparison,
their 46 teacher mentors completed questionnaires covering their experiences as
mentors, and their perceptions of mathematics teaching and learning, and their
mentees’ performance as teachers. Questionnaires comprised a number of statements
requiring 5-point Likert scale responses, and also 3 free-text questions. In these,
pre-service teachers were asked to describe a practice situation where (1) they
benefitted from learning on their mathematics course at HiOA, and (2) they benefitted
from learning from their teacher mentor. Mentors were asked 2 parallel questions
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about mentees’ use of learning from HIOA and from themselves. Question 3 asked
both pre-service teachers and mentors to describe the challenges for pre-service
teachers of using HiOA learning in practice.

Fourteen teacher mentors also participated in one of 2 focus groups, in which they were
asked to reflect on the teacher mentor role. Similarly, 25 pre-service teachers formed
five focus groups, in which they were asked to reflect on the challenges of their school
placement, on their own development as a teacher of mathematics and on the role of
their teacher mentors. Including focus groups in the methodology enabled a
broadening of the analysis to extended reflections about participants’ experiences in
the placement partnership.

Analysis

The Likert-scale data were coded on a 5-point scale (“strongly disagree” = 1 and
“strongly agree” = 5), and comparisons between pre-service teacher and teacher
mentor responses analyzed using Mann-Whitney U tests. The free text data and the
focus group data were analyzed thematically, in order to identify the discourses of
mathematics learning and teaching which participants drew on, and their perceptions
of connections between theory and practice. We blend our analysis of the quantitative
and qualitative data in the following sections.

Teaching and learning in university college and school

Following on from the suggestion that pre-service teachers do not necessarily take
what teacher educators intend from their courses, we were interested to understand
whether pre-service teachers attributed what they learned and did during their
placement to their HIOA experience or to their workplace learning with their teacher
mentor. We were also interested to explore the university-school partnership link by
comparing their responses with those given by the teacher mentors to parallel
questions. Analysis of these free text responses and related Likert-scale scores
identified some interesting mismatches, two of which we describe here.

The first of these involved mismatches regarding the use of manipulatives (physical
models) in teaching. Forty-nine per cent of pre-service teachers recorded this as a
technique learned from their HIOA course, and 15% said they had learned it from their
teacher mentor. However, teacher mentors took a different view: only 15% reported
use of manipulatives as something their pre-service teachers had learned at HiOA,
versus 39% who reported that this was something they had taught the pre-service
teachers themselves. These mismatches are fleshed out in the focus group data, where
teacher mentors commented on the ‘gap’ as resulting from pre-service teachers’ failure
to understand how to translate what they learn at HiOA into practice:

| think they [pre-service teachers] need to be better at thinking/using manipulatives when
they explain... But they don’t even think of it. ... You do work with manipulatives here [at
HIiOA] but they don’t see the usefulness...

Aware that the HIOA educators stress the importance of manipulatives, the teacher
mentors felt, however, that they had not managed to teach the pre-service teachers
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how, when and why they should use them in their lessons, and that this was something
that they themselves made clearer:

I know that [HIOA] operates with manipulatives a lot but not with the transfer...

| think they learn from [...] tying the practical contexts to the theoretical. It is no use [in
learning maths] to just bake buns with your pupils, you also have to actually write it down,
convert between units of measurement, specify the units.

Pre-service teachers also commented that they were limited in their experience of the
practical use of manipulatives:

| think the challenge was the materials [we] worked with, because we were trained to work
with [manipulatives], in the introduction of a topic, and there was very little to work with.

The second issue concerned the central role of understanding pupil reasoning. As a
major focus of the HIOA course, we had expected that pre-service teachers would be
likely to cite this as a beneficial piece of learning from their course. However, only
13% of them (and 7% of teacher mentors) did so, and a further 4% of pre-service
teachers (and 22% of teacher mentors) said this was learned from the teacher mentor.
This pattern may be related to a series of findings from the Likert-scale data on
pre-service teachers’ perceptions of mathematics teaching, which indicated a
conservatism about teaching and learning and pupils’ roles which was not reflective of
the HIOA programme intentions. More ‘traditional’ personal epistemologies of
mathematics were reflected in 50% of pre-service teachers’ agreement or strong
agreement that “Mathematics is a subject for rote learning”. They were also more
conservative than the teacher mentors in response to completions of the opening
statement “When pupils are to learn mathematics, it is important that.....”. For
example, teacher mentors agreed significantly more strongly than pre-service teachers
with the completion statements “...they use their own algorithms”, * ...they take what
they know as a starting point”, “...they have to explain what they think” and “...they
can use fantasy and creativity in their work” (p<0.01).

These issues are followed through in the focus groups, where teacher mentors
frequently reflected on pre-service teachers’ difficulties with adjusting their teaching
plans to fit pupils’ needs. They saw this as something that they needed to model in
their role as mentors:

... the [pre-service teachers] must try [...] different methods, and it is paramount that they
see us as role models. And also [...] see that there are many ways forward, and while they
are with us they can find out how pupils think, that they can linger on some things. | think
that linger is the right word; for the most part they just go directly on, doing what they have
planned. And then they are not so good at assessing afterwards.

Here the same issue is raised but also connected to a perception that pre-service
teachers lack subject knowledge:

...when pupils explain how they think, I often feel that [pre-service teachers] fail to follow
the pupil and it is certainly a matter of training but | also think it’s about their basic
understanding of numbers and mathematics [...]. Then | have to get involved, to say “I
think | understand how you think”, because they [the pre-service teachers] stand there
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perplexed, and also the pupil sits there thinking "what did | say wrong?" and often it isn’t
wrong.

A slightly different angle notes the effect of pre-service teachers’ assumptions about
the nature of mathematics and related previous experience:

| think maths is also a subject where students are very afraid of doing something wrong,
because they think like "oh! it must be done correctly" so that they get hung up on some
boring methods sometimes and they don’t dare to take a wider view as they do in other
subjects.

While mentors alone focus on the need to understand pupils, they share a common
concern with pre-service teachers regarding the need to make oneself understood as a
teacher. Here a teacher mentor talks about the need to be careful about terminology:

In most mathematical topics you must be extremely careful what terms you use with the
pupils, because in front of the class, as soon as you start fumbling, or you let the pupils
make a mess of it for each other, it is going to be a problem.

In the following quotation, a pre-service teacher expressed a parallel concern with
explanation of her own understanding:
We must try to explain things as simply as possible. This is a challenge because it always
goes through a filter, namely the teacher, who understands it.

Returning to the questionnaire data, teacher mentors were less likely to agree that “To
become good at mathematics, you need to do lots of exercises” and that “The solution
of a mathematics exercise is either right or wrong” (p<0.05), but in the focus groups
some nevertheless described their classes in such terms, showing the influence of
national testing:

We have been working on [national] assessment tests in mathematics - so very much
practicing for the test.

Here a pre-service teacher notices an emphasis on exercises in school placement:

Going through the problems ... on the blackboard. Then we ask the pupils how they would
solve this task, we talk a little about the solution. Then the pupils do the work individually.

Although these comments were few, they indicate a potential source of affirmation for
deeply embedded traditional views about the nature of mathematics, as well as a
further source of potential conflict for pre-service teachers regarding their experience
of putting HiOA theory into practice.

The relationship between theory and practice

These results indicate the presence of various mismatches between school and
university experience, and between university input and pre-service teachers’ attitudes.
As we have seen, they revolve around the issue of putting theory into practice, the
focus of the third free-text question, which asked about the challenges for pre-service
teachers in using learning from their HiOA course in practice. Only 8% of pre-service
teachers replied that there were none, while 24% responded that it was difficult to
translate theory into practice, and 12% that it was difficult to find the right language.
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Several themes emerged, including a perceived absence of HiOA teaching on
particular school topics:

It can be difficult to draw connections and parallels between theory and practice.
Especially considering that the topics we have used in school practice have not been
particularly emphasized at HIOA.

But it was recognised that this could be a translation issue:

Not many situations have come up that can be linked to the topics we’ve had. And if they
have, | haven’t thought about them in a way that relates to what I’ve learned at HiOA.

Thirty-four per cent of students said that mathematics at HIOA was too difficult for
them, or was irrelevant for their teaching. Many comments were clearly illustrative of
the problems of applying pedagogic principles noted above:

It’s not easy to connect what | have learned with [my practice] in the school placement
because | feel that much of the curriculum isn’t linked to the teaching of first grade, but to
further grades.

Teacher mentors recorded fewer barriers, but also cited difficulty in translating theory
into practice (20%), difficulty/irrelevance of mathematics at HIOA (13%) and
insufficient mathematics at HIOA (9%). In free text responses, 13% said that they did
not know what pre-service teachers learned at HIOA. Focus groups also included
criticism of pre-service teachers’ subject knowledge:

Some have poor background knowledge when they come, I think. | had students in practice
[in.] ... fourth grade, and then it was elementary things they did not know, | was quite
surprised.

Some comments blamed lack of enthusiasm for uninspired teaching, but others were
more indicative of the problem of application of theory into practice:

| had a student who could not explain to the pupils what she intended, she became more
and more frustrated.

This could include not having the confidence to depart from the lesson plan:

... they think it's hard to meet the challenge [when] they get a lot of input from pupils
[...] to use the input for further teaching ... it seems that they do not dare to do so [...],
“What | have written, I'll execute!”.

In terms of the partnership itself, the questionnaire data showed that 91.6% of
pre-service teachers agreed that “Experiences from practice have been important in the
rest of the programme”. Indeed, a number of them were critical of the HIOA course in
their focus groups:

... there’s nothing wrong with theory, but we must learn how to combine it with practical
methods. It needs to be explained to us, why, how and when. ... It is the practical work that
| remember best.

While these and other comments suggest that many pre-service teachers see university
college and school placement as very separate, others were more reflective about how
the two together contributed to their development as professionals:
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I've heard several of the class who talked about what they have done in practice, but said
they had not used what they had learned here [at HIOA], but it was exactly what we learned
here that they had. | think you don’t quite connect, | think that reflection days are very
good for becoming more aware of that.

Some reflected on the difficulties of this stage of their development, and the need to
learn from HIOAs’ aim to teach pedagogic principles as opposed to ‘recipe-following’
teaching tips:

Math teaching at HiOA focuses on our awareness of how we think when we do various

calculations. | find that difficult, and have not come so far in the process yet that | feel I can
take advantage of this when teaching.

Others noted the difficulties of being a novice but also the importance of reflection:

It's easy to forget to use one’s knowledge in some situations. But in retrospect, one thinks
of what was done and finds that there was a much better option.

One has to reflect along the way to learn by experience.

DISCUSSION

Previous research indicates that pre-service teachers will inevitably draw selectively
from university programmes, through the lens of their own experience and beliefs. This
Is an effect which can be reinforced in school placement. In addressing our research
question, this study has illustrated the complexity of the tripartite partnership involved
in school practice. We have found that many of our pre-service teachers had missed the
point of much of HIOA’s input, and that their experience of the school placement is
one of learning concrete practice from their mentors which they see as more informing
than their university programme. For their part, mentors are often critical of their
mentees’ subject knowledge, but see themselves as acting as important translators of
theory into practice. Additionally, pre-service teachers’ learning in both institutions is
mediated by their prior experience and perceptions of the nature of school
mathematics.

These findings indicate some ways forward in enabling pre-service teachers to make
the most of their school placement and for the University College-school partnership to
be strengthened, including better communication with mentors, and more
opportunities for reflection on the nature of mathematics and on the relationship
between course content and placement experience.
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