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Abstract
Let E and F be vector bundles over a complex projective smooth curve X, and suppose that

0 → E → W → F → 0 is a nontrivial extension. Let G ⊆ F be a subbundle and D an effective

divisor on X. We give a criterion for the subsheaf G(−D) ⊂ F to lift to W , in terms of the
geometry of a scroll in the extension space PH1(X,Hom(F,E)). We use this criterion to describe

the tangent cone to the generalised theta divisor on the moduli space of semistable bundles of

rank r and slope g − 1 over X, at a stable point. This gives a generalisation of a case of the
Riemann–Kempf singularity theorem for line bundles over X. In the same vein, we generalise the

geometric Riemann–Roch theorem to vector bundles of slope g − 1 and arbitrary rank.

1. Introduction

Let X be a complex projective smooth curve of genus g ≥ 2 and let E and
F be vector bundles over X. It is well known that isomorphism classes of ex-
tensions 0 → E → W → F → 0 are parametrised by the cohomology group
H1(X,Hom(F,E)), the zero element corresponding to the trivial extension F ⊕E.
These spaces have been much investigated and used in many contexts. They can
be used to cover moduli spaces of vector bundles (see Narasimhan–Ramanan [18],
also [5]), giving a useful tool for the analysis thereof (see for example Pauly [20]).
Extension spaces also occur naturally as tangent spaces at smooth points of these
moduli spaces, and we will say more about this later. And they have been used in
coding theory by Johnsen [8], Coles [2] and others.

The central point of the present article is the following. Let W be a nontrivial
extension of F by E, and suppose γ : G → F is a vector bundle inclusion. Let D
be an effective divisor on X, and consider the sheaf injection G(−D)→ G induced
by the section of OX(D) vanishing exactly along D. We write γ for the composed
map G(−D) → G → F , which is a sheaf injection and a generically injective map
of vector bundles. It is often of interest to know when γ factorises via a map
G(−D)→W . For this, one has:

Lemma 1.1. The map γ factorises via W if and only if the class δ(W ) of the
extension belongs to the kernel of the induced map

γ∗ : H1(X,Hom(F,E))→ H1(X,Hom(G(−D), E)).

Proof. This is a special case of Narasimhan–Ramanan [16], Lemma 3.1.
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Since nontrivial extensions with proportional extension classes are isomorphic
as vector bundles, we lose little by working with PH1(X,Hom(F,E)) (in order to
avoid trivial cases, we will assume that h1(X,Hom(F,E)) ≥ 1).

When E and F are line bundles, Lange and Narasimhan in [12] gave a geometric
criterion for the lifting of γ : F (−D) → F to an extension W , in terms of secants
to the natural image of the curve in

|KXFE
−1|∗ = PH0(X,KX ⊗ F ⊗ E∗)∗ ∼= PH1(X,Hom(F,E)).

Our first aim is to find an analogous criterion for such liftings when E and F may
have higher rank. This will allow us to use geometric methods to illuminate ques-
tions associated to such liftings. In the second part of the article, we investigate
one such question: the geometric description of tangent cones to a generalised theta
divisor.

Here is a more precise summary of the article. In §2, we consider an arbitrary vec-
tor bundle V → X with h1(X,V ) ≥ 1. We describe a map ψ : PV 99K PH1(X,V )
and recall conditions for it to be an embedding (Theorem 2.1). We also discuss
some elementary geometry of varieties in projective space.

Next, let E, F , G, D and γ be as above. In §3, we give a geometric criterion
(Theorem 3.1) for the lifting of γ to an extension W of F by E. This is given in
terms of the image of the aforementioned map ψ when V = Hom(F,E). We assume
that ψ is an embedding (as it is in the case where we will later apply Theorem 3.1),
but at the end of the section we sketch how the criterion can be made sense of when
this hypothesis is not satisfied.

In §4, we apply Theorem 3.1 to the study of a generalised theta divisor. The
moduli space U(r, r(g − 1)) of semistable bundles of rank r and slope g − 1 over X
has a natural divisor ∆, whose support consists of bundles with nonzero sections.
The tangent space to U(r, r(g − 1)) at a smooth (equivalently, stable) point E is
naturally isomorphic to H1(X,End(E)), which parametrises extensions 0 → E →
E→ E → 0. We use Theorem 3.1 to give a description of the projectivised tangent
cone to ∆ at E (Theorem 4.5), which generalises a case of the Riemann–Kempf
singularity theorem (see Griffiths–Harris [3, Chapter 2]). We use several results of
Laszlo [14].

Furthermore, from Theorem 3.1 we deduce a generalisation of the geometric
Riemann–Roch theorem (Theorem 4.7), relating the number of sections of a vector
bundle E of rank r and slope g−1 to the codimension of the linear span of a certain
variety in projective space. This result holds even if E is not semistable.

I thank Hans-Christian von Bothmer, Insong Choe, Cord Erdenberger, Klaus
Hulek, Atanas Iliev, Trygve Johnsen, Peter Newstead, Christian Pauly, Ragni
Piene, Kristian Ranestad and Arne B. Sletsjøe for enjoyable and valuable discus-
sions.

2. Scrolls in projective space

Let V → X be a vector bundle of rank r ≥ 1 such that KX ⊗ V ∗ has at least one
section. We describe a rational map of the scroll PV → X into the projective space
PH1(X,V ). Let π : PV → X be the projection. We have the following sequence of
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identifications:

H1(X,V ) ∼= H0(X,KX ⊗ V ∗)∗ by Serre duality

∼= H0(X,KX ⊗ π∗OPV (1))∗

∼= H0(X,π∗ (π∗KX ⊗OPV (1)))∗ by the projection formula

∼= H0(PV, π∗KX ⊗OPV (1))∗ by definition of direct image.

By standard algebraic geometry, we have a map ψ : PV 99K PH1(X,V ). We write
Υ for the line bundle π∗KX ⊗OPV (1)→ PV .

Theorem 2.1. (1) The map ψ : PV 99K PH1(X,V ) is an embedding if we
have h0(X,V ) = h0(X,V (D)) for all effective divisors D of degree two on
X.

(2) In particular, ψ is an embedding if V = Hom(F,E) for semistable bundles
E and F with µ(F ) > µ(E) + 2.

Proof. Ramanan and Hwang prove (1) in [7, §3] if V = End0(E), the bundle
of trace zero endomorphisms of another bundle E, and in fact their argument also
applies to arbitrary V . As for (2): if E and F are semistable and µ(F ) > µ(E) + 2
then there are no maps F → E(D) for any divisor D of degree two on X. Thus
h0(X,Hom(F,E)) = 0 = h0(X,Hom(F,E(D))), and we can use (1).

Remark 2.2. Let L → X be a line bundle. If we identify X with PKXL
−1

then, via Serre duality, ψ coincides with the standard map φL : X 99K |L|∗. Then
it is easy to check that Theorem 2.1 gives a direct generalisation of the well-known
fact that φL is an embedding if and only if h0(X,L(−x− y)) = h0(X,L)− 2 for all
x, y ∈ X.

We now recall two facts on varieties in projective space:

Linear span of a subvariety
Suppose Y is a smooth projective variety and Z a closed subvariety of Y , and let
Υ → Y be a line bundle with at least one section. We write ψ for the standard
map Y 99K |Υ|∗. We will describe the linear span of ψ(Z) in |Υ|∗.

We write IZ for the ideal sheaf of Z. Then H0(Y,Υ ⊗ IZ) is the subspace of
global sections of Υ which vanish along Z. These correspond to hyperplanes in
|Υ|∗ which contain the image of Z. Let Υ′ be the restriction of Υ to Z. There is a
natural exact sequence

0→ H0(Y,Υ⊗ IZ)→ H0(Y,Υ)
q−→ H0(Z,Υ′)→ · · ·

Proposition 2.3. The linear span of ψ(Z) in |Υ|∗ coincides with the projec-
tivised kernel of H0(Y,Υ)∗ → H0(Y,Υ⊗ IZ)∗.

Proof. Write Π for the image of q in H0(Z,Υ′); then

Π∗ ∼= Ker
(
H0(Y,Υ)∗ → H0(Y,Υ⊗ IZ)∗

)
.

We write ψ′ : Z 99K |Υ′|∗ for the map to projective space determined by Υ′. It is
easy to check that there is a commutative diagram

Z �
�

/

ψ′

{{

Y

ψ

��

|Υ′|∗

"

Pq∗

(
PΠ∗ �

�
/ |Υ|∗
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and this shows that the linear span of ψ(Z) is contained in PΠ∗. Moreover, since
ψ′(Z) is nondegenerate in |Υ′|∗ and the restriction H0(Z,Υ′)∗ → Π∗ is surjective,
the image of Z in PΠ∗ is also nondegenerate. This proves the proposition.

Osculating spaces
References for this subject include Piene [22], Piene–Tai [23] and Lanteri et al [13].
Let Y be a smooth projective variety and Υ → Y a very ample line bundle. We
denote ψ : Y ↪→ |Υ|∗ the map to projective space defined by Υ. For y ∈ Y and
k ≥ 0, the kth osculating space to Y at y is defined as the projective linear subspace
of |Υ|∗ spanned by the forms on H0(Y,Υ)∗ defined by differential operators of order

at most k at y. We denote it Osck(Y, y). For large k, it will fill up all of |Υ|∗.
By choosing a system of local coordinates near y, we see that those sections of

Υ which are annihilated by all differential operators of order at most k are exactly
those which vanish to order at least k+ 1 at y; precisely, those whose images in the
stalk Υy belong to (Υ⊗ Ik+1

y )y, where Iy is the ideal sheaf of y. Thus we have:

Proposition 2.4. The kth osculating space to Y at p coincides with

Osck(Y, y) = PKer
(
H0(Y,Υ)∗ → H0(Y,Υ⊗ Ik+1

y )∗
)
.

This description of Osck(Y, y) will be useful in what follows.

3. Extensions, lifting and geometry

Let E and F be vector bundles over X. Throughout this section, we will suppose
that the map ψ : PHom(F,E) 99K PH1(X,Hom(F,E)) defined in the last section
is an embedding. At the end of the section, we will briefly discuss what happens
more generally.

As before, let γ be the generically injective vector bundle map defined by the
composition

G(−D)→ G
γ−→ F,

where γ is a vector bundle inclusion and G(−D)→ G is induced by the section of
OX(D) vanishing precisely along D.

We now define some loci in PH1(X,Hom(F,E)). Since γ is a vector bundle
injection, the kernel of the induced map

γ∗ : Hom(F,E)→ Hom(G,E)

is a vector subbundle Ker(γ∗) of Hom(F,E), of rank (rk(F )− rk(G)) · rk(E). If we
write H for Coker(γ), a vector bundle, then Ker(γ∗) ∼= Hom(H,E). We obtain a
subscroll PKer(γ∗) of PHom(F,E), which is nonempty if and only if rk(F ) > rk(G).

Next, we write D =
∑n
i=1 kixi, where the xi are distinct and each ki ≥ 1. We

define N(γ) to be the union of the following loci in PH1(X,Hom(F,E)):

• the subscroll PKer(γ∗) of PHom(F,E), and
• the union over all i = 1, . . . , n of⋃

ν∈PHom(F,E)|xi

Oscki−1 (PHom(F,E), ν) .

We can now state the main result of this section, which generalises the idea of
Lange–Narasimhan [12, Proposition 1.1].

Theorem 3.1. Let W be a nontrivial extension of F by E. Then the map
γ : G(−D) → F lifts to W if and only if 〈δ(W )〉 belongs to the linear span of the
locus N(γ) in PH1(X,Hom(F,E)).
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The proof of this theorem will occupy the remainder of this section. Let us briefly
indicate the principle before getting into the details: By Lemma 1.1, we need to
show that the linear span of N(γ) is equal to

PKer
(
γ∗ : H1(X,Hom(F,E))→ H1(X,Hom(G(−D), E))

)
or equivalently, by Serre duality,

PKer
(
γ∗ : H0(X,KX ⊗ F ⊗ E∗)∗ → H0(X,KX ⊗G(−D)⊗ E∗)∗

)
.

In the last section we saw thatH0(X,KX⊗F⊗E∗) is identified withH0(PHom(F,E),Υ)∗,
where Υ is a certain line bundle. We will show that under this identification,
H0(X,KX ⊗ G(−D) ⊗ E∗) corresponds to a subspace of H0(PHom(F,E),Υ) of
sections vanishing along the various components of N(γ) with appropriate multi-
plicities. Then we use Propositions 2.3 and 2.4 to conclude.

We begin by assembling some technical results. Let V → X be any vector
bundle. We will study the connection between sections of KX ⊗ V ∗ → X and
those of Υ → PV in more detail. Let Q be a subbundle of V . We write Q⊥ for
the orthogonal complement of Q in V ∗, which is defined by the exact sequence
0→ Q⊥ → V ∗ → Q∗ → 0.

Lemma 3.2. Via the identification

(3.1) H0(X,KX ⊗ V ∗)
∼−→ H0(PV,Υ)

described in §2, the subspace H0(X,KX ⊗Q⊥) of H0(X,KX ⊗ V ∗) corresponds to
the space of global sections of Υ vanishing along PQ.

Proof. For any x ∈ X, a section s of KX ⊗V ∗ restricts to a linear form on V |x
with values in the line KX |x. To evaluate the corresponding section s̃ of Υ → PV
at a point ν ∈ PV |x, we restrict s to the line ν ⊆ V |x and obtain an element of
Hom(ν,KX |x) = C. Thus s̃ vanishes at ν if and only if

s(x) ∈ Ker (KX ⊗ V ∗|x → KX |x ⊗ ν∗) .
In the same way, we see that s̃ vanishes at all points of PQ|x if and only if

s(x) ∈ Ker (KX ⊗ V ∗ → KX ⊗Q∗) |x,
that is, s(x) ∈ KX⊗Q⊥|x. Therefore, sections of Υ→ PV vanishing along the whole
of PQ correspond to sections of KX ⊗ V ∗ → X which are everywhere KX ⊗ Q⊥-
valued.

We adapt this lemma to the situation in which we will need it:

Corollary 3.3. Suppose that V = Hom(F,E) for vector bundles E and F , and
that γ : G ↪→ F is a vector bundle inclusion. We consider again the subbundle

Ker (γ∗ : Hom(F,E)→ Hom(G,E))

of Hom(F,E). Then sections of Υ → PHom(F,E) vanishing along the subscroll
PKer(γ∗) correspond to sections of KX ⊗F ⊗E∗ → X with values in KX ⊗G⊗E∗
at all points.

Proof. In view of Lemma 3.2, it suffices to show that the orthogonal com-
plement of Ker(γ∗) in F ⊗ E∗ is G ⊗ E∗. Recall that Ker(γ∗) ∼= H∗ ⊗ E where
H = Coker(γ). Thus we have an exact sequence

0→ Ker(γ∗)→ F ∗ ⊗ E → G∗ ⊗ E → 0.

Dualising, we see that Ker(γ∗)⊥ = G⊗ E∗, as required.

Next, let x be a point of X. We denote m the maximal ideal of OX,x, and for
any ν ∈ PV we write Iν for the maximal ideal of OPV,ν .
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Lemma 3.4. For each k ≥ 0, sections of KX ⊗ V ∗ belonging to mk (KX ⊗ V ∗)x
correspond via (3.1) to sections of Υ belonging to Ikν for all ν ∈ PV |x.

Proof. Let s be a section of KX ⊗ V ∗, and let j be the unique integer such
that

sx ∈ mj (KX ⊗ V ∗)x \m
j+1 (KX ⊗ V ∗)x .

Then for any uniformiser z at x, the restriction of s to a suitable neighbourhood U
of x has the form zj · t for some section t of KX ⊗ V ∗ with

tx ∈ (KX ⊗ V )x\m(KX ⊗ V )x.

The section t is well-defined up to a unit in OX,x.
We describe the corresponding section s̃ of Υ more precisely. Firstly, we consider

the section π∗s of π∗ (KX ⊗ V ∗). By Hartshorne [4, II.7.11(b)], there is a canonical
surjection π∗V ∗ → OPV (1), which is identified on each fibre with restriction of a
global section of OPr−1(1) to each point of Pr−1 in turn. The image of π∗s under
the induced map

π∗ (KX ⊗ V ∗)→ π∗KX ⊗OPV (1) = Υ

is the desired section s̃ of Υ.
Suppose now that j ≥ k. Now π∗z is a local function on PV , which belongs to

Iν\I2ν for all points ν of PV |x. The section s̃ of Υ determined as above by s is a
multiple of (π∗z)k, and therefore s̃ ∈ IkνΥν for all ν ∈ PV |x.

Conversely, suppose that j < k. Choose any ν0 ∈ PV |x such that t|ν0 is nonzero.
Then s̃ lies outside Ij+1

ν0 Υν0 , and in particular outside Ikν0Υν0 .

The last technical tool we need is a result in linear algebra. Let N be a finite-
dimensional vector space and {Nλ : λ ∈ I} a collection of subspaces of N indexed
by a set I. Write N0 for the intersection of all the Nλ.

Proposition 3.5. The kernel of the restriction map N∗ → N∗0 coincides with
the linear span S of the kernels of the restriction maps N∗ → N∗λ for all λ ∈ I.

Proof. Firstly, dualising the exact sequence 0→ N⊥λ → N∗ → N∗λ → 0, we see

that
(
N⊥λ

)⊥
coincides with Nλ under the canonical identification N = (N∗)∗. For

v ∈ N , we have

φ(v) = 0 for all φ ∈ S ⇐⇒ φ(v) = 0 for all φ ∈ N⊥λ and all λ

⇐⇒ v ∈
(
N⊥λ

)⊥
= Nλ for all λ

⇐⇒ v ∈ N0.

Thus S = Ker(N∗ → N∗0 ), as required.

Now we have all the ingredients for our main result on liftings:

Proof of Theorem 3.1. As mentioned before, by Lemma 1.1, we need to show
that the linear span of N(γ) is equal to

PKer
(
γ∗ : H1(X,Hom(F,E))→ H1(X,Hom(G(−D), E))

)
or, equivalently, by Serre duality,

PKer
(
γ∗ : H0(X,KX ⊗ F ⊗ E∗)∗ → H0(X,KX ⊗G(−D)⊗ E∗)∗

)
.

Now the image of H0(X,KX ⊗G(−D)⊗ E∗) in H0(X,KX ⊗ F ⊗ E∗) is equal to
the intersection

γ
(
H0(X,KX ⊗G⊗ E∗)

)
∩

(
n⋂
i=1

H0 (X,KX ⊗ F (−kixi)⊗ E∗)

)
.
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By Proposition 3.5, therefore, Ker(γ∗) is the linear span of the union of

(3.2) Ker
(
H0(X,KX ⊗ F ⊗ E∗)∗ → H0(X,KX ⊗G⊗ E∗)∗

)
together with the union of

(3.3) Ker
(
H0(X,KX ⊗ F ⊗ E∗)∗ → H0 (X,KX ⊗ F (−kixi)⊗ E∗)∗

)
over all i = 1, . . . , n.

By Corollary 3.3, the space H0(X,KX ⊗ G ⊗ E∗) corresponds to the space of
global sections of Υ → PHom(F,E) which vanish along the subscroll PKer(γ∗).
Therefore the space (3.2) is identified with

(3.4) Ker
(
H0(PHom(F,E),Υ)∗ → H0(PHom(F,E),Υ⊗ IPKer(γ∗))

∗) .
Next, by Lemma 3.4, the space H0 (X,KX ⊗ F (−kixi)⊗ E∗) corresponds to⋂

ν∈PHom(F,E)|xi

H0
(
PHom(F,E),Υ⊗ Ikiν

)
.

Thus by Proposition 3.5, the space (3.3) corresponds to the linear span of

(3.5)
⋃

ν∈PHom(F,E)|xi

Ker
(
H0(PHom(F,E),Υ)∗ → H0(PHom(F,E),Υ⊗ Ikiν )∗

)
Putting all this together, Ker(γ∗) is exactly the linear span of (3.4) and the union

of the loci (3.5) for i = 1, . . . , n.
Now we projectivise: (3.4) becomes Span (PKer(γ∗)) by Proposition 2.3 and

(3.5) becomes ⋃
ν∈PHom(F,E)|xi

Oscki−1 (PHom(F,E), ν)

by Proposition 2.4. Thus PKer(γ∗) is exactly the linear span of N(γ).

This completes the proof of Theorem 3.1.

If ψ is not an embedding
If we drop the assumption that ψ be an embedding, then what we have shown in
Theorem 3.1 is the following: The sheaf injection γ : G(−D)→ F factorises via W
if and only if δ(W ) belongs to the linear span of the union of the following:

• Ker
(
H0(PHom(F,E),Υ)∗ → H0(PHom(F,E),Υ⊗ IPKer(γ∗))

∗), and
• the union over i = 1, . . . , n and ν ∈ PHom(F,E)|xi

of

Ker
(
H0(PHom(F,E),Υ)∗ → H0(PHom(F,E),Υ⊗ Ikiν )∗

)
.

If ψ does not fail too badly to be an embedding (for example, if it contracts some
pairs of points, if the differential fails to be injective at some points, or even if
ψ fails to be defined at some points) then the above spaces can be interpreted
geometrically in an obvious way using Lemmas 2.3 and 2.4. Notice for example that
in the statement of Lemma 2.3, we did not assume that ψ was an embedding. We
will give one example which shows the effect such phenomena have on the behaviour
of the extensions. Suppose X is a hyperelliptic curve and we are considering rank
two extensions of the form

0→ OX →W → OX → 0

with classes in H1(X,OX). Let D =
∑n
i=1 kixi be an effective divisor on X, and

let γ be the inclusion OX(−D) → OX . Here γ is the identity OX
∼−→ OX , so the

scroll PKer(γ∗) is empty, and N(γ) consists of
n⋃
i=1

Oscki−1(φ(X), φ(xi)).
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Thus the span of N(γ) is precisely the secant space to X spanned by D. By
Theorem 3.1, the map γ factorises via W if and only if δ(W ) lies on this secant.
(This also follows from Lange–Narasimhan [12, Proposition 1.1].)

Now write γ′ : OX(−ι(D))→ OX where ι : X → X is the hyperelliptic involution.
The locus N(γ′) is the secant to ψ(X) spanned by the image of the divisor ι(D).
But this is precisely the image of D. Therefore we have

N(γ) = N(γ′).

Hence, by Theorem 3.1, any extension W to which γ lifts must also admit a lifting
from γ′, and vice versa.

Thus, the fact that the map PHom(OX , OX)→ PH1(X,OX) fails to be injective
is reflected in a natural way in the properties of the extensions. (This example
should be compared with Lange–Narasimhan [12, p. 59], especially if deg(D) = 1.)

4. Tangent cones of a generalised theta divisor

Note: To readers following the reference in Lemma 4.5 of the article [6] of Trygve Johnsen and

the present author: Please note that the reference is to a early version of the present article, which

can be found online at http://arxiv.org/abs/math/0610970v3 . I apologise for this inconvenience.

In this section we use Theorem 3.1 to generalise two well-known results on line
bundles over curves to bundles of higher rank: the Riemann–Kempf singularity
theorem and the geometric Riemann–Roch theorem. We begin with a brief review
of these results in the line bundle case.

Let X be a curve of genus g ≥ 3. We assume for simplicity that X is nonhy-
perelliptic, so that the canonical map φ : X ↪→ |KX |∗ is an embedding. We denote
Jg−1 the Jacobian variety parametrising line bundles of degree g − 1 over X, and
we write Wg−1 for the natural divisor on Jg−1 whose support consists of bundles
with sections.

Let L → X be a line bundle of degree g − 1 with h0(X,L) ≥ 1. Recall the
geometric Riemann–Roch theorem:

Theorem 4.1. The number h0(X,L) is equal to codim(Span(φ(D)), |KX |∗).

Proof. See Griffiths–Harris [3], chapter 2.

Next, we write h0(X,L) =: n. By the Riemann singularity theorem, L is a point
of multiplicity n in Wg−1. Recall that the projectivised tangent space to Jg−1 at
any point is isomorphic to |KX |∗. The Riemann–Kempf singularity theorem gives
us a geometric description of the tangent cones of Wg−1:

Theorem 4.2. The projectivised tangent cone to Wg−1 at L is the union of the
projective (g− 1−n)-planes spanned by the images by φ of all the effective divisors
in |L|.

Proof. See Griffiths–Harris [3], chapter 2.

4.1. A generalisation of the Riemann–Kempf singularity theorem
We begin by describing the objects which will replace Jg−1 and Wg−1. We recall
some facts from Laszlo [14]:

Let U := U(r, r(g− 1)) be the moduli space of semistable vector bundles of rank
r and degree r(g − 1). This is a projective irreducible normal variety of dimension
r2(g − 1) + 1. It has a distinguished divisor ∆, whose support consists of bundles
admitting at least one independent section (which clearly coincides with Wg−1 if
r = 1). It is well known that the tangent space TEU to U at a smooth point E is
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isomorphic to H1(X,End(E)).

We now state an important fact:

Theorem 4.3. Suppose that X is nonhyperelliptic and of genus g ≥ 5. Then the
map ψ : PEnd(E) 99K PH1(X,End(E)) = PTU |E defined in §2 is an embedding for
generic E ∈ ∆.

Proof. This theorem is proven by Hwang and Ramanan in [7, §3] if End(E)
is replaced with End0(E), the bundle of trace zero endomorphisms of E, and the
result we require will follow easily from their work. By Proposition 2.1, we need to
show that for generic E ∈ ∆ we have

h0(X,End(E)) = h0(X,Hom(E,E(D)))

for all effective divisors D of degree two over X. Recall the natural direct sum
decomposition

End(E) = OX ⊕ End0(E).

Since X is nonhyperelliptic, we have h0(X,OX) = 1 = h0(X,OX(D)) for all D ∈
Sym2X. Furthermore,

h0(X, (End0(E))(D)) = 0 = h0(X,End0(E))

for generic E ∈ U by [7, Proposition 3.2]. Therefore, for generic E ∈ U , the map ψ
is indeed an embedding.

We must show that in fact the statement is true for a general bundle in the
divisor ∆. To see this, note that a twist F ⊗ L of a general bundle F ∈ U by a
suitable line bundle L of degree zero will belong to ∆ (precisely: an L belonging to
the theta divisor of F . See for example Laszlo [14, §I.2]). But End(F⊗L) ∼= End(F )
for any line bundle L. The result follows.

Let E ∈ U be a stable bundle with h0(X,E) = n ≥ 1 and such that ψ is an
embedding. As in Laszlo [14] (see also Narasimhan–Ramanan [17] and Pauly [21]),
we can find an étale affine neighbourhood S = Spec(A) of E in U and a family of
stable vector bundles E over S×X such that for each F ∈ S, we have E|{F}×X ∼= F ,
together with a homomorphism µ : M → N of flat A-modules of finite type such
that for all A-modules P , by functoriality,

H0(S ×X,E⊗A P ) ∼= Ker (µ⊗ IdP ) and

H1(S ×X,E⊗A P ) ∼= Coker (µ⊗ IdP ) .

Moreover, shrinking S, we can suppose that M and N are free A-modules and µ|E
is the zero homomorphism. The divisor ∆ is given on S as (det(µ)). Laszlo has
given the following generalisation of the Riemann singularity theorem:

Theorem 4.4. The multiplicity of ∆ at E is equal to h0(X,E).

Proof. See [14, Théorème II.10].

Now let s be a nonzero section of E. We regard s as a vector bundle map

OX → E. As such, it factorises OX → OX(D)
s−→ E, where

D =

n∑
i=1

kixi

is the divisor of zeroes of s, and OX(D) is the vector subbundle of E generated by
s(OX). (If rk(E) ≥ 2 then we expect D to be zero for general s.) The saturated
map s : OX(D)→ E is a vector bundle injection, so

Ker (s∗ : End(E)→ Hom(OX(D), E))
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is a vector subbundle of End(E), of rank r(r−1). Setting F = E and G = OX(D),
and γ = s, we are in the situation of Theorem 3.1. Thus we can define the locus
N(s) in PH1(X,End(E)) as in §3, as the union of the following subvarieties of
PH1(X,End(E)):

• the subscroll PKer(s∗) of PEnd(E), and
• the union over i = 1, . . . , n and ν ∈ PEnd(E)|xi

of the osculating spaces

Oscki−1 (PEnd(E), ν).

Theorem 4.5 (Generalised Riemann–Kempf singularity). The projectivised tan-
gent cone to ∆ at E is, set-theoretically, the union over all nonzero s ∈ H0(X,E)
of the linear spans of N(s) ⊂ PTEU .

Proof. Let A, S = Spec(A), M and N be as above and write m for the maximal
ideal of the point E in A. By Narasimhan–Seshadri [19, Lemma 2.1 (ii)], near E
the variety U looks like an analytic open set in H1(X,End(E)). Thus we have flat
structures on U at E to all orders (see Kempf [10]).

By Theorem 4.4, the function det(µ) belongs to mn\mn+1. Therefore, the tan-
gent cone in which we are interested is defined by det(µ)modmn+1, which we regard
as a function fn on TEU via the flat structure. We then notice, following Laszlo
[14, §II], that (for a compatible choice of flat structures of orders 1 and n) we have

det(µ) mod mn+1 = det
(
µmod m2

)
mod mn+1.

As in [14], we will interpret µmod m2 in terms of cup products.
Since µ|E is zero, µmod m2 is a matrix of elements of m/m2. Therefore, we can

contract it with an element v of(
m/m2

)∗
= TES ∼= TEU ∼= H1(X,End(E))

to obtain a matrix of scalars (µ mod m2)(v). By [14, Lemme II.5], this matrix can
be identified with the cup product map · ∪ v : H0(X,E) → H1(X,E). Therefore
fn(v) = 0 if and only if

det
(
· ∪ v : H0(X,E)→ H1(X,E)

)
is zero. Thus PCone(∆, E) coincides (set-theoretically) with

P{v ∈ H1(X,End(E)) : det(· ∪ v) = 0},

in other words, the image of the set of v such that the cup product map · ∪ v has
a kernel.

Now we use the link with extensions. Classes v ∈ H1(X,End(E)) parametrise
extensions 0 → E → Ev → E → 0. The coboundary map in the cohomology
sequence

0→ H0(X,E)→ H0(X,Ev)→ H0(X,E)→ H1(X,E)→ · · ·

is none other than cup product by v. But this shows that · ∪ v has a kernel if and
only if a nonzero section of E lifts to the extension Ev. Thus, we have another set-
theoretic description of the tangent cone as the set of those v defining extensions
Ev to which at least one nonzero section lifts from the quotient copy of E. Hence
the projectivised tangent cone to ∆ at E is

P

 ⋃
s∈H0(X,E)

{
v ∈ H1(X,End(E)) : s lifts to the extension Ev

} .

But by Theorem 3.1, for each s ∈ H0(X,E), the locus

P
{
v ∈ H1(X,End(E)) : s lifts to the extension Ev

}
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coincides with the linear span of N(s). Thus PCone(∆, E) is the union of the linear
spans of all the N(s), and we are done.

Remark 4.6. Our description of the tangent cone in terms of cup products
can also be explained in terms of deformations of E (compare with Mukai [15,
proof of Proposition 2.6]). Recall that a tangent vector to S at E is a morphism
Spec(C[ε]) → S which sends the closed point (ε) to E. Such a morphism is de-
termined by a ring homomorphism ν : A → C[ε] satisfying ν−1(ε) = m. We then
obtain a deformation of E by pulling back the family E to X × Spec(C[ε]). In
particular, we get a short exact sequence

0→ E ⊗A (ε)→ E ⊗A C[ε]→ E ⊗A C→ 0,

which naturally yields an extension of E by E. With this interpretation, one expects
the tangent cone to ∆ at E to correspond to deformations of E which preserve some
section of E; that is, having nonzero sections lifting from the quotient copy of E.
But these are exactly those v such that cup product by v has a kernel.

4.2. Geometric Riemann–Roch for bundles of higher rank
Here we show that as in the line bundle case, the number of independent sections
of the bundle E is measured by the degeneration in the linear span of a subvariety
of PH1(X,End(E)).

Theorem 4.7 (Generalised geometric Riemann–Roch). Let E → X be a vector
bundle of rank r and degree r(g − 1) with h0(X,E) ≥ 1. Then

h0(X,E) = codim
(
Span(N(s)),PH1(X,End(E))

)
for any nonzero section s of E.

Proof. For any nonzero section s : OX → E, the induced map

s∗ : H1(X,End(E))→ H1(X,E)

is surjective, for example since it is Serre dual to the inclusion

H0(X,KX ⊗OX ⊗ E∗) ↪→ H0(X,KX ⊗ E ⊗ E∗).

Therefore dim(Ker(s∗)) = h1(X,End(E))− h1(X,E). Thus

dim(Span(N(s))) = h1(X,End(E))− h1(X,E)− 1

by Theorem 3.1. Since χ(E) = 0, we have h1(X,E) = h0(X,E), so

h0(X,E) =
(
h1(X,End(E))− 1

)
− dim Span(N(s))

= codim
(
Span(N(s)),PH1(X,End(E))

)
,

as required.

Remark 4.8. This theorem holds even if E is not semistable. Of course, it may
then happen that h1(X,End(E)) > r2(g − 1) + 1.

4.3. The line bundle case
We conclude by examining the statements of Theorems 4.5 and 4.7 when E is a
line bundle.

Suppose X is nonhyperelliptic and let L → X be a line bundle of degree g − 1.
Then the scroll PEnd(L) is simply POX = X, and ψ is the canonical embedding
X ↪→ |KX |∗. Suppose h0(X,L) = n ≥ 1, and let s be a nonzero section of L with
divisor of zeroes D =

∑n
i=1 kixi. Then in fact OX(D) = L, and the kernel of the

restriction map

s∗ : End(L) = OX → Hom(OX(D), L) = OX
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is the zero section of OX . Thus the scroll PKer(s∗) disappears, and the locus N(s)
consists of

n⋃
i=1

Oscki−1(φ(X), φ(xi)),

which is the span of the divisor (s) in the usual sense.
With this observation, we recover the Riemann–Kempf singularity theorem and

the geometric Riemann–Roch theorem for line bundles of degree g − 1 from Theo-
rems 4.5 and 4.7.
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