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Universe models with negative bulk viscosity

Iver Brevik1
• Øyvind Grøn2

Abstract The concept of negative temperatures has
occasionally been used in connection with quantum sys-
tems. A recent example of this sort is reported in the
paper of S. Braun et al. [Science 339, 52 (2013)], where
an attractively interacting ensemble of ultracold atoms
is investigated experimentally and found to correspond
to a negative-temperature system since the entropy de-
creases with increasing energy at the high end of the
energy spectrum. As the authors suggest, it would be
of interest to investigate whether a suitable generaliza-
tion of standard cosmological theory could be helpful,
in order to elucidate the observed accelerated expansion
of the universe usually explained in terms of a positive
tensile stress (negative pressure). In the present note
we take up this basic idea and investigate a generaliza-
tion of the standard viscous cosmological theory, not by
admitting negative temperatures but instead by letting
the bulk viscosity take negative values. Evidently, such
an approach breaks standard thermodynamics, but may
actually be regarded to lead to the same kind of bizarre
consequences as the standard approach of admitting
the equation-of-state parameter w to be less than −1.
In universe models dominated by negative viscosity we
find that the fluid’s entropy decreases with time, as
one would expect. Moreover, we find that the fluid
transition from the quintessence region into the phan-
tom region (thus passing the phantom divide w = −1)
can actually be reversed. Also in generalizations of the
ΛCDM-universe models with a fluid having negative
bulk viscosity we find that the viscosity decreases the
expansion of the universe.
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1 Introduction

The absolute temperature T is in usual physics bound

to be a positive quantity. Under special conditions,
however, such as when high-energy states are more oc-

cupied than low-energy states, the temperature calcu-

lated from the thermodynamical formula

1

T
=

(

∂S

∂U

)

N

, (1)

can be a negative quantity. A striking example of this

kind of system has recently been found experimentally,
in the form of an attractively interacting ensemble of

ultracold bosons; cf. Braun (2013).

This is, however, not the first example of a negative-

temperature system. Thus negative temperatures are

associated with the properties of paramagnetic di-
electrics; cf. for instance, Ref. Landau and Lifshitz

(1980), a key factor being here that the ”magnetic spec-

trum” has to lie within a finite interval of energy. It

is to be observed generally that the region of negative
temperatures lies not ”below absolute zero” but rather

”above infinity”, implying that negative temperatures

are in some sense ”higher” than positive ones.

An interesting idea suggested by Braun (2013) is that

the negative-temperature model may be helpful for the
construction of a theory of dark energy in cosmology.

As is commonly accepted by now, the expansion of the

universe is a product of a positive tensile stress, or neg-

ative pressure, that the cosmic fluid displays.
In which ways would it seem natural to general-

ize the standard cosmological theory? One possibil-

ity might be to allow for a composition of two, or

more, components in the cosmic fluid. Thus the idea

http://lanl.arxiv.org/abs/1306.5634v1
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of considering the fluid as a mixture of two compo-

nents, one ordinary fluid component and one dark
energy component, has received substantial interest;

cf., for instance, Balakin and Bochkarev (2011) and

Brevik et al. (2012). The line of approach in the present

note will however be different, namely to allow for neg-
ative bulk viscosities in the cosmic fluid. We shall con-

sider the fluid as a one-component one. That means,

we focus attention on the dark energy component only.

In the real universe there may be a composition, as al-

ready mentioned, of a dark energy component and one
or more other components, corresponding to normal flu-

ids and perhaps also dark matter fluids.

At first sight the possibility ζ < 0 might seem unrea-

sonable, but one has to recall here that the positivity
of ζ relies upon the physical requirement that the time

development of entropy in a non-equilibrium system is

a positive quantity. And that is just the condition that

we wish to relax. Moreover, the characteristic property

of the dark energy fluid implying that the parameter w
occurring in the equation of state,

p = wρ, (2)

is less than −1, is a counterintuitive property of the

same kind. So, we think that the possibility of allow-
ing for negative values of ζ is not so unreasonable af-

ter all, in view of the general bizarre properties of the

dark energy fluid. As we will show in the next sec-

tion, the reversal of the sign of ζ implies in a natural

way that the entropy of the fluid decreases with time.
Thus we are discussing a viscosity-induced, rather than

a temperature- induced, violation of the conventional

second law in thermodynamics.

Further examples of universe models with negative
bulk viscosity are investigated in sections 4 and 5.

While positive viscosity accelerates the expansion of the

universe, negative viscosity will in general decrease it.

In the summary section, section 6, we trace out some

connections with other lines of approach investigated in
contemporary cosmology. Whereas we keep T positive

and find the entropy change with respect to time to be

negative, there are other approaches in which T is nega-

tive and the corresponding entropy change positive. In
some sense there is an equivalence.

2 The formalism

It is instructive to start from nonrelativistic theory. Let

ui denote the components of the fluid velocity. The

entropy density is S = nσ, where n is the particle

(baryon) density and σ the entropy per particle (we use

geometric units). Then, if η denotes the shear viscosity
and ζ as before the bulk viscosity, we have

dS

dt
=

2η

T
(θik −

1

3
δik∇·u)2 + ζ

T
(∇·u)2 + κ

T
(∇T )2, (3)

where θik = u(i;k) and κ is the thermal conductivity;
ζ (as well as η and κ) are positive quantities in the
conventional theory.

This expression can readily be generalized into a rel-

ativistic language. We here need some definitions. Let
Uµ = (U0, U i) be the four-velocity of the fluid; in co-
moving coordinates U0 = 1, U i = 0. If gµν is the gen-

eral metric, the projection tensor is

hµν = gµν + UµUν , (4)

the rotation tensor is

ωµν = hα
µh

α
νU[α;β], (5)

the expansion tensor is

θµν = hα
µh

β
νU(α;β), (6)

and finally the shear tensor is

σµν = θµν − 1

3
hµνθ, (7)

where θ = θµµ = Uµ
;µ is the scalar expansion.

With the spacelike heat flux density vector defined

as

Qµ = −κhµν(T,ν + TAν), (8)

where Aν = UαUν;α is the four-acceleration, we can
now make the effective substitutions

θik → θµν , δik → hµν , ∇ · u → θ, −κT,k → Qµ,

(9)

whereby

Sµ
;µ =

2η

T
σµνσ

µν +
ζ

T
θ2 +

1

κT 2
QµQ

µ. (10)

Here Sµ is the entropy current four-vector

Sµ = nσUµ +
1

T
Qµ. (11)

(The sketchy derivation above follows Brevik and Heen
(1994); more complete treatments can be found in
Weinberg (1971) and Taub (1978).)

Assume now spatial isotropy, implying η = 0, and
assume that there is no heat flux, Qµ = 0. Then

Sµ
;µ =

ζ

T
θ2. (12)
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We consider henceforth the spatially flat FRW space-

time, with metric

ds2 = −dt2 + a2(t)(dr2 + r2dΩ2), (13)

implying that θ = 3H with H the Hubble parameter.

As Sµ
;µ = nσ̇ in the local rest frame, we have

σ̇ =
ζ

nT
θ2 =

9ζ

nT
H2. (14)

Thus, if T still means the conventional positive temper-

ature in the cosmic fluid, one gets σ̇ < 0 if ζ < 0. The
specific entropy σ has to decrease with increasing time

in this model.

3 Remarks on the phantom divide

A more detailed insight into the physics of this model

can be achieved by considering the behavior near the

phantom divide more closely. This divide is defined
as the case w = −1. As is known from observations

Nakamura et al. (2010); Amanullah (2010), w lies close

to −1 today:

w = −1.04+0.09
−0.10. (15)

A characteristic property of most of the phantom dark

energy models is the occurrence of the Big Rip future

singularity: once the phantom divide is crossed so as

to give w < −1, the universe is inevitably driven into

a singularity (the scale factor becoming infinity) at a
finite time in the future. This was first observed by

Caldwell (2002), and has later been re-examined by a

number of researchers (for a recent review including also

modified gravity, see, for instance, Nojiri and Odintsov
(2011)).

These early theories assumed the cosmic fluid to be

nonviscous. Once bulk viscosity is included, the the-

ory becomes richer and more flexible. One important

property, on which we shall focus attention in the fol-
lowing, is that on the basis of a conventional positive

value of ζ it becomes possible for the fluid to slide from

the quintessence region (−1 < w < −1/3) through the

phantom divide into the phantom region and thus after-
wards into the future singularity. This was first pointed

out in Brevik and Gorbunova (2005). Whether a tran-

sition through the ”point” w = −1 really occurs or not,

depends on the magnitude of ζ.

Consider now the Friedmann equations for the flat
space,

θ2 = 3κρ, (16)

2θ̇ + θ2 = −3κ(p− ζρ). (17)

Together with the conservation equation for energy,

ρ̇+ (ρ+ p)θ = ζθ2, (18)

they provide a set of equations enabling us to derive the
governing equation for the scalar expansion, or equiva-

lently, for the energy density. Imagine first the general

case for which w = w(ρ). Then, if the function f(ρ) is

defined via

1 + w(ρ) = −f(ρ)/ρ, (19)

we can write the governing equation for ρ in the form

ρ̇−
√

3κρ f(ρ)− 3κρζ(ρ) = 0, (20)

which has the solution

t =
1√
3κ

∫ ρ

ρ0

dρ
√
ρf(ρ)[1 +

√
3κ ζ(ρ)

√
ρ/f(ρ)]

. (21)

Here we have taken t = t0 = 0 as the initial point, ρ0
meaning ρ(t0).

We limit ourselves in the following to the case when

f(ρ) = αρ, with α a constant. Thus

p = wρ = −(1 + α)ρ. (22)

We next need to model the form of the bulk viscos-

ity. Probably the most interesting form from a physical
point of view is to put the viscosity proportional to the

scalar expansion. Therewith we allow for an increase of

the viscosity in the case of increasingly vigorous move-

ments in the cosmic fluid. Let us assume that

ζ = τθ, (23)

with τ a constant. This choice has been analyzed re-

peatedly also before; cf., for instance, Brevik and Gorbunova

(2005); Grøn (1990); Brevik and Grøn (2013). Equa-

tion (21) then yields

t =
1√
3κ

2

α+ 3κτ

(

1√
ρ0

− 1√
ρ

)

. (24)

This shows that the fate of the universe is critically

dependent of the sign of the prefactor. The condition
for a Big Rip (ρ = ∞) to occur, is that

α+ 3κτ > 0. (25)

In conventional viscous cosmology, as explored in

Brevik and Gorbunova (2005), even if the universe

starts from a state lying in the quintessence region
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(α < 0), it is possible for the fluid to slide through

the phantom divide into the phantom region if the vis-
cosity is big enough (τ > 0 in this case). Once having

entered the phantom region, the Big Rip in one of its

variants becomes inevitable.

In the present case, however, with τ < 0, the situa-
tion becomes reversed. Even if the fluid starts within

the phantom region (α > 0) it is possible, if the neg-

ative viscosity becomes large enough in magnitude, to

abandon the singularity by making the expression on

the left hand side of (25) negative. The fluid goes back
to the quintessence region w > −1, and becomes thus

infinitely thinned in the far future, ρ → 0. The role of

the phantom divide as a kind of a one-way ”membrane”

is in this way no longer upheld.

4 Generalization of the ΛCDM universe model

with negative bulk viscosity

We here use the results of Mostafapoor and Grøn

(2011), but allow for the possibility that the bulk vis-

cosity is negative. Let us first consider a flat universe

model with dust, and LIVE in which the interaction of
the dust and the vacuum energy with stress and thus

with negative absolute temperature, is modeled by neg-

ative viscosity. The Raychaudhury equation may then

be written

Ḣ +
3

2
H2 − 3

2
κζH − κ

2
ρΛ = 0, (26)

where κ = 8πG is Einstein’s gravitational constant and
ρΛ is the density of the Lorentz Invariant Vacuum En-

ergy, LIVE, which is constant and may be represented

by the cosmological constant.

We shall first consider the case where the bulk vis-

cosity is constant and negative, ζ = ζ0 < 0. Then
the general solution of this equation with a(0) = 0 and

a(t0) = 1 may be written

H(t) =
κ

2
ζ0 + α coth

(

3

2
αt

)

, (27a)

α =

(

1

4
κ2ζ20 +

1

3
κρΛ

)1/2

(27b)

a(t) = β exp

[

κζ0
2

(t− t0)

]

sinh
2
3

(

3

2
αt

)

, (28a)

β =

[

ρM0 − 3H0ζ0
ρΛ + (3/4)κζ20

]1/3

, (28b)

where ρM0 is the present density of cold dark energy

which has been assumed to be pressure less dust, and

H0 = H(t0) is the present value of the Hubble param-

eter.
Note that the value of α is independent of the sign of

ζ0. The Hubble parameter has an infinitely large initial

value and decreases towards H∞ = κζ0/2+α, which is

positive for all values of ζ0. It is seen that when ζ0 is
constant the sign of ζ0 does change the behavior of the

universe qualitatively. The age of the universe is

t0 = (2/3α)arcsinh(1/β)3/2, (29)

showing that negative viscosity makes the age smaller.

We shall then consider the case where the bulk vis-
cosity is proportional to the Hubble parameter with a

negative constant of proportionality, ζ = ζ1H, ζ1 < 0.

In this case the Raychaudhuri equation takes the form

Ḣ +
3

2
(1− κζ1)H

2 − κ

2
ρΛ = 0. (30)

Solving this equation with the boundary condition that

H(t0) = H0 gives

H(t) = H1 coth

(

3

2
H2t

)

, (31a)

H1 = H0

√

ΩΛ0

1− κζ1
, (31b)

H2 = H0

√

(1− κζ1)ΩΛ0. (31c)

The scale factor is

a(t) =

[

sinh
(

3
2H2t

)

sinh
(

3
2H2t0

)

]
2

3(1−κζ1)

. (32)

The age of this universe model is

t0 =
2

3H0

1
√

ΩΛ0(1− κζ1)
arccoth

√

1− κξ1
ΩΛ0

. (33)

In the present case the age-redshift relationship, i.e. the

relationship between the time t of emission and the time

t0 of observation of radiation with redshift z is

t = t0

arcsinh

[

√
ΩΛ0

(1+z)
3
2
(1−κζ1)√1−κζ1−ΩΛ0

]

arctanh
√

ΩΛ0

1−κζ1

. (34)

The corresponding expression for the standard universe

model without viscosity Grøn (2002) is obtained by

putting ζ1 = 0.
For this universe model the equation of continuity

takes the form

ρ̇M + 3(1− κζ1)HρM − 3κζ1ρΛH = 0. (35)
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Inserting the expression (31) forH we find that Eq. (35)
has the general solution

ρM (t) =
c1

sinh2
(

3
2H2t

) + ρM∞, ρM∞ =
κζ1ρΛ
1− κζ1

,

c1 = (ρM0 − ρM∞)sinh2

(

3

2
H2t0

)

, (36)

where ρM0 = ρ(0) and ρM∞ = lim |t→∞ρ(t). Note that
ρM∞ < 0 for ζ1 < 0. Hence there exists an instant
t1 where the density of the dust vanishes, after which
this model is no more physically realistic. The equation
ρ(t1) = 0 leads to

sinh

(

3

2
H2t1

)

=

√

1− ρM0

ρM∞
sinh

(

3

2
H2t0

)

. (37)

The scale factor and the Hubble parameter at this in-
stant are

a(t1) =

(

1− ρM0

ρM∞

)
1

3(1−κζ1)

, (38)

H(t1) =

(

H2
1ρM0 −H2

0ρM∞

ρM0 − ρM∞

)1/2

. (39)

Here there is no singularity at the instant t1, only a
transition to an unphysical state with negative mass
density.

5 How a sign-change of viscosity modifies the

properties of some viscous universe models

We shall here consider some viscous universe models
that have been studied earlier with positive bulk vis-
cosity, and investigate how their physical properties be-
come changed when the viscosity changes sign.

If the vacuum energy is removed in the universe
model described by Eqs. (27) and (28), and the fluid is
assumed to obey an equation of state p = wρ with con-
stant value of w, the scale factor with a(0) = 0, a(t0) =
1 is given by Treciokas and Ellis (1971)

a
3
2 (1+w) =

2

3ζ0

(

exp (
3

2
ζ0t)− 1

)

, (40a)

t0 =
2

3ζ0
ln

(

1 +
3

2
ζ0

)

. (40b)

Hence with ζ0 > 0 this universe model will eventually
reach a viscosity dominated steady state era with expo-
nential expansion and lim a|t→∞ = ∞, but when ζ0 < 0
the effect of the viscosity upon the expansion of the uni-
verse diminishes, and the universe model has a finite
final value of the scale factor, lim a|t→∞ = −2/3ζ0.

Some years ago, Murphy (1973) considered a class of

viscous universe models dominated by a viscous fluid
with p = wρ and bulk viscosity ζ = γρ where γ is con-

stant. Then the rate of change of the Hubble parameter

is

Ḣ =
3

2
H2(3γH − 1− w). (41)

The solution of this equation with a(t0) = 1, H(t0) =

H0 is given by the equation

2γ

1 + w
ln

(

3γ − 1 + w

H

)

+
2

3

(

1

H
− 1

H0

)

= (1 + w)(t − t0), (42a)

H0 =
1 + w

3γ − 1
. (42b)

On the other hand inserting H = ȧ/a in the last factor
of Eq. (41) and then integrating with the same bound-

ary conditions we obtain

3γ ln a+
2

3

(

1

H
− 1

H0

)

= (1 + w)(t− t0). (43)

Comparison between Eqs. (42) and (43) gives

a
3
2 (1+w) = 3γ − 1 + w

H
. (44)

For positive viscosity (γ > 0) these equations describe

an expanding universe model, but for negative viscosity
(γ < 0) the Hubble parameter must be negative for the

scale factor to be positive. Hence the universe model

contracts.

As an example of anisotropic universe models we

shall finally consider the effect of negative viscosity of
some simple universe models of Bianchi type I. The line

element has the form

ds2 = −dt2 +

3
∑

i=1

a2i (t)(dx
i)2. (45)

The directional Hubble parameters are Hi = ȧi/ai, and

the anisotropy parameter is

A =
1

3

3
∑

i=1

(

∆Hi

H

)2

, (46a)

∆Hi = Hi −H, H =
1

3
(H1 +H2 +H3). (46b)

In a universe filled with LIVE with constant density ρΛ
we have; cf. Mostafapoor and Grøn (2013)

κ(ρ+ ρΛ) =
3

2
(2−A)H2. (47)
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If ρΛ = 0 and in the case of a relativistically rigid fluid

with w = 1 (a so-called Zel’dovich fluid), with constant
bulk viscosity ζ, the anisotropy parameter as a function

of time is

A = A0e
−3ζ(t−t0). (48)

Hence, a positive viscosity leads to decay of the
anisotropy, while a negative viscosity increases the

anisotropy. This is a characteristic behavior for more

general viscous anisotropic universe models. Including

LIVE the Hubble parameter is

H(t) =
κζ

4
+Ĥ coth(3Ĥt), Ĥ2 =

(

κζ

4

)2

+
κρΛ
3

. (49)

It is seen that the sign of the viscosity does not influ-

ence Ĥ , but the average Hubble factor H is smaller

with negative viscosity than with a positive one. Neg-

ative viscosity acts like a decelerating force upon the

expansion of the universe.

6 Summary

Our purpose in this paper has been to investigate sit-

uations in cosmology where the entropy decreases with

increasing time. Specifically, we have achieved this by

taking the bulk viscosity ζ to be less than zero (in ac-

cordance with spatial isotropy, the shear viscosity has
been put equal to zero). The ansatz ζ < 0 is of course

counterintuitive, but one should here note that the pos-

itivity of ζ in conventional cosmology is based upon

the requirement that the change of entropy in a non-
equilibrium system is positive, and that is just the prop-

erty that we wish to relax. One may also observe the

analogy with the phantom era in the expansion of the

universe, meaning that the parameter w in the equation

of state p = wρ is less that −1. In both cases, bizarre
thermodynamic behaviors are encountered.

We have shown that in a generalization of the ΛCDM

universe model with negative bulk viscosity, the viscos-

ity contributes with an attractive gravity, and hence
tends to decrease the expansion. It turns out that in

a model where the negative coefficient of bulk viscosity

is proportional to the density of the fluid, expansion is

not allowed. Therefore, after all, even if negative vis-

cosity is a theoretical possibility, it does not seem to be
a favored property of the cosmic fluid.

Finally, it is of interest to put our developments into

a wider perspective by comparing them with some other

works in modern cosmology.
• Our formalism allows for the presence of a negative

bulk viscosity ζ but keeps the temperature T positive.

We emphasize that the entropy four-vector (11) does

not depend upon the sign of ζ at all. What changes
sign with ζ, is the change of entropy with time; cf.

Eq. (10).

• In many cases, the inclusion of bulk viscosity in cos-

mological theory does not lead to significant changes.
For instance, the Cardy-Verlinde formula for entropy,

cf. Verlinde (2000), has been found to apply under

various conditions in the presence of viscosity, even in

the case of a multicomponent fluid obeying an inho-

mogeneous equation of state; cf. Brevik and Odintsov
(2002); Brevik (2002a); Brevik et al. (2010). A some-

what stronger influence from cosmology is experi-

enced, as mentioned above, in cases where the vis-

cosity is large enough to make the fluid pass through
the phantom barrier w = −1 into the phantom regime

(Brevik and Gorbunova (2005)).

• In other cases, when dealing with dark energy,

one expects that the the entropy itself can be nega-

tive. Thus, Nojiri and Odintsov (2005) considered the
effect of a dark energy ideal fluid by inserting an in-

homogeneous Hubble-parameter dependent term in the

late-time universe. Remarkably enough, a thermody-

namical dark energy model was found in which, despite
preliminary expectations (Brevik et al. (2004)), the en-

tropy of the phantom epoch could be positive. This was

caused by crossing of the phantom barrier. Theories of

this kind are wider in scope, and generally different

from, the one presented by us above.
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