
32 KART OG PLAN 1–2013

Om globale navigasjonssatellittsystemer og 
relativitet
Jon Glenn Gjevestad og Øyvind Grøn

Vitenskapelig bedømt (refereed) artikkel

Jon Glenn Gjevestad and Øyvind Grøn: On the Global Navigation Satellite Systems and Relativity

KART OG PLAN, Vol. 73, pp. 32–39, POB 5003, NO-1432 Ås, ISSN 0047-3278

GNSS, or more precisely GNSS-2, is an abbreviation for Global Navigation Satellite Systems – Second generation, and
serves as a generic name for the class of modern global satellite based radio navigation systems. GNSS-2 consists mainly
of the four major Global Navigation Satellite Systems known as: GPS (U.S.), GLONASS (Russia), Galileo (EU) and Bei-
Dou-2 (China). All these global radio navigation systems are based on the same navigation principle, i.e. utilizing ultra-
stable clocks in satellites to determine the user position by independent measurements of the transit time of electromag-
netic signals transmitted from satellites in orbit, so-called Radio Navigation Satellite Services (RNSS).

The typical performance of these global radio navigation systems is to provide absolute positioning to an observer on the
surface of the Earth within the precision of 5-10 meter. However, this precision can be improved utilizing state of the art
processing techniques such as Precise Point Positioning (PPP), currently demonstrating absolute positioning of 5-10 cen-
timeters utilizing only one receiver. To achieve this astonishing precision in terms of absolute position, the rate of time
as measured on the clock in the satellite must be known to better than a few nanoseconds. Since the satellites are con-
stantly moving with respect to the observer and are also located at highly different gravitational potentials, effects pre-
dicted by both the Special- and General theories of Relativity must be considered in order to achieve the desired accuracy
in the observed transit times.

These systems are in fact one of the very few man made systems, outside of particle accelerators,  that experience sig-
nificant relativistic effects.
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1. Introduction
Within the class of GNSS-2 navigation systems GPS is, through its 43 year history, the first
operational and most widely used navigation system and will throughout this article serve as
an example to illustrate and quantify some of the most significant relativistic effects experi-
enced in a modern satellite based radio navigation system.

GPS is normally divided into three principal segments: Space segment, Control Segment
and User Segment. The Space Segment consists of a nominal constellation of 27 satellites car-
rying atomic clocks. The nominal constellation was increased from 24 satellites after a repo-
sition procedure known as “Expandable 24” that was completed in June 2011. As a result of
this repositioning procedure the GPS constellation has attained a more optimal geometry,
maximizing the worldwide coverage. The Control Segment consists of a number of ground ba-
sed monitoring stations evenly distributed around the Earth close to the Equator. These mo-
nitor stations continuously monitor the satellites, distributing this information to the Master
Control Station located in Colorado Springs, USA. Here the satellite constellation is analyzed
and the satellite ephemerides and satellite clock behavior are predicted for several hours
ahead. This information is then uploaded to the satellites for transmission back to the users.
The User Segment consists of all users who utilize the transmitted signal from the satellites
to determine their position, velocity and time using their local Quartz oscillator.
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The GPS clocks are mainly Cesium atomic clocks operating by counting hyperfine transi-
tions of Cesium atoms at a very stable frequency. The precise number of such transitions of a
Cesium atom is now being adopted by international agreement as the definition of one atomic
second (6). It is the orbiting Cesium clocks that serve as the backbone of the precision demon-
strated by GPS.

2. Pseudorange
The principle observable of the GPS is the pseudorange which is basically the distance bet-
ween a satellite and the receiver on Earth. In other words it is the difference between the re-
ception time, according to the local clock, and the transmission time, according to GPS time,
multiplied by the speed of light.

The signals from the satellites can be thought of as continuous timing signals arriving at
the receiver from the satellite clocks. Measuring the one-way speed of the satellite signal re-
quires two clocks – one at each end of the path (2). 

Measuring this time difference requires synchronization of these clocks, which will be
discussed in section 5.

3. Relativistic time effects
According to the general physical interpretation of a timelike spacetime interval in the gene-
ral theory of relativity, the proper time interval, , measured on a clock moving with a velo-
city having components  (we use Latin letters for spatial indices and Greek letters
for spacetime indices) in a coordinate system , where  and t is the coordi-
nate time, is [1]

, (1)

where  are the components of the metric tensor. This may be written

 (2)

where  is the coordinate velocity of the clock.
Due to the rotation of the Earth there is Kerr spacetime outside the Earth. Then

 (3)

Here  is the Schwarzschild radius of the Earth, and a is the length cor-
responding to the angular momentum per unit mass of the Earth, , where J is the
angular momentum of the Earth. Inserting the angular velocity, mass and radius of the Earth
gives a = 2.0m. The radius of the Earth is . Hence, at the surface of the Earth
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sus the simpler, but not so accurate Schwarzschild metric which has a = 0 when we calculate
the relativistic time effects for the GPS-system.

In order to find the magnitude of the relativistic effects it is sufficient to consider a satellite
moving along a circular path with radius rs in the equatorial plane. Then  and

 and eq.(2) reduces to

 (4)

The coordinate clocks of the Kerr metric are all synchronized to show the same time as a stan-
dard clock at rest infinitely far from the mass distribution. Hence the coordinate clocks pro-
ceed at the same rate independent of their position. The term  represents the gravita-
tional time dilation. The larger rs is, i.e. the higher up the satellite is, the faster will the sa-
tellite clock tick. The next term which is proportional to the product of the angular momen-
tum of the mass distribution and the velocity of the satellite, may be called the Kerr-term. The
last term is the usual velocity dependent time dilation which comes from the special theory of
relativity. 

A typical velocity of the GPS-satellites is .  Hence the magnitudes of the
terms inside the parenthesis are 

 (5)

This shows that the Kerr-term is much smaller than the other terms which give rather small
relativistic corrections. Hence the Kerr-term may be neglected. Also we see that the gravita-
tional term and the kinematical term are of the same order of magnitude which is to be ex-
pected due to the virial theorem.

If the relativistic effects are neglected, the satellite clocks would advance at the same rate
as the clocks on the Earth. Hence, neglecting the Kerr-term the relativistic time-effects on the
GPS-satellite clocks are given by

, (6)

where h is the height of the satellite clocks above the surface of the Earth. Neglecting the
Kerr-term and calculating to 1. order in  and  leads to

 (7)

Here  is the gravitational effect and  the kinematical effect. Inserting numerical va-
lues give for a coordinate time interval  that  and

. Hence due to the gravitational time dilation a satellite clock goes faster than
the Earth clock with about 52 microseconds in 24 hours, while it slows down with 7 microse-
conds due to the kinematical time dilation.
Ashby [1] wrote “Timing errors of one ns will lead to positioning errors of the order of 30 cm.”
This comes about by multiplying the time difference by the velocity of light. Then an error of

per day due to neglecting the gravitational time effect would correspond to a positi-
on error of 16 km per day.  It should be noted that this refers to an error of the distance bet-
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to the error in the pseudorange corresponding to a timing error in the satellite clock.
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However the corresponding error in the determination of the position of an object on the sur-
face of the Earth is smaller. In the case of a signal from one satellite it is the projection of

along the surface of the Earth. If, for example, the signal moves vertically, then there
would be a positioning error on the Earth due to a time error on the satellite only because this
time error leads to a wrong determination of the position of the satellite at a given satellite ti-
me. In this case the positioning error on the Earth is given by multiplying the time error of the
satellite clock by the velocity of the satellite, not by the velocity of light. Then the time diffe-
rence  corresponds to a position difference of 20 cm per day. Such a drift would
amount to an error of 6 meters in a month, which is still not negligible. 

4. Sagnac Effect
In the experiment of Sagnac two light signals were forced by means of mirrors to move along
a closed path in opposite directions, and made to interfere at the arrival. The equipment was
positioned on a rotating table and Sagnac measured how the interference patterns changed
with the angular velocity of the table. This change is an expression of the difference in travel-
ling time for the two light signals. From the point of view of the non-rotating laboratory frame
this travel time difference is readily explained as a result of the tangential movement of the
equipment during the travel of the light signals.

This proved the absolute character of rotational velocity for Sagnac who performed the ex-
periment in 1913 before Einstein had constructed the general theory of relativity. However
according to Einstein’s theory an observer on the table may consider herself as at rest and the
environment and the rest of the Universe as rotating [3]. Let us see how the dependence of the
travelling time of the light upon the angular velocity of the environment is explained accor-
ding to  the general theory of relativity.

The velocity dependent time dilation implies that a moving clock goes at a slower rate the
faster it moves through space, and in the limit of the velocity of light the clock does not pro-
ceed at all. This means that the proper time interval as measured by a clock that moves with
the velocity of light vanishes. Therefore the propertime intervals vanish along the world line
of a light signal, meaning that in this case  in eq.(1). For a light signal that moves along
a circular path in the equatorial plane of the Kerr spacetime this means that eq.(1) reduces to

, (8)

or

. (9)

Hence the angular velocity of  the light signals are
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This formula shows a property of light which may come as a surprise for those familiar with
the special theory of relativity. This theory is based upon two postulates: 1. The principle of re-
lativity for accelerated motion, and 2. The postulate that the velocity of light is isotropic and
independent of the velocity of the emitter. However, the formula (10) shows that with respect
to a reference frame with a metric where  the velocity of light is anisotropic.
Consider two light signals moving around a circle in opposite directions. Using eq.(10) we find
that the difference of their travel times is
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. (11)

It is natural to call this travel time difference for the Sagnac effect.
In order to see as clearly as possible the meaning of the last two formulae we shall first con-
sider the original Sagnac experiment. Then there is an inertial laboratory frame with cy-
lindrical coordinates (T,R,Θ,Z). With these coordinates the line-element of the flat Minkowski
spacetime takes the form

. (12)

The table rotates with an angular velocity ω. The coordinates co-moving with the rotating ta-
ble are (t,r,θ,z), and the coordinate transformation is

. (13)

In this coordinate system the line-element has the form

. (14)

Hence the non-vanishing components of the metric tensor are

. (15)

Inserting these into eq.(10) gives

. (16)

This shows that in the rotating reference frame the velocity of light is greater in the same di-
rection as that of the rotating environments than in the opposite direction. Hence there is a
travel time difference as given by eqs. (11) and (15), 

, (17)  

where  is the area enclosed by the path. The difference in the velocity of light travel-
ling in opposite directions is the general relativistic explanation of the change of the interfe-
rence pattern with reference to the rest frame of the apparatus. In the general theory of rela-
tivity this difference vanishes in a frame in which the environment does not rotate. 
The experiment was repeated by Michelson and Gale in 1925 [4] with light path enclosing an
area about and with the Earth as the rotating table with an angular velocity

 In this experiment the light travel time difference is   which
was measured from an analysis of the two light beams with an uncertainty of only 2%.
In the general theory of relativity there is an inertial dragging effect inside a rotating mass
distribution. A rough calculation [4] shows that there may be perfect dragging in our Univer-
se, meaning that the inertial frames are dragged on together with the cosmic masses. Hence
in an inertial frame the cosmic masses have no angular velocity. In this frame the velocity of
light is isotropic and the time difference (11) vanishes.

A similar experiment with light moving around the Earth in opposite directions along a cir-
cular path from a satellite with no angular velocity relative to the stars, would give no travel
time difference according to Newton’s theory. According to the general theory of relativity the-
re is Kerr spacetime outside the Earth. When this is described with Boyer-Lindquist coordi-
nates the metric components are given in eq.(3). This is a rigid coordinate system where the
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reference particles have no angular velocity relative to the stars. 
Consider satellites at rest in the Boyer-Lindquist coordinate system. The Sagnac experi-

ment is now performed with light emitted in opposite direction from such a satellite and then
made to interfere when the light beams meet at the satellite again after a trip around the
Earth. In this case then the time travel difference, , may be called the Kerr-Sagnac effect,
and  is found by inserting the metric components (3) into eq.(11), which gives 

. (18)   

If the Sagnac experiment is performed with a GPS-satellite there is an additional time diffe-
rence due to its motion [1], given by eq.(17),

, (19)

which is much larger than the Kerr-Sagnac effect.

5. On the synchronization of the GPS clocks
There is a difficulty in synchronizing the satellite clocks due to the relativity of simultaneity.
The satellites are at rest in a rotating frame of reference. As shown in section 3, in a non-ro-
tating frame with center coinciding with the center of the Earth, there is with sufficiently
good accuracy the Schwarzschild metric. The coordinate clocks of the Schwarzschild metric
are all synchronized to show the same time at a standard clock at rest infinitely far from the
mass distribution. 

In order to discuss the synchronization of the satellite clocks, we assume that the satellites
are moving with a velocity vφ in the equatorial plane of the Earth along circular paths with ra-
dius rs. Consider two satellites A and B with an angular distance Δφ between them, and with
A in front. There is a distance Δl = rsΔφ between the satellites. Assume that one tries to Ein-
stein synchronize the satellite clocks around the path for example by emitting light signals
backwards and forwards from a point midway between two clocks. Einstein synchronization
means that the clocks are set to show the same time when these signals hit them. However,
as observed from the non-rotating frame of the Schwarzschild clocks, the signal moving back-
wards hits the satellite clock B before the forward moving signal hits the clock A. Hence the
satellite clock B is ahead of the clock A when compared with the Einstein synchronized coor-
dinate clocks of the non-rotating reference frame.

If this local Einstein synchronization process is performed around the circle it corresponds
to emit light signals in opposite directions from an emitter at the opposite sides of the circle
relative to the position A of the clock that shall be synchronized. The light is then moving a
half circle in opposite directions to the clock A. This gives a travel time difference equal to one
half of that in the Sagnac experiment. Hence the difference of time of the locally Einstein syn-
chronized satellite clocks is half of that given by eq. (17). Thus for the satellite clock there is
a time discontinuity at A of locally Einstein synchronized clocks, equal to 207 ns. This means
that as measured on the globally synchronized Schwarzschild coordinate clocks the satellite
clock A is not synchronized with itself. In other words it is impossible to Einstein synchronize
globally the satellite clocks which are at rest in a rotating reference frame. 

Therefore the satellite clocks of the GPS-system are not locally Einstein synchronized in
their rest frame. Instead all the clocks in the GPS-system are synchronized in an Earth-cen-
tered inertial (ECI) reference frame [1]. This frame is not rotating with the Earth, neither
with the satellites. The Kerr- or Schwarzschild coordinate clocks are globally Einstein syn-
chronized in the ECI-frame. So the GPS-clocks are not showing proper time. If they had done
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that, the clocks in the satellites would proceed at a faster rate than the clocks at the surface
of the Earth. Instead the rate of the satellite clocks is adjusted to account for the increased
rate of time due to their height and the decreased rate due to their velocity in the ECI-frame.
In this way one obtains the result that all of the clocks ticks at the same rate, like the coordi-
nate clocks of the Schwarzschild metric.

6. Factory Offset
GPS satellites are corrected for the relativistic effects due to circular orbit and constant Earth
potential prior to launch in what is merely known as the “factory offset”. The line-element of
the Schwarzschild metric is given as:

. (20)

where r, θ, φ is the coordinates of the satellite and Φ = –GM / r the gravitational potential.
First assume a non-rotating reference system with a circular satellite orbit lying in the

equatorial plane (i.e. ). Then the Schwarzschild line-element reduces
to:
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Since the acceleration is equal to the gradient of the potential we have:
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By taking the square root we obtain the following relationship:
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The remaining step is to convert from this time into international atomic time (TAI) realized
by atomic clocks at rest on the geoid. Thus we have:
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where Φ0 is the combined gravitational- and rotational potential on the geoid. Inserting (25)
into (24) we obtain the final result:
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It is the two last terms in this equation that contains the relativistic correction which is sub-
tracted from the nominal frequency of the satellite clocks prior to launch. 
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In order for the satellite clock to beat at the frequency of 10.23MHz as seen from an ob-
server on Earth, the fundamental frequency needs to be shifted high with
10.23MHz · 4.46475 · 10–10 = 0.004567Hz, and the GPS satellite clocks are correspondingly
lowered in frequency to 10.2299999954MHz prior to launch in order to compensate for this ef-
fect (3).

7. Conclusion
Modern satellite based navigation systems will experience significant relativistic effects,
which can be predicted by involving both the Special- and General Theory of Relativity. The
reasons for these relativistic effects are mainly due to the large velocity of the GNSS satelli-
tes, the difference in gravitational potential between the satellites and the receiver and the ef-
fects of Earth rotation.

Due to the fact that GNSS utilizes precision atomic clocks to estimate the position of an ob-
ject on the surface of the Earth at the cm-level, these relativistic effects will become signifi-
cant and must be taken into account in order for the systems to perform as wanted.
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