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Abstract 37 

BACKGROUND: Testicular germ cell tumour (TGCT) is the most common cancer in young 38 

men, and an imbalance between the oestrogen and androgen levels in utero is hypothesized to 39 

influence TGCT risk. Thus, polymorphisms in genes involved in the action of sex hormones 40 

may contribute to variability in an individual’s susceptibility to TGCT.  41 

METHODS: We conducted a Norwegian-Swedish case-parent study. 105 SNPs in 20 sex 42 

hormone pathway genes were genotyped using Sequenom MassArray iPLEX Gold, in 831 43 

complete triads and 474 dyads. To increase the statistical power, the analysis was expanded to 44 

include 712 case singletons and 3922 Swedish controls, thus including triads, dyads, and the 45 

case-control samples in a single test for association. Analysis for allelic associations was 46 

performed with the UNPHASED program, using a likelihood-based association test for 47 

nuclear families with missing data, and odds ratios (ORs) and 95 % confidence intervals (CIs) 48 

were calculated. False discovery rate (FDR) was used to adjust for multiple testing. 49 

RESULTS: Five genetic variants across the ESR2 gene (encoding ERβ) were statistically 50 

significantly associated with the risk of TGCT. In the case-parent analysis, the markers 51 

rs12434245 and rs10137185 were associated with reduced risk of TGCT (OR=0.66 and 52 

OR=0.72, respectively; both FDRs < 5%), while rs2978381 and rs12435857 were associated 53 

with increased risk of TGCT (OR=1.21 and OR=1.19, respectively; both FDRs < 5%). In the 54 

combined case-parent/case-control analysis, rs12435857 and rs10146204 were associated 55 

with increased risk of TGCT (OR=1.15 and OR=1.13, respectively; both FDRs < 5%), while 56 

rs10137185 was associated with reduced risk of TGCT (OR=0.79, FDR < 5%). In addition, 57 

we found that three genetic variants in CYP19A1 (encoding aromatase) were statistically 58 

significantly associated with the risk of TGCT in the case-parent analysis. The T alleles of the 59 

rs2414099, rs8025374 and rs3751592 SNPs were associated with an increased risk of TGCT 60 

(OR=1.30, 1.30 and 1.21, respectively; all FDRs < 5%). We found no statistically significant 61 

differences in allelic effect estimates between parental inherited genetic variation in the sex 62 

hormone pathway and TGCT risk in the offspring, and no evidence of heterogeneity between 63 

seminomas and non-seminomas, or between the Norwegian and the Swedish population in 64 

any of the SNPs examined.  65 

CONCLUSION: Our findings provide support for ERβ and aromatase being implicated in the 66 

aetiology of TGCT. Exploring the functional role of the TGCT-risk associated SNPs will 67 

further elucidate the biological mechanisms involved. 68 
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Introduction 69 

Testicular germ cell tumour (TGCT) accounts for only 1-2% of all neoplasms in males, but is 70 

the most common malignancy in young men (Huyghe et al., 2003). The incidence rate of 71 

TGCT worldwide has increased 2-3 times during the last 50 years in several western countries 72 

(Weir et al., 1999, Richiardi et al., 2004, Walschaerts et al., 2008, Chia et al., 2010). The 73 

current age-adjusted incidence rate of TGCT in Norway is 11 per 100,000 male person-years 74 

(Engholm et al., 2010). Norway and Denmark are among the countries with the highest 75 

incidence rates of TGCT, nearly twice as high as in Sweden.  76 

 The aetiology of TGCT is largely unknown, but a commonly held view is that 77 

carcinoma in situ (CIS) cells originate from primordial germ cells delayed in maturation  78 

during early embryonic development (reviewed by (Hoei-Hansen et al., 2005)). The 79 

subsequent malignant transformation from CIS cells to invasive seminomatous or non-80 

seminomatous TGCT is believed to be regulated by endocrine mechanisms during puberty 81 

(Oosterhuis and Looijenga, 2005, Rajpert-De Meyts, 2006). There is evidence for a genetic 82 

contribution to the development of TGCT. Brothers of TGCT patients have an 8-10 fold 83 

increased risk of disease, while sons of men with TGCT have a 4-6 fold increased risk (Dong 84 

et al., 2001, Hemminki and Li, 2004). Recently, three genome-wide association studies 85 

(GWAS) of TGCT have revealed genetic predisposition to TGCT linked to six genes (KITLG, 86 

SPRY4, BAK1, TERT, ATF7IP, DMRT1), central in normal primordial germ cell development 87 

(Kanetsky et al., 2009, Rapley et al., 2009, Turnbull et al., 2010).  88 

An association of TGCT with maternal levels of oestrogens and androgens in early 89 

pregnancy has recently been reported (Holl et al., 2009). Offspring of mothers with high 90 

dehydroepiandrosterone sulphate (DHEAS) levels had a significantly decreased risk of 91 

TGCT, whereas high maternal androstenedione and total oestradiol level tended to be 92 

associated with an increased risk of TGCT. Exposure to environmental factors, such as 93 

endocrine disruptors, has also been postulated to play a role in the development of a testicular 94 

dysgenesis syndrome (TDS) including TGCT, by causing an imbalance of the 95 

androgen/oestrogen levels in utero (Sharpe, 2001, Skakkebaek et al., 2001, Sharpe, 2003, 96 

Rajpert-De Meyts, 2006, Wohlfahrt-Veje et al., 2009). The concept of TDS has, however, 97 

lately been disputed due to lack of epidemiologic assessment (Akre and Richiardi, 2009).  98 

Only a few studies regarding TGCT and polymorphisms in genes involved in the sex 99 

hormone pathway have been reported (Starr et al., 2005, Ferlin et al., 2008, Figueroa et al., 100 
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2008, Ferlin et al., 2010). Of these only one (Starr et al., 2005) examined TGCT risk in 101 

relation to maternal genetic polymorphisms in oestrogen-metabolizing genes, by 102 

incorporating maternal genetic markers. 103 

We conducted a large Norwegian-Swedish population-based, case-parent triad study to 104 

examine if there is any association between polymorphisms in sex hormone genes and TGCT 105 

risk. Furthermore, we wanted to investigate whether such association is present also for the 106 

histologic subtype’s seminoma and non-seminoma, and to study whether maternal genetic 107 

variants have any impact on the son’s risk of TGCT. The final aim was to examine if there is 108 

any difference in gene variants between the Norwegian and the Swedish population that could 109 

contribute to an explanation to the difference in TGCT risk between these two countries. 110 

 111 

Materials and Methods 112 

Sample description 113 

Study participants were recruited between September 2008 and September 2010. Men 114 

previously diagnosed with TGCT were contacted by mail and invited to participate in the 115 

study. They were asked to sign an informed consent document, donate a saliva sample which 116 

could be delivered by pre-paid mail, and grant us permission to contact their parents for 117 

possible inclusion in the study. Invited parents were also asked to sign an informed consent 118 

document and donate a saliva sample which could be delivered by pre-paid mail.  119 

The study was approved by the Regional Committee for Medical Research Ethics, 120 

Southern Norway, the Norwegian Social Science Data Services and the Regional Research 121 

Ethics Committee in Stockholm, Sweden. The dedicated Research Biobank in Oslo was 122 

approved by the Ministry of Health and Care Services. 123 

 124 

Norwegian population. Recruitment of Norwegian TGCT patients diagnosed between 1990 125 

and 2008 was based on data from the Cancer Registry of Norway. In this period, 4354 males 126 

were diagnosed with this disease, out of which 132 had died (3%). Verification of diagnosis 127 

was assessed by the treating physician at the regional oncology centres. 1855 TGCT patients 128 

were invited to participate in the study, out of which 974 consented (53%). A total of 2132 129 

Norwegian participants divided into 483 complete triads, 192 dyads (150 mother and son, 42 130 

father and son) and 299 singletons, were included in the study.  131 
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 500 of the tumours were pure seminoma and 471 were non-seminoma with or without 132 

a seminomatous component, while 3 were unclassifiable. Age at diagnosis was 15 to 65 years 133 

(mean: 33 years).  134 

 135 

Swedish population. Recruitment of Swedish TGCT patients diagnosed between 1995 and 136 

2006 was based on data from the Swedish National Cancer Registry. Verification of diagnosis 137 

was assessed by record linkage with the Swedish National Inpatient Register. In total, 2443 138 

men were identified with the disease, out of whom 70 had died (3%). 2327 were invited, out 139 

of whom 1188 (51%) consented to participate in the study. In total 521 complete triads, 248 140 

dyads (178 mother and son, 70 father and son), and 419 singletons were included in the study.  141 

672 of the tumours were seminoma and 503 were pure non-seminoma or non-142 

seminoma with a seminomatous component, while 13 were of unknown histology. Age at 143 

diagnosis was 18 to 45 years (mean: 32 years). 144 

 145 

Control group. The TwinGene project, conducted between 2004 and 2008, is a population-146 

based Swedish study of twins born between 1911 and 1958. In total, 12591 individuals 147 

participated by donating blood to the study, and by answering questionnaires about lifestyle 148 

and health (Rahman et al., 2009). The study was approved by the local ethics committee at 149 

Karolinska Institutet, and all participants gave informed consent. DNA has been extracted for 150 

all individuals, and for the majority (n=9836), genome wide genotyping with Illumina 151 

OmniExpress bead chip has been performed. For the present study, 3922 unrelated males 152 

were randomly selected from the TwinGene population as controls. 153 

 154 

Treatment of saliva samples and DNA isolation  155 

Genomic DNA was extracted from whole saliva samples collected with the Oragene® DNA 156 

sample collection kit (DNA Genotek Inc., Kanata, Ontario, Canada). These are easy-to-use 157 

kits, in which the donors simply just spit into a vial. When the vial is capped a solution 158 

containing antibacterial and DNA preserving chemicals mixes with the saliva, resulting in 159 

immediate conservation of the sample (Rylander-Rudqvist et al., 2006). Storage of saliva and 160 

DNA samples, as well as isolation of DNA, was performed according to the manufacturer’s 161 

protocol in “Laboratory Protocol for Manual Purification of DNA from 4.0 mL of Oragene® 162 

DNA/saliva” (http://www.dnagenotek.com/DNA_Genotek_Industry_CGT_SCA_P.html). In 163 
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brief, DNA was purified from the saliva samples using ethanol precipitation. Measurement of 164 

DNA yield and purity of the DNA samples were analysed using a NanoDrop® ND-1000 165 

spectrophotometer (Thermo Fisher Scientific, Waltham, Massachusetts, USA). In cases where 166 

the DNA yield was < 25µg, the participants were asked to provide a new sample.  167 

 A total of 35 Norwegian and 79 Swedish cases were excluded from the study due to 168 

low DNA yield (< 25 µg).  169 

 170 

Selection of SNPs 171 

Because TGCT has been hypothesized to be a hormone related cancer, candidate genes in sex 172 

hormone pathways were considered for study inclusion. First, we selected some genes that 173 

could affect either androgen or oestrogen levels or function: AR, CYP191A, 174 

CYP1A1/CYP1A2, CYP3A5, CYP3A7, ESR2, GSTP1, SHBG and SULT1E1. In these genes, 175 

SNPs were selected for genotyping if the minor allele frequency (MAF) was above 5% and 176 

had at least 90% genotyping success rate in HapMap2 CEU individuals. Haplotype block 177 

structure, based on confidence bounds of D prime values (Gabriel et al., 2002), was inferred 178 

using data from the catalogue of common genetic variants generated from the International 179 

HapMap Project (The International HapMap Consortium, 2003). Within each haplotype 180 

block, htSNPs were selected using the Tagger software (de Bakker et al., 2005), applying 181 

aggressive tagging and a minimal coefficient of determination equal to 0.95 in order to 182 

capture the common genetic variation across the genes.  183 

 In addition, we included additional sporadic SNPs in some genes, based on previously 184 

published biological function or associations in relevant populations. The non-tagged genes 185 

were COMT, CYP17A1, CYP1B1, CYP3A4, ESR1, FSHR, HSD17B3, HSD3B1, HSD3B2, 186 

INHA and SRD5A2. 187 

A total of 127 SNPs in 20 genes were selected for genotyping. 105 of these SNPs were 188 

successfully genotyped and passed our genotype quality control procedure (Supplementary 189 

table 1 and 2). 190 

 191 

Genotyping 192 

The DNA samples were genotyped using the Sequenom MassARRAY® iPLEX Gold 193 

chemistry at the Centre for Integrative Genetics (CIGENE), Norwegian University of Life 194 
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Sciences, Ås, Norway. CIGENE is a core facility under the Norwegian Functional Genomics 195 

Programme (FUGE) and part of the Norwegian Genotyping and Sequencing Consortium 196 

(NGSC).  197 

The Sequenom MassARRAY® iPLEX Gold assay uses PCR amplification followed 198 

by a single base pair primer extension reaction, resulting in an allele-specific difference in 199 

mass between extension products. This mass difference allows the data analysis software to 200 

differentiate between SNP alleles using MALDI-TOF MS (Matrix assisted laser desorption 201 

ionisation time-of-flight mass spectrometry). The assay uses three sequence specific primers 202 

and Taq-polymerase with no reverse transcriptase activity, circumventing most problems 203 

caused by co-precipitated bacterial DNA or RNA, respectively, in the samples.  204 

 205 

Statistical analysis 206 

Sample and SNP quality control. Samples with more than 20% missing genotypes or a 207 

heterozygosity rate more than three standard deviations from the sample mean (indicating 208 

possible sample contamination), were excluded from further analyses (n=277). 209 

 Within families we examined pairwise genotype identity-by-state (IBS) to confirm 210 

parent-offspring relations. For parent-offspring pairs where the standard deviation of the 211 

number of alleles per SNP shared IBS exceeded 0.55 (indicating that the parent may not be 212 

biological), we excluded the parent from further analyses. The threshold 0.55 was selected 213 

based on visual inspection of a plot of mean alleles shared IBS versus standard deviation of 214 

alleles shared IBS between pairs of related and unrelated individuals. 41 samples were 215 

excluded in this step. After excluding these samples, most of the 548 Mendelian errors 216 

observed in the pedigrees could be resolved. 47 remaining Mendelian errors were attributed to 217 

genotyping error, and the corresponding genotypes were set to missing in the subsequent 218 

analyses. The triad design has great ability to detect bacteria-caused errors because the 219 

inheritance will not be consistent between parents and sons. 220 

 Furthermore we examined pairwise IBS across the entire sample in order to uncover 221 

any unplanned duplicates. 17 pairs (34 samples) with identical or nearly identical genotypes 222 

were found. These samples were excluded since genotype and phenotype could not be 223 

unambiguously matched. 224 

 Samples which were part of a case-parent triad or dyad where the proband was lost to 225 

quality control, were also removed from the final analysis (n=111). SNPs with more than 10% 226 
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missing genotypes or MAF less than 0.01, were excluded from further analysis (n=9). 13 227 

more SNPs were removed due to being marked ‘deleted’ or ‘problematic’ from CIGENE.228 

 After sample and SNP quality control, 831 triads, 474 dyads and 712 case singletons 229 

remained for final analysis. 230 

 231 

Imputation and quality control of TwinGene control samples. To increase the number of SNPs 232 

available for case-control analysis, we used full-genome imputed data in the TwinGene 233 

controls. Imputation was performed using IMPUTE2 (Howie et al., 2009), and CEU reference 234 

haplotypes from the HapMap project, release 22. After imputation, genotypes with maximum 235 

posterior probabilities > 0.9 were called as the most likely genotype, while the more uncertain 236 

genotypes were called as missing. We extracted TwinGene genotypes for all SNPs that were 237 

genotyped and passed quality control in the case-parent sample, and were either directly 238 

genotyped or imputed in the TwinGene dataset (n=98). The same SNP quality control 239 

measures as for the cases were then applied to the control genotypes: SNPS with MAF less 240 

than 0.01 or missingness greater than 10% were removed (n=7).  241 

 242 

Association analysis for the case-parent triads. For the main analysis we used a likelihood-243 

based association test for nuclear families and unrelated subjects with missing data, 244 

implemented in the software package UNPHASED (Dudbridge, 2008). As a first step, we 245 

performed a purely family-based test, including only complete case-parent triads and dyads in 246 

the analysis. This test is robust to population stratification. An allelic main effect model was 247 

assumed, leading to a 1-df likelihood-ratio test. We furthermore investigated whether the 248 

allelic effect on TGCT risk was modified by histological subgroups (seminomas and non-249 

seminomas) by including an interaction term in the statistical model. Formal tests of 250 

interaction were made using likelihood ratio tests. Similarly, whether the allelic effect was 251 

modified by country (Norway and Sweden) or the gender of the parent from whom the allele 252 

was transmitted (parent of origin effect), was investigated by an interaction term in the 253 

statistical model.  254 

 255 

Association analysis for the combined case-parent/case-control population. To increase the 256 

power to detect associations, we next expanded the analysis to include case singletons and 257 

controls from the TwinGene project. Triads, dyads, and the case-control sample were 258 
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included in a single test for association. An unmatched analysis was performed, including 259 

both family-based controls (untransmitted alleles) and unrelated controls in the same test.  260 

 261 

Controlling for multiple testing. To assess multiple testing issues a false discovery rate (FDR) 262 

approach was applied. This approach controls the expected proportion of falsely rejected null 263 

hypotheses and is less conservative than the commonly used Bonferroni adjustment. FDR was 264 

estimated by applying a semi parametric approach based on a modified Grenander density 265 

estimator and truncated maximum-likelihood estimation (Strimmer, 2008), as implemented in 266 

the R package fdrtool (Strimmer, 2008). SNPs with q values < 0.05 were considered 267 

significant, which resulted in an FDR < 5% among the significant SNPs.  268 

 269 

Results  270 

All single nucleotide polymorphism (SNP) positions in this section are reported in genomic 271 

build hg18 coordinates, and all alleles are reported relative to the positive (+) strand.  272 

By studying 105 SNPs in 20 genes in a case-parent study (Supplementary table 1), we 273 

found that six SNPs in or near the ESR2 gene, two SNPs located in the intergenic region 274 

between the CYP1A1 and CYP1A2 genes, five SNPs in the CYP19A1 gene, one SNP in the 275 

HSD3B1 gene, one SNP in the SHBG gene and one SNP in the AR gene were nominally 276 

associated with the risk of TGCT in 831 triads and 474 dyads (P<0.05). Controlling for an 277 

FDR < 5% revealed that four SNPs in the ESR2 gene and three SNPs in the CYP19A1 gene 278 

remained significantly associated with TGCT risk. In the ESR2 gene, the T alleles of 279 

rs12434245 and rs10137185 were associated with reduced risk of TGCT (OR=0.66, 95% 280 

CI=0.53-0.82, P=0.0002 and OR=0.72, 95% CI=0.59-0.88, P=0.001, respectively), while  the 281 

T and G alleles of  rs2978381 and rs12435857 were associated with increased risk of TGCT 282 

(OR=1.21, 95% CI=1.08-1.37, P=0.002 and OR=1.19, 95% CI=1.06-1.35, P=0.003, 283 

respectively). In the CYP19A1 gene, the T alleles of rs2414099, rs8025374 and rs3751592 284 

was associated with increased risk of TGCT (OR=1.30, 95% CI=1.10-1.53, P=0.002, 285 

OR=1.30, 95% CI=1.09-1.54, P=0.004 and OR=1.21, 95% CI=1.06-1.37, P=0.003, 286 

respectively) (Table 2). 287 

In an expanded analysis also including an additional 718 case singletons and 3922 288 

controls, 91 of the 105 above SNPs were explored (Supplementary table 2). Nominal 289 

association with TGCT risk was observed among four SNPs in or near the ESR2 gene, one 290 
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SNP in the CYP3A4 gene, five SNPs in the CYP19A1 gene, one SNP in the CYP17A1 gene, 291 

one SNP in the HSD17B3 gene, one SNP in the INHA gene, one SNP in the SRD5A2 gene and 292 

one SNP in the SULT1E1 gene were associated with the risk of TGCT (Table 2). At an FDR < 293 

5% three SNPs in the ESR2 gene and one SNP in the CYP3A4 gene remained significantly 294 

associated with TGCT risk. In the ESR2 gene, the G alleles of rs12435857 and rs10146204 295 

were associated with increased risk of TGCT (OR=1.15, 95% CI=1.07-1.24, P=0.000 and 296 

OR=1.13, 95% CI=1.05-1.22, P=0.002, respectively), while the T allele of rs10137185 was 297 

associated with reduced risk of TGCT (OR=0.79, 95% CI=0.70-0.90, P=0.000). In the 298 

CYP3A4 gene, the T allele of rs2740574 was associated with reduced risk of TGCT 299 

(OR=0.74, 95% CI=0.62-0.89, P=0.002) (Table 3). Of note, none of the CYP19A1 SNPs that 300 

were significantly associated with TGCT risk in the triad analysis were available for analysis 301 

in the combined case-parent/case-control analysis. 302 

 When analysing the histological subgroups, we found a reduced risk of developing 303 

seminoma rather than non-seminoma in two SNPs (rs1004984 and rs6493497) in the 304 

CYP19A1 gene and one SNP (rs1691053) in the SRD5A2 gene; however, after controlling for 305 

an FDR < 5% no statistically significant associations with histological subgroups remained 306 

(data not shown). When analysing offspring TGCT risk in relation to maternal genetic 307 

polymorphisms, we found that one SNP (rs2472304) in the CYP1A2 gene, one SNP 308 

(rs2740574) in the CYP3A4 gene, two SNPs (rs2059693 and rs3731920) in the INHA gene, 309 

one SNP (rs523349) in the SRD5A2 gene, and one SNP in the ESR1 gene had nominally 310 

significant different effects on disease risk depending upon whether their alleles were 311 

maternally or paternally inherited (data not shown). These associations were, however, no 312 

longer statistically significant after controlling for an FDR < 5%. 313 

 In addition, we found no statistically significant differences in allelic effect estimates 314 

between the Norwegian and the Swedish populations in any of the SNPs examined after 315 

controlling for an FDR < 5% (data not shown). 316 

 317 

Discussion 318 

The aetiology of TGCT is most probably multifactorial, and there are limited data on the risk 319 

factors in both sporadic and familial TGCTs. Exposure to environmental factors, with an 320 

emphasis on endocrine disruptors with oestrogenic or anti-androgenic properties resulting in 321 
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hormonal disturbances during early foetal life, has been postulated to play a role in the 322 

development of TGCT, but there is also evidence for a genetic contribution.  323 

In this study we analysed the possible association between genetic variations in sex 324 

hormone pathway genes and the risk of TGCT. The most striking and novel result of the 325 

present study is the finding that oestrogen receptor beta (ERβ) may be implicated in the 326 

aetiology of TGCT. The main finding was that five genetic variants across the ESR2 gene 327 

(encoding ERβ), were statistically significantly associated with the risk of TGCT in a 328 

population of Norwegian and Swedish men. In the case-parent analysis, the T alleles of the 329 

rs12434245 and rs10137185 SNPs were associated with a 34% and 28% reduced risk of 330 

TGCT, respectively. In addition, the T and G alleles of the rs2978381 and rs12435857 SNPs 331 

were associated with a 21% and 19% increased risk of TGCT, respectively. In the combined 332 

case-parent/case-control analysis, the G alleles of the rs12435857 and rs10146204 SNPs were 333 

associated with a 15% and 13% increased risk of TGCT, respectively, while the T allele of the 334 

rs10137185 was associated with a 21% decreased risk of TGCT. These five genetic variants 335 

are all located in intronic regions in or near the ESR2 gene with unknown functional effect 336 

and none of them have previously been associated with any cancer disease. However, they are 337 

expected to be in linkage disequilibrium (LD) with functional sequence variations in 338 

regulatory regions of the ESR2 gene. Variation in ESR2 may cause conformational change in 339 

the ERβ with consequent alteration in transcriptional activity and downstream cellular events 340 

(Thomas and Gustafsson, 2011). ERβ is expressed in germ cells and Sertoli cells in human 341 

testis (Saunders et al., 2002, Aschim et al., 2004), and is shown to be down-regulated in 342 

seminomas and embryonal cell carcinomas compared to normal testicular cells (Hirvonen-343 

Santti et al., 2003, Pais et al., 2003). ERβ seems to have tumour suppressor properties, based 344 

on results in one Esr2-knockout mouse model, and in vitro studies in cancer cells, showing 345 

that ERβ has anti-proliferative effects (reviewed by (Thomas and Gustafsson, 2011)). ERβ 346 

may control and limit cell proliferation during the progression of cancer of the breast, 347 

prostate, ovary, and colon (Pasquali et al., 2001, Roger et al., 2001, Weyant et al., 2001, 348 

Staibano et al., 2003). If the low-risk associated alleles of the SNPs of the ESR2 gene in the 349 

present study are shown to increase the ERβ activity and vice versa, our findings would 350 

support the notion of an anti-proliferative activity of ERβ implicated in the aetiology of 351 

TGCT.  352 

Our findings of an association between TGCT and polymorphisms in or near the ESR2 353 

gene are in some accordance with the only previous study which has investigated 354 
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polymorphisms in ERβ in relation to TGCT risk (Ferlin et al., 2010). In Italian men, Ferlin et 355 

al. found a weak association with the ESR2 SNP rs1256049, which is not in LD with any of 356 

our risk-associated SNPs, but a limitation to Ferlin et al.’s study was a relatively small sample 357 

size. In addition, we did not replicate the findings by Ferlin et al. (Ferlin et al., 2008) of a 358 

decreased risk of TGCT with two SNPs (rs6165 and rs6166) in the FSHR gene in either the 359 

case-parent or the combined case-parent/case-control material (Supplementary table 1 and 2). 360 

 In the combined case-parent/case-control analysis we found a statistically significantly 361 

26% decreased risk of TGCT with the T allele of the rs2740574 SNP in CYP3A4 (table 3). 362 

This is in agreement with the findings of Starr et al. (Starr et al., 2005), who found the C 363 

allele of this SNP to be associated with increased risk of TGCT in the offspring. In the case-364 

parent material, we found a statistically non-significantly increased risk of TGCT with an 365 

intergenic SNP (rs12441817; P=0.006, FDR=0.054) in the CYP1A1/CYP1A2 genes, and a 366 

similar tendency to decreased risk of TGCT with another intergenic SNP (rs4886605; 367 

P=0.043, FDR=0.214) in the same gene, in regard to offspring carriage. Starr et al. (Starr et 368 

al., 2005), found that both offspring and maternal carriage of the polymorphic allele of 369 

rs762551 in the CYP1A2 gene was associated with a reduced risk of TGCT. The rs762551 370 

SNP is in high LD with the CYP1A2 rs2472304 SNP which has been associated with 371 

increased enzyme activity (Sachse et al., 1999, Nordmark et al., 2002). Thus, both these 372 

polymorphisms may lead to higher carcinogenic catechol oestrogen formation. However, we 373 

did not find any association between the risk of TGCT and maternal carriage of the G allele of 374 

the CYP1A2 SNP rs2472304. Since we did not replicate the association of TGCT with either 375 

offspring or maternal carriage of polymorphisms in the CYP1A1/CYP1A2, CYP1B1 and 376 

CYP3A4 genes in our large study (Supplementary table 1 and 2), it is a possibility that the 377 

results of Starr et al. were chance findings. Our overall lack of association between maternal 378 

genetic variation in sex hormones pathway and TGCT risk in the offspring indicates that the 379 

most important hormonal alterations implicated in the aetiology of TGCT have their origin in 380 

the foetus and not the mother. 381 

The production of oestrogens from androgens is mediated by the aromatase, encoded 382 

by CYP19A1, the aberrant expression of which plays a critical role in the development of 383 

malignancy in a number of tissues. The levels of oestrogen within the male reproductive tract 384 

are higher than in the general circulation (Hess, 2000). Aromatase is expressed in the adult 385 

testis and has been detected in Leydig cells and elongated spermatids in mice and humans 386 

(Sierens et al., 2005). Several polymorphisms in the CYP19A1 gene have been studied and 387 
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found associated with hormone dependent cancers such as breast and prostate cancer (Haiman 388 

et al., 2007, Cai et al., 2008, Raskin et al., 2009, Darabi et al., 2011), albeit with conflicting 389 

results. In the case-parent material, we found that three genetic variants in CYP19A1 were 390 

statistically significantly associated with the risk of TGCT. The T alleles of the rs2414099, 391 

rs8025374 and rs3751592 SNPs were associated with a 30%, 30% and 21% increased risk of 392 

TGCT, respectively, giving support of aromatase being implicated in the aetiology of TGCT. 393 

 Although most epidemiologic studies have shown little variation in risk factors 394 

between the two subtypes of TGCT (Bray et al., 2006), hormonal exposures could potentially 395 

be modified by genetic variation in hormone metabolizing genes, and thus affect whether a 396 

seminoma or nonseminoma develop. There is some evidence suggesting that genetic variation 397 

in CYP1A1 may be associated with histological subtype, the results are however inconsistent 398 

(Figueroa et al., 2008, Kristiansen et al., 2011). A recent study indicated that  polymorphisms 399 

in the AR gene are associated with the histological subtypes of TGCT, by reporting a 400 

statistically significant association between AR CAG repeat length and seminoma risk, 401 

suggesting that increased AR transactivation may be involved in development of seminoma 402 

and/or progression of CIS to seminoma (Davis-Dao et al., 2011).  In the present study we 403 

were not able to show an influence of either CYP1A1/CYP1A2 or AR, or any of the other 404 

studied sex hormone pathway genes, on the histological subtype, thus not lending support to a 405 

role of genetic variation in determining which subtype prevails.  406 

 The incidence rate of TGCT has for many years been twice as high in Norway as in 407 

Sweden, the reasons for which have remained elusive. The present study was not able to 408 

demonstrate any country-related interaction in the associations between the studied SNPs and 409 

the risk of TGCT, implying that there was no heterogeneity between the countries related to 410 

genetic susceptibility to TGCT. Accordingly, our results do not shed any light on the 411 

difference in the incidence rate between these two neighbouring countries.  412 

 Strengths of the present study include the population-based design and large sample 413 

size providing great power to study genetic risk alleles. A potential limitation is the rather low 414 

response rate of about 50% that could have introduced selection bias; however, since the 415 

mortality of TGCT is very low (3%) in both countries, the low response rate is not related to 416 

survival bias. We applied a combined design by comprehensively assessing a subset of the 417 

genes through a haplotype tagging approach while only earlier reported genetic variants were 418 

assessed for the remainder of the selected genes. Therefore we may have failed to observe 419 

associations between genetic variants and TGCT risk in untagged genes. In the combined 420 
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case-parent/case-control analysis population stratification may be an issue since all unrelated 421 

control individuals were of Swedish residence. However, since estimated allele effects from 422 

case-parent and combined case-parent/case-control analysis were similar, we argue that 423 

possible population stratification effects are of minor importance. 424 

In conclusion, our findings provide supportive evidence for several genes in the sex 425 

hormone pathway being implicated in the aetiology of TGCT. This applies specifically to the 426 

ESR2 (encoding ERβ) and CYP19A1 (encoding aromatase), but also to a certain extent to 427 

CYP3A4 and CYP1A1/CYP1A2. Although only some of these associations remained 428 

significant after controlling for multiple testing, our findings suggest that disturbance of the 429 

balance between the levels of oestrogens and androgens play a functional role in the aetiology 430 

of TGCT. The lack of association between maternal genetic variation and TGCT risk 431 

indicates that the most important hormonal alterations implicated in the aetiology of TGCT 432 

have foetal and not maternal origin. Exploring the functional role of the TGCT-risk associated 433 

SNPs will further elucidate the biological mechanisms involved. 434 
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Figure legends 

 
Figure 1. Plot of P-values for each SNP in the case-parent study with significance thresholds 
indicated for P=0.05, P=0.01, and FDR<0.05 (105 SNPs). 
 
Figure 2. Plot of P-values for each SNP in the combined case-parent/case-control study with 
significance thresholds indicated for P=0.05, P=0.01, and FDR<0.05 (91 SNPs). 
 
Figure 3. LocusZoom plot showing the TGCT associated region of the ESR2 gene. 
Association results for SNPs (-log10 P value) as a function of genomic distance (NCBI Build 
36.1, hg 18). Purple diamonds indicate SNP at each locus with the strongest association 
evidence. Each circle represents a SNP, with the color of the circle indicating the correlation 
between that SNP and the most strongly associated SNP (purple diamond). Light blue line 
indicate estimated recombination rate in HapMap phase II CEU samples.  
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Tables 

 

Table 1. Characteristics of cases and controls. 

 Norwegian Swedish Total  

 

Included in the 

final analysis* 

TGCT cases 974 1188 2162 2017 

       Triads 483 521 1004 831 

       Dyads (mothers/fathers) 192 (150/42) 248 (178/70) 440 (328/112) 474 (340/134) 

       Singletons 299 419 718 712 

Seminoma 500 672 1135 1103 

Non-seminoma or mixed 

tumour 

471 503 935 900 

Age at diagnosis (mean) 15-65 (33) 18-45 (32) 15-65 15-65 (32) 

     

Controls (TwinGene)  3922 3922 3922 

* After excluding low DNA yield samples, and sample and SNP quality control. 
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Table 2. Associations of TGCT with SNP markers in sex hormone pathways in the case-parent triad study. 

 
Gene Gene name SNP Allele1* Allele2 Genomic 

position 

CHR OR 95 % CI P FDR q-

value
# 

ESR2 Oestrogen receptor beta rs12434245 C T 63761606 14 0.66 0.53-0.82 0.0002 0.018 

  rs10137185 C T 63845529  0.72 0.59-0.88 0.001 0.034 

  rs2978381 C T 63836405  1.21 1.08-1.37 0.002 0.037 

  rs12435857 A G 63793278  1.19 1.06-1.35 0.003 0.043 

  rs10146204 A G 63888522  1.18 1.04-1.33 0.010 0.078 

  rs1273196 A G 63809258  0.71 0.53-0.94 0.015 0.101 

CYP19A1 Cytochrome P450, family 19, 

subfamily A, polypeptide 1 

 

“Aromatase” 

rs2414099 C T 49336074 15 1.30 1.10-1.53 0.002 0.038 

rs8025374 C T 49305662 1.30 1.09-1.54 0.004 0.043 

rs3751592 C T 49393870 1.21 1.06-1.37 0.003 0.043 

rs1004984 A G 49400821 1.18 1.05-1.34 0.007 0.061 

rs2470144 C T 49409017 1.16 1.03-1.31 0.013 0.091 

CYP1A1/ Cytochrome P450, family 1,  rs12441817 C T 72812867 15 1.36 1.10-1.70 0.006 0.054 

CYP1A2 subfamily A, polypeptide 1/2 rs4886605 C T 72813041  0.84 0.71-0.99 0.043 0.214 

HSD3B1 Hydroxy-delta-5-steroid 

dehydrogenase 

rs6428830 A G 119856298 1 0.86 0.75-0.99 0.031 0.173 

SHBG Sex hormone-binding 

globulin 

rs2543553 A C 7479688 17 0.77 0.61-0.99 0.036 0.191 

AR Androgen receptor rs5919402 C T 66782221 23 0.80 0.64-0.99 0.038 0.200 

* Reference allele. 

# False discovery rate (FDR) was applied to control for multiple testing. 
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Table 3. Associations of TGCT with SNP markers in sex hormone pathways in the combined case-parent/case-control study (includes all triads 

and dyads from the case-parent study in Table 2). 

 
Gene Gene name SNP Allele1 * Allele2 Genomic 

position 

CHR OR 95 % CI P FDR q-

value
#
 

ESR2 Oestrogen receptor beta rs12435857 A G 63793278 14 1.15 1.07-1.24 0.000 0.011 

  rs10137185 C T 63845529  0.79 0.70-0.90 0.000 0.011 

  rs10146204 A G 63888522  1.13 1.05-1.22 0.002 0.034 

  rs2978381 C T 63836405  1.11 1.03-1.19 0.008 0.065 

CYP3A4 Cytochrome P450, family 3, 

subfamily A, polypeptide 4 

rs2740574 C T 99220032 7 0.74 0.62-0.89 0.002 0.034 

CYP19A1 Cytochrome P450, family 19, 

subfamily A, polypeptide 1 

 

“Aromatase” 

rs10851498 C T 49324304 15 0.90 0.84-0.97 0.007 0.064 

rs4646 A C 49290136 1.12 1.03-1.21 0.009 0.067 

rs28757162 A G 49323177 1.18 1.01-1.36 0.030 0.136 

rs12592697 C T 49312465 0.92 0.85-0.99 0.033 0.145 

rs12911554 C T 49330049 1.08 1.00-1.16 0.047 0.169 

CYP17A1 Cytochrome P450, family 17, 

subfamily A, polypeptide 1 

rs743572 A G 104587142 10 0.92 0.86-1.00 0.042 0.161 

HSD17B3 Hydroxysteroid (17-beta) 

dehydrogenase 3 

rs8190495 A G 98101705 9 0.90 0.83-0.97 0.006 0.057 

INHA Inhibin A rs3731920 C T 220142289 2 1.19 1.04-1.36 0.011 0.070 

SRD5A2 Steroid-5-alpha-reductase rs2208532 A G 31642493 2 0.91 0.84-0.98 0.011 0.071 

SULT1E1 Sulfotransferase family 1E rs3775770 C T 70758859 4 1.09 1.00-1.18 0.046 0.166 

* Reference allele. 

# False discovery rate (FDR) was applied to control for multiple testing. 
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Supplementary table 1. Case-parent study. 

SNP GENE CHR Genomic 

position 

Allele1  

reference 

Allele2 OR L95* U95* P FDR q-

value 

rs5919402 AR 23 66782221 C T 0.796 0.64 0.989 0.0383 0.200 

rs2361634 AR 23 66779568 A G 0.865 0.647 1.156 0.326 0.512 

rs12011518 AR 23 66849761 G T 1.022 0.761 1.374 0.883 0.740 

rs4680 COMT 22 18331271 A G 1.032 0.916 1.164 0.601 0.659 

rs743572 CYP17A1 10 104587142 A G 0.98 0.869 1.106 0.745 0.706 

rs2414099 CYP19A1 15 49336074 C T 1.297 1.1 1.528 0.0019 0.038 

rs3751592 CYP19A1 15 49393870 C T 1.205 1.063 1.366 0.00346 0.043 

rs8025374 CYP19A1 15 49305662 C T 1.295 1.087 1.542 0.00379 0.043 

rs1004984 CYP19A1 15 49400821 A G 1.184 1.048 1.339 0.0068 0.061 

rs2470144 CYP19A1 15 49409017 C T 1.161 1.032 1.305 0.0125 0.091 

rs17601241 CYP19A1 15 49295166 A G 1.21 1 1.464 0.0508 0.239 

rs12591359 CYP19A1 15 49326660 A G 0.895 0.792 1.012 0.0758 0.299 

rs12439137 CYP19A1 15 49303596 A G 0.865 0.73 1.023 0.0907 0.326 

rs4774585 CYP19A1 15 49403772 A G 1.137 0.97 1.333 0.113 0.359 

rs1902584 CYP19A1 15 49398946 A T 0.847 0.677 1.059 0.146 0.396 

rs2445762 CYP19A1 15 49405000 C T 1.099 0.964 1.254 0.159 0.408 
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rs17523880 CYP19A1 15 49379835 A C 1.131 0.952 1.343 0.163 0.411 

rs7172156 CYP19A1 15 49333590 A G 1.081 0.954 1.224 0.222 0.450 

rs6493497 CYP19A1 15 49418127 A G 1.106 0.922 1.327 0.279 0.479 

rs12592697 CYP19A1 15 49312465 C T 1.069 0.944 1.211 0.29 0.484 

rs10519295 CYP19A1 15 49319939 C T 0.9 0.739 1.096 0.293 0.485 

rs2008691 CYP19A1 15 49335602 A G 1.082 0.923 1.267 0.331 0.516 

rs10851498 CYP19A1 15 49324304 C T 0.954 0.848 1.074 0.434 0.583 

rs4646 CYP19A1 15 49290136 A C 1.044 0.917 1.189 0.517 0.625 

rs10459592 CYP19A1 15 49323433 G T 1.038 0.919 1.171 0.55 0.639 

rs2899472 CYP19A1 15 49303347 A C 0.965 0.843 1.103 0.599 0.658 

rs749292 CYP19A1 15 49346023 A G 0.973 0.865 1.095 0.649 0.676 

rs2470151 CYP19A1 15 49394361 C T 0.976 0.848 1.122 0.731 0.702 

rs1458928 CYP19A1 15 49432291 G T 1.026 0.884 1.19 0.739 0.704 

rs7174997 CYP19A1 15 49409420 G T 1.022 0.874 1.196 0.783 0.716 

rs17602308 CYP19A1 15 49394257 C T 1.026 0.802 1.312 0.84 0.730 

rs3751591 CYP19A1 15 49394002 A G 1.015 0.861 1.197 0.859 0.734 

rs28757162 CYP19A1 15 49323177 A G 1.021 0.809 1.289 0.861 0.735 

rs2255192 CYP19A1 15 49288127 C T 0.987 0.849 1.147 0.863 0.735 

rs12911554 CYP19A1 15 49330049 C T 0.99 0.881 1.113 0.867 0.736 
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rs8029807 CYP19A1 15 49359329 A G 0.992 0.823 1.197 0.936 0.751 

rs17601842 CYP19A1 15 49338422 A G 1.004 0.768 1.313 0.978 0.759 

rs12441817 CYP1A1/CYP1A2 15 72812867 C T 1.364 1.095 1.699 0.00555 0.054 

rs4886605 CYP1A1/CYP1A2 15 72813041 C T 0.838 0.706 0.994 0.0427 0.214 

rs2472304 CYP1A1/CYP1A2 15 72831291 A G 0.928 0.819 1.051 0.238 0.459 

rs2470893 CYP1A1/CYP1A2 15 72806502 C T 1.04 0.916 1.182 0.544 0.636 

rs10012 CYP1B1 2 38155894 C G 0.944 0.83 1.074 0.382 0.551 

rs1056836 CYP1B1 2 38151707 C G 1.003 0.887 1.134 0.964 0.756 

rs2740574 CYP3A4 7 99220032 C T 0.839 0.631 1.116 0.226 0.453 

rs4646457 CYP3A5 7 99083016 A C 1.183 0.96 1.458 0.113 0.359 

rs776745 CYP3A5 7 99129273 G T 0.865 0.71 1.053 0.146 0.396 

rs28365094 CYP3A5 7 99088411 C T 1.031 0.857 1.241 0.743 0.705 

rs2687145 CYP3A7 7 99156580 A G 0.853 0.702 1.037 0.109 0.354 

rs2687134 CYP3A7 7 99168978 G T 1.154 0.932 1.428 0.189 0.431 

rs2014764 CYP3A7 7 99185442 C T 1.005 0.854 1.183 0.951 0.754 

rs2234693 ESR1 6 152205028 C T 1.112 0.988 1.252 0.0792 0.305 

rs722208 ESR1 6 152364578 A G 1.035 0.909 1.179 0.601 0.659 

rs1801132 ESR1 6 152307215 C G 0.996 0.861 1.152 0.956 0.755 

rs12434245 ESR2/SYNE2 14 63761606 C T 0.66 0.531 0.821 0.000169 0.014 
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rs10137185 ESR2 14 63845529 C T 0.72 0.59 0.879 0.00119 0.034 

rs2978381 ESR2 14 63836405 C T 1.214 1.075 1.37 0.00169 0.037 

rs12435857 ESR2 14 63793278 A G 1.194 1.06 1.345 0.00343 0.043 

rs10146204 ESR2 14 63888522 A G 1.175 1.04 1.329 0.00976 0.078 

rs1273196 ESR2 14 63809258 A G 0.705 0.531 0.935 0.0152 0.101 

rs2987983 ESR2 14 63833406 A G 0.884 0.776 1.008 0.065 0.275 

rs8006145 ESR2 14 63769203 A C 1.123 0.985 1.281 0.0838 0.314 

rs17766755 ESR2 14 63785526 A G 1.086 0.961 1.227 0.185 0.428 

rs3020443 ESR2 14 63862093 G T 1.094 0.957 1.252 0.19 0.431 

rs1256064 ESR2 14 63770492 A G 0.874 0.708 1.08 0.212 0.445 

rs3783736 ESR2 14 63821125 G T 0.927 0.823 1.045 0.215 0.447 

rs10144225 ESR2 14 63774747 A G 1.068 0.828 1.379 0.612 0.663 

rs1887994 ESR2 14 63830364 A C 0.964 0.794 1.17 0.708 0.695 

rs8020646 ESR2 14 63761073 A G 1.017 0.763 1.355 0.908 0.745 

rs6165 FSHR 2 49044545 C T 1.083 0.96 1.223 0.194 0.434 

rs6166 FSHR 2 49043425 C T 1.059 0.942 1.191 0.338 0.521 

rs1138272 GSTP1 11 67110155 C T 0.883 0.71 1.099 0.267 0.474 

rs1695 GSTP1 11 67109265 A G 0.959 0.846 1.088 0.518 0.625 

rs6591256 GSTP1 11 67106475 A G 0.985 0.871 1.114 0.807 0.722 
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rs688878 GSTP1 11 67096525 A G 1.025 0.835 1.258 0.817 0.724 

rs2066479 HSD17B3 9 98037631 C T 0.887 0.663 1.186 0.418 0.573 

rs2026002 HSD17B3 9 98124002 A G 1.048 0.869 1.265 0.622 0.667 

rs8190495 HSD17B3 9 98101705 A G 0.995 0.881 1.125 0.94 0.751 

rs6428830 HSD3B1 1 119856298 A G 0.86 0.75 0.987 0.0308 0.173 

rs3765945 HSD3B1 1 119852969 A G 1.105 0.971 1.257 0.129 0.379 

rs1538989 HSD3B2 1 119791376 A G 0.934 0.827 1.055 0.271 0.476 

rs907141 INHA 2 220137490 C G 0.923 0.816 1.045 0.204 0.440 

rs2059693 INHA 2 220150734 C T 1.063 0.932 1.212 0.362 0.538 

rs1039900 INHA 2 220132731 A G 0.98 0.872 1.103 0.741 0.704 

rs3731920 INHA 2 220142289 C T 1.024 0.839 1.25 0.814 0.724 

rs6729914 INHA 2 220151760 C T 0.994 0.883 1.119 0.921 0.748 

rs2543553 SHBG 17 7479688 A C 0.772 0.606 0.985 0.0356 0.191 

rs9913778 SHBG 17 7474626 C T 0.947 0.765 1.172 0.616 0.665 

rs858520 SHBG 17 7470996 C T 1.021 0.904 1.153 0.739 0.704 

rs6259 SHBG 17 7477252 A G 1.027 0.855 1.234 0.777 0.714 

rs1641544 SHBG 17 7480591 C T 1.036 0.793 1.355 0.794 0.719 

rs1799941 SHBG 17 7474148 A G 1.01 0.886 1.151 0.883 0.740 

rs9898876 SHBG 17 7467687 G T 1.009 0.865 1.176 0.911 0.746 
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rs2955617 SHBG 17 7479510 A C 1 0.883 1.133 0.999 0.763 

rs523349 SRD5A2 2 31659210 C G 0.929 0.818 1.055 0.258 0.470 

rs2208532 SRD5A2 2 31642493 A G 0.962 0.853 1.084 0.52 0.626 

rs9282858 SRD5A2 2 31659330 C T 1.046 0.698 1.567 0.827 0.727 

rs1691053 SRD5A2 5 6730165 C T 1.014 0.843 1.219 0.885 0.740 

rs3775775 SULT1E1 4 70752871 A G 1.171 0.922 1.489 0.194 0.434 

rs3775779 SULT1E1 4 70743796 A T 1.074 0.95 1.215 0.255 0.468 

rs1238574 SULT1E1 4 70743612 C T 0.866 0.664 1.129 0.285 0.482 

rs1881668 SULT1E1 4 70760045 C G 1.069 0.933 1.224 0.336 0.519 

rs11573763 SULT1E1 4 70753626 A G 1.073 0.84 1.37 0.573 0.648 

rs1220726 SULT1E1 4 70738795 C T 0.954 0.803 1.132 0.588 0.654 

rs3775770 SULT1E1 4 70758859 C T 0.98 0.86 1.118 0.765 0.711 

rs1590128 SULT1E1 4 70768648 A G 0.989 0.871 1.122 0.858 0.734 

* L95 and U95 refer to the lower and upper range, respectively, of the 95% CI.
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Supplementary table 2. Combined case-parent/case-control study. 

SNP GENE CHR Genomic 

position 

Allele1 

reference 

Allele2 OR L95* U95* P FDR q-

value 

rs4680 COMT 22 18331271 A G 1.023 0.95 1.101 0.556 0.597 

rs743572 CYP17A1 10 104587142 A G 0.924 0.856 0.997 0.0422 0.161 

rs10851498 CYP19A1 15 49324304 C T 0.904 0.839 0.973 0.0074 0.064 

rs4646 CYP19A1 15 49290136 A C 1.115 1.027 1.21 0.00899 0.067 

rs28757162 CYP19A1 15 49323177 A G 1.175 1.014 1.36 0.0297 0.136 

rs12592697 CYP19A1 15 49312465 C T 0.918 0.849 0.994 0.0334 0.145 

rs12911554 CYP19A1 15 49330049 C T 1.078 1.001 1.161 0.0474 0.169 

rs8025374 CYP19A1 15 49305662 C T 1.111 0.994 1.242 0.0629 0.188 

rs7172156 CYP19A1 15 49333590 A G 1.074 0.994 1.16 0.0698 0.195 

rs12591359 CYP19A1 15 49326660 A G 1.072 0.994 1.157 0.071 0.196 

rs17601241 CYP19A1 15 49295166 A G 1.115 0.986 1.262 0.0807 0.205 

rs2255192 CYP19A1 15 49288127 C T 0.919 0.835 1.012 0.0835 0.207 

rs749292 CYP19A1 15 49346023 A G 0.937 0.87 1.009 0.0849 0.208 

rs8029807 CYP19A1 15 49359329 A G 1.102 0.979 1.241 0.107 0.239 

rs10459592 CYP19A1 15 49323433 G T 0.946 0.877 1.02 0.145 0.282 

rs2414099 CYP19A1 15 49336074 C T 1.069 0.963 1.186 0.207 0.355 
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rs4774585 CYP19A1 15 49403772 A G 1.063 0.965 1.171 0.212 0.361 

rs1902584 CYP19A1 15 49398946 A T 1.077 0.927 1.252 0.335 0.471 

rs3751591 CYP19A1 15 49394002 A G 1.051 0.949 1.164 0.339 0.474 

rs1004984 CYP19A1 15 49400821 A G 0.971 0.898 1.049 0.452 0.546 

rs2470144 CYP19A1 15 49409017 C T 1.029 0.955 1.108 0.459 0.550 

rs6493497 CYP19A1 15 49418127 A G 1.035 0.917 1.167 0.575 0.605 

rs7174997 CYP19A1 15 49409420 G T 0.974 0.882 1.076 0.603 0.616 

rs2445762 CYP19A1 15 49405000 C T 0.984 0.906 1.069 0.699 0.650 

rs3751592 CYP19A1 15 49393870 C T 1.015 0.938 1.098 0.716 0.656 

rs2008691 CYP19A1 15 49335602 A G 0.986 0.893 1.088 0.776 0.674 

rs1458928 CYP19A1 15 49432291 G T 0.997 0.905 1.097 0.947 0.716 

rs2470151 CYP19A1 15 49394361 C T 0.998 0.913 1.089 0.957 0.718 

rs4886605 CYP1A1/CYP1A2 15 72813041 C T 0.902 0.808 1.007 0.065 0.190 

rs12441817 CYP1A1/CYP1A2 15 72812867 C T 1.102 0.956 1.27 0.178 0.323 

rs2472304 CYP1A1/CYP1A2 15 72831291 A G 1.042 0.965 1.126 0.295 0.440 

rs2470893 CYP1A1/CYP1A2 15 72806502 C T 0.997 0.921 1.078 0.931 0.712 

rs1056836 CYP1B1 2 38151707 C G 1.011 0.938 1.09 0.77 0.672 

rs2740574 CYP3A4 7 99220032 C T 0.742 0.615 0.894 0.00207 0.034 

rs28365094 CYP3A5 7 99088411 C T 1.104 0.982 1.242 0.0963 0.225 
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rs776745 CYP3A5 7 99129273 G T 0.962 0.849 1.091 0.551 0.594 

rs4646457 CYP3A5 7 99083016 A C 1.036 0.908 1.182 0.597 0.614 

rs2687145 CYP3A7 7 99156580 A G 0.948 0.837 1.074 0.405 0.519 

rs2687134 CYP3A7 7 99168978 G T 1.022 0.891 1.172 0.76 0.669 

rs1801132 ESR1 6 152307215 C G 1.051 0.961 1.15 0.28 0.427 

rs722208 ESR1 6 152364578 A G 1.03 0.95 1.117 0.472 0.557 

rs2234693 ESR1 6 152205028 C T 1.022 0.949 1.101 0.56 0.598 

rs12435857 ESR2 14 63793278 A G 1.148 1.065 1.236 0.000282 0.011 

rs10137185 ESR2 14 63845529 C T 0.794 0.699 0.903 0.000338 0.011 

rs10146204 ESR2 14 63888522 A G 1.129 1.045 1.219 0.002 0.034 

rs2978381 ESR2 14 63836405 C T 1.107 1.027 1.194 0.00797 0.065 

rs17766755 ESR2 14 63785526 A G 1.078 0.997 1.165 0.0586 0.184 

rs1273196 ESR2 14 63809258 A G 0.847 0.711 1.01 0.0614 0.187 

rs2987983 ESR2 14 63833406 A G 0.94 0.867 1.019 0.131 0.268 

rs3783736 ESR2 14 63821125 G T 0.952 0.883 1.027 0.203 0.351 

rs8006145 ESR2 14 63769203 A C 1.055 0.971 1.146 0.207 0.355 

rs3020443 ESR2 14 63862093 G T 1.043 0.959 1.136 0.326 0.464 

rs1887994 ESR2 14 63830364 A C 1.051 0.93 1.188 0.425 0.531 

rs10144225 ESR2 14 63774747 A G 1.051 0.903 1.223 0.524 0.582 
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rs1256064 ESR2 14 63770492 A G 0.965 0.846 1.1 0.593 0.612 

rs8020646 ESR2 14 63761073 A G 1.037 0.871 1.234 0.682 0.645 

rs6165 FSHR 2 49044545 C T 1.007 0.934 1.085 0.859 0.696 

rs6166 FSHR 2 49043425 C T 0.997 0.926 1.074 0.938 0.714 

rs688878 GSTP1 11 67096525 A G 0.905 0.797 1.028 0.122 0.258 

rs1695 GSTP1 11 67109265 A G 1.022 0.945 1.105 0.592 0.612 

rs6591256 GSTP1 11 67106475 A G 1.015 0.942 1.094 0.688 0.647 

rs8190495 HSD17B3 9 98101705 A G 0.898 0.832 0.969 0.00555 0.057 

rs2026002 HSD17B3 9 98124002 A G 0.958 0.851 1.078 0.473 0.557 

rs2066479 HSD17B3 9 98037631 C T 0.975 0.812 1.17 0.782 0.675 

rs3765945 HSD3B1 1 119852969 A G 1.061 0.981 1.147 0.14 0.277 

rs6428830 HSD3B1 1 119856298 A G 0.964 0.887 1.048 0.39 0.509 

rs1538989 HSD3B2 1 119791376 A G 0.981 0.909 1.057 0.61 0.619 

rs3731920 INHA 2 220142289 C T 1.189 1.043 1.357 0.0105 0.070 

rs6729914 INHA 2 220151760 C T 1.043 0.968 1.123 0.271 0.419 

rs1039900 INHA 2 220132731 A G 0.984 0.913 1.06 0.664 0.639 

rs2059693 INHA 2 220150734 C T 1.007 0.928 1.094 0.86 0.696 

rs6259 SHBG 17 7477252 A G 1.116 0.994 1.252 0.0607 0.186 

rs9898876 SHBG 17 7467687 G T 0.935 0.851 1.027 0.157 0.297 
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rs2543553 SHBG 17 7479688 A C 0.915 0.791 1.06 0.239 0.389 

rs858520 SHBG 17 7470996 C T 1.026 0.951 1.107 0.507 0.574 

rs1641544 SHBG 17 7480591 C T 1.044 0.881 1.238 0.619 0.622 

rs9913778 SHBG 17 7474626 C T 0.97 0.848 1.111 0.663 0.638 

rs2955617 SHBG 17 7479510 A C 0.989 0.915 1.069 0.782 0.675 

rs1799941 SHBG 17 7474148 A G 0.999 0.919 1.086 0.98 0.723 

rs2208532 SRD5A2 2 31642493 A G 0.908 0.843 0.978 0.0107 0.071 

rs523349 SRD5A2 2 31659210 C G 0.941 0.869 1.018 0.13 0.267 

rs9282858 SRD5A2 2 31659330 C T 1.072 0.828 1.389 0.598 0.614 

rs1691053 SRD5A2 5 6730165 C T 0.977 0.874 1.092 0.679 0.644 

rs3775770 SULT1E1 4 70758859 C T 1.088 1.002 1.182 0.0455 0.166 

rs1881668 SULT1E1 4 70760045 C G 0.921 0.847 1.002 0.0542 0.178 

rs3775779 SULT1E1 4 70743796 A T 1.079 0.998 1.166 0.0552 0.180 

rs11573763 SULT1E1 4 70753626 A G 1.071 0.915 1.253 0.389 0.509 

rs1590128 SULT1E1 4 70768648 A G 0.969 0.896 1.047 0.418 0.527 

rs1220726 SULT1E1 4 70738795 C T 0.958 0.86 1.068 0.442 0.540 

rs1238574 SULT1E1 4 70743612 C T 0.963 0.82 1.13 0.642 0.631 

rs3775775 SULT1E1 4 70752871 A G 1 0.866 1.156 0.995 0.726 

* L95 and U95 refer to the lower and upper range, respectively, of the 95% CI. 
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