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Abstract

Background: Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects,
probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the
particles’ physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a
major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study
was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of
the combustion cycle, and from combustion at different temperatures.

Results: WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory
mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more
cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced
by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction
was the most important determinant for the WSP-induced effects. However, the responses induced by the organic
fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs),
suggesting that also other organic compounds were involved.

Conclusion: The toxicity of WSPs seems to a large extent to be determined by stove type and combustion
conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the
organic fraction, and it is probably associated with organic components other than the commonly measured
unsubstituted PAHs.
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Background
Exposure to particulate matter (PM) in ambient air has
been associated with effects on the pulmonary as well as
the cardiovascular system. These effects include exacer-
bation of asthma and allergy, chronic obstructive pul-
monary disease (COPD), pulmonary fibrosis, increased
risk of lung cancer, atherosclerosis and acute cardiac
effects [1-4]. The biological mechanisms that may ex-
plain these associations are still not resolved, but inflam-
mation is considered to play a key role [5].
During the winter season, wood combustion is a major

source of particulate air pollution in many developed
countries, and the adverse health effects associated with
exposure to wood smoke do not seem to be weaker than
for ambient particles from other sources [6,7]. An asso-
ciation was recently established between PM exposure
and cardiopulmonary morbidity and mortality in a com-
munity in Temuco in Chile, where 87% of PM winter
emissions were estimated to originate from residential
wood combustion [8]. Moreover, a study of Belgian
school adolescents reported that wood fuel use was asso-
ciated with increased risks of asthma, hay fever and
aeroallergen sensitisation, as well as changes in systemic
lung specific biomarkers [9]. Controlled human exposure
to wood smoke also induced an increase of inflamma-
tory markers in distal airways and increases in biomar-
kers that may be associated with systemic inflammation
and cardiovascular diseases [10-12].
The potential of PM to induce biological effects seems

to depend strongly on its physical and chemical proper-
ties such as size, structure and surface area, as well as
components absorbed on the particle surface including
metals, organic compounds, allergens and endotoxins
[13,14]. The physicochemical properties of PM generated
during wood combustion vary considerably depending
on the combustion conditions, the combustion appli-
ances, the type and condition of the wood, as well as the
combustion phase [15-19]. The combustion of wood logs
can be divided into three combustion phases. The start-
up phase of the fire is characterised by low temperature
and poor combustion conditions, the steady-state phase
by flaming combustion, and the burn-out phase is domi-
nated by glowing chars. It has previously been demon-
strated that organic emissions, particularly those with
signatures similar to levoglucosan, were strongly enhanced
during the start-up phase, whereas particles emitted during
the burn-out phase contained high levels of oxygenated or-
ganic species [17]. It is still unclear to what extent the
combustion conditions influence the pulmonary effects of
the emitted PM. However, recent in vitro studies indicate
that particles from different combustion conditions may
induce differential pro-inflammatory response patterns
[20,21]. In addition, particles from poor combustion condi-
tions with elevated organic content seem to have greater
effects on both cytotoxicity and DNA damage than parti-
cles from more complete combustion conditions [20,22].
In the alveoli of a healthy lung, resident macrophages

and epithelial cells lining the pulmonary surface are pri-
mary cellular targets for deposited particles. Monocytes,
the precursors for alveolar macrophages, accumulate in
the lung during inflammation, and have also been sug-
gested to assist in clearance of deposited particles and
to be essential in coordination of the inflammatory re-
sponse [23-26]. Inflammation is a complex process in-
volving cellular release of a range of pro- as well as
anti-inflammatory mediators. The pro-inflammatory
cytokines tumour necrosis factor (TNF)-α and interleu-
kin (IL)-6, and the chemokine IL-8 are commonly used
as markers for particle-induced inflammation [27-30].
TNF-α is an early inflammatory marker that seems to be
an important regulator of the production and release of
IL-6 and IL-8. The release of IL-6 activates the immune
system and exerts multiple effects on numerous cell
types including synthesis of acute phase proteins,
increased antibody production in B-cells and prolifera-
tion of T-cells [31,32]. The chemokine IL-8 is an import-
ant chemo-attractant for neutrophils, which participates
in the first line of cellular defence in acute inflammation.
IL-8 also attracts other leucocytes, such as basophils and
macrophages, and exhibits angiogenic activity [33].
The aim of the present study was to compare the in-

flammatory and toxic effects of wood smoke particles
(WSPs) from different phases of the combustion cycle,
as well as WSPs from two different combustion tem-
peratures. A co-culture of pulmonary epithelial cells and
monocytes was used as a model system. The particle
samples were analysed with respect to the content of
polycyclic aromatic hydrocarbons (PAHs) and selected
elements. In addition, near edge x-ray absorption fine
structure (NEXAFS) spectroscopy was performed for
two WSPs from different combustion temperatures to
determine the major groups of organic compounds
present in the organic fraction. Finally, the role of the
organic fraction in the observed cellular effects was
investigated by comparing the responses induced by or-
ganic extracts and washed particles to the effects of the
corresponding native particles. In order to relate the
inflammatory and toxic potential of the WSPs to that
of particles from another relevant ambient combustion
source, a traffic-derived sample was also included in
the study.

Methods
Generation and sampling of particles
WSPs from different phases of the combustion cycle
were collected in an exposure chamber (Swedish Na-
tional Testing and Research Institute, Borås, Sweden)
during combustion of a mixture of hardwood and
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softwood (50% birch, 50% fir, moisture content 14–16%
and 17–19% respectively) in a small cast-iron wood
stove. Wood smoke was generated during three different
days (10 hours/day) with wood smoke entering the
chamber from the whole burning cycle on the first day
(mixed wood smoke), from the start-up phase on the
second day and the burn-out phase on the third day. A
high-volume cascade impactor was used for collection of
WSPs for the toxicological tests in two size fractions,
PM0.1–2.5 and PM2.5–10 [34]. The rationale for including
both size fractions was that several studies report differ-
ent effects of these two fractions [35,36]. The details of
the generation and collection of wood smoke in the
chamber are included in Additional file 1.
Two samples were included as reference particles;

Wood(high-temp) and Traffic. The Wood(high-temp)
sample was collected in a laboratory from a conven-
tional stove with single-stage combustion during high-
temperature incomplete combustion (approximately
700–1000°C) of birch wood with moisture content
15-20% [37]. In comparison, the particles collected in
the exposure chamber were collected during medium-
temperature combustion (approximately 500–800°C).
The traffic sample was collected at a highway inter-
section in Oslo, Norway (30.000 vehicles/day, analysis
published as Oslo 2, Spring, Fine (i.e. PM2.5), in [38]).
The sample contains contributions from cars, trucks and
busses driven on diesel or gasoline. The sampling and
extraction procedures for the Wood(high-temp) and
Traffic samples have been described in detail elsewhere
[37,38]. The toxicity of these particle samples has also
been investigated previously in the present co-culture
model system, as described in [39]. The motivation for
inclusion of these two reference samples presently was
(i) to investigate the influence of combustion temper-
ature on the toxicity of WSPs by comparing the wood
smoke particles from high- and medium-temperature
incomplete combustion and (ii) to compare the toxicity
of WSPs with particles from another relevant ambient
combustion source, i.e. road traffic.

Physicochemical characterisation of particles
The PM0.1–2.5 particle samples collected in the exposure
chamber were analysed for the content of a selection of
PAHs and elements (see list of analysed species in
Additional file 2). Gas chromatography–mass spectrom-
etry (GC-MS) was used for analysis of the PAHs in the
medium temperature PM0.1–2.5 WSP samples as previ-
ously described [40], whereas a modified GC-MS
method was used for PAH analysis of Wood(high-temp)
and Traffic [41]. The elemental composition was ana-
lysed by Energy Dispersive X-Ray Fluorescence (EDXRF)
using a Mo secondary target in a three axial geometry
for optimal signal to noise ratio and low detection limits
[42]. The content of elements in the reference samples,
Traffic and Wood(high-temp), has previously been ana-
lysed by ICP-MS, for methodological description and
original data, see [38].
To determine the molecular structure of the organic

fraction of the WSPs, near-edge x-ray absorption fine
structure (NEXAFS) spectra were recorded for one wood
smoke sample from the exposure chamber (mixed-
smoke, PM0.1–2.5) and the reference wood smoke sample
Wood(high-temp). NEXAFS spectra from the C(1s) ab-
sorption threshold typically exhibit multiple peaks indi-
cating the presence of various carbon functional groups
[43-45]. By means of reference spectra and calculations
this complex spectrum can be deconvoluted into Voigt
functions corresponding to particular molecular species
[46]. Since the spectra are normalised, the area under
the deconvolution peaks can be used to compare the
content of the different molecular species in the two
samples. A more extensive methodological description
of the NEXAFS analysis and the assignment of the de-
convolution peaks to the different groups of molecular
species are included in Additional file 3.

Cell cultures, particle preparation and exposure of cells
A co-culture of two human cell lines, A549 pneumocytes
and THP-1 monocytes, was used for the toxicological
experiments. The model system allowed for contact
between the two cell types, and after 1 hour incubation
visual inspection by microscopy revealed that the major-
ity of the THP-1 cells rested on the A549 cells. This co-
culture has previously been described in Kocbach et al.
2008 [39]. In short, A549 cells were seeded in 35 mm 6
well plates and grown to approximately 70% confluence.
Then 1.6 mill THP-1 cells were added to each well im-
mediately before exposure, corresponding to a concen-
tration of 0.65 mill cells/ml. At the time of exposure the
approximate ratio of monocytes vs. pneumocytes was
4:1. Since a limited amount of each particle sample was
available, only one particle concentration was chosen for
all experiments; 40 μg/cm2. In our previous study [39],
the same model system was used to investigate the cyto-
kine release after exposure to 10, 20 or 40 μg/cm2 of
Traffic and Wood smoke (high-temp), samples which
were included as reference sampels in the present study.
Since 10 and 20 μg/cm2 did not increase the cytokine re-
lease significantly for both particle samples, 40 μg/cm2

was chosen for the present study. Exposure times of 12
or 40 hours were used as specified in the figure legends.
Particle suspensions of 1 mg/ml were prepared in cell

culture medium without FBS, but supplemented with
2% dimethyl sulfoxide (DMSO), and sonicated for 30
min in a water bath. Methanol was used to aliquot the
particle samples, and the subsequent evaporation of the
methanol caused adherence of the particles to the tube
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walls. Therefore, when preparing particle stock solutions,
DMSO was added to the particles before the culture
medium to increase dispersion of particles into suspen-
sion. All samples were vortexed for 30 sec immediately
before cell exposure. Organic extracts and washed parti-
cles were prepared by methanol extraction. A two step
extraction procedure was applied where the two fractions
were separated by centrifugation as described in [39].
The washed particles, but not the organic extracts, were
sonicated for 30 min in a water bath before exposure.
Unexposed cells, i.e. exposed to cell culture medium with
DMSO, were used as controls. The final concentration of
DMSO was identical in all the wells and did not exceed
0.5%. The presence of DMSO did not influence the
investigated biological endpoints. After exposure, the cell
culture supernatants were collected and centrifuged
twice for removal of dead cells (300 x g) and particles
(8000 x g), before storage at −70°C until further analysis.
Quantification of cytokine and chemokine release
The collected cell culture supernatants were analysed by
enzyme-linked immunosorbent assay (ELISA) kits (Cyto-
Sets™, Invitrogen, CA, USA or DuoSet ELISA kits, R&D
Systems Inc., MN, USA) to determine the levels of the
pro-inflammatory cytokines TNF-α and IL-6 as well as
the chemokine IL-8. All ELISA kits were used according
to the manufacturer’s manual and the detection limits for
all kits were in the range 7 to 10 pg/ml. The increase in
colour intensity was quantified using a plate reader
(Revelation Version 4.22, Thermo Labsystems, VA, USA).
Detection of cytotoxicity
Cytotoxicity was estimated by measuring the release of
lactate dehydrogenase (LDH) from the cytosol of
damaged cells into the cell culture medium, using a col-
orimetric cytotoxicity kit (Roche, Switzerland). The kit
was supplemented with a standard with maximum con-
centration of 250 mU/ml (Roche). The maximal releas-
able LDH was determined in a suspension of unexposed
cells (controls) lysed with 1% Triton x-100 and diluted
with cell culture medium to the total volume applied in
the well (2,4 ml). The max levels are indicated as dotted
lines in the graphs showing the detected LDH levels.
As an additional indicator of cytotoxicity, particle-

induced changes in the number of viable cells were
detected by trypan blue exclusion. Non-adherent mono-
cytes were removed with the supernatant and collected,
while the adherent pneumocytes were removed by tryp-
sination. Monocytes and pneumocytes were then mixed
and stained with trypan blue for 3 minutes. The num-
bers of living cells were counted in a Bürker chamber,
and the cell numbers for unexposed and exposed cells
are presented as 106 cells/ml.
Cell cycle analysis
Cell cycle analysis was performed by Hoechst 33258
staining and flow cytometry in combination with curve
fitting to obtain a measure of the approximate propor-
tion of cells in each phase of the cell cycle. The cells
were not synchronised prior to exposure. The WSPs and
extracts introduced an artefact to the analysis. The full
methodological description, the method used to account
for this artefact and the results obtained from the ana-
lysis are included in Additional file 4.

Cytokine binding to particles
The binding of IL-6 and IL-8 to a selection of the
applied particle samples was investigated using a cell free
test described in Kocbach et al. 2007 [47]. No significant
binding was observed for the analysed particles samples.
The data from the experiments are presented in
Additional file 5.

Statistical analysis
Statistical analysis was performed with GraphPad Prism
(version 4.03 for Windows, GraphPad Software, CA,
USA, www.graphpad.com). One- or two-way analysis of
variance (ANOVA) was used to analyse the data sets,
as specified in the figure legends, and post-tests with
Bonferroni correction were used to compare groups. As
indicated in the figure legends, some data were log
transformed before performing ANOVA to fulfil the
assumption of equal standard deviations of all sets of
replicates, whereas repeated measures ANOVA was
applied in some cases to account for variations in re-
sponse levels between experiments [48]. Linear regres-
sion analysis was performed to investigate the influence
of particle chemistry on cytokine release, toxicity and
cell number. Analyses were performed for the sum of
elements, Zn, K, the sum of PAHs, Benzo(b)fluor-
anthene, Pyrene and Benzo(ghi)perylene. Only the most
significant findings of the regression analyses are pre-
sented in the text. All p values < 0.05 were considered to
reflect statistically significant differences.

Ethical considerations
The research reported in this paper was not carried out
on humans or animals. Commercially available cell lines
were applied, therefore approval from an ethics commit-
tee was not necessary.

Results
Particle characteristics
The chemical characterisation of the PM0.1–2.5 fractions
from the different combustion phases is presented in
Table 1, together with the data from the previous ana-
lyses of the reference samples. The PAH levels in the
PM0.1–2.5 particles collected during the mixed-smoke

http://www.graphpad.com


Table 1 Chemical characteristics of WSPs (PM0.1–2.5-fraction) and reference particles (traffic and wood) used for in vitro
experiments

Wood(medium-temp) PM0.1–2.5

Traffic Wood(high-temp) Mixed smoke Start-up Burn-out

Sum of 18 PAHs (ng/mg) 48 10008 2010 2353 914

Sum of elements (ng/mg) 17423 a) 32327 b) 10 4 11
a) ICP-MS (Cassee et al., 2003).
b) ICP-MS (Cassee et al., unpublished data).

Bølling et al. Particle and Fibre Toxicology 2012, 9:45 Page 5 of 15
http://www.particleandfibretoxicology.com/content/9/1/45
and start-up combustion sessions were similar, and ap-
proximately twice as high as the levels in the particles
collected during the ‘burn-out’ session. On the other
hand, Wood(start-up) had a lower content of refractory
elements, suggesting a lower ash-content than in the
samples from the ’mixed smoke’ and ’burn-out’ ses-
sions. However, these differences must be considered as
minor, when comparing these samples with the refer-
ence samples, Wood(high-temp) and Traffic. Compared
to the mixed WSPs, Wood(high-temp) contained more
than five times as much PAHs, while the level of re-
fractory elements was 3300 times higher (Table 1).
Traffic had a much lower PAH content than all the
WSPs, but the content of refractory elements was rela-
tively high; approximately half of the level detected in
Wood(high-temp).
The PAH profiles provide the relative content of the

individual PAHs compared to the total PAH content
in each sample, and are presented in Additional file 2,
Figure a, for the WSP PM0.1–2.5-fractions and the refer-
ence samples. The most striking difference between the
PAH profiles of the five analysed samples was that
Benzo(b)fluoranthene was the dominating species in
the WSPs from the different phases of the medium
temperature combustion, whereas the reference samples
Traffic and Wood(high-temp) contained highest relative
levels of Fluoranthene and Pyrene. The PAH profiles of
all five samples showed similar relative levels of Benzo(a)
pyrene, Benzo(e)pyrene, Benzo(a)antrachene, Chrysene,
Perylene, Benzo(a)fluorene and Benzo(e)fluorene. The
absolute levels of the individual PAHs in ng/mg are pre-
sented in Additional file 2, Figure c. As for the total
PAH levels, most of the individual PAH levels were con-
siderably higher in Wood(high-temp) than in the sam-
ples from medium temperature combustion, except for
the levels of Benzo(b)fluoranthene which were similar
for all the four WSPs.
The elemental profiles representing the content of sin-

gle elements relative to the total elemental content, are
presented in Additional file 2, Figure b. K and Zn were
the dominating elements in all four WSPs, but the sam-
ples from the different combustion phases differed from
Wood(high-temp) in that they also contained consider-
able amounts of Ca and Fe. The elemental profile of the
Traffic sample was dominated by Fe, K and Ca.
Overall, the differences between the three phases of
the wood combustion cycle were relatively small, both
with respect to the sum of the measured PAHs and re-
fractory elements, as well as the PAH and elemental pro-
files. There were however more evident differences
between these samples and the reference samples.
The NEXAFS spectra from Wood(high-temp) and

Wood(mixed-smoke, PM0.1–2.5) are included in
Additional file 3, with a detailed interpretation of the de-
convolution of the spectra. Overall, the NEXAFS spectra
suggested that Wood(high-temp) had a higher content
of PAHs and graphitic carbon, whereas Wood(mixed-
smoke, PM0.1–2.5) seemed to contain more quinones,
methoxyphenols and lignin decomposition products
such as levoglucosan. In addition, the spectrum from
Wood(high-temp) showed a potassium peak at 298 eV,
whereas the Wood(mixed-smoke, PM0.1–2.5) spectrum
did not. This pointed towards a higher ash content in
the sample from the higher combustion temperature.

Particle-induced release of TNF-α, IL-6 and IL-8
Most particle samples induced a statistically significant
increase in the release of IL-6, IL-8 and TNF-α from the
co-culture after both 12 hours and 40 hours exposure
(*, Figure 1). With regard to exposure time, the release
of IL-6 and IL-8 appeared to increase with time, whereas
the release of TNF-α decreased. Significant effects of
exposure time were, however, only observed for IL-6
(#, Figure 1).
The WSPs from the different phases of medium-

temperature combustion did generally not differ in their
potency to induce release of TNF-α, IL-6 and IL-8. The
statistically significant differences between the particle
samples are summarized in Additional file 6. The release
of TNF-α did not differ significantly between any sam-
ples. In contrast, Traffic induced a higher release of IL-6
than most of the WSPs after 12 hours exposure, whereas
Wood(high-temp) induced a lower release of IL-6 than
Traffic and the medium-temperature WSPs at 40 hours.
No consistent patterns were observed for IL-8.

Particle-induced cytotoxicity
After 40 hours exposure, both fine and coarse particles
from medium temperature combustion induced signifi-
cant and similar increases in cellular release of LDH



Figure 1 Particle-induced release of cytokines. Co-cultures of
pneumocytes (A549) and monocytes (THP-1) were exposed to 0
(control) or to 40 μg/cm2 of particles for 12 or 40h, before the levels
of a) TNF-α, b) IL-8 and c) IL-6 in cell culture supernatants were
determined by ELISA. Histograms represent means ± SEM of
separate experiments (n=4). * p<0.05 exposed vs. control and
# p<0.05 12 vs. 40 h exposure. Statistical analyses were performed by
two-way ANOVA with Bonferroni post-tests on log transformed data.
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(*, Figure 2a). However, these LDH levels were all well
below the estimated maximal release of LDH, indicating
a relatively low level of particle-induced cytotoxicity.
Particles from traffic and high-temperature wood
combustion did not cause significant increases in the
release of LDH. Consequently, the release of LDH
after exposure to all the medium-temperature WSPs
was significantly higher than after exposure to Traffic
and Wood(high-temp) after 40 hours exposure (not
indicated in the figure). The LDH release induced by
the medium temperature WSPs was significantly
higher after 40 hours as compared to after 12 hours
exposure (#, Figure 2a).
With regard to particle-induced changes in cell num-

bers, exposure to all the WSPs caused significant
decreases in cell numbers, in contrast to Traffic that only
induced a non-significant reduction (Figure 2b). Particles
collected during medium-temperature wood combustion
elicited a significantly larger decrease in cell numbers
than Wood(high-temp) (not indicated in figure), but
there were no significant differences between the com-
bustion phases or the particle size fractions.
Effects of native particles versus washed particles and
organic extracts
The co-cultures were exposed to washed particles and
organic extracts at concentrations equivalent to the con-
centration of native particles, to investigate the relative
importance of these two fractions in the responses
induced by the WSPs from the different combustion
phases (Figure 3 and 4). The corresponding data for the
two reference samples has been published previously in
[39]. In general, native particles induced the highest
cytokine release. Organic extracts of all the medium-
temperature WSPs induced a significant increase in the
release of TNF-α, IL-6 and IL-8, whereas the washed
particles only increased the release of IL-6 and IL-8, with
the exception of Wood, (mixed-smoke, PM2.5–10) that
also increased the TNF-α release significantly. Generally,
organic extracts appeared to be more potent than the
corresponding washed particles, although statistically
significant differences between washed particles and or-
ganic extracts were only detected for a few samples for
TNF-α and IL-6 (#, Figure 3a and b). On the other hand,



Figure 2 Particle-induced changes in cytotoxicity and number of viable cells. Co-cultures of pneumocytes (A549) and monocytes (THP-1)
were exposed to particles at a concentration of 40 μg /cm2, before determining a) levels of LDH in the cell culture supernatants after 12 or 40 h
exposure and b) the number of viable cells by tryan blue exclusion after 40 h exposure. The dotted line represents the maximum LDH level,
which corresponds to the levels that would have been measured if all the cells in the wells were dead. Histograms represent means ± SEM of
separate experiments (n = 4). * p<0.05 exposed vs. control and # p<0.05 12 vs. 40 h exposure. Statistical analysis was in a) performed by
2-way-ANOVA with Bonferroni post-tests on log transformed data and in b) by one-way-ANOVA with Bonferroni post-tests.
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the TNF-α and IL-6 release induced by native and
washed particles differed significantly for the majority of
the samples (**, Figure 3a and b). This also supports that
the organic fraction influenced the cytokine release,
since particles devoid of the organic fraction induced a
significantly lower response. Finally, the responses
induced by native particles and organic extracts, were
only significantly different for one sample (§, Figure 3b).
With respect to the release of LDH, organic extracts

from all medium temperature WSPs induced a statisti-
cally significant increase, but none of the washed parti-
cles did (Figure 4a). Moreover, the organic extracts
seemed to be more potent inducers of LDH release
than the respective washed particles (#, Figure 4a). In
line with this, the organic extracts decreased the cell
numbers significantly and to a similar extent as the na-
tive particles, whereas the number of viable cells
appeared unaffected by washed particles (Figure 4b).
Overall, the organic fraction seemed to account for the

majority of the responses induced by native WSPs from
the different combustion phases, both with respect to re-
lease of pro-inflammatory mediators and cytotoxicity.
There were however no apparent differences between
the combustion phases or between fine and coarse
particles.
Cell cycle analysis
Cell cycle analysis was performed by flow cytometry and
curve fitting to investigate if the observed reduction in
cell numbers was due to a cell cycle arrest that in turn
caused a decreased proliferation. Due to particle- and
extract-induced artefacts in the flow cytometry analysis,
only samples of THP-1 monocytes from co-cultures
exposed to organic extracts were analysed (Additional
file 4, Figure 3). Exposure to organic extracts from
Wood(high-temp) and Wood(mixed-smoke, PM0.1–2.5),
but not Traffic, increased the number of cells in the
S/G2 phase, suggesting an accumulation in the S/G2
phases. This is in accordance with the significant re-
duction in cell numbers induced by the WSPs, but
not by Traffic.

Influence of particle chemistry on cellular responses
The linear regression analysis indicated that the content
of PAHs and elements had limited influence on the bio-
logical effects induced by the particles (data not shown).
With some exceptions, the R2 values were mostly below
0.4, indicating that generally less than 40% of the vari-
ability in the responses could be explained by the con-
tent of elements and PAHs. Moreover, regression lines
with slopes statistically significantly different from zero



Figure 3 Effect of organic extraction on the particle-induced
cytokine release. Co-cultures of pneumocytes (A549) and
monocytes (THP-1) were exposed to native particles, washed
particles and organic extracts at concentrations equivalent to
40 μg/cm2, for 40 h, before the levels of a) TNF-α, b) IL-6 and c) IL-8
in cell culture supernatants were determined by ELISA. Histograms
represent means ± SEM of separate experiments (n = 4).* p<0.05
exposed vs. control, ** p<0.05 native vs. washed particles, # p<0.05
washed particles vs. organic extracts of particles, § p<0.05 native
particles vs. organic extracts of particles. Statistical analyses were
performed by two-way ANOVA with Bonferroni post-tests on log
transformed data.
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often reflected slopes that were too low to be of bio-
logical relevance. For the total elemental content the
highest R2 value, 0.47, was determined for the cell num-
ber, with a slope of 1275 cells per 100 ng/mg increase in
elemental content. A similar pattern was seen when lin-
ear regression was performed for the two most abundant
elements Zn and K, with the highest R2 value for the cell
number, 0.64 for both elements, and slopes of 5400 and
2200 cells per 100 ng/mg increase in content of Zn and
K, respectively.
The linear regression analysis of the sum of the 18

measured PAHs versus the various biological endpoints
generally resulted in R2 values below 0.1, with the excep-
tion of the release of IL-6 which gave a R2 value of 0.39.
The slope of the corresponding linear regression line
was however too low to have biological relevance. Linear
regression analysis for three of the most abundant PAHs,
Benzo(b)fluoranthene, Pyrene and Benzo(ghi)perylene,
also gave highest R2 values for IL-6. Moreover, analysis
of Benzo(b)fluoranthene vs, IL-8 release and cell number
resulted in R2 values of approximately 0.25. For these
single PAHs the slopes significantly different from zero
could have biological relevance. For instance, IL-6 vs.
Benzo(b)fluoranthene resulted in a negative slope of 70
pg/ml for 100 ng/mg PM. As a reference, the Benzo(b)
fluoranthene levels varied from 5 to 810 ng/mg in the
included particles samples, and the general IL-6 levels
from 250 to 1250 pg/ml.
Discussion
In order to develop more targeted abatement strategies
it is important to investigate whether particle-induced
health effects can be attributed to specific sources or to
compounds present in the complex PM mixture. The
aim of this study was to compare cellular responses to
WSPs from different phases of the combustion cycle and
from different combustion conditions. In addition, the
effects induced by the WSPs were compared to those
induced by a reference sample from traffic. WSPs from
different combustion phases did not differ in their po-
tency to induce cytokine release, cell death or reductions



Figure 4 Effect of organic extraction on changes in cytotoxicity and number of viable cells. Co-cultures of pneumocytes (A549) and
monocytes (THP-1) were exposed to native particles, washed particles and organic extracts at concentrations equivalent to 40 μg/cm2, for 40 h,
before the levels of a) LDH in the cell culture supernatants and b) the number of viable cells were analysed. Histograms represent means ± SEM
of separate experiments (n = 4). * p<0.05 exposed vs. control, # p<0.05 washed particles vs. organic extracts of particles. Statistical analysis was in
a) performed by repeated measures 2-way-ANOVA with Bonferroni post-tests on log transformed data and in b) by one-way-ANOVA with
Bonferroni post-tests.
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in cell numbers. However, particles collected during
medium-temperature combustion were more toxic than
the reference particles collected from traffic or during a
higher wood-combustion temperature. WSPs collected
during medium-temperature combustion were also more
potent inducers of IL-6 than WSPs collected during
high-temperature incomplete combustion.

Differences in chemistry
Since the chemical composition of WSPs is known to
depend on the combustion process and temperature
[17,19,49], we expected the three WSPs from different
combustion phases to differ in chemical composition.
Indeed, the PAH-content of particles from the ‘mixed-
smoke’ and ‘start-up’ sessions was approximately two
times higher than in particles collected during the ‘burn-
out’ session, but the levels of refractory elements were
similar. In comparison to the differences between WSPs
from medium- and high-temperature combustion, with
the content of PAHs and refractory elements being five
and 3300 times higher in Wood(high-temp), the differ-
ences between the medium-temperature WSPs must be
considered as minor. A possible explanation for the high
similarity between the WSPs from medium temperature
combustion could be that the combustion conditions
during collection of particles from the different phases
were quite similar. The total emissions of hydrocarbons
have been reported to be high in the start-up and flam-
ing phases of the combustion cycle [17,18], but to our
knowledge the variation in PAH content with the com-
bustion cycle has not yet been fully described. Although
the PAH content in the samples from the different com-
bustion phases was relatively similar, there could be
larger differences in the content of other organic com-
pounds, such as oxy-PAHs, ketones and quinones, that
was not reflected in the total PAH content. In accord-
ance with the similar chemical composition of the
medium-temperature WSPs, these samples also induced
similar biological effects.
The differences in chemical composition between the

high-and medium-temperature wood smoke samples re-
flect differences in combustion conditions. The 3300
times higher level of refractory elements in the high-
temperature compared to the medium-temperature
wood smoke sample is in agreement with the potassium
K-shell absorption edge observed only in the Wood
(high-temp) NEXAFS spectrum. This difference is also
in accordance with the higher levels of refractory ele-
ments reported for increasing combustion temperatures
in the literature [19,50,51]. Similarly, the five times
higher PAH content in the Wood(high-temp) sample is
in accordance with the NEXAFS analysis showing a
higher C = C peak in Wood(high-temp) than Wood
(mixed smoke). In agreement with our findings, PAH
formation has been reported to increase with increasing
combustion temperatures, with optimal temperatures for
PAH formation between 700 and 900°C [18,51-55]. At
even higher combustion temperatures, the PAHs are



Bølling et al. Particle and Fibre Toxicology 2012, 9:45 Page 10 of 15
http://www.particleandfibretoxicology.com/content/9/1/45
thermally decomposed, resulting in decreasing PAH
levels during more complete combustion conditions
[52,56-58]. However, other factors also influence the
PAH emissions, such as oxygen supply, moisture content
and residence time in the combustion zone [52,53,55],
and if available these factors should be considered in the
interpretation of PAH data. Although a range of studies
report lower PAH levels for poor combustion conditions
in line with the present findings, two recent studies re-
port very high levels of PAHs in emissions from poor
combustion conditions [20,59]. These contradicting data
emphasize the importance of sufficient characterisation,
not only of the emitted particulate matter applied in the
toxicological studies, but also of factors determining the
combustion conditions. An improved characterisation of
factors determining the combustion conditions would
have been feasible in the present study.

Influence of combustion conditions
Presently, particles from incomplete combustion with
medium-temperature were more potent inducers of
cytotoxicity and IL-6 release than particles originating
from incomplete combustion with higher temperature.
In line with this, particles from poor combustion condi-
tions have been reported to be more toxic in macro-
phage and fibroblast cell lines than particles from more
complete combustion conditions [20,22,60]. With re-
spect to inflammatory potential, particles from smoul-
dering combustion were more potent inducers of
macrophage inflammatory protein (MIP)-2, the murine
analogue of IL-8, than particles from normal flaming
combustion, whereas the release of TNF-α was similar
for the two combustion conditions, and IL-6 could not
be detected [20]. Similarly, intratracheal instillation of
WSPs from poor combustion conditions increased the
expression of MIP-2, monocyte chemotactic protein
(MCP)-1 and heme oxygenase (HO)-1 mRNA in rat
lung, whereas particles from more complete combustion
conditions had no effect [61]. These particles from poor
combustion conditions also induced the highest expres-
sion of inflammatory markers in a parallel cell culture
study in two human cell lines [21]. Thus, the present
finding of medium-temperature WSPs being more po-
tent inducers of IL-6 than high-temperature particles
appears to be in accordance with the previously pub-
lished literature. It should however be kept in mind that
the physicochemical properties vary with the combus-
tion conditions, and based on the limited chemical ana-
lyses performed in the various toxicological studies it is
difficult to compare the applied combustion conditions.
Although the present as well as previous findings sug-

gest that both the cytotoxic and inflammatory effects of
WSPs increase with decreasing combustion tempera-
tures, it is necessary to perform more extensive
toxicological studies to verify this hypothesis. Preferen-
tially, the effects of well-characterised particles from a
wider range of combustion conditions should be investi-
gated simultaneously in the same biological model
system. A recent study compared emissions from two
different combustion conditions and related their
in vitro toxicity data to the respective emission factors
(mg PM1/MJ fuel energy) [20]. The particles had a simi-
lar inflammatory potential if compared on a mass basis,
but after adjustment for the emission factors the parti-
cles from low-temperature (smouldering combustion)
induced 5–20 fold higher responses compared to parti-
cles from more complete combustion conditions. This
illustrates the importance of considering the exposure
levels in addition to the relative toxicity on a mass basis.
However, although emissions from poor combustion
conditions (smouldering) are known to be much higher
than emissions from more complete combustion condi-
tions (flaming), little is known about the fate of these par-
ticles in the atmosphere and the human exposure [19].
Moreover, the relative pulmonary deposition of these two
classes of particles is not known, and these gaps in
knowledge preclude a full evaluation of the relative
toxicity of WSPs from varying combustion conditions.

Importance of the organic fraction
Comparison of the effects induced by native WSPs and
the corresponding organic extracts and washed particles,
indicated that the organic fraction was of major import-
ance for the biological effects induced by WSPs from the
different combustion phases. The washed particles did
however also increase the release of IL-6 and IL-8 sig-
nificantly. This could be due to an incomplete removal
of the organic compounds, effects induced by the insol-
uble carbon core, or possibly by adsorbed metals. The
organic extracts of the reference samples Traffic and
Wood(high-temp) were investigated in the same series
of experiments, but the data were published previously
[39]. In line with the present results, the organic fraction
of Wood(high-temp) accounted for the majority of the
cytokine release, as well as the reduction in cell number.
This may suggest that the organic fraction is of import-
ance regardless of the combustion conditions used to
generate the wood smoke. The toxicity of WSPs from
varying combustion conditions has previously been
linked to the condensable organic matter present in the
smoke. In that study, the condensable organic matter
had similar toxicity when compared on an equal mass
basis, but the amount of condensable organic matter
emitted was 200 times higher during poor combustion
conditions as compared to complete combustion condi-
tions [22]. The amount of reactive oxygen species (ROS)
present in wood smoke emissions has also been found to
increase with decreasing combustion efficiency, and the
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amount of ROS was linked to the content of organic car-
bon in the particles [62]. Although the ROS levels
present in PM may not correlate with cellular effects
[63], these data support that the amount of reactive che-
micals in wood smoke emissions increase with decreas-
ing combustion efficiency. Moreover, WSPs from low
combustion temperature were recently found to induce
higher levels of cellular ROS in monocytic and epithelial
cell lines than particles from higher combustion tem-
peratures [21].
Although the organic fraction was found to influence

the release of inflammatory mediators, toxicity and cell
numbers, the total PAH content was not associated with
any of the biological effects in the linear regression ana-
lysis. This may point towards a limited importance of
the PAHs in the inflammatory and toxic effects. Cellular
studies of individual PAHs report effects on cytokine re-
lease, cytotoxicity and DNA damage [64-66]. This may
suggest that these compounds contribute to the
observed cellular effects after all, although the concen-
trations used in those studies were 10- to 1000-fold
higher than the PAH concentrations during PM expos-
ure in the present study. When linear regression was
performed for the individual PAHs, these were however
associated with negative slopes for IL-6 and IL-8, sug-
gesting a decreased mediator release for increased levels
of PAHs. Interestingly, PAHs have been negatively asso-
ciated with release of pro-inflammatory mediators both
in macrophages and mouse lung in studies using urban
air particles, and the authors suggested that PAHs were
associated with an immunosuppressive effect [67,68].
Overall, the R2 values were relatively low in the regres-
sion analysis, and it is necessary to do further experi-
ments to investigate the role of these single PAHs in
wood smoke induced effects. Generally, the present data
and data from the literature [20-22] show that the
in vitro toxicity and inflammatory potential of the parti-
cles increases with decreasing combustion temperatures,
and none of these studies show a positive correlation
between biological effects and PAH content. Thus,
other organic compounds than PAHs seem to also be
involved in the wood smoke-induced effects. Future
studies of the toxicological effects of wood smoke
should therefore include analysis of other organic com-
pounds than the traditionally analysed unsubstituted
PAHs like EPA PAH16.
To further characterise the organic fraction of the

WSPs applied in the present study, two samples were
analysed by NEXAFS. The results suggested a higher
content of quinone-like compounds in the medium-
temperature than the high-temperature wood smoke
sample. Since the medium-temperature particles also
induced the highest effects on release of IL-6 and tox-
icity, the content of quinone-like compounds appears to
co-vary with the inflammatory and toxic effects. Interest-
ingly, a study that applied fractionation of organic
extracts of WSPs into different polarity extracts sug-
gested that oxy-PAHs and quinones contributed to
cellular oxidative stress to a larger extent that the
unsubstituted PAHs [69]. Moreover, different quinones,
including naphthoquinone and phenanthraquinone have
been reported to induce inflammatory effects in vivo
and in vitro, including recruitment of inflammatory cells
to the lung and expression of pro-inflammatory media-
tors [70-72]. Based on the present findings and the lit-
erature, quinones may emerge as a group of organic
compounds potentially involved in the biological effects
of WSPs. However, further studies are necessary to con-
firm this hypothesis including fractionation studies for a
wider range of WSPs and biological endpoints. These
methods should also be combined with further chemical
characterisation studies in order to search for other
groups of organic compounds that might be involved in
WSP toxicity.

Reduced proliferation
The reference WSPs from high-temperature incomplete
combustion have previously been associated with
reduced proliferation in this co-culture [39]. Actually,
the previous series of experiments showed that the cell
numbers did not increase at all over time, and in com-
bination with a lack of necrosis and apoptosis, these data
suggested a complete stop in the proliferation. It could
therefore be speculated that the further reduction in cell
numbers induced by the medium-temperature combus-
tion particles in the present study was due to cytotox-
icity. This hypothesis is also in line with the increased
release of LDH induced by all the medium-temperature
WSPs, but not the high-temperature sample. Also, ambi-
ent PM and cigarette smoke have been reported to re-
duce cell proliferation [73,74]. In the present study, we
observed an accumulation in cells in the S/G2 phase in
THP-1 monocytes that could contribute to the reduced
proliferation. The most severe effects on the cell cycle
were observed in the A549 pneumocytes, but these his-
tograms could not be analysed due to the severe artefact
effects introduced by the organic extracts. In line
with the present results, Wood(high-temp) was recently
found to induce accumulation of bronchial epithelial
cells in the S-phase [75], and other types of PM have
been reported to induce cell cycle effects like G1 arrest
or a delay in G2 or mitosis [73,75]. In a previous study,
the DNA damage induced by Wood(high-temp) in
mono-cultures of THP-1 and A549 was determined by
the comet assay. In comparison to PM from other
sources, both Wood(high-temp) and its organic extract
were potent inducers of DNA damage, and WSPs also
induced FPG sites, suggesting oxidative DNA damage
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[76]. DNA damage may cause cell cycle delays or arrests,
since damaged DNA may stop the cells from passing
through various checkpoints in the cell cycle [77]. Thus,
oxidative DNA damage induced by organic compounds
in the WSPs is a possible mechanism for the cell cycle
effects observed in the present study.

Fine vs. coarse particle size fractions
Presently, the PM0.1–2.5 and PM2.5–10 fractions induced
very similar biological effects, and few statistically sig-
nificant differences were detected. This is in contrast to
in vitro studies of other particle samples in which the
PM2.5–10 fractions seem to be more potent than the
PM2.5 fractions in inducing a pro-inflammatory response
[35,36]. Possible explanations include a higher content
of microbial components like endotoxin in the coarse
fraction, and also that different sources contribute to the
two size fraction causing differences in physicochemical
properties [78,79]. A possible explanation for the similar
cellular responses induced by the fine and coarse particle
fractions presently might be that these two fractions of
wood smoke have similar physicochemical properties.
During collection of the applied WSP samples the
PM0.1–2.5 fraction accounted for 79–86% of the total
PM10 emissions (data not shown), which is in agreement
with the PM1 to PM10 ratio of 0.8 reported for the PM
mass emissions from both smouldering and flaming
combustion conditions [80]. Since emissions from resi-
dential wood combustion are dominated by the PM2.5

fraction both with respect to number and mass concen-
trations [80], characterisation of the toxicity of the PM2.5

fraction rather than the PM2.5–10 fraction appears to be
feasible in future toxicological studies.

Wood smoke vs. traffic
We have previously compared in vitro effects of particles
collected from wood smoke and traffic and concluded
that traffic-derived particles were more potent in indu-
cing inflammatory responses, while WSPs were more
potent in reducing cellular proliferation [39]. In the
present study, the pro-inflammatory potential of traffic-
derived particles was not consistently higher, since wood
smoke and traffic particles induced a similar release of
inflammatory mediators. Overall, our present and previ-
ous findings suggest that wood smoke and traffic parti-
cles have a similar pro-inflammatory potential in vitro,
but that WSPs seem more cytotoxic and more potent in
reducing proliferation than traffic derived particles.
However, the pulmonary effects depend on the deposited
dose, and WSPs from poor combustion conditions were
recently found to deposit to a lower extent in the lungs
than diesel exhaust particles, providing different pul-
monary doses [56]. To compare the effects of particles
from the two sources it is therefore necessary to perform
inhalation studies accounting for possible differences in
pulmonary deposition. In the published inhalation stud-
ies in animals and humans, the authors report that PM
from diesel exhaust and wood smoke induce effects of
similar magnitude [10,11,81,82], whereas a more recent
study suggests that WSPs may be less potent [83]. It
should however be kept in mind that the large variation
in the physicochemical properties of particles emitted
from each source precludes the comparison of the bio-
logical effects, since the differences reported will depend
strongly on the composition of the particles included in
the study.

Limitations
The applied particle concentration of 40 μg/cm2 is likely
to be higher than the average deposition on the lung
surface during normal ambient concentrations. Particle
deposition in the human airway is highly uneven, but
the retention for fine particles has been suggested to be
highest in the proximal alveolar region [30,84,85]. The
slow particle clearance in the alveolar region, with bio-
logical half-lives up to 120 days, also contributes to
increased particle exposure [86]. The applied particle
concentrations might be relevant for specific regions of
the lung during long time exposure to high concentra-
tions of air pollution. The single particle concentration
applied presently was chosen based on results obtained
in a previous study in which the effects of lower concen-
trations of particles with similar physicochemical proper-
ties did not cause a significant increase in cytokine
release in the same co-culture model. That study showed
a monotonous increase in cytokine release with increas-
ing particle concentrations. Thus, although inclusion of
a concentration-dependent response to the present par-
ticle samples would have provided a more robust data
set, inclusion of more, lower, particle concentrations
would most likely have given the same overall picture
of the inflammatory potential of the analysed samples.
Previously, the cytokine release induced by Wood(high-
temp) was found to be attenuated for increasing expos-
ure times, therefore inclusion of two time-points was
considered more important in the present study than in-
clusion of several different particle concentrations. For
risk assessment purposes a more complete evaluation of
the relative toxicity of WSPs is necessary, both due to
the limitation of applying only one particle concentra-
tion, but also due to the limitations inherent in in vitro
studies, including altered cellular characteristics of cell
lines and limited communication with other cells com-
pared to cells in tissue.

Conclusion
WSPs from three different phases of the combustion
cycle induced very similar effects on release of pro-
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inflammatory mediators, cytotoxicity and decrease in cell
number in a co-culture of monocytes and lung epithelial
cells. The particles from medium-temperature combus-
tion were, however, more cytotoxic than the particles
from high-temperature incomplete combustion and also
induced a higher release of IL-6. Thus, stove type and
combustion conditions may be more important than
phase of combustion cycle with respect to the toxicity of
the emitted particles.
The organic fraction was the most important deter-

minant for the biological effects induced by the different
wood combustion particles, but the responses induced
by the organic fraction could generally not be linked to
the PAH content. This suggests that other organic com-
pounds were also involved in the biological effects, with
quinone-like compounds as a possible candidate. Based
on the present results and the literature we therefore
recommend that future toxicological studies include
analysis of other groups of organic compounds, in
addition to the traditionally analysed PAHs.
Although the present study suggests that particles

from medium-temperature combustion have a higher
toxic and inflammatory potential than particles from
more complete combustion conditions, a differential de-
position of PM from varying combustion conditions
might influence the deposited dose. In order to properly
evaluate the relative toxicity of WSPs from varying com-
bustion conditions it is therefore of major importance to
perform inhalation studies.
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