AUTOEQUIVALENCES OF THE TENSOR CATEGORY OF $U_q\mathfrak{g}$ -MODULES

SERGEY NESHVEYEV AND LARS TUSET

ABSTRACT. We prove that for $q \in \mathbb{C}^*$ not a nontrivial root of unity the cohomology group defined by invariant 2-cocycles in a completion of $U_q\mathfrak{g}$ is isomorphic to $H^2(P/Q;\mathbb{T})$, where P and Q are the weight and root lattices of \mathfrak{g} . This implies that the group of autoequivalences of the tensor category of $U_q\mathfrak{g}$ -modules is the semidirect product of $H^2(P/Q;\mathbb{T})$ and the automorphism group of the based root datum of \mathfrak{g} . For q=1 we also obtain similar results for all compact connected separable groups.

For a tensor category \mathcal{C} a natural object to study is its group of symmetries, i.e., the group $\operatorname{Aut}^{\otimes}(\mathcal{C})$ of monoidal autoequivalences of \mathcal{C} identified up to monoidal natural isomorphisms. A more refined version of this group is the tensor category of autoequivalences of \mathcal{C} . It is, for example, used to define what is meant by an action of a group on \mathcal{C} , which in turn leads to such constructions as equivariantization and crossed products, see e.g. [8] for applications. At the same time there are not many examples for which the group $\operatorname{Aut}^{\otimes}(\mathcal{C})$ is explicitly computed. The aim of this note is to calculate it for the category of representations of the q-deformation G_q of a simply connected semisimple compact Lie group G. Part of the information about the group of autoequivalences in this case is contained in the work of McMullen [3], who showed that that the group of automorphisms of the fusion ring of G is isomorphic to $\operatorname{Out}(G)$, that is, to the automorphism group of the based root datum of \mathfrak{g} . The remaining part is determined by the possible tensor structures one can have on the identity functor, and these are described by the cohomology group defined by invariant 2-cocycles on the dual \hat{G}_q of the quantum group G_q . Another motivation for computing this cohomology group is the problem of classifying Drinfeld twists that do not necessarily respect braiding; the ones that do respect braiding have been classified in [5].

In a previous paper [7] we showed that if G is a compact connected group then the cohomology group defined by invariant unitary 2-cocycles on \hat{G} is isomorphic to $H^2(\widehat{Z(G)};\mathbb{T})$ and we conjectured that for semisimple Lie groups a similar result holds for the q-deformation of G. We will prove that this is indeed the case using techniques from our earlier paper [5], where we considered symmetric cocycles and were inspired by the proof of Kazhdan and Lusztig of the equivalence of the Drinfeld category and the category of $U_q\mathfrak{g}$ -modules [2]. For q=1 this gives an alternative proof of the main results in [7, Section 2] and allows us, at least in the separable case, to extend those results to non-unitary cocycles relying neither on ergodic actions nor on reconstruction theorems. At the same time this proof is less transparent than that in [7] and, as opposed to [7], relies heavily on the structure and representation theory of compact Lie groups.

We will follow the notation and conventions in [5]. Let G be a simply connected semisimple compact Lie group, $\mathfrak g$ its complexified Lie algebra, $q \in \mathbb C^*$ not a nontrivial root of unity. Fix a Cartan subalgebra of $\mathfrak g$ and a system $\{\alpha_1,\ldots,\alpha_r\}$ of simple roots. The weight and root lattices are denoted by P and Q, respectively. For weight $\lambda \in P$ denote by $\lambda(i)$ the coefficients of λ in the basis consisting of fundamental weights. Take the ad-invariant symmetric form on $\mathfrak g$ such that $(\alpha,\alpha)=2$ for every short root in every simple component of $\mathfrak g$, and put $d_i=(\alpha_i,\alpha_i)/2$ and $q_i=q^{d_i}$.* For $q\neq 1$

Date: December 21, 2010; revised on July 29, 2011.

Supported by the Research Council of Norway.

^{*}Our main result, Theorem 1, is valid for any ad-invariant symmetric form on \mathfrak{g} such that its restriction to the real Lie algebra of G is negative definite, under the assumption that either q=1 (in which case the choice of a form does not matter) or that q_i is not a root of unity for all i.

consider the quantized universal enveloping algebra $U_q\mathfrak{g}$ with generators E_i , F_i and K_i , $1 \leq i \leq r$, so that we in particular have

$$K_i E_j K_i^{-1} = q_i^{a_{ij}} E_j, \quad K_i F_j K_i^{-1} = q_i^{-a_{ij}} F_j, \quad E_i F_j - F_j E_i = \delta_{ij} (K_i - K_i^{-1}) / (q_i - q_i^{-1}).$$

Recall that a $U_q\mathfrak{g}$ -module V is called admissible if $V=\oplus_{\lambda\in P}V(\lambda)$, where $V(\lambda)$ consists of vectors $v\in V$ such that $K_iv=q_i^{\lambda(i)}v$ for all i. Denote by $\mathcal{C}_q(\mathfrak{g})$ the tensor category of admissible finite dimensional $U_q\mathfrak{g}$ -modules. For q=1 denote by $\mathcal{C}(\mathfrak{g})=\mathcal{C}_1(\mathfrak{g})$ the usual tensor category of finite dimensional $U\mathfrak{g}$ -modules. Let $\mathcal{U}(G_q)$ be the endomorphism ring of the forgetful functor $\mathcal{C}_q(\mathfrak{g})\to \mathcal{V}ec$. If for every dominant integral weight $\mu\in P_+$ we fix an irreducible $U_q\mathfrak{g}$ -module V_μ with highest weight μ , then the ring $\mathcal{U}(G_q)$ can be identified with $\prod_{\mu\in P_+}\operatorname{End}(V_\mu)$. The comultiplication on $U_q\mathfrak{g}$ extends to a homomorphism $\hat{\Delta}_q\colon \mathcal{U}(G_q)\to \mathcal{U}(G_q\times G_q)=\prod_{\mu,\eta\in P_+}\operatorname{End}(V_\mu\otimes V_\eta)$.

An invertible element $\mathcal{E} \in \mathcal{U}(G_q \times G_q)$ is called a 2-cocycle on \hat{G}_q if

$$(\mathcal{E} \otimes 1)(\hat{\Delta}_q \otimes \iota)(\mathcal{E}) = (1 \otimes \mathcal{E})(\iota \otimes \hat{\Delta}_q)(\mathcal{E}).$$

A cocycle is called invariant if it commutes with elements in the image of $\hat{\Delta}_q$. The set of invariant 2-cocycles forms a group under multiplication, which we denote by $Z^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$. Cocycles of the form $(a \otimes a)\hat{\Delta}_q(a)^{-1}$, where a is an invertible element in the center of $\mathcal{U}(G_q)$, form a subgroup of the center of $Z^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$. The quotient of $Z^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$ by this subgroup is denoted by $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$.

The center of $\mathcal{U}(G_q) = \prod_{\mu \in P_+} \operatorname{End}(V_\mu)$ is identified with the algebra of functions on the set P_+ of dominant integral weights. By [5, Proposition 4.5] a function on P_+ is a group-like element of $\mathcal{U}(G_q)$ if and only if it is defined by a character of P/Q. Therefore the Hopf algebra of functions on P/Q embeds into the center of $\mathcal{U}(G_q)$. Hence every 2-cocycle c on P/Q can be considered as an invariant 2-cocycle \mathcal{E}_c on \hat{G}_q . Explicitly, \mathcal{E}_c acts on $V_\mu \otimes V_\eta$ as multiplication by $c(\mu, \eta)$. We can now formulate our main result.

Theorem 1. The homomorphism $c \mapsto \mathcal{E}_c$ induces an isomorphism

$$H^2(P/Q; \mathbb{T}) \cong H^2_{G_q}(\hat{G}_q; \mathbb{C}^*).$$

In particular, if \mathfrak{g} is simple and $\mathfrak{g} \ncong \mathfrak{so}_{4n}(\mathbb{C})$ then $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$ is trivial, and if $\mathfrak{g} \cong \mathfrak{so}_{4n}(\mathbb{C})$ then $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*) \cong \mathbb{Z}/2\mathbb{Z}$.

The last statement follows from the fact that for simple Lie algebras the group P/Q is cyclic unless $\mathfrak{g} \cong \mathfrak{so}_{4n}(\mathbb{C})$, in which case $P/Q \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, see e.g. Table IV on page 516 in [1].

Note that for q > 0 the same result holds for unitary cocycles. This easily follows by polar decomposition, see [5, Lemma 1.1].

In the proof of the theorem we will assume that $q \neq 1$, the case q = 1 is similar and for unitary cocycles is also proved by a different method in [7].

Our first goal will be to construct a homomorphism $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*) \to H^2(P/Q; \mathbb{T})$. For every $\mu \in P_+$ fix a highest weight vector $\xi_{\mu} \in V_{\mu}$. Recall [5, Section 2] that for $\mu, \eta \in P_+$ there exists a unique morphism

$$T_{\mu,\eta}: V_{\mu+\eta} \to V_{\mu} \otimes V_{\eta}$$
 such that $\xi_{\mu+\eta} \mapsto \xi_{\mu} \otimes \xi_{\eta}$.

The image of $T_{\mu,\eta}$ is the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight $\mu + \eta$. Hence if \mathcal{E} is an invariant 2-cocycle then it acts on this image as multiplication by a nonzero scalar $c_{\mathcal{E}}(\mu,\eta)$. As in the proof of [5, Lemma 2.2], the identity $(T_{\mu,\eta} \otimes \iota)T_{\mu+\eta,\nu} = (\iota \otimes T_{\eta,\nu})T_{\mu,\eta+\nu}$ immediately implies that $c_{\mathcal{E}}$ is a 2-cocycle on P_+ . Furthermore, the cohomology class $[c_{\mathcal{E}}]$ of $c_{\mathcal{E}}$ in $H^2(P_+; \mathbb{C}^*)$ depends only on the class of \mathcal{E} in $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$, since if $a \in \mathcal{U}(G_q)$ is a central element acting on V_{μ} as multiplication by a scalar $a(\mu)$ then the action of $(a \otimes a)\hat{\Delta}_q(a)^{-1}$ on the image of $T_{\mu,\eta}$ is multiplication by $a(\mu)a(\eta)a(\mu+\eta)^{-1}$. Thus the map $\mathcal{E} \mapsto c_{\mathcal{E}}$ defines a homomorphism $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*) \to H^2(P_+; \mathbb{C}^*)$.

Given a cocycle on P/Q, we can consider it as a cocycle on P and then get a cocycle on P_+ by restriction. Thus we have a homomorphism $H^2(P/Q; \mathbb{T}) \to H^2(P_+; \mathbb{C}^*)$. It is injective since the quotient map $P_+ \to P/Q$ is surjective and a cocycle on P/Q is a coboundary if it is symmetric.

Lemma 2. For every invariant 2-cocycle \mathcal{E} on \hat{G}_q the class of $c_{\mathcal{E}}$ in $H^2(P_+; \mathbb{C}^*)$ is contained in the image of $H^2(P/Q; \mathbb{T})$.

Proof. Consider the skew-symmetric bi-quasicharacter $b: P_+ \times P_+ \to \mathbb{C}^*$ defined by

$$b(\mu, \eta) = c_{\mathcal{E}}(\mu, \eta) c_{\mathcal{E}}(\eta, \mu)^{-1}$$
.

It extends uniquely to a skew-symmetric bi-quasicharacter on P. To prove the lemma it suffices to show that the root lattice Q is contained in the kernel of this extension. Indeed, since $H^2(P/Q; \mathbb{T})$ is isomorphic to the group of skew-symmetric bi-characters on P/Q, it then follows that there exists a cocycle c on P/Q such that the cocycle $c_{\mathcal{E}}c^{-1}$ on P_+ is symmetric. Then by [6, Lemma 4.2] the cocycle $c_{\mathcal{E}}c^{-1}$ is a coboundary, so $c_{\mathcal{E}}$ and the restriction of c to c0 are cohomologous.

To prove that Q is contained in the kernel of b, recall [5, Section 2] that for every simple root α_i and weights $\mu, \eta \in P_+$ with $\mu(i), \eta(i) \geq 1$ we can define a morphism

$$\tau_{i;\mu,\eta} \colon V_{\mu+\eta-\alpha_i} \to V_{\mu} \otimes V_{\eta} \quad \text{such that} \quad \xi_{\mu+\eta-\alpha_i} \mapsto [\mu(i)]_{q_i} \xi_{\mu} \otimes F_i \xi_{\eta} - q_i^{\mu(i)} [\eta(i)]_{q_i} F_i \xi_{\mu} \otimes \xi_{\eta}.$$

The image of $\tau_{i;\mu,\eta}$ is the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight $\mu + \eta - \alpha_i$. Since the element \mathcal{E} is invariant, it acts on this image as multiplication by a nonzero scalar $c_i(\mu,\eta)$. As in the proof of [5, Lemma 2.3], consider now another weight ν with $\nu(i) \geq 1$. The isotypic component of $V_{\mu} \otimes V_{\eta} \otimes V_{\nu}$ with highest weight $\mu + \eta + \nu - \alpha_i$ has multiplicity two, and is spanned by the images of $(\iota \otimes T_{\eta,\nu})\tau_{i;\mu,\eta+\nu}$ and $(\iota \otimes \tau_{i;\eta,\nu})T_{\mu,\eta+\nu-\alpha_i}$, as well as by the images of $(T_{\mu,\eta} \otimes \iota)\tau_{i;\mu+\eta,\nu}$ and $(\tau_{i;\mu,\eta} \otimes \iota)T_{\mu+\eta-\alpha_i,\nu}$. We have

$$[\eta(i)]_{q_i}(T_{\mu,\eta}\otimes\iota)\tau_{i;\mu+\eta,\nu} - [\nu(i)]_{q_i}(\tau_{i;\mu,\eta}\otimes\iota)T_{\mu+\eta-\alpha_i,\nu} = [\mu(i)+\eta(i)]_{q_i}(\iota\otimes\tau_{i;\eta,\nu})T_{\mu,\eta+\nu-\alpha_i}.$$
 (1)

Apply the element

$$\Omega := (\mathcal{E} \otimes 1)(\hat{\Delta}_q \otimes \iota)(\mathcal{E}) = (1 \otimes \mathcal{E})(\iota \otimes \hat{\Delta}_q)(\mathcal{E})$$

to this identity. The morphisms $(T_{\mu,\eta} \otimes \iota)\tau_{i;\mu+\eta,\nu}$, $(\tau_{i;\mu,\eta} \otimes \iota)T_{\mu+\eta-\alpha_i,\nu}$ and $(\iota \otimes \tau_{i;\eta,\nu})T_{\mu,\eta+\nu-\alpha_i}$ are eigenvectors of the operator of multiplication by Ω on the left with eigenvalues $c_{\mathcal{E}}(\mu,\eta)c_i(\mu+\eta,\nu)$, $c_i(\mu,\eta)c_{\mathcal{E}}(\mu+\eta-\alpha_i,\nu)$ and $c_i(\eta,\nu)c_{\mathcal{E}}(\mu,\eta+\nu-\alpha_i)$, respectively. Since the morphisms $(T_{\mu,\eta}\otimes\iota)\tau_{i;\mu+\eta,\nu}$ and $(\tau_{i;\mu,\eta}\otimes\iota)T_{\mu+\eta-\alpha_i,\nu}$ are linearly independent, by applying Ω to (1) we conclude that these three eigenvalues coincide. In particular,

$$c_i(\mu, \eta)c_{\mathcal{E}}(\mu + \eta - \alpha_i, \nu) = c_i(\eta, \nu)c_{\mathcal{E}}(\mu, \eta + \nu - \alpha_i).$$

Applying this to $\eta = \nu = \mu$ we get

$$b(2\mu - \alpha_i, \mu) = 1.$$

Since b is skew-symmetric, this gives $b(\alpha_i, \mu) = 1$. The latter identity holds for all $\mu \in P_+$ with $\mu(i) \geq 1$. Since every element in P can be written as a difference of two such elements μ , it follows that α_i is contained in the kernel of b.

Therefore the map $\mathcal{E} \mapsto c_{\mathcal{E}}$ induces a homomorphism $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*) \to H^2(P/Q; \mathbb{T})$. Clearly, it is a left inverse of the homomorphism $H^2(P/Q; \mathbb{T}) \to H^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$, $[c] \mapsto [\mathcal{E}_c]$, constructed earlier. Thus it remains to prove that the homomorphism $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*) \to H^2(P/Q; \mathbb{T})$ is injective.

Assume that \mathcal{E} is an invariant 2-cocycle such that the cocycle $c_{\mathcal{E}}$ on P_+ is a coboundary. Our goal is to show that \mathcal{E} is the coboundary of a central element in $\mathcal{U}(G_q)$. We will follow the strategy in [5], where this was shown under the additional assumption that \mathcal{E} is symmetric, that is, $\mathcal{R}_{\hbar}\mathcal{E} = \mathcal{E}_{21}\mathcal{R}_{\hbar}$ for an R-matrix $\mathcal{R}_{\hbar} \in \mathcal{U}(G_q \times G_q)$, which depends on the choice of a number $\hbar \in \mathbb{C}$ such that $q = e^{\pi i \hbar}$.

The first step in [5], see the discussion following Lemma 2.2 in [5], was to show that \mathcal{E} is cohomologous to a cocycle such that

$$\mathcal{E}T_{\mu,\eta} = T_{\mu,\eta} \text{ and } \mathcal{E}\tau_{i;\nu,\omega} = \tau_{i;\nu,\omega}$$
 (2)

for all $\mu, \eta \in P_+$, $1 \le i \le r$ and $\nu, \omega \in P_+$ such that $\nu(i), \omega(i) \ge 1$. This part goes through in the non-symmetric case without any changes, as the symmetry requirement was needed only to conclude that $c_{\mathcal{E}}$ is a coboundary.

Therefore to prove the injectivity of $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*) \to H^2(P/Q; \mathbb{T})$ it suffices to establish the following result, which extends [5, Corollary 4.4].

Proposition 3. If \mathcal{E} is an invariant 2-cocycle on \hat{G}_q with property (2) then $\mathcal{E} = 1$.

The proof of this statement in [5] for symmetric cocycles is based on considering the action of \mathcal{E} on a comonoid representing the forgetful functor on $\mathcal{C}_q(\mathfrak{g})$. Recall briefly how this comonoid, essentially constructed by Kazhdan and Lusztig, is defined. For every weight $\mu \in P_+$ fix an irreducible $U_q\mathfrak{g}$ -module \bar{V}_μ with lowest weight $-\mu$ and a lowest weight vector $\bar{\xi}_\mu$. For $\lambda \in P$ and $\mu, \eta \in P_+$ such that $\lambda + \mu \in P_+$, there exists a unique morphism

$$\operatorname{tr}_{\mu,\lambda+\mu}^{\eta} : \bar{V}_{\mu+\eta} \otimes V_{\lambda+\mu+\eta} \to \bar{V}_{\mu} \otimes V_{\lambda+\mu} \text{ such that } \bar{\xi}_{\mu+\eta} \otimes \xi_{\lambda+\mu+\eta} \mapsto \bar{\xi}_{\mu} \otimes \xi_{\lambda+\mu}.$$

Using these morphisms define an inverse limit $U_q\mathfrak{g}$ -module

$$M_{\lambda} = \varprojlim_{\mu} \bar{V}_{\mu} \otimes V_{\lambda+\mu}.$$

Denote by $\operatorname{tr}_{\mu,\lambda+\mu}$ the canonical map $M_{\lambda} \to \bar{V}_{\mu} \otimes V_{\lambda+\mu}$. The module M_{λ} is considered as a topological $U_q\mathfrak{g}$ -module with a base of neighborhoods of zero formed by the kernels of the maps $\operatorname{tr}_{\mu,\lambda+\mu}$, while all modules in our category $\mathcal{C}_q(\mathfrak{g})$ are considered with discrete topology. Then $\operatorname{Hom}_{U_q\mathfrak{g}}(M_{\lambda},V)$ is the inductive limit of the spaces $\operatorname{Hom}_{U_q\mathfrak{g}}(\bar{V}_{\mu}\otimes V_{\lambda+\mu},V)$. The vectors $\bar{\xi}_{\mu}\otimes \xi_{\lambda+\mu}$ define a topologically cyclic vector $\Omega_{\lambda}\in M_{\lambda}$. For any finite dimensional admissible $U_q\mathfrak{g}$ -module V the map

$$\eta_V \colon \operatorname{Hom}_{U_q \mathfrak{g}}(\oplus_{\lambda} M_{\lambda}, V) \to V, \quad \eta_V(f) = \sum_{\lambda} f(\Omega_{\lambda}),$$

is an isomorphism, so the topological $U_q\mathfrak{g}$ -module $M=\oplus_{\lambda}M_{\lambda}$ represents the forgetful functor. Furthermore, the representation of $U_q\mathfrak{g}$ in the endomorphism ring of the forgetful functor is implemented by the antihomomorphism $\pi\colon U_q\mathfrak{g}\to \operatorname{End}_{U_q\mathfrak{g}}(M)$ defined by $\pi(E_i)\Omega_{\lambda}=E_i\Omega_{\lambda-\alpha_i}, \pi(F_i)\Omega_i=F_i\Omega_{\lambda+\alpha_i}$ and $\pi(K_i)\Omega_{\lambda}=q_i^{\lambda(i)}\Omega_{\lambda}$. In other words, M is a $U_q\mathfrak{g}$ -bimodule.

It was shown in [5, Section 4], see the arguments up to (but not including) Lemma 4.3 there, that condition (2) is exactly what is needed to define an action of any invariant cocycle \mathcal{E} satisfying (2) on the $U_q\mathfrak{g}$ -bimodule M. More precisely, we showed that there exist a character χ of P/Q, an invertible morphism \mathcal{E}_0 of $M = \bigoplus_{\lambda} M_{\lambda}$ onto itself preserving the direct sum decomposition, and an invertible element c in the center of $\mathcal{U}(G_q)$ such that

$$\operatorname{tr}_{\mu,\lambda+\mu} \mathcal{E}_0 = \chi(\mu)^{-1} \mathcal{E} \operatorname{tr}_{\mu,\lambda+\mu} \quad \text{and} \quad \eta_V(f\mathcal{E}_0) = c \,\eta_V(f)$$
 (3)

for all $\mu \in P_+$, $\lambda \in P$ such that $\lambda + \mu \in P_+$, and for all finite dimensional admissible $U_q\mathfrak{g}$ -modules V and $f \in \operatorname{Hom}_{U_q\mathfrak{g}}(M_\lambda, V)$. We will show now that this is already enough to conclude that \mathcal{E} is, in fact, symmetric.

Proof of Proposition 3. We want to show that $\mathcal{R}_{\hbar}\mathcal{E} = \mathcal{E}_{21}\mathcal{R}_{\hbar}$ for some \hbar such that $q = e^{\pi i \hbar}$. We will prove a stronger statement: $\sigma \mathcal{E} = \mathcal{E} \sigma$ for any braiding σ on $\mathcal{C}_q(\mathfrak{g})$.

By (3), since $\operatorname{tr}_{\mu,\lambda+\mu}(\Omega_{\lambda}) = \bar{\xi}_{\mu} \otimes \xi_{\lambda+\mu}$, for any $\mu,\eta,\nu \in P_{+}$ and $f \in \operatorname{Hom}_{U_{\mathfrak{q}\mathfrak{g}}}(\bar{V}_{\mu} \otimes V_{\eta},V_{\nu})$ we have

$$\chi(\mu)^{-1} f \mathcal{E}(\bar{\xi}_{\mu} \otimes \xi_{\eta}) = c(\nu) f(\bar{\xi}_{\mu} \otimes \xi_{\eta}).$$

As the vector $\bar{\xi}_{\mu} \otimes \xi_{\eta}$ is cyclic, this means that $f\mathcal{E} = \chi(\mu)c(\nu)f$. Since this is true for all f, we conclude that \mathcal{E} acts on the isotypic component of $\bar{V}_{\mu} \otimes V_{\eta}$ with highest weight ν as multiplication by $\chi(\mu)c(\nu)$. In other words, \mathcal{E} acts on the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight ν as multiplication by $\chi(\bar{\mu})c(\nu)$. It follows that

$$\sigma \mathcal{E} = \chi(\bar{\mu} - \bar{\eta})\mathcal{E}\sigma \text{ on } V_{\mu} \otimes V_{\eta}.$$

But by assumption (2) the element \mathcal{E} is the identity on the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight $\mu + \eta$, so by considering the above identity on this isotypic component we conclude that $\chi(\bar{\mu} - \bar{\eta}) = 1$. Thus χ is the trivial character and $\sigma \mathcal{E} = \mathcal{E}\sigma$. By [5, Corollary 4.4] we then get that $\mathcal{E} = 1$. This completes the proof of Proposition 3 and hence of Theorem 1.

As our first application we will classify Drinfeld twists, relating the coproducts on $U_q\mathfrak{g}$ and $U\mathfrak{g}$, that do not necessarily respect braiding.

Corollary 4. Let $\varphi \colon \mathcal{U}(G_q) \to \mathcal{U}(G)$ be an isomorphism extending the canonical identifications of the centers of these algebras with the algebra of functions on P_+ , and let \hbar be such that $q = e^{\pi i \hbar}$. Suppose $\mathcal{F} \in \mathcal{U}(G \times G)$ is an invertible element such that

- (i) $(\varphi \otimes \varphi)\hat{\Delta}_q = \mathcal{F}\hat{\Delta}\varphi(\cdot)\mathcal{F}^{-1};$
- (ii) the element $(\iota \otimes \hat{\Delta})(\mathcal{F}^{-1})(1 \otimes \mathcal{F}^{-1})(\mathcal{F} \otimes 1)(\hat{\Delta} \otimes \iota)(\mathcal{F})$ coincides with Drinfeld's KZ-associator $\Phi_{KZ}(\hbar t_{12}, \hbar t_{23})$, where $t \in \mathfrak{g} \otimes \mathfrak{g}$ is the element defined by our fixed ad-invariant form on \mathfrak{g} .

Assume $\mathcal{F}' \in \mathcal{U}(G \times G)$ is another element with the same properties. Then there exist a \mathbb{T} -valued 2-cocycle c on P/Q and an invertible central element $a \in \mathcal{U}(G)$ such that $\mathcal{F}' = \mathcal{E}_c \mathcal{F}(a \otimes a) \hat{\Delta}(a)^{-1}$.

Proof. The proof is similar to that of [5, Theorem 5.2]. Define $\mathcal{E} = (\varphi^{-1} \otimes \varphi^{-1})(\mathcal{F}'\mathcal{F}^{-1}) \in \mathcal{U}(G_q \times G_q)$. It is easy to check that \mathcal{E} is an invariant 2-cocycle on \hat{G}_q . By Theorem 1, $\mathcal{E} = \mathcal{E}_c(b \otimes b)\hat{\Delta}_q(b)^{-1}$ for a 2-cocycle c on P/Q and a central element $b \in \mathcal{U}(G_q)$. Letting $a = \varphi(b)$, we obtain $\mathcal{F}' = \mathcal{E}_c(a \otimes a)(\varphi \otimes \varphi)(\hat{\Delta}_q(b)^{-1})\mathcal{F} = \mathcal{E}_c\mathcal{F}(a \otimes a)\hat{\Delta}(a)^{-1}$.

Note that this corollary implies that the Dirac operator defined as in [4] is the same (for fixed φ) for any choice of a unitary element \mathcal{F} satisfying properties (i) and (ii). This extends [5, Theorem 6.1].

We now turn to our main application, the computation of the group of \mathbb{C} -linear monoidal autoequivalences of $\mathcal{C}_q(\mathfrak{g})$ identified up to monoidal natural isomorphisms.

Any automorphism α of the based root datum $\Psi_{\mathfrak{g}}$ of \mathfrak{g} defines an automorphism of the Hopf algebra $U_q\mathfrak{g}$, hence an autoequivalence $\tilde{\alpha}$ of $\mathcal{C}_q(\mathfrak{g})$. On the other hand, for any 2-cocycle c on P/Q we can define an autoequivalence β_c which acts trivially on objects and morphisms, while the tensor structure is given by the action of \mathcal{E}_c^{-1} . It turns out that any autoequivalence of $\mathcal{C}_q(\mathfrak{g})$ is monodially naturally isomorphic to a composition of two autoequivalences defined either by an automorphism of $\Psi_{\mathfrak{g}}$ or by a cocycle on P/Q.

Theorem 5. The group of \mathbb{C} -linear monoidal autoequivalences of the tensor category $\mathcal{C}_q(\mathfrak{g})$ is canonically isomorphic to $H^2(P/Q; \mathbb{T}) \rtimes \operatorname{Aut}(\Psi_{\mathfrak{q}})$.

Proof. The proof is essentially identical to [7, Theorem 2.5]. Briefly, by a result of McMullen [3] any automorphism of the fusion ring of $C_q(\mathfrak{g})$, mapping irreducibles into irreducibles, is implemented by an automorphism of $\Psi_{\mathfrak{g}}$. Hence for any autoequivalence γ of $C_q(\mathfrak{g})$ there exists a unique automorphism α of $\Psi_{\mathfrak{g}}$ such that $\tilde{\alpha} \circ \gamma$ maps every object into an isomorphic one; that is, ignoring the tensor structure, $\tilde{\alpha} \circ \gamma$ is naturally isomorphic to the identity functor. Possible tensor structures on the identity functor are, in turn, described by invariant 2-cocycles on \hat{G}_q .

We next consider q = 1 and extend the above results to compact connected groups.

The group P/Q is canonically identified with the dual of the center Z(G) of the group G, and so, for q=1, Theorem 1 can be formulated as $H^2_G(\hat{G};\mathbb{C}^*)\cong H^2(\widehat{Z(G)};\mathbb{C}^*)$.

Theorem 6. For any compact connected separable group G we have a canonical isomorphism

$$H_C^2(\hat{G}; \mathbb{C}^*) \cong H^2(\widehat{Z(G)}; \mathbb{C}^*).$$

Proof. For Lie groups the proof is essentially the same as above, with P replaced by the weight lattice of a maximal torus of G. In the general case we have a homomorphism $H^2(\widehat{Z(G)}; \mathbb{C}^*) \to H^2_G(\hat{G}; \mathbb{C}^*)$

obtained by considering $\mathcal{U}(Z(G))$ as a subring of $\mathcal{U}(G)$. To construct the inverse homomorphism, for every quotient H of G which is a Lie group consider the composition

$$H_G^2(\hat{G}; \mathbb{C}^*) \to H_H^2(\hat{H}; \mathbb{C}^*) \to H^2(\widehat{Z(H)}; \mathbb{C}^*),$$

where the first homomorphism is defined using the quotient map $\mathcal{U}(G) \to \mathcal{U}(H)$. The map $Z(G) \to Z(H)$ is surjective (since this is true for Lie groups), so Z(G) is the inverse limit of the groups Z(H). Then $H^2(\widehat{Z(G)};\mathbb{C}^*)$ is the inverse limit of the groups $H^2(\widehat{Z(H)};\mathbb{C}^*)$. Therefore the above maps $H^2_G(\hat{G};\mathbb{C}^*) \to H^2(\widehat{Z(G)};\mathbb{C}^*)$ define a homomorphism $H^2_G(\hat{G};\mathbb{C}^*) \to H^2(\widehat{Z(G)};\mathbb{C}^*)$. It is clearly a left inverse of the map $H^2(\widehat{Z(G)};\mathbb{C}^*) \to H^2_G(\hat{G};\mathbb{C}^*)$, so it remains to show that it is injective.

In other words, we have to check that if \mathcal{E} is an invariant cocycle on G such that its image in $\mathcal{U}(H \times H)$ is a coboundary for every Lie group quotient H of G, then \mathcal{E} itself is a coboundary. If \mathcal{E} were unitary, this could be easily shown by taking a weak operator limit point of cochains, see the proof of [7, Theorem 2.2], and would not require the separability of G. In the non-unitary case we can argue as follows.

Since G is separable, there exists a decreasing sequence of closed normal subgroups N_n of G such that $\cap_{n\geq 1}N_n=\{e\}$ and the quotients $H_n=G/N_n$ are Lie groups. Let \mathcal{E}_n be the image of \mathcal{E} in $\mathcal{U}(H_n\times H_n)$. By assumption there exist invertible central elements $c_n\in\mathcal{U}(H_n)$ such that $\mathcal{E}_n=(c_n\otimes c_n)\hat{\Delta}(c_n)^{-1}$. For a fixed n consider the image a of c_{n+1} in $\mathcal{U}(H_n)$. Then c_na^{-1} is a central group-like element in $\mathcal{U}(H_n)$. By [5, Theorem A.1] it is therefore defined by an element of the center of the complexification $(H_n)_{\mathbb{C}}$ of H_n . Since the homomorphism $(H_{n+1})_{\mathbb{C}} \to (H_n)_{\mathbb{C}}$ is surjective, we conclude that there exists a central group-like element b in $\mathcal{U}(H_{n+1})$ such that its image in $\mathcal{U}(H_n)$ is c_na^{-1} . Replacing c_{n+1} by $c_{n+1}b$ we get an element such that $\mathcal{E}_{n+1}=(c_{n+1}\otimes c_{n+1})\hat{\Delta}(c_{n+1})^{-1}$ and the image of c_{n+1} in $\mathcal{U}(H_n)$ is c_n . Applying this procedure inductively we can therefore assume that the image of c_{n+1} in $\mathcal{U}(H_n)$ is c_n for all $n\geq 1$. Then the elements c_n define a central element $c\in\mathcal{U}(G)$ such that $\mathcal{E}=(c\otimes c)\hat{\Delta}(c)^{-1}$.

In [7, Theorem 2.5] we computed the group of autoequivalences of the C^* -tensor category of finite dimensional unitary representations of G. The above theorem and the same arguments as in the proof of Theorem 5 allow us to get a similar result ignoring the C^* -structure.

Theorem 7. For any compact connected separable group G, the group of \mathbb{C} -linear monoidal autoe-quivalences of the category of finite dimensional representations of G is canonically isomorphic to $H^2(\widehat{Z(G)}; \mathbb{C}^*) \rtimes \operatorname{Out}(G)$.

REFERENCES

- [1] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001.
- [2] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994), 335–381
- [3] J.R. McMullen, On the dual object of a compact connected group, Math. Z. 185 (1984), 539–552.
- [4] S. Neshveyev and L. Tuset, *The Dirac operator on compact quantum groups*, J. Reine Angew. Math. **641** (2010), 1–20
- [5] S. Neshveyev and L. Tuset, Symmetric invariant cocycles on the duals of q-deformations, Adv. Math. 227 (2011), 146–169.
- [6] S. Neshveyev and L. Tuset, Notes on the Kazhdan-Lusztig theorem on equivalence of the Drinfeld category and the category of U_q(g)-modules, preprint arXiv: 0711.4302v1 [math.QA].
- [7] S. Neshveyev and L. Tuset, On second cohomology of duals of compact groups, preprint arXiv: 1011.4569v5 [math.OA].
- [8] D. Nikshych, Non-group-theoretical semisimple Hopf algebras from group actions on fusion categories, Selecta Math. (N.S.) 14 (2008), 145–161.

Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, NO-0316 Oslo, Norway $E\text{-}mail\ address:}$ sergeyn@math.uio.no

Faculty of Engineering, Oslo University College, P.O. Box 4 St. Olavs plass, NO-0130 Oslo, Norway $E\text{-}mail\ address$: Lars.Tuset@iu.hio.no