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Abstract. We prove that for q ∈ C∗ not a nontrivial root of unity the cohomology group defined
by invariant 2-cocycles in a completion of Uqg is isomorphic to H2(P/Q;T), where P and Q are the
weight and root lattices of g. This implies that the group of autoequivalences of the tensor category
of Uqg-modules is the semidirect product of H2(P/Q;T) and the automorphism group of the based
root datum of g. For q = 1 we also obtain similar results for all compact connected separable groups.

For a tensor category C a natural object to study is its group of symmetries, i.e., the group
Aut⊗(C) of monoidal autoequivalences of C identified up to monoidal natural isomorphisms. A more
refined version of this group is the tensor category of autoequivalences of C. It is, for example, used
to define what is meant by an action of a group on C, which in turn leads to such constructions as
equivariantization and crossed products, see e.g. [8] for applications. At the same time there are
not many examples for which the group Aut⊗(C) is explicitly computed. The aim of this note is
to calculate it for the category of representations of the q-deformation Gq of a simply connected
semisimple compact Lie group G. Part of the information about the group of autoequivalences in
this case is contained in the work of McMullen [3], who showed that that the group of automorphisms
of the fusion ring of G is isomorphic to Out(G), that is, to the automorphism group of the based root
datum of g. The remaining part is determined by the possible tensor structures one can have on the
identity functor, and these are described by the cohomology group defined by invariant 2-cocycles
on the dual Ĝq of the quantum group Gq. Another motivation for computing this cohomology group
is the problem of classifying Drinfeld twists that do not necessarily respect braiding; the ones that
do respect braiding have been classified in [5].

In a previous paper [7] we showed that if G is a compact connected group then the cohomology

group defined by invariant unitary 2-cocycles on Ĝ is isomorphic to H2(Ẑ(G);T) and we conjectured
that for semisimple Lie groups a similar result holds for the q-deformation of G. We will prove that
this is indeed the case using techniques from our earlier paper [5], where we considered symmetric
cocycles and were inspired by the proof of Kazhdan and Lusztig of the equivalence of the Drinfeld
category and the category of Uqg-modules [2]. For q = 1 this gives an alternative proof of the
main results in [7, Section 2] and allows us, at least in the separable case, to extend those results
to non-unitary cocycles relying neither on ergodic actions nor on reconstruction theorems. At the
same time this proof is less transparent than that in [7] and, as opposed to [7], relies heavily on the
structure and representation theory of compact Lie groups.

We will follow the notation and conventions in [5]. Let G be a simply connected semisimple
compact Lie group, g its complexified Lie algebra, q ∈ C∗ not a nontrivial root of unity. Fix a
Cartan subalgebra of g and a system {α1, . . . , αr} of simple roots. The weight and root lattices are
denoted by P and Q, respectively. For weight λ ∈ P denote by λ(i) the coefficients of λ in the basis
consisting of fundamental weights. Take the ad-invariant symmetric form on g such that (α, α) = 2
for every short root in every simple component of g, and put di = (αi, αi)/2 and qi = qdi .∗ For q 6= 1
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consider the quantized universal enveloping algebra Uqg with generators Ei, Fi and Ki, 1 ≤ i ≤ r,
so that we in particular have

KiEjK
−1
i = q

aij
i Ej , KiFjK

−1
i = q

−aij
i Fj , EiFj − FjEi = δij(Ki −K−1i )/(qi − q−1i ).

Recall that a Uqg-module V is called admissible if V = ⊕λ∈PV (λ), where V (λ) consists of vec-

tors v ∈ V such that Kiv = q
λ(i)
i v for all i. Denote by Cq(g) the tensor category of admissible finite

dimensional Uqg-modules. For q = 1 denote by C(g) = C1(g) the usual tensor category of finite di-
mensional Ug-modules. Let U(Gq) be the endomorphism ring of the forgetful functor Cq(g)→ Vec.
If for every dominant integral weight µ ∈ P+ we fix an irreducible Uqg-module Vµ with highest
weight µ, then the ring U(Gq) can be identified with

∏
µ∈P+

End(Vµ). The comultiplication on Uqg

extends to a homomorphism ∆̂q : U(Gq)→ U(Gq ×Gq) =
∏
µ,η∈P+

End(Vµ ⊗ Vη).

An invertible element E ∈ U(Gq ×Gq) is called a 2-cocycle on Ĝq if

(E ⊗ 1)(∆̂q ⊗ ι)(E) = (1⊗ E)(ι⊗ ∆̂q)(E).

A cocycle is called invariant if it commutes with elements in the image of ∆̂q. The set of invariant

2-cocycles forms a group under multiplication, which we denote by Z2
Gq

(Ĝq;C∗). Cocycles of the

form (a⊗a)∆̂q(a)−1, where a is an invertible element in the center of U(Gq), form a subgroup of the

center of Z2
Gq

(Ĝq;C∗). The quotient of Z2
Gq

(Ĝq;C∗) by this subgroup is denoted by H2
Gq

(Ĝq;C∗).
The center of U(Gq) =

∏
µ∈P+

End(Vµ) is identified with the algebra of functions on the set P+ of

dominant integral weights. By [5, Proposition 4.5] a function on P+ is a group-like element of U(Gq)
if and only if it is defined by a character of P/Q. Therefore the Hopf algebra of functions on P/Q
embeds into the center of U(Gq). Hence every 2-cocycle c on P/Q can be considered as an invariant

2-cocycle Ec on Ĝq. Explicitly, Ec acts on Vµ⊗Vη as multiplication by c(µ, η). We can now formulate
our main result.

Theorem 1. The homomorphism c 7→ Ec induces an isomorphism

H2(P/Q;T) ∼= H2
Gq(Ĝq;C

∗).

In particular, if g is simple and g 6∼= so4n(C) then H2
Gq

(Ĝq;C∗) is trivial, and if g ∼= so4n(C) then

H2
Gq

(Ĝq;C∗) ∼= Z/2Z.

The last statement follows from the fact that for simple Lie algebras the group P/Q is cyclic
unless g ∼= so4n(C), in which case P/Q ∼= Z/2Z× Z/2Z, see e.g. Table IV on page 516 in [1].

Note that for q > 0 the same result holds for unitary cocycles. This easily follows by polar
decomposition, see [5, Lemma 1.1].

In the proof of the theorem we will assume that q 6= 1, the case q = 1 is similar and for unitary
cocycles is also proved by a different method in [7].

Our first goal will be to construct a homomorphism H2
Gq

(Ĝq;C∗) → H2(P/Q;T). For every

µ ∈ P+ fix a highest weight vector ξµ ∈ Vµ. Recall [5, Section 2] that for µ, η ∈ P+ there exists a
unique morphism

Tµ,η : Vµ+η → Vµ ⊗ Vη such that ξµ+η 7→ ξµ ⊗ ξη.
The image of Tµ,η is the isotypic component of Vµ ⊗ Vη with highest weight µ + η. Hence if E is
an invariant 2-cocycle then it acts on this image as multiplication by a nonzero scalar cE(µ, η).
As in the proof of [5, Lemma 2.2], the identity (Tµ,η ⊗ ι)Tµ+η,ν = (ι ⊗ Tη,ν)Tµ,η+ν immediately
implies that cE is a 2-cocycle on P+. Furthermore, the cohomology class [cE ] of cE in H2(P+;C∗)
depends only on the class of E in H2

Gq
(Ĝq;C∗), since if a ∈ U(Gq) is a central element acting on Vµ as

multiplication by a scalar a(µ) then the action of (a⊗a)∆̂q(a)−1 on the image of Tµ,η is multiplication

by a(µ)a(η)a(µ+η)−1. Thus the map E 7→ cE defines a homomorphism H2
Gq

(Ĝq;C∗)→ H2(P+;C∗).
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Given a cocycle on P/Q, we can consider it as a cocycle on P and then get a cocycle on P+ by
restriction. Thus we have a homomorphism H2(P/Q;T) → H2(P+;C∗). It is injective since the
quotient map P+ → P/Q is surjective and a cocycle on P/Q is a coboundary if it is symmetric.

Lemma 2. For every invariant 2-cocycle E on Ĝq the class of cE in H2(P+;C∗) is contained in the
image of H2(P/Q;T).

Proof. Consider the skew-symmetric bi-quasicharacter b : P+ × P+ → C∗ defined by

b(µ, η) = cE(µ, η)cE(η, µ)−1.

It extends uniquely to a skew-symmetric bi-quasicharacter on P . To prove the lemma it suffices to
show that the root lattice Q is contained in the kernel of this extension. Indeed, since H2(P/Q;T)
is isomorphic to the group of skew-symmetric bi-characters on P/Q, it then follows that there exists
a cocycle c on P/Q such that the cocycle cEc

−1 on P+ is symmetric. Then by [6, Lemma 4.2] the
cocycle cEc

−1 is a coboundary, so cE and the restriction of c to P+ are cohomologous.
To prove that Q is contained in the kernel of b, recall [5, Section 2] that for every simple root αi

and weights µ, η ∈ P+ with µ(i), η(i) ≥ 1 we can define a morphism

τi;µ,η : Vµ+η−αi → Vµ ⊗ Vη such that ξµ+η−αi 7→ [µ(i)]qiξµ ⊗ Fiξη − q
µ(i)
i [η(i)]qiFiξµ ⊗ ξη.

The image of τi;µ,η is the isotypic component of Vµ ⊗ Vη with highest weight µ + η − αi. Since the
element E is invariant, it acts on this image as multiplication by a nonzero scalar ci(µ, η). As in
the proof of [5, Lemma 2.3], consider now another weight ν with ν(i) ≥ 1. The isotypic component
of Vµ ⊗ Vη ⊗ Vν with highest weight µ + η + ν − αi has multiplicity two, and is spanned by the
images of (ι⊗Tη,ν)τi;µ,η+ν and (ι⊗ τi;η,ν)Tµ,η+ν−αi , as well as by the images of (Tµ,η ⊗ ι)τi;µ+η,ν and
(τi;µ,η ⊗ ι)Tµ+η−αi,ν . We have

[η(i)]qi(Tµ,η ⊗ ι)τi;µ+η,ν − [ν(i)]qi(τi;µ,η ⊗ ι)Tµ+η−αi,ν = [µ(i) + η(i)]qi(ι⊗ τi;η,ν)Tµ,η+ν−αi . (1)

Apply the element
Ω := (E ⊗ 1)(∆̂q ⊗ ι)(E) = (1⊗ E)(ι⊗ ∆̂q)(E)

to this identity. The morphisms (Tµ,η ⊗ ι)τi;µ+η,ν , (τi;µ,η ⊗ ι)Tµ+η−αi,ν and (ι ⊗ τi;η,ν)Tµ,η+ν−αi are
eigenvectors of the operator of multiplication by Ω on the left with eigenvalues cE(µ, η)ci(µ+ η, ν),
ci(µ, η)cE(µ+η−αi, ν) and ci(η, ν)cE(µ, η+ν−αi), respectively. Since the morphisms (Tµ,η⊗ι)τi;µ+η,ν
and (τi;µ,η⊗ ι)Tµ+η−αi,ν are linearly independent, by applying Ω to (1) we conclude that these three
eigenvalues coincide. In particular,

ci(µ, η)cE(µ+ η − αi, ν) = ci(η, ν)cE(µ, η + ν − αi).
Applying this to η = ν = µ we get

b(2µ− αi, µ) = 1.

Since b is skew-symmetric, this gives b(αi, µ) = 1. The latter identity holds for all µ ∈ P+ with
µ(i) ≥ 1. Since every element in P can be written as a difference of two such elements µ, it follows
that αi is contained in the kernel of b. �

Therefore the map E 7→ cE induces a homomorphism H2
Gq

(Ĝq;C∗)→ H2(P/Q;T). Clearly, it is a

left inverse of the homomorphism H2(P/Q;T)→ H2
Gq

(Ĝq;C∗), [c] 7→ [Ec], constructed earlier. Thus

it remains to prove that the homomorphism H2
Gq

(Ĝq;C∗)→ H2(P/Q;T) is injective.

Assume that E is an invariant 2-cocycle such that the cocycle cE on P+ is a coboundary. Our goal
is to show that E is the coboundary of a central element in U(Gq). We will follow the strategy in [5],
where this was shown under the additional assumption that E is symmetric, that is, R~E = E21R~ for
an R-matrix R~ ∈ U(Gq ×Gq), which depends on the choice of a number ~ ∈ C such that q = eπi~.

The first step in [5], see the discussion following Lemma 2.2 in [5], was to show that E is coho-
mologous to a cocycle such that

ETµ,η = Tµ,η and Eτi;ν,ω = τi;ν,ω (2)
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for all µ, η ∈ P+, 1 ≤ i ≤ r and ν, ω ∈ P+ such that ν(i), ω(i) ≥ 1. This part goes through in the
non-symmetic case without any changes, as the symmetry requirement was needed only to conclude
that cE is a coboundary.

Therefore to prove the injectivity of H2
Gq

(Ĝq;C∗) → H2(P/Q;T) it suffices to establish the fol-

lowing result, which extends [5, Corollary 4.4].

Proposition 3. If E is an invariant 2-cocycle on Ĝq with property (2) then E = 1.

The proof of this statement in [5] for symmetric cocycles is based on considering the action of E on
a comonoid representing the forgetful functor on Cq(g). Recall briefly how this comonoid, essentially
constructed by Kazhdan and Lusztig, is defined. For every weight µ ∈ P+ fix an irreducible Uqg-
module V̄µ with lowest weight −µ and a lowest weight vector ξ̄µ. For λ ∈ P and µ, η ∈ P+ such that
λ+ µ ∈ P+, there exists a unique morphism

trηµ,λ+µ : V̄µ+η ⊗ Vλ+µ+η → V̄µ ⊗ Vλ+µ such that ξ̄µ+η ⊗ ξλ+µ+η 7→ ξ̄µ ⊗ ξλ+µ.

Using these morphisms define an inverse limit Uqg-module

Mλ = lim←−
µ

V̄µ ⊗ Vλ+µ.

Denote by trµ,λ+µ the canonical map Mλ → V̄µ⊗Vλ+µ. The module Mλ is considered as a topological
Uqg-module with a base of neighborhoods of zero formed by the kernels of the maps trµ,λ+µ, while
all modules in our category Cq(g) are considered with discrete topology. Then HomUqg(Mλ, V ) is the

inductive limit of the spaces HomUqg(V̄µ ⊗ Vλ+µ, V ). The vectors ξ̄µ ⊗ ξλ+µ define a topologically
cyclic vector Ωλ ∈Mλ. For any finite dimensional admissible Uqg-module V the map

ηV : HomUqg(⊕λMλ, V )→ V, ηV (f) =
∑
λ

f(Ωλ),

is an isomorphism, so the topological Uqg-module M = ⊕λMλ represents the forgetful functor. Fur-
thermore, the representation of Uqg in the endomorphism ring of the forgetful functor is implemented
by the antihomomorphism π : Uqg→ EndUqg(M) defined by π(Ei)Ωλ = EiΩλ−αi , π(Fi)Ωi = FiΩλ+αi

and π(Ki)Ωλ = q
λ(i)
i Ωλ. In other words, M is a Uqg-bimodule.

It was shown in [5, Section 4], see the arguments up to (but not including) Lemma 4.3 there, that
condition (2) is exactly what is needed to define an action of any invariant cocycle E satisfying (2) on
the Uqg-bimodule M . More precisely, we showed that there exist a character χ of P/Q, an invertible
morphism E0 of M = ⊕λMλ onto itself preserving the direct sum decomposition, and an invertible
element c in the center of U(Gq) such that

trµ,λ+µ E0 = χ(µ)−1E trµ,λ+µ and ηV (fE0) = c ηV (f) (3)

for all µ ∈ P+, λ ∈ P such that λ+µ ∈ P+, and for all finite dimensional admissible Uqg-modules V
and f ∈ HomUqg(Mλ, V ). We will show now that this is already enough to conclude that E is, in
fact, symmetric.

Proof of Proposition 3. We want to show that R~E = E21R~ for some ~ such that q = eπi~. We will
prove a stronger statement: σE = Eσ for any braiding σ on Cq(g).

By (3), since trµ,λ+µ(Ωλ) = ξ̄µ ⊗ ξλ+µ, for any µ, η, ν ∈ P+ and f ∈ HomUqg(V̄µ ⊗ Vη, Vν) we have

χ(µ)−1fE(ξ̄µ ⊗ ξη) = c(ν)f(ξ̄µ ⊗ ξη).
As the vector ξ̄µ ⊗ ξη is cyclic, this means that fE = χ(µ)c(ν)f . Since this is true for all f , we
conclude that E acts on the isotypic component of V̄µ ⊗ Vη with highest weight ν as multiplication
by χ(µ)c(ν). In other words, E acts on the isotypic component of Vµ ⊗ Vη with highest weight ν as
multiplication by χ(µ̄)c(ν). It follows that

σE = χ(µ̄− η̄)Eσ on Vµ ⊗ Vη.
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But by assumption (2) the element E is the identity on the isotypic component of Vµ ⊗ Vη with
highest weight µ + η, so by considering the above identity on this isotypic component we conclude
that χ(µ̄ − η̄) = 1. Thus χ is the trivial character and σE = Eσ. By [5, Corollary 4.4] we then get
that E = 1. This completes the proof of Proposition 3 and hence of Theorem 1. �

As our first application we will classify Drinfeld twists, relating the coproducts on Uqg and Ug,
that do not necessarily respect braiding.

Corollary 4. Let ϕ : U(Gq) → U(G) be an isomorphism extending the canonical identifications of
the centers of these algebras with the algebra of functions on P+, and let ~ be such that q = eπi~.
Suppose F ∈ U(G×G) is an invertible element such that

(i) (ϕ⊗ ϕ)∆̂q = F∆̂ϕ(·)F−1;

(ii) the element (ι ⊗ ∆̂)(F−1)(1 ⊗ F−1)(F ⊗ 1)(∆̂ ⊗ ι)(F) coincides with Drinfeld’s KZ-associator
ΦKZ(~t12, ~t23), where t ∈ g⊗ g is the element defined by our fixed ad-invariant form on g.

Assume F ′ ∈ U(G×G) is another element with the same properties. Then there exist a T-valued

2-cocycle c on P/Q and an invertible central element a ∈ U(G) such that F ′ = EcF(a⊗ a)∆̂(a)−1.

Proof. The proof is similar to that of [5, Theorem 5.2]. Define E = (ϕ−1⊗ϕ−1)(F ′F−1) ∈ U(Gq×Gq).
It is easy to check that E is an invariant 2-cocycle on Ĝq. By Theorem 1, E = Ec(b ⊗ b)∆̂q(b)

−1

for a 2-cocycle c on P/Q and a central element b ∈ U(Gq). Letting a = ϕ(b), we obtain F ′ =

Ec(a⊗ a)(ϕ⊗ ϕ)(∆̂q(b)
−1)F = EcF(a⊗ a)∆̂(a)−1. �

Note that this corollary implies that the Dirac operator defined as in [4] is the same (for fixed ϕ)
for any choice of a unitary element F satisfying properties (i) and (ii). This extends [5, Theorem 6.1].

We now turn to our main application, the computation of the group of C-linear monoidal autoe-
quivalences of Cq(g) identified up to monoidal natural isomorphisms.

Any automorphism α of the based root datum Ψg of g defines an automorphism of the Hopf
algebra Uqg, hence an autoequivalence α̃ of Cq(g). On the other hand, for any 2-cocycle c on P/Q
we can define an autoequivalence βc which acts trivially on objects and morphisms, while the tensor
structure is given by the action of E−1c . It turns out that any autoequivalence of Cq(g) is monodially
naturally isomorphic to a composition of two autoequivalences defined either by an automorphism
of Ψg or by a cocycle on P/Q.

Theorem 5. The group of C-linear monoidal autoequivalences of the tensor category Cq(g) is canon-
ically isomorphic to H2(P/Q;T) o Aut(Ψg).

Proof. The proof is essentially identical to [7, Theorem 2.5]. Briefly, by a result of McMullen [3] any
automorphism of the fusion ring of Cq(g), mapping irreducibles into irreducibles, is implemented by
an automorphism of Ψg. Hence for any autoequivalence γ of Cq(g) there exists a unique automor-
phism α of Ψg such that α̃ ◦γ maps every object into an isomorphic one; that is, ignoring the tensor
structure, α̃ ◦ γ is naturally isomorphic to the identity functor. Possible tensor structures on the
identity functor are, in turn, described by invariant 2-cocycles on Ĝq. �

We next consider q = 1 and extend the above results to compact connected groups.
The group P/Q is canonically identified with the dual of the center Z(G) of the group G, and so,

for q = 1, Theorem 1 can be formulated as H2
G(Ĝ;C∗) ∼= H2(Ẑ(G);C∗).

Theorem 6. For any compact connected separable group G we have a canonical isomorphism

H2
G(Ĝ;C∗) ∼= H2(Ẑ(G);C∗).

Proof. For Lie groups the proof is essentially the same as above, with P replaced by the weight lattice

of a maximal torus of G. In the general case we have a homomorphism H2(Ẑ(G);C∗)→ H2
G(Ĝ;C∗)
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obtained by considering U(Z(G)) as a subring of U(G). To construct the inverse homomorphism,
for every quotient H of G which is a Lie group consider the composition

H2
G(Ĝ;C∗)→ H2

H(Ĥ;C∗)→ H2(Ẑ(H);C∗),

where the first homomorphism is defined using the quotient map U(G)→ U(H). The map Z(G)→
Z(H) is surjective (since this is true for Lie groups), so Z(G) is the inverse limit of the groups Z(H).

Then H2(Ẑ(G);C∗) is the inverse limit of the groups H2(Ẑ(H);C∗). Therefore the above maps

H2
G(Ĝ;C∗) → H2(Ẑ(H);C∗) define a homomorphism H2

G(Ĝ;C∗) → H2(Ẑ(G);C∗). It is clearly a

left inverse of the map H2(Ẑ(G);C∗)→ H2
G(Ĝ;C∗), so it remains to show that it is injective.

In other words, we have to check that if E is an invariant cocycle on Ĝ such that its image
in U(H × H) is a coboundary for every Lie group quotient H of G, then E itself is a coboundary.
If E were unitary, this could be easily shown by taking a weak operator limit point of cochains, see
the proof of [7, Theorem 2.2], and would not require the separability of G. In the non-unitary case
we can argue as follows.

Since G is separable, there exists a decreasing sequence of closed normal subgroups Nn of G
such that ∩n≥1Nn = {e} and the quotients Hn = G/Nn are Lie groups. Let En be the image
of E in U(Hn × Hn). By assumption there exist invertible central elements cn ∈ U(Hn) such that

En = (cn⊗cn)∆̂(cn)−1. For a fixed n consider the image a of cn+1 in U(Hn). Then cna
−1 is a central

group-like element in U(Hn). By [5, Theorem A.1] it is therefore defined by an element of the center
of the complexification (Hn)C of Hn. Since the homomorphism (Hn+1)C → (Hn)C is surjective, we
conclude that there exists a central group-like element b in U(Hn+1) such that its image in U(Hn)

is cna
−1. Replacing cn+1 by cn+1b we get an element such that En+1 = (cn+1 ⊗ cn+1)∆̂(cn+1)

−1

and the image of cn+1 in U(Hn) is cn. Applying this procedure inductively we can therefore assume
that the image of cn+1 in U(Hn) is cn for all n ≥ 1. Then the elements cn define a central element

c ∈ U(G) such that E = (c⊗ c)∆̂(c)−1. �

In [7, Theorem 2.5] we computed the group of autoequivalences of the C∗-tensor category of finite
dimensional unitary representations of G. The above theorem and the same arguments as in the
proof of Theorem 5 allow us to get a similar result ignoring the C∗-structure.

Theorem 7. For any compact connected separable group G, the group of C-linear monoidal autoe-
quivalences of the category of finite dimensional representations of G is canonically isomorphic to

H2(Ẑ(G);C∗) o Out(G).

References

[1] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34,
American Mathematical Society, Providence, RI, 2001.

[2] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994),
335–381.

[3] J.R. McMullen, On the dual object of a compact connected group, Math. Z. 185 (1984), 539–552.
[4] S. Neshveyev and L. Tuset, The Dirac operator on compact quantum groups, J. Reine Angew. Math. 641 (2010),

1–20.
[5] S. Neshveyev and L. Tuset, Symmetric invariant cocycles on the duals of q-deformations, Adv. Math. 227 (2011),

146–169.
[6] S. Neshveyev and L. Tuset, Notes on the Kazhdan-Lusztig theorem on equivalence of the Drinfeld category and the

category of Uq(g)-modules, preprint arXiv: 0711.4302v1 [math.QA].
[7] S. Neshveyev and L. Tuset, On second cohomology of duals of compact groups, preprint arXiv: 1011.4569v5

[math.OA].
[8] D. Nikshych, Non-group-theoretical semisimple Hopf algebras from group actions on fusion categories, Selecta

Math. (N.S.) 14 (2008), 145–161.



AUTOEQUIVALENCES OF THE TENSOR CATEGORY OF Uqg-MODULES 7

Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, NO-0316 Oslo, Norway
E-mail address: sergeyn@math.uio.no

Faculty of Engineering, Oslo University College, P.O. Box 4 St. Olavs plass, NO-0130 Oslo, Norway
E-mail address: Lars.Tuset@iu.hio.no


