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Abstract 

Colorectal cancer (CRC) is one of the most frequently occurring cancer types in the world. 

The most common chemotherapeutic drug used for treatment has been 5-fluorouracil (5-FU), 

but development of patient drug resistance is a major obstacle to successful treatment. The 

20q13 amplicon, which is frequently detected in sporadic CRC, has been suggested to be the 

home of one or more oncogenes important for tumor progression and drug response. We 

investigated two genes, BIRC7 and RTEL1, in this amplicon. Elevated expression of the 

apoptotic suppressor BIRC7 has been shown to be associated with aggressive tumors, poor 

response to chemotherapeutic treatment, and shorter survival time. Loss of, or inactivation, of 

the tumor suppressor RTEL1 may be a driving force for genomic instability, as it helps to 

maintain genomic stability.  

 We performed FISH analysis by hybridizing the human CRC cell lines HCT116 and 

HT29 with a centromere 20 probe to determine whether chromosome 20 was amplified in 

these cell lines. SiRNA-mediated knockdown of BIRC7 and RTEL1 was performed to 

investigate changes in specific cellular phenotypes, with and without 5-FU-treatment. 

Assessments of cellular phenotypes were accomplished using Western blotting and various 

proliferative and apoptotic markers. Impact of knockdown and drug treatment on cell cycle 

progression was assessed by flow cytometry.  

We found that chromosome 20 was amplified in HT29, BIRC7 was overexpressed, 

and HT29 expressed both isoforms of BIRC7 (α and β). The HCT116 cell line had no 

chromosome 20 amplification, no BIRC7 overexpression, and only isoform β was expressed. 

Knockdown of BIRC7 in HT29 seemed to be time-dependent and isoform-specific, and we 

confirmed that the anti-apoptotic isoform α was dominated by the pro-apoptotic β (Tβ) when 

expressed together, as in HT29. In HCT116 we did not detect knockdown within the 

experimental time window studied.  

No RTEL1 expression was detected under any experimental conditions due to 

antibody problems. Knockdown effects were thus studied by assessing specific phenotypes.   

5-FU induced apoptosis was observed in HCT116 for both genes, while HT29 seemed 

less affected by 5-FU-treatment. Knockdown of BIRC7 or RTEL1 did not sensitize cells 

towards 5-FU-treatment, but rather increased cell viability in both cell lines. In HT29-cultures 

the overexpression of BIRC7 seemed rather to inhibit 5-FU-induced apoptosis. Drug response 

was more likely affected by the cell lines’ TP53-genotype and mismatch repair status, among 

others.  
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Sammendrag 

Kolorektal kreft er en av verdens vanligste kreftformer, og 5-fluorouracil det 

kjemoterapeutiske medikamentet som er mest benyttet i behandlingen. Utvikling av resistens 

mot dette og andre medikamenter senker responsen, og er en viktig hindring av effektiv 

behandling. I kolorektal kreft er det detektert en amplikon i 20q13-området som man tror kan 

inneholde gener som er viktige for tumorutvikling og medikamentell respons. Vi undersøkte 

to gener, BIRC7 og RTEL1, som kan være overuttrykt i dette området ved kolorektal kreft. 

Overuttrykk av BIRC7 er forbundet med aggressive tumorer, lite response til kjemoterapi, og 

kort overlevelsestid. RTEL1 er viktig for å opprettholde genomisk stabilitet, og tap av eller 

inaktivering av RTEL1 er assosiert med økt genomisk ustabilitet.  

 Ved å hybridisere de humane kolorektale cellelinjene HCT116 og HT29 med en 

centromer 20-probe detekterte vi om kromosom 20 var amplifisert eller ikke. Vi slo ut 

cellelinjenes utrykk av BIRC7/RTEL1 ved hjelp av spesifikke siRNA, for å undersøke 

endringer i apoptotiske og proliferative fenotyper, med og uten 5-FU behandling. Dette ble 

gjort ved hjelp av Western blotting og proliferative og apoptotiske markører. Flowcytometri 

ble benyttet for å bestemme fraksjonen av celler i de ulike cellesyklusfasene. 

 Vi observerte at kromosom 20 var amplifisert hos HT29, BIRC7 var overuttrykt, og 

HT29 uttrykte begge isoformene av BIRC7 (α and β). I HCT116 var kromosom 20 ikke 

amplifisert, BIRC7 var ikke overuttrykt, og HCT116 uttrykte bare isoform β. siRNA-mediert 

nedregulering av BIRC7 i HT29 virket avhengig av isoform og tidspunkt. Vi bekreftet at den 

anti-apoptotiske isoformen α var dominert av den pro-apoptotiske isoformen β (Tβ) når begge 

var uttrykt, som i HT29. 

RTEL1 kunne ikke detekteres i cellelinjene på grunn av problemer med antistoffer 

som ikke fungerte. Men å slå ut genet medførte økt DNA-skade i cellene og flere levende 

celler, noe som indikerer tumor suppressor-egenskaper hos RTEL1.   

For begge gener ble 5-FU-indusert apoptose observert i HCT116, mens HT29 var 

mindre påvirket av 5-FU. Utslåing av genene gjorde ikke cellekulturene mer sensitive overfor 

5-FU. Tvert imot resulterte nedregulering av BIRC7 eller RTEL1 i økt celleviabilitet hos 

begge cellelinjer. Respons til behandling er sannsynligvis mer avhengig av blant annet TP53-

genotype og MMR-status. 
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1 Introduction 

1.1 Colorectal cancer worldwide 

Colorectal cancer (CRC) is a type of cancer that develops in the colon and the rectum. Colon 

cancer and cancer in the rectum have many similar characteristics, and are therefore often 

grouped together as one cancer type (1, 2).    

 Each year over one million people worldwide are diagnosed with CRC, which  

represents approximately 9 % of all malignancy in the world (3). This also makes CRC one of 

the most common cancer-types worldwide (4). CRC is a disease that occurs mostly in middle 

aged and elderly populations. The incidence increases rapidly for persons over 55 years (5). 

70 % of all CRC occurs in patients over 65 years, and very seldom in patients below 45 years 

of age (6). Age is inversely proportional to five year relative survival rate, as survival has 

shown to decrease with increasing age (7). 95 % of all colorectal cancers are sporadic, as 

there is no evidence of having inherited the disease, while the remaining cases are familial 

CRC or hereditary syndromes (8).  

 Western and developed countries have the highest incidence of CRC in the world,  

while it is increasing in middle- and low-income countries (3). The highest survival rates are 

seen in Nordic and western countries, but five year survival is still lower than 60 % (7). 

People moving from low- to high-incidence areas gain the same risk of developing sporadic 

CRC as the common population in the high-risk area. One of the possible underlying 

explanations is environmental, including a diet high in fat and protein, and low in fruit, fiber 

and vegetable (9). However, the reasons for the increasing incidences of sporadic CRC in 

developed countries remain unclear.  

The incidence of CRC in Norway has doubled since 1960. Norway has the highest 

incidence rate of sporadic CRC in the northern countries, and has also one of the highest 

incidence rates in Europe. Among the Nordic countries, only Denmark has a higher rate of 

mortality (4, 10). A study from the Norwegian Cancer Society shows that in 2002 Norwegian 

women had the highest occurrence of CRC in Europe. The rates of incidence have now shown 

a slight tendency to stabilize, at least in younger generations. Five year survival rates have 

improved in Norway from 1960-1990, reaching approximately 60 % (4).   
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1.2 Staging of colorectal cancer   

In 1932 Dukes introduced a system for classification of rectal tumors depending on the extent 

of cancer spread in the body. Dukes’ classification includes four stages, in which tumors are 

classified according to their invasive characters. Stage A includes tumors limited to the 

rectum wall in the perirectal fat without any spread through to other tissue and no lymph node 

metastases (11, 12). If the tumor has spread outside the rectum and reached other tissues but 

still not reached the lymph nodes, it is classified as stage B. Stage C involves additional 

spread to the lymph nodes (12) (figure 1). Stage D involves spread to distant organs such as 

the liver, and these tumors can no longer be resected through surgery (reviewed by Sarma et 

al. 1988) (13).  

Dukes’ classification has been more or less replaced by the tumor-node-metastasis 

(TNM) staging system, which is characterized as follows. Stage 0 may be the very beginning 

of cancer, and includes carcinomas in situ which is when the first abnormal cells may be 

observed in mucosa. Tumors with relatively differentiated cells, normal tubules, a low degree 

of mitosis, and few nuclear polymorphisms belong to stage I.  

 

 

Figure 1: The staging of colorectal cancer today, where stage 0 is the very beginning of a potential cancer, and 

stage IV includes tumors that have metastasized to other organs in the body (14). 

 

These stage I-tumors are equivalent to Dukes’ A. Tumors in the stage III group have less 

differentiated cells, more pleomorphic cells, few glandular structures, and increased cell 

proliferation than tumors in stage I and II. These tumors may be the same as Dukes’ stage C 
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(15), and when the cancer has spread to regional lymph nodes, Dukes’ D. Stage II lies 

intermediate between grade I and III, and corresponds most likely to Dukes’ B where tumor 

has spread to extramural tissue (15). Stage IV includes the spread or metastasis of cancer cells 

to other parts of the body via blood or lymph (14).  

 

1.3 Treatment of CRC, and poor drug response as a clinical problem  

The main cure for stage I CRC is surgery, but when the cancer has spread to lymph nodes in 

stage III, adjuvant 5-fluorouracil (5-FU) treatment is used (16). 5-FU has been the most used 

chemotherapeutic drug against CRC for the last 40 years (17, 18), and has as a single agent 

also been the most effective treatment of CRC (19). Even though 5-FU has been shown to 

reduce mortality by 22 % (16), the 5-year survival rate for 5-FU-treated patients with 

advanced CRC is still less than 5 % (15). The patients’ response rate is 10-15 % when 5-FU is 

used as a single agent (16, 20, 21), and this is probably due to the relatively rapid 

development of drug resistance, which limits 5-FUs clinical efficacy (22).   

5-fluorodeoxyuridylate is 5-FU’s active metabolite, and works in two ways. One is by 

competitive binding to thymidylate synthase, an enzyme responsible for conversion of uridine 

to thymidine during DNA synthesis. When thymidine triphosphate is depleted, DNA will be 

made of uridine triphosphate or 5-fluorodeoxyuridylate. This leads to the incorporation of 

fluoropyrimidine into DNA, which blocks DNA synthesis (19, 23). 5-FU can also become a 

part of cellular RNA and thus inhibit the rRNA- and mRNA-processes in the cell (19). This is 

probably the mechanism causing cytotoxicity, as it interferes with the development of nuclear 

RNA (24). However, cancer cells treated with 5-FU can respond in two different ways, 

depending on the dose given. High doses lead to arrest in S-phase and apoptosis, while low 

doses lead to G2-M-phase-arrest and death by the non-apoptotic cell death known as mitotic 

catastrophe (25). However, 5-FU shows no activity in G0- or G1-phase, as it is only active as 

an chemotherapeutic agent during S-phase (26). During S-phase, 5-FU induces double-strand-

breaks in DNA by stalling the replication forks (27, 28).  

 

1.4 Drug resistance 

A tumor’s sensitivity to 5-FU may be determined by several mechanisms (29). Proposals 

made are changes in the metabolism or in the effect of 5-FU (24), changed regulation of 
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cytoskeleton organization, amino acid metabolism, nucleotide metabolism, transport, and 

oxygen metabolism (30). Schmitt et al. (1999) proposed that resistance could be selected for 

during tumor progression, by silencing genes involved in the promotion of apoptosis 

(resistance to cell death) (31).  

A cancer cell’s capacity for DNA repair (29, 30, 32) may also play a role in drug 

resistance. The response to DNA damage is cell-cycle-arrest, and during the arrest the cell 

tries to repair its DNA damage. If damage cannot be repaired, apoptosis is induced. The 

outcome represents the cancer cell’s sensitivity or resistance to the chemotherapeutic drug 

used (29). Knockdown of BIRC7 has showed a sensitization effect towards pro-apoptotic 

drugs (33, 34). Thus, a cell that does not manage to repair its DNA will undergo apoptosis, 

while a cell capable of repairing DNA despite chemotherapeutic treatment will not. This 

suggests that cancer cells with high expression of BIRC7 are more often capable of DNA 

damage repair than cells without BIRC7 expression. 

 

1.5 The adenoma-to-carcinoma transition: A model for colorectal 

tumorigenesis 

The adenoma-to-carcinoma sequence (ACS) in colorectal tumorigenesis has been revealed 

through the study of resected colons from patients with familiar adenomatous polyposis. The 

transition from normal mucosal cells to malignant cancer cells is considered to be multistep 

process, where each step is driven by specific genetic alterations (figure 2) (35, 36). Fearon 

and Vogelstein’s A genetic model for colorectal tumorigenesis (1990) laid the basis for this 

multi-step model.  

The ACS is a model of colorectal tumorigenesis explaining a possible pathogenesis of 

most sporadic colorectal cancers. Vogelstein and Kinzler pointed out that cancer takes time to 

develop because of the necessity to accumulate certain mutations (36), including gene 

mutations, chromosomal gains, and chromosomal losses.  

Although the ACS-model is over 20 years old, it is still an accepted model for 

colorectal tumorigenesis. Several studies have confirmed this multistep model (37-40).  
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Figure 2: An overview of genetic changes thought to occur in the adenoma-to-carcinoma transition towards 

colorectal cancer (36).   

 

1.6 Hallmarks of cancer 

All forms of cancer probably share common acquired traits which represents breaches of 

cellular defense mechanisms against cancer development (41). This was the premise of 

Hanahan et al.’s review article “Hallmarks of cancer” (2000).  

 

 

 

Figure 3: Hallmarks of cancer which describe ways a cancer cell may survive and grow despite several anti-

cancer features (42).  

 

The six cancer hallmarks described in this paper include self-sufficiency of growth signal, 

insensitivity to anti-growth signals, evasion of programmed cell death (apoptosis), potential 

for limitless replication, sustained angiogenesis, and the ability to metastasize (figure 3). This 
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idea is based on the belief that the transition from normal cells into malignant cancer cells 

occurs in a stepwise manner. This includes acquired genetic alterations that drive the 

progression, as first postulated by Fearon and Vogelstein (1990) (35). 

A newer report from Hanahan et al. (2011) reconsiders their earlier publication about 

the hallmarks of cancer, taking research from the last decade into consideration. Several 

newly discovered hallmarks of cancer have been added, including the importance of stroma 

cells and their role in cancer, cancer microenvironment, epigenetic alterations, and 

microRNAs (miRNAs) and their regulation of gene expression (42). They have also 

concluded that changed energy metabolism is very common in cancer, and should be included 

as a hallmark. All these hallmarks are characteristics shared by most, if not all, cancers, and 

describe how cancers are initiated, how they evolve, progress, and spread. This represents a 

shift of paradigm from the reductionistic view to a more holistic view. The reductionistic 

paradigm considered cancer cells as a relatively homogenous mass from which one could 

reveal tumor traits simply by studying the cancer cells. Hanahan et al. (2011) updated this 

view based on the idea that all individual and specialized cells in a tumor and surrounding the 

tumor must be included in the term “cancer” to be able to learn more about tumorigenesis 

(42). This represents the new paradigm (figure 4).  

 

 

 

Figure 4: Illustration of the paradigm shift in cancer, from reductionism to a more holistic view (41). 

 

However, cancer cells are still seen as the main cause of disease as they are the ones driving 

the tumorigenesis. They carry mutations and aberrations in their chromosomes, but epigenetic 

changes have also been found in both cancer cells and stroma cells (33). Epigenetic changes 
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are chemical modifications of genes or histones which affect gene expression, for example 

histone acetylation, ubiquitination, and phosphorylation (43). The latter support the new 

paradigm.  

 

1.7 Cell cycle progression and checkpoints 

The cell cycle of all eukaryotic cells consists of four well-defined phases called G1, S, G2, and 

M. In each phase distinct biochemical reactions involved in cellular proliferation and growth 

control take place (44, 45). The S-phase (synthesis phase) represents the proliferative 

compartment (46), and is where chromosome duplication/DNA replication takes place (44). 

The growth and progression of tumors may be estimated based on this fraction, as tumor cells 

replicate without limitations (46). In the M-phase (mitosis phase) replicated DNA is 

segregated, the cell divides, and forms two new daughter cells (44). In the two gap-phases, G1 

and G2, cells grow in size and monitor the environment to check if the conditions are 

satisfactory for replication and cell division (44).  

In G1 the cell passes through the point of no return (the restriction point), and is thus 

committed to complete another cycle (47). This is also called the G1/S-checkpoint and stops 

cells with damaged DNA from entering the S-phase, thereby preventing replication of 

damaged DNA (45). A checkpoint in the middle of S-phase handles damage which occurs 

during S-phase, or catches cells with damaged DNA which managed to escape the checkpoint 

in G1/S (48). The checkpoint at G2/M stops cells from proceeding through mitosis when they 

have damaged DNA (45). 

 A higher fraction of S-phase-cells was seen in colorectal tumors with 20q13-gain 

compared to those without 20q13-amplification (49). This might suggest that there are one or 

more genes in this amplicon that could provide the tumors with a growth advantage. Tanner et 

al. (1994) previously suggested that 20q13 is most likely the home of one or more oncogenes 

important for tumor progression (50). This was later confirmed by Carter et al. (2005) (51). 

 

1.8 Cell cycle data obtained by flow cytometry 

A flow cytometer combines optical, hydrodynamic, and electrical forces to measure several 

parameters in a particle, for example a cell. By the use of air pressure a flow chamber delivers 

cells in a suspension, which passes through a focused laser beam one by one because of a 

hydrodynamic focusing effect. This effect keeps the faster flowing sheath fluid enclosed 
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around the core fluid containing the cell suspension, in a laminar flow. When a cell passes the 

laser beam the light is scattered in different directions. Using optical lenses, mirrors, and 

amplifiers the flow cytometer’s detectors, photodiodes, and photomultiplier tubes, detect the 

amount of light reaching them. Then the signals get converted from brief current pulses to 

voltage pulses by preamplifiers. An analogue to digital conversion makes it possible for 

computers to handle the data (52). 

Thousands of cells can be measured by flow cytometry per second, and each cell is 

represented by a pulse made by its light-scattering properties (53). Small angle light scatter is 

measured as forward scatter and is proportional to the square of the radius of the sphere. This 

means that it represents relative cell size. The 90 degree angle side scatter, also called wide 

angle scatter, measures a cell’s granular content or its intracellular complexity. Forward 

scatter and side scatter are unique to each cell type or particle (52, 54).  

Analyses of data includes electronic gating of populations of cells, excluding the 

others. This makes it possible to investigate one cell subset at a time without signals from 

irrelevant cells (53). These subpopulations can be quantified. The data are visualized by single 

parameter histogram and double parameter dot plots. 

 

1.9 Apoptosis 

There are two main pathways that lead to apoptosis. The intrinsic pathway is triggered when 

certain mitochondrial proteins are released into the cytoplasm. In contrast, the extrinsic 

pathway needs extracellular proteins to bind specific death receptors on the cell surface to be 

activated. Both pathways merge further downstream to lead to a common end, which depends 

on caspases to carry out apoptosis. Caspases are present in the cytoplasm as inactive pro-

caspases, which need to be proteolytically cleaved to gain their active form. In an amplifying 

manner, initiator caspases activate executioner caspases, which cleave important proteins in 

the cell leading to a controlled cell death (44).  

1.9.1 Characteristics of apoptotic cells  

For cultured adherent cells a commitment to apoptosis is characterized by an early detachment 

from the bottom of the flask. This leaves them floating in the medium (55, 56). The loss of the 

normal cell contacts and surface molecules important for attachment is suggested by D’Herde 

et al. (2003) to be caused by an early event of cell shrinkage. This is followed by a subsequent 
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budding, which results in several apoptotic bodies (57). In vivo apoptotic cells are engulfed 

by phagocytosis which avoids an immune reaction, but in culture there are no macrophages to 

accomplish this. This makes apoptotic cells go through a rapid spontaneous degeneration (58), 

also termed second necrosis (57) or apoptotic necrosis (59). Under the microscope apoptotic 

cells can be observed as shrunken round cells with blebbing and possible condensed 

chromatin (57).  

 

1.10 Gene mutations in CRC 

Both sporadic and inherited CRC harbor mutations in the oncogene KRAS, in the tumor 

suppressor gene TP53, and in APC (60), among others.  

 K-RAS mutations have been associated with larger tumor size, older age, and early 

invasive carcinomas (37). According to Strachan et al. (2004) only 10 % of early adenomas 

harbored these mutations, while in intermediate and late adenomas the mutation rate is 50 % 

(61). KRAS mutations has been found to occur in 20-50 % of CRCs (62, 63). 

APC is a tumor suppressor gene which, when inactivated, leads to accumulation of β-

catenin in the cell nucleus. β-catenin promotes transcription of several genes important for 

growth and invasion of tumors (64). Mutations in APC have been suggested to initiate 

colorectal tumor development (36). However, a single mutation in the APC gene is not 

necessarily sufficient for tumor growth (65), but may promote benign growth of adenomas 

(36, 66). Additionally, not all CRCs have mutations in the APC gene or in the APC pathway. 

Only 60 % were found to harbor mutations (61). Additionally, a study of 210 colorectal 

adenomas from patients with familial adenomatous polyposis revealed that only 20 % of 

adenomas had allelic loss of APC (66), suggesting that APC-mutations are not a universal or 

obligatory event in sporadic CRC.  

 CRC tumors frequently show deletions of or mutations in the TP53 tumor suppressor 

gene, while this does not occur very often in adenomas (61). Alterations in the TP53 gene are 

thus considered to be late events in colorectal tumorigenesis. Because TP53 is a tumor 

suppressor gene, the loss of functional (wild-type) TP53 protein due to a mutation or deletion 

in the gene might allow cells with damaged DNA to continue to proliferate. They might gain 

more mutations, as the TP53 protein is not functional or present to arrest them in the cell 

cycle. This makes cells often resistant to chemotherapy (29, 67) and apoptosis (68, 69), which 

again leads to poor prognosis for patients (67).  
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1.11 Genomic instability 

An essential feature of CRC is the acquisition of an unstable genome (70). Chromosomal 

areas may be subject to gains and losses, which lead to allelic imbalance. The allelic 

imbalance describes genomic instability at the molecular level (71), and can be classified as 

three different variants: Chromosomal instability (CIN), microsatellite instability/molecular 

genetic instability (MSI/MIN), and CpG island methylator phenotype (CIMP) (70, 72, 73).  

CIMP was introduced by Toyota et al. in 1999. They revealed a subtype of CRC with 

cancer-specific methylations. The authors proposed that by methylation of certain tumor-

suppressor genes and by establishing mismatch repair (MMR) deficiency through inactivation 

of the hMLH1 promoter, CIMP leads to cancer. CIMP is suggested to be an early event in 

tumorigenesis, as it has also been observed in pre-neoplastic adenomas (73). 

1.11.1 Microsatellite instability/molecular genetic instability 

In sporadic CRC microsatellite instability (MSI) or molecular genetic instability (MIN) has 

been found in 15-20 % of tumors (74, 75). This usually leads to impaired function or loss of 

activity in the MMR system (74-76).  

According to Lin et al. (2002) sporadic CRC with high MSI levels (MSI-H) show 

significant differences in both amount and location of copy number aberrations of many genes 

compared to microsatellite-stable (MSS) tumors (39). MSS carcinomas have an increased 

number of chromosomal aberrations compared to MSI-H tumors. Among these, gain of 20q 

was frequently detected (77). MSI-status has been shown to vary according to tumor stage. 

Tejpar et al. (2011) suggest that treatment, tumor stage, and MSI-status to be considered when 

predicting prognosis. They additionally propose that a patients response to adjuvant 5-FU 

should be determined in advance by checking the tumor’s MSI-status (78).  

1.11.2 Chromosomal instability (CIN) 

CIN is the most common type of genomic instability in CRC. It occurs in approximately 80-

85 % of CRCs (76). CIN is a condition characterized by numerous losses and gains of whole 

chromosomes (79), and it has been linked to poor prognosis for patients (80, 81). 

  A significant difference in copy number has been detected on chromosomal arm 20q, 

depending on whether a tumor has CIN or MIN status (82). CIN-positive tumors show a 

tendency to develop resistance towards chemotherapeutic drugs (83, 84). Swanton et al. 

(2009) discovered that CIN was correlated with an altered sensitivity towards 

chemotherapeutic drugs, and suggests testing for CIN status before starting treatment (84).  
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1.12 Chromosomal aberrations in CRC 

1.12.1 Numerical chromosomal aberrations 

Aneuploidy is defined as an abnormal number of chromosomes, a condition where the copy 

number of one or more chromosomes is altered, i.e. there are either too few or too many 

copies present. This is the opposite of euploidy (diploidy) where human somatic cells have a 

normal chromosome complement, which means two complete sets of chromosomes, i.e. a 

normal copy number of 2 for each chromosome (61). The majority of CRCs are aneuploid. 

The mechanisms underlying the development of aneuploidy are believed to be either an 

erroneous chromosome separation during mitosis where sister chromatids fail to separate (85), 

or a malfunction that inhibits one of the chromosomes or chromatids from entering daughter 

cell(s) due to lagging (61). 

1.12.2 Structural chromosomal aberrations  

Structural abnormalities occur when chromosomes break and chromosomal breakage is not 

repaired in a correct manner. An incidence of chromosomal breakage may be initiated by 

failure in recombination, or by DNA damage, due to for example chemotherapeutic treatment. 

Breakage of chromosomes is normally repaired by fusion of two broken ends, or by adding a 

telomere at the end of a single broken end. Cells with chromosomal damage arrest at different 

cell cycle checkpoints to prevent them from transmitting these abnormalities to daughter cells. 

If the aberrations cannot be repaired, apoptosis is induced and the cell dies. Chromosomes 

wrongly joined together can still enter and pass through the cell cycle checkpoints given that 

they have no free broken ends. This may cause lead to pathological translocations (61).  

Multiple studies have found that most of the gains and losses in CRC are localized to 

large chromosome regions or whole chromosome arms. (86). Duplications and amplifications 

occur more often than deletions (87, 88).  

The majority of colorectal tumors have a number of gross chromosomal aberrations, 

i.e, amplifications and deletions, and some of these have been detected in adenomas. Muleris 

et al. (1994) and Ried et al. (1996) found chromosomal 20q gain to be the most common 

aberration in adenomas (89, 90). It has also been found to be one of the most frequently 

amplified areas in CRC (49, 91-94). Diep et al. (2003) reported that carcinomas harbor more 

chromosomal aberrations than adenomas. They also found that certain chromosomal 

aberrations, e.g. amplification of 20q, are common in adenomas and CRC, but do not occur in 
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normal colon mucosa (38). Meijer et al. (1998) detected a non-random pattern of increased 

chromosomal gains, finding a 42 % higher incidence of 20q gain in carcinomas compared to 

adenomas (95). In advanced CRC it has also been shown that metastases contain more genetic 

aberrations than their primary tumors. If the ACS-model is right, this suggests an almost 

proportional relationship between chromosomal aberrations and tumor progression (96).  

1.12.3 Chromosomal aberrations and genotypes in the HCT116 and HT29 CRC cell 

lines 

The human colorectal cancer cell lines HCT116 and HT29 used in the present work have 

previously been mapped with a spectral karyotype (SKY) technique to reveal possible copy 

number alterations. HCT116 was shown to have a normal copy number of 2 for chromosome 

20 (figure 5). This cell line is MIN/MSI, MMR-deficient, but has wild-type TP53 (American 

Type Culture Collection #CCL-247). In contrast, HT29 has a copy number of 4 for 

chromosome 20 (amplified) (figure 6), is aneuploid, MSS, MMR-proficient (American Type 

Culture Collection #HTB-38), and has a mutation in the TP53 gene (97).  

 

Figure 5: The human colon cancer cell line HCT116 has a normal copy number of 2 for chromosome 20 (97). 

 

.  

Figure 6: The human colorectal cancer cell line HT29 has an abnormal copy number of 4 for chromosome 20 as 

shown in this picture made by spectral karyotyping (97). 
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Both cell lines have also been previously examined for gross chromosomal aberrations by 

standard comparative genomic hybridization (CGH). For HCT 116 the chromosome 20 

profile showed neither amplification nor loss of chromosome 20 (98), whereas chromosome 

20q was shown to be amplified in HT29 (99).  

 

1.13 Amplicons and their clinical relevance 

An amplicon is a frequently amplified chromosomal region that contains multiple co-

amplified genes. I these are co-activated they may affect the tumor’s clinical characteristics 

and phenotypes (100). Co-amplification/co-activation of these genes may also impact 

negatively on patient prognosis and on response to drug treatment. 

In most cases chromosomal amplification also involves increased expression of genes 

localized to the amplified area (101). Many cancer cells contain several copies of normal 

genes, including oncogenes, and this almost always results in elevated genetic expression 

(61). However, Platzer et al. (2002) discovered that elevated gene expression based on 

chromosomal amplification is rare and true only for a small group of scattered genes in the 

CRC amplicons (102). This means that not all genes in the 20q-amplicon may have increased 

expression, and makes it necessary to test each specific gene with respect to amplification and 

expression in the search for possible oncogenes.  

1.13.1 The 20q13 amplicon  

Amplification of the chromosomal arm 20q, with the minimal region of involvement at 

20q13, has been detected in many types of cancers (49, 82, 87, 90, 94, 96, 102-109). Deletion 

of this arm is very rare (109). 20q has further been identified as an area of high-level-gain 

(49), and 20q13 as one of the most frequently amplified chromosomal areas in CRC and 

breast cancer (49, 103, 105). In sporadic non-hereditary CRC 20q13 is the most frequently 

amplified chromosomal area (91-94). Tabach et al. (2011) suggested that a sub-clone of cells 

develops this amplification spontaneously, and that this directly or indirectly promotes 

upregulation of certain genes in the 20q arm (109).  

20q-amplification has been shown to be associated with poor prognosis and 

significantly poorer patient survival (91, 110). Amplified and overexpressed oncogenes have 

been suggested as the reason for this (91, 92). Additionally, amplification of 20q is linked to 
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tumor aggressiveness (40). In CRC, the malignant development from adenoma to carcinoma 

may partly be explained by an elevated expression of putative oncogenes in the 20q-area. 

A recent study of CRC by Berg et al. (2010) detected a ~7.5 Mbps region at 20q13.31-

20q13.33. This area was found to be the most commonly gained locus in CRC, and it contains 

100 genes and 10 miRNAs (94). Even though wider, this is the same area as reported in a 

previous breast cancer study (50). Carter et al. (2005) also identified possible candidate genes 

at the 20q-area, and narrowed it down to 10 genes which were all overexpressed (51). This 

confirms that a possible gene or genes of interest are localized to this area, but identification 

of these genes has still not been done.  

 Both Carter et al. (2005) and Tabach et al. (2011) suggested that the 20q-area contains 

one or more genes whose overexpression is important for tumor development and 

progression. Carter et al. (2005) combined the fact that 20q-amplification is seen in various 

types of cancer, with the discoveries that this amplification has been shown to increase during 

tumor progression (51). Tabach et al. (2011) identified 13 genes which are commonly 

overexpressed genes in many types of tumors. Examples were ADRM1, AURKA, and 

MYBL2. The authors suggest that these are “cancer initiating genes” and may be involved in 

cancer-promoting activities upon or together with amplification of chromosome arm 20q 

(109). These studies support the idea that important oncogenes are localized to this 

chromosomal area. 

  Liver metastases (94, 96, 104, 105, 111) and lymph node metastases (96) from CRC 

have been shown to have gain of chromosome 20q. These studies point to a role for 20q-

amplification in metastatic progression, at least in liver and lymph node metastases and poor 

prognosis.  

The primary cytogenetic changes, like specific chromosomal aberrations seen early in 

tumorigenesis, may be necessary for further mutations. These may give selective advantages 

for growth and progression in the evolving tumor (95, 112). Amplification of 20q and more 

specifically of 20q13 were seen in the diploid component of aneuploid CRC (112, 113). This 

diploid component consists of normal mucosal cells or adenoma cells, suggesting that this is 

an early chromosomal aberration important for tumorigenesis. This is supported by Tabach et 

al. (2011) who suggest that this amplification occurs in a sub-clone of cells, imparts both a 

growth advantage and an evolutionary advantage to the population, and occurs early in 

tumorigenesis (109). However, gain of 20q was found less frequently in adenomas than in 

carcinomas, suggesting that it is rather a late event (40, 95). Whether amplification of 20q 



25 

 

occurs early or late in tumorigenesis remains unclear, but there are no doubts that this 

amplified region plays a major role in colorectal tumorigenesis and tumor progression. 

 

1.14 RNA interference   

RNA interference (RNAi) is a naturally occurring conserved cellular defense mechanism 

against foreign double stranded RNA-molecules (dsRNAs), like the ones found in viruses and 

transposable elements. Both the naturally occurring miRNAs and the synthetically-made 

small interfering RNAs (siRNAs) use the RNAi pathway to inhibit or degrade gene 

expression (61, 114).  

 miRNAs are encoded by the genome, and RNA polymerase II makes the primary 

miRNAs in the nucleus (figure 7). The primary miRNA consists of dsRNA, and is recognized 

and cleaved by the microprocessor complex, with its core enzyme Drosha, in the nucleus 

(115). The cleaving process requires ATP (116, 117). After being capped and polyadenylated 

the pre-miRNA is sent into cytoplasm via Exportin-5 (115). Once in the cytoplasm, dsRNAs 

like miRNA are recognized by the RNase III Dicer (115). Dicer cleaves the over 500 bp long 

dsRNA (117) and makes shorter miRNAs, consisting of 21-25 bp long and with a 3’-end 

overhang of 2 nucleotides. The miRNA is now ready, and will find and become a part of the 

RNA induced silencing complex (RISC) (61). For RISC to become an active complex, an 

ATP-dependent unwinding of dsRNA is necessary (116). The unwound miRNA participating 

in RISC will subsequently be cleaved by the enzyme Argonaut 2, which also discards one of 

miRNA’s strands, usually the sense strand. The miRNA antisense strand remaining in RISC 

functions as a guide toward a complementary sequence in an mRNA. If the base pairing 

between miRNA-RISC and mRNA is a perfect complementary match, Argonaut 2 will cleave 

and degrade the mRNA effectively. Less than perfect complementary base pairing may result 

in destabilization of mRNA and translational inhibition. Repressed mRNAs may be 

translocated to P-bodies, cellular sites where they accumulate, and may later be destroyed or 

relocalized back to the translational machinery (114). This leads to inhibition of protein 

synthesis and gene expression (115).  

By introducing siRNAs into a cell one can inhibit the expression of certain genes. This 

is called gene silencing (115), and has been a popular research tool since Elbashir and Tuschl 

et al. in 2001 showed that RNAi can be effectively mediated by adding synthetic small 

dsRNAs of 19-21 nucleotides in mammalian cells to silence specific genes (119). It has also 

been widely used as a tool for gene function analysis (120). Unlike the naturally occurring 
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miRNA with its imperfect duplexes, siRNA is usually derived from perfect matched duplexes 

(61). siRNA uses the same pathway as miRNA, RNAi (115).  

 

 

Figure 7: Overview of the RNAi pathway (118). 

 

 

Knockdown-analysis has been extensively used for revealing genes’ functions and abilities, 

and is a potentially effective therapeutic approach. Several studies show that siRNA-mediated 

knockdown-analysis have a major role in future cancer treatment (115, 121-124). However, 

many obstacles must first be overcome.  

 

1.15 BIRC7  

The human gene BIRC7 (also named ML-IAP, LIVIN, KIAP) is an inhibitor of apoptosis (IAP) 

which is reported to be increased in cancer cell lines (93, 125, 126). It is located at the 

20q13.33 locus, and is thus a relevant candidate gene for this study (101, 127). BIRC7 is 46 
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kb long, has six exons and seven introns, and codes for a 280 amino acids protein (125). The 

BIRC7 protein contains one COOH-terminal RING (Really Interesting New Gene) finger 

motif important for a certain pro-apoptotic ability and its localization as full-length protein 

(128). It also contains one Baculovirus IAP repeat (BIR) domain, which is formed as a zinc-

fold that is evolutionally conserved, which is important for BIRC7’s anti-apoptotic effect 

(126, 129, 130). 

In 2000 two research groups, independently of each other, detected BIRC7 for the first 

time. Kasof et al. (2001) identified it after a homology search trying to find novel family 

members of the Inhibitors of apoptosis protein (IAP) family. They found a 1297 bp long gene, 

and called it Livin because of its similarity to other IAPs like Survivin. They found that 

BIRC7 is predominantly present in the nucleus of cells, and also in a specific filamentous 

pattern in the cytoplasm (129), later identified as the Golgi apparatus (128). The IAP gene 

family consists so far of eight members, where BIRC7 is the newest member (127). 

Simultaneously, Vucic et al. (2000) searched a sequence database for genes with BIR 

domains, and found a gene that was upregulated in melanoma cells. This upregulation was 

later confirmed by Ashhab et al. (2001) who additionally detected increased expression of this 

gene in a prostate carcinoma cell line, and in the colon carcinoma cell line HT29 (125). The 

proteins translated from BIRC7 made melanoma cells resistant to apoptotic signals, both death 

receptor-induced and mitochondrial chemotherapy-induced apoptosis respectively via caspase 

3 and 9. Vucic et al. (2000) named the gene melanoma inhibitor of apoptosis (ML-IAP) (126). 

Kasof et al. (2001) found that BIRC7 was capable of restraining apoptosis by binding caspase 

3, 7, and 9 (129).  

Elevated expression of BIRC7 is associated with aggressiveness in tumors, negligible 

response to chemotherapeutic treatment, and shorter time of survival (129). Overexpression of 

BIRC7 is detected in CRC (131, 132), and this might explain the difficulties in achieving 

good patient response to chemotherapy. Vucic et al. (2000) showed that melanoma cells with 

BIRC7-expression are more prone to develop resistance to drug-induced apoptosis than cells 

that do not express BIRC7 (126). This suggests a possible relationship between CRC, 

expression of BIRC7, and resistance toward chemotherapy such as 5-FU, where elevated 

expression of BIRC7 mRNA in CRC cells leads to resistance to 5-FU, and subsequent poor 

prognosis and poor survival. Nachmias et al. (2003) confirmed this when they found a 

significant, strong correlation in vitro between the amount of apoptosis and BIRC7 

expression. High expression of BIRC7 made melanoma cells completely resistant to 
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chemotherapy. In vivo they found that 5 of 7 patients with poor response to chemotherapy had 

high levels of BIRC7 expression (133).  

A year after the discovery of BIRC7 two different splicing forms was identified. The 

two splice variants give rise to slightly different forms (isoforms) of the protein. These are 

called α and β (125) (figure 8), and have molecular weights of approximately 39 and 37 kDa 

respectively (133) . Few differences are found between the two isoforms. The β isoform lacks 

18 amino acids between the BIR- and the RING-domain, compared to the α isoform, and is 

thus the shorter isoform of BIRC7 (128). The β version has been detected in fetuses and 

placental tissue, and is therefore suspected of having a role in fetal development. The α 

isoform is expressed at low levels in brain, skeletal muscle and peripheral lymphocytes. Both 

isoforms are seen in adult tissues of heart, lung, spleen, and ovary. Particularly high levels are 

seen in several cancer types including colon cancer (134). Anti-apoptotic and pro-apoptotic 

effects are present in both isoforms, but the shorter isoform β (128) showed a higher pro-

apoptotic effect than α isoform (125). Using an animal model, Abd-Elrahman et al. (2009) 

confirmed this. They found that the presence of α isoform of BIRC7 leads to tumor initiation 

and growth, while the β isoform of BIRC7 was cleaved to form its truncated form (Tβ) with 

pro-apoptotic activity, leading to reduced tumor progression (135). This was earlier suggested 

by Nachmias et al. (2003) to represent a correlation between the expression of full-lengths and 

truncated version of BIRC7 (133). A delicate balance between pro-apoptotic and anti-

apoptotic versions of BIRC7 has been suggested to decide BIRC7’s function in a cell (125, 

135).  

 It has also been suggested that BIRC7 is associated with cell cycle control and 

regulation of proliferation, as knockdown of BIRC7 was found to decrease cell proliferation 

(136, 137).  

 

 

Figure 8: The difference between the two isoforms of BIRC7( α and β) is only 18 amino acids between the BIR 

domain and the RING motif (138). 
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Nachmias et al.(2003) revealed that BIRC7 is cleaved by the effector caspases 3 and 7, and 

that this results in the two truncated forms of the protein, p30-Livin α (Tα) and p28-Livin β 

(Tβ) (30 and 28 kDa). As the molecular weight for the two forms is still the same the two 

isoforms share a common site for cleavage. The aspartic acid 52 in both isoforms showed 

similarity to the caspase 3 and 7 consensus sequence substrate. The two truncated forms are 

detected soon after apoptotic initiation but before large amounts of apoptosis are present. 

BIRC7 is therefore probably able to interfere with the apoptotic process at an early time point 

(133). The localizations of the full-length protein and the truncated version are different. Full-

length BIRC7 is localized exclusively to the cytoplasm, probably due to active transport out 

of the nucleus. The truncated version is localized to both the cytoplasm and the nucleus (128, 

129). Nuclear accumulation over time has been linked to elevated rates of apoptosis (128).  

The cleavage process changes BIRC7’s localization in the cell. To be able to work in a 

pro-apoptotic way it is essential that the truncated version is present in the peri-nuclear Golgi, 

and at the same time has an intact RING domain. Cell death was induced once the truncated 

forms of BIRC7 were ectopically expressed, but BIRC7 β induced larger amounts of 

apoptosis than BIRC7 α. A single mutation has been found to re-localize the truncated 

BIRC7, and eliminate its pro-apoptotic effect (128). 

Proteins that bind IAPs, like Smac/DIABLO, free caspases and thus promote 

apoptosis. BIRC7’s pro-apoptotic role is as an inhibitor of Smac/DIABLO’s inhibitor (XIAP), 

which makes it possible for apoptosis to take place. BIRC7 can additionally initiate its own 

ubiquitination, making cells more prone to apoptosis induction (139). On the other hand, full-

length BIRC7 can also work in an anti-apoptotic way by inhibiting initiator caspase 9, but 

also effector caspases 3 and 7 (129). These inhibitions are rather indirect (140). BIRC7 marks 

Smac/DIABLO for degradation through the E3 ubiquitin ligase pathway, which stops the 

apoptotic activity. Both the BIR domain and the RING domain are needed for this to happen 

(139).   

Huang et al. (2006) found that a mutated BIR domain in BIRC7 makes it unstable and 

prevents its binding to Smac/DIABLO. This makes the pro-apoptotic Smac/DIABLO to 

remain active, and the result is that BIRC7’s anti-apoptotic effect is decreased (139). It is 

shown here that BIRC7 is involved in several kinds of apoptotic regulations. 

However, BIRC7 has also been reported to directly inhibit caspase 3 and 9 (126, 129). 

When an apoptotic signal is transduced, BIRC7 can be cleaved by effector caspase 3 and 7. 

The resulting fragments of α and β (Tα and Tβ) still have their BIR and RING domains intact. 
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In contrast to the full-length BIRC7 proteins, the truncated form of BIRC7 β (Tβ) has a pro-

apoptotic effect. The cleavage removes the anti-apoptotic effect despite its intact RING 

domain, and at the same time gains the pro-apoptotic effect (133). This suggests that BIRC7 

plays an important regulatory role during progression of apoptosis. 

By initiating apoptosis in melanoma cells using the drug staurosporine, Nachmias et 

al. (2003) observed the presence of cleaved forms of BIRC7 at the same time as the full-size 

version of the protein vanished. Cleaved PARP, an end stage marker of apoptosis, showed an 

increased correlation to cleaved BIRC7, underlining truncated BIRC7’s pro-apoptotic role 

(133). This is supported by Crnkovic-Mertens et al. (2003), who knocked out BIRC7 in 

various cancer cell lines. This resulted in caspase 3-activation and a highly elevated rate of 

apoptosis. This was only seen in BIRC7-expressing cells, and occurred together with many 

pro-apoptotic agents (34). Later they found that different cell lines showed different response 

to this knockdown (33, 141). Cells transfected with either of the two cleaved forms of BIRC7, 

(Tα or Tβ), resulted in a very large amount of spontaneous apoptosis compared to cells 

transfected with full-length BIRC7 protein (133). 

As pointed out earlier, three domains have been identified as critical and sufficient for 

BIRC7’s anti-apoptotic and pro-apoptotic ability, the RING domain, the BIR domain, and the 

N-terminal region. BIRC7’s long isoform (α) is present exclusively in the cytoplasm, and 

demonstrates only an anti-apoptotic effect due to its active BIR domain. Due to its RING 

domain, the truncated β isoform is additionally present in the nucleus. It has also been seen 

accumulated in Golgi. When β isoform is cleaved by effector caspases its N-terminal is 

exposed, and this is important for the right localization of Tβ in the cell. The cleaved β-

version has only a pro-apoptotic effect (128), despite its intact BIR domain (133). An intact 

BIR domain has been suggested to have no effect, neither pro-apoptotic nor anti-apoptotic, in 

the shorter versions of BIRC7 (128). BIRC7’s ability to transform from an anti-apoptotic to a 

pro-apoptotic protein, is considered unique in the IAP family (135, 142). Abd-Elrahman et al. 

(2009) found that especially strong apoptotic signals trigger the cleavage of the anti-apoptotic 

BIRC7, resulting in the pro-apoptotic truncated form of BIRC7 (135). However, BIRC7 has 

also been found to have pro-apoptotic RING-dependent effects after being cleaved by 

caspases (143, 144).  

 Several studies have indicated that BIRC7 can be used as an early marker of cancer 

and as a prognostic marker (34, 127, 128, 131, 141). In summary, increased expression of 

BIRC7 is associated with poor prognosis and resistance to chemotherapy, and may thus be a 
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possible candidate gene for the unknown oncogenes(s) at 20q13. By introducing therapeutic 

agents that can cleave BIRC7, one could possibly turn a cancer situation around by 

eliminating BIRC7’s anti-apoptotic effect, thus resulting in high levels of apoptosis in cancer 

cells expressing BIRC7.  

 

1.16 Telomeres and RTEL1 

Telomeres are repeated sequences at the ends of chromosomes, which protect the 

chromosomes from shortening during cell divisions. The enzyme responsible for this is 

telomerase, which is a specialized DNA polymerase. It works by adding hexanucleotides as 

telomere repeat segments to ends of telomeres, and thus producing new telomeric DNA (42, 

61). Telomerase is present in human germline cells and in spontaneously immortalized cells 

including cancer cells, but absent in most somatic cells (42, 61, 145). In telomerase positive 

cells telomerase will maintain the telomere length, while in somatic cells progressive telomere 

erosion reduce telomeres by 50-100 base pairs per cell division (42, 61, 146). This telomere 

shortening results in a limited number of divisions, and in the end the cells reach senescence 

(61, 146). This is a cellular state of no growth and no cell death, triggered by several 

proliferative abnormalities, for instance significant shortening of telomeres (42). If the cells 

continue to divide beyond this point, the telomeres will become critically short, and this will 

lead to an increased amount of dicentric chromosomes where end-to-end fusions between 

unprotected chromosomal ends occur. This will subsequently make the cells reach crisis, 

where most of them die (61, 146). Senescence and crisis are termed proliferation barriers by 

Hanahan et al. (2011) as they are seen as an important part of the anticancer mechanism in 

normal cells to prevent growth of premalignant and malignant cell-clones (42). Thus, 

telomerase is an enzyme which is connected to the initiation of senescence and crisis, with 

subsequent apoptosis.  

A small amount of cells do not die, and as a consequence they harbor abnormal 

chromosomal structures because the chromosome ends are no longer protected (61). After a 

while the shortening of telomeres usually stops (146), because the cells gain their own 

production of telomerase. This results in a stabilizing of the rate of abnormal chromosomes 

(146). The cells are then able to replicate infinitely, and are termed immortal (61).  

There are several ways a tumor cell can maintain its telomere length, and most tumor 

cells manage to do this (61, 145). 85-90 % of tumors are telomerase positive, the rest rely on 
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telomerase independent Alternative Lengthening of Telomeres (ALT), or a combination of 

both. Only a few tumor types do not have a mechanism for maintaining telomere length (145).  

Bryan et al. (1997) suggest the use of telomerase inhibitors in the treatment of 

telomerase positive tumors (145). This is supported by Sharma et al. (1997) who suggest that 

such treatment will shorten the telomeres and make cells go into senescence and subsequent 

apoptosis. This treatment might be effective together with chemotherapy (147). However, this 

may not function well in tumors using ALT or other ways than gain of telomerase to maintain 

their telomere length. Additionally, this treatment in telomerase-positive tumors may lead to 

selection for a clone using ALT or another mechanism instead of telomerase activity, and thus 

lower the effect of the treatment. 

Elmore et al. (2002) points to that the loss of telomeres is the driving force necessary 

for genomic instability, and that this instability is responsible for spontaneous immortalization 

and further malignant progression. This, they suggest, is independent of TP53, as they found 

that loss of functional TP53 due to deletion or mutation only facilitates or assists in this 

process. By adding ectopic telomerase the development of chromosomal instability in cancer-

prone human cells may be stopped to a certain degree (148).  

Regulator of Telomere Length (RTEL) is a murine gene encoding a protein belonging 

to the helicase family. Originally it was discovered by Ding et al. (2004) as being the 

foremost factor in setting telomere length in mice. They showed that it has a central function 

in the inhibition of telomere repeat recombinations, and thus maintains the telomeres (149). 

Recently it has been found to be a member of the Superfamily 2 helicase, and the subgroup 

DEAH/RAH where DEAH is the helicase motif II and RAH stands for RNA helicase (150, 

151). It has also been discovered that RTEL belongs in the FeS subgroup because of its iron-

sulfur domain (152). 

According to Barber et al. (2008) the human homologue, RTEL1, is required for 

successful repair of double strand breaks (153). In addition it suppresses homologue 

recombinations by interfering with D-loop intermediates in vitro, and induces synthesis-

dependent strand annealing in vivo (153, 154). This suggests that RTEL1 is a crucial gene 

important for proper protection and maintenance of telomeres. The RTEL1-homologue in C. 

elegans also suppresses homologue recombinations (153). This implies that RTEL1 is a 

conserved sequence which functions as an anti-recombinase.  



33 

 

RTEL1 is localized to a four-gene cluster in 20q13.3, which is often amplified in 

tumors from the GI tract (155), colon, and lungs (156). Bai et al. (2000) found that 

overexpression of one gene in this cluster occurs independently of gene amplification, as 

amplification was not detected in this gene (155). A possible overexpression or amplification 

of RTEL1 in tumors does not necessarily lead to increased amount of functioning RTEL1 

proteins. This is supported by the revelation of RTEL1 being important for DNA repair 

activity (153), which is compromised in cancer. If RTEL1 is found to be affected like the 

other gene in the four-gene cluster in 20q13.3, an aberrant version of RTEL1 may most likely 

contribute to tumorigenesis via an improper maintenance of telomeres, failing DNA repair, 

and subsequent genomic instability (155).  

Uringa et al. (2011) reviewed multiple articles and concluded that RTEL1 seems to 

have tumor suppressive functions as it maintains a stable and appropriate repaired DNA, and 

thus maintains genomic stability (157). As RTEL1 is found to be commonly expressed in 

dividing cells during development of the embryo, and in adult cells that often divide (149), it 

is probably also widely expressed in mucosa tissue in colon. The knockout or knockdown of 

RTEL1 in cells has resulted in end-to-end chromosome fusions, lack of telomere protection at 

ends, chromosome clusters randomly joined together, chromosome gaps, and broken parts and 

fragments of chromosomes (149, 153, 154). In vivo, RTEL-/- mice develop embryonic 

lethality and genomic instability (149). 
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2 Aim of study 

The chromosomal region 20q13 is the most frequently amplified area detected in sporadic 

colorectal tumors (91-94). It is likely that one or more important oncogenes are located here 

(50), and some of these may play a significant role in tumor progression, drug response and 

resistance. The aim of this study was to research the function of two genes localized to the 

20q13 amplicon. We chose to study BIRC7 and RTEL1, as these genes are known to play 

important roles in apoptosis and cell proliferation/telomere regulation, respectively. Our 

experimental approach involved the use of RNAi to transiently silence these genes, followed 

by a 2, 4, 8, 24, and 48-hour period of drug treatment. We used the drug 5-FU since this is the 

chemotherapeutic agent of choice for the treatment of metastatic CRC. Experiments were 

carried out using untreated (control) and 5-FU-treated human colorectal cancer cell lines with 

(HT29) and without (HCT116) 20q amplification. The overall aim was to assess the impact of 

gene knockdown on cell death and cell proliferation (cellular phenotypes) during 5-FU-

treatment in cell lines with and without 20q amplification.   
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3 Materials and methods 

3.1 Cell lines  

Two established human colorectal cancer cell lines, HCT116 and HT29 (both purchased from 

American Type Culture Collection #CCL-247 and #HTB-38, respectively), which form 

adherent monolayers in culture, were grown in TC 25 cm
2
 culture flasks coated with 

extracellular matrix proteins. Cells were grown in 5 ml complete medium per flask. The 

complete medium used consisted of RPMI 1640 media to which was added 2 mM L-

glutamine, 0.5 mg/ml Gentamycin, and 10 % heat inactivated fetal bovine serum (all from 

Cambrex). Cells were maintained as monolayers at 37 °C with 5 % CO2 and 95 % O2 in a 

humidified incubator.  

The HCT116 cell line was derived from human epithelial cells from an adult male 

with colorectal cancer. Before freezing cell line stocks in liquid nitrogen the cell count was 

measured to 2.2 x 10
6 

cells with the passage number 54. HCT116 has a doubling time of 22 

hours, and showed high transfection efficiency during optimalization procedures. This cell 

line is considered to be near-diploid, which means it has no amplification in the chromosomal 

20q region. It has thus a normal copy number for chromosome 20, and was used as a normal 

control in this study. Its TP53-genotype is wild type (normal), and it is MMR deficient. 

The HT29 cell line was derived from an adult female with colorectal adenocarcinoma. 

The cell count was 2.1 x 10
6 

cells with the passage number 145, and has a doubling time of 

approximately one day, or a little more than 24 hours. This cell line is aneuploid, which 

means it has a large number of chromosomal amplifications and deletions. HT29 is 

hypertriploid, which means it has three copies of most of its chromosomes, although not an 

exact multiple. It has a reciprocal translocation between chromosome 6 and 14 (70), 

chromosome arm 8q is amplified, while arm 8p is deleted, there is a focal deletion in 13p1, 

and chromosome 18 has a single copy gain (158). These are only some of the chromosomal 

aberrations seen in the HT29 cell line. Additionally, this cell line is amplified in chromosome 

20, it has a mutant TP53 genotype, is MMR proficient, and has shown to be telomerase-

positive (121).   

These two cell lines were chosen for study because of their different chromosome 20 

statuses, as well as their different TP53-genotypes, MMR proficiencies, and ploidy status. 
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3.1.1 Methodological considerations 

Human cancer cell lines are widely used in research and are easily procured from several 

commercial cell culture organizations. There are well established procedures for storage and 

maintenance of most cell lines, and the fact that they can be maintained in culture for long 

periods is a major advantage. However, cells in culture should not be subcultured too many 

times as this may cause unwanted changes in the cells (159). Our cells were subcultured a 

maximum of 10 times before new stocks were thawed and cultured.   

 

3.2 RNA interference   

3.2.1 Delivery of siRNAs into cells (transfection) 

Premade siRNAs are anionic and cannot enter the cell through its membrane or by 

endocytosis. Cultured cells can be targeted with various chemicals such as cationic lipids, 

peptides, and polyethyleneimine derivates to induce uptake of siRNAs. Lipid-mediated uptake 

of siRNA is based on that the anionic siRNAs are covalently bound to the cationic lipid in a 

complex, and that this complex enters the cell by endocytosis. The lipid’s positive surface 

charge makes it fuse with the negatively charged cell membrane, and once inside it will reach 

the nucleus by endosomal escape. This method has been shown to give good transfection 

efficiencies in adherent cells in culture (160). 

Cells can also be transfected with DNA-vectors, which express siRNA as hairpin 

RNA, or electric shock (electroporation) can mediate uptake of siRNA. These two 

transfection methods have been shown to be most reliable (161).  

3.2.2 Materials used for transfection  

We used pools of siRNAs produced by Dharmacon (SMARTpools, Dharmacon Inc. 

Lafayette, CO). The pools mimic enzymatically cleaved siRNAs generated in nature when 

Dicer digests a long strand of dsRNA into a pool of duplexes overlapping each other. The 

SMARTpool for BIRC7 consisted of four ON-TARGETplus SMARTpool siRNAs specific 

for BIRC7 (J-004391-17 BIRC7: GGAGAGAGGUCCAGUCUGA, J-004391-18 BIRC7: 

GGAAGAACCGGAAGACGCA, J-004391-19 BIRC7: GGAAGAGACUUUGUCCACA, J-

004391-20 BIRC7: GCUCUGAGGAGUUGCGUCU). The SMARTpool for RTEL1 also 

consisted of four ON-TARGETplus SMARTpool siRNAs specific for RTEL1 (J-013379-05 

RTEL1: CCGCAGAGCACACAACAUU, J-013379-06 RTEL1: 
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UAUUCAUGCCGUACAAUUA, J-013379-07 RTEL1: GACAUUAUCCAGAUUGUGU, J-

013379-08 RTEL1: CCAAGGUCCUGGAAUGUCU). A control pool, ON-TARGET control 

pool (Dharmacon), consisted of four double-stranded nonspecific oligonucleotides (siRNAs) 

functioning as positive silencing control of Cyclophilin B mRNA in human cells. 

Additionally it should lower off-target effects. 

1X siRNA buffer was diluted from 5X siRNA buffer with RNase-free water. We 

diluted 20 µM stock solutions of siRNAs to 5 µM working solutions with 1x siRNA buffer. 

Two types of cationic transfection reagents, recommended for each cell line (type 1 and 2), 

were also used (all from Dharmafect).  

3.2.3 Optimizing transfection conditions 

Transfection conditions were optimized by testing both our cell lines at various cell densities 

against various amounts of transfection media and transfection reagent. The household gene 

GAPD was used as knockdown-target (siGENOME GAPD Control siRNA from Dharmacon). 

Best transfection efficiency and cell viability were obtained for both cell lines when 

transfection was carried out at 37 ˚C for 1.5 hours. Optimal cell density was 330 000 

cells/well seeded out, and optimal amount of transfection reagent was 30 µl. During 

optimization studies, the transfection efficiency did not increase even if we transfected up to 3 

hours. Additionally, a longer transfection period resulted in less viability, which was 

undesirable.   

3.2.4 Transfection procedure 

To achieve transient depletion of BIRC7 and RTEL1 in HCT116 and HT29, cells were seeded 

out in 6-well-plates (330 000 cells per well) and grown overnight in antibiotic-free media to 

give 40-50 % confluence. In one plate with six wells, two wells had 25 nM siControl, two 

wells had 25 nM siBIRC7, and the last two wells had 25 nM siRTEL1. The siRNAs were 

delivered into cells by the use of cationic lipids in Dharmafect transfection reagents 

(Dharmacon). Transfection efficiency was assessed by co-transfecting cells with fluorescein-

labeled double-stranded RNA oligomer (BLOCK-iT FITC fluorescent oligo, Invitrogen) in 

some of the siControl-wells. After 1.5 hours of transfection, the transfection efficiency was 

assessed using a fluorescence microscope.  

As a negative control, a plate of 6 untransfected wells was used, three treated with 5-

FU for 0, 24, and 48 hours, and three without 5-FU-treatment. Transfection experiments were 

done as two replicate experiments.   



38 

 

After transfection, the media were aspirated off, and 3 ml of complete medium were 

added to each well. Cells were then incubated for 24 hours.  

3.2.5 Transfected cells treated with 5-fluorouracil 

Cells were transfected and incubated for 24 hours. Half of the wells were treated with 5-FU 

for 0h, 2h, 4h, 8h, 24h, and 48 hours before harvesting. The other half of the wells in a plate 

functioned as untreated controls, and was harvested at the same time points. HCT116-cells 

were treated with 380 µM 5-FU, while HT29-cells were treated with 2.5 µM 5-FU. The 

difference in 5-FU concentrations used is due to the different levels of growth inhibition in 

each cell line in response to 5-FU. HCT116 tolerates higher doses of 5-FU compared to HT29 

before 50 % growth inhibition and apoptotic cell death can be achieved (32). Working 

concentrations of 5-FU were diluted from a 10 mM stock solution made of 13 mg 5-FU 

powder (Calbiochem, Merck Chemicals, Nottingham, UK) in 10 ml distilled deionized H2O 

(ddH2O). The solution was sterile filtered through a 0.22 µm filter before its addition to cell 

cultures.  

5-FU arrests cells in S-phase. For optimal drug effect, it was therefore important that 

cell cultures were in exponential phase of growth (log phase) before being treated with 5-FU.  

3.2.6 Harvesting of cells 

Media containging floating (dead) cells from each well were collected and transferred into 

tubes. Each well with its monolayer of cells was trypsinized with 1 ml trypsin containing 

EDTA (17-161) from Sigma for approximately 3-4 minutes while observing and swirling 

gently. The trypsin reaction was stopped by adding the same amount of complete medium, 

before pooling these cells with the floating cells. The serum stops the enzyme reaction. The 

tubes were centrifuged at 1000 rpm for 5 minutes, washed with 1 x PBS (phosphate buffered 

saline) and centrifuged again. 0.5 ml 1X PBS was added to resuspended cell pellets before 

cell counting.  

3.2.7 Cell counting 

We counted viable and dead cells using a trypan blue dye exclusion assay and an Invitrogen 

Countess automated cell counter. 10 µl trypan blue were added to 10 µl cell suspension and 

mixed carefully by pipetting slowly up and down. 10 µl of the mix was inserted into a 

disposable slide and injected into the Countess. By adjusting the focus, Countess counts 

viable cells as those cells that do not absorb the trypan blue dye due to their intact cell 
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membranes. Live and early apoptotic cells have intact plasma membranes and the ability to 

exclude trypan blue (57, 59, 162). Non-viable cells or late apoptotic cells absorb trypan blue 

because they have lost their membrane integrity. This is an exclusion test, but it does not 

exclude all non-viable cells. Early apoptotic cells are known to keep their cell membranes 

intact for a while, and these may still be detected as viable cells even though they are not 

(163).   

Cells were counted to see if there were enough cells for Western blotting and DNA 

flow cytometry. If there were not enough cells for both procedures, Western blotting was 

prioritized. Cells were fixed for flow cytometry only if the samples contained more than 2 

million cells each. 

3.2.8 Methodological considerations for transfection with siRNAs 

One disadvantage with the use of siRNAs is that the researcher has to know the target gene 

sequence he or she wants to knock down (114). Additionally, when using siRNAs in cancer 

therapy, genes sharing some homology with the target gene may also become silenced (164, 

165). These off-target effects can have consequences and severe side effects for the patient 

being treated (166). It can be avoided by choosing an unique or not very common sequence in 

the specific gene as target (165), or by chemically modifying nucleotides within the seed-

region (166). A modification of only a single nucleotide, especially further 3’ from the seed 

region in the guide strand of the target sequence, has been shown to be sufficient for avoiding 

the silencing of other than the target gene, without interfering with silencing of the target gene 

(166).  

We used a SMARTpool which consisted of four overlapping siRNAs. This is 

advantageous compared to using a single siRNA as it gives a higher rate of specificity and 

therefore also reduces off-target effects (167). 

At first, delivery of premade siRNAs into cells was a major obstacle. However, 

various methods were developed, some which give a good transfection rate, at least in 

adherent cell cultures (160, 161). These are seldom suitable for in vivo use however, so in 

vivo delivery has been the largest obstacle in development of siRNAs as drugs (168). 

Bumcrot et al. (2006) has reviewed several studies regarding delivery strategies in vivo, to 

reach a successful translation in clinic. Each of these techniques has different efficiencies and 

distinct advantages and disadvantages which should be considered. For instance, viral 
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delivery may not have much control over drug exposure, and may interfere with naturally 

occurring miRNA in vivo.  

We used lipid-based delivery in cell cultures which for the most part resulted in useful 

transfection efficiencies. However, in vivo this may have cytotoxic effects which limit the use 

in specific diseases (164).  

  

3.3 Cell cycle analyses by flow cytometry 

3.3.1 Fluorescence  

A photon of a certain energy level (and wavelength) reacts with a molecule in the specimen. 

This gives one of the electrons in the molecule more energy. A transition takes place and the 

electron reaches an excited state. After a few nanoseconds the opposite transition makes the 

electron return to its original energy state, and this means emission of a photon of lower 

energy and longer wavelength than the original photon absorbed. This photon emission itself 

is seen as light, fluorescence, of different wavelengths depending on the fluorochrome used. 

Molecular vibrations explain the energy change between the two photons, and the wavelength 

difference is called the Stokes shift. Fluorescence gives a much lower signal than forward 

scatter, and must be measured by the more sensitive photomultiplier tubes (52).  

Each fluorochrome has its specific excitation and emission wavelengths. It absorbs 

light at a certain wavelength, and emits light at a higher spectrum of wavelengths, but at a 

lower energy level.  

3.3.2 Preparation for DNA flow cytometry by Vindelov’s method 

5 ml cold ethanol was added to 0.5 ml cell suspension while vortexing, and fixed cells were 

stored at -20°C until flow cytometry analysis were done. We used Vindelov’s method for 

preparation of nuclei for flow cytometric DNA analyses. Vindelov’s method was originally 

used for unfixed cells, and gave a stable fluorescence stain for 3 hours (169). However, by 

fixing the cells we avoid dependence on this 3-hour window before analyzing the samples, as 

fixed cells can be stored for several weeks at -20 º C.  

By adding three solutions, A, B, and C, the cell membranes lyse, cytoplasm is stripped 

away, and we end up with a solution of isolated nuclei that are stained with the fluorochrome 

propidium iodide (PI). Solution A contains trypsin which lyses the cell membranes. Solution 

B contains ribonuclease A and trypsin inhibitor to stop the trypsin activity. Ribonuclease A is 
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an RNase enzyme that degrades double-stranded RNA which, like double-stranded DNA, will 

also be stained with PI and which could thus contribute to the fluorescence intensity signal, 

which is not desired. Solution C contains PI in addition to spermine that stabilizes the nuclear 

membrane. PI attaches to the dsDNA by intercalating between bases (169), and this results in 

a hundredfold increase in fluorescence (52). PI emits red fluorescent light at the wavelength 

> 620 nm after being excited by an argon ion laser with an excitation wavelength of 488 nm 

(170). The fluorescence decreases with time and even faster when exposed to daylight. By 

wrapping the test tubes in aluminum foil the fluorescence decrease is delayed or prevented. 

Shortly before analyses, the samples were filtered through a 30-45 micron nylon mesh filter to 

remove clumps and debris (169). 

3.3.3 The use of flow cytometry in cell cycle analyses 

We used a FACSCalibur laser flow cytometer (BD Biosciences, San Jose, CA) to measure 

cellular DNA content in cells from two different human colorectal cancer cell lines. Cellular 

DNA content is measured to reveal the distribution of cells within the major phases of the cell 

cycle: G1, S, and G2M. The FACSCalibur has two lasers, a helium-neon laser with an 

excitation wavelength of 633 nm and an argon ion laser with an excitation wavelength of 488 

nm. The latter is useful for exciting many fluorochromes, including PI. We stained isolated 

nuclei with PI to determine which cell-cycle-phase the cells were in. PI has two excitation 

peaks, at 305 and 535 nm, where the one at 535 nm can be excited by the blue-green argon 

laser (488nm), and can be detected with a > 610 nm long-pass filter (171, 172). PI as a 

fluorescent probe intercalates between base pairs of dsDNA and dsRNA, which increases the 

fluorescence 20-30-fold (173).  

We used fluorescence channel 3 (FL3) to collect the red fluorescence emitted by PI, 

and collected FL3 peak, area, and width signals from 10 000 cells. Doublets and aggregates 

were excluded using doublet discrimination on FL3-area and FL3-width cytograms.  

3.3.4 Principle of flow cytometry 

Flow cytometric analyses can determine the different percentages of cells in each cell-cycle-

phase by measuring the fluorescence intensity of isolated nuclei stained with PI. When a cell 

is in G0 or G1, the fluorescence intensity measured is lower than that of a cell in S- or G2M-

phase. The fluorescence intensity of a normal human cell in G1-phase is considered to 

correspond to 2N, which is a normal chromosome complement. When a cell is in S- or early 

G2/M-phase it has doubled its amount of DNA (4N) before splitting into two daughter cells, 
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making the fluorescence twice as intense. Doublet discrimination allows for the exclusion of 

doublets and aggregates of cells. These will be measured as events of larger size and with a 

more intense fluorescence by using pulse-width analysis, and are seen as events above the 

G2/M-peak (47, 174). Dead cells have lower forward scatter and higher side scatter than living 

cells (56). 

We used the ModFitLT 3.0 DNA modeling program (Verity Software House, 

Topsham, ME, USA) to perform cell cycle analyses on the samples run on the FACSCalibur. 

This program gives the percentages of cells in the different cell-cycle-phases as well as the 

coefficients of variation, mean intensities, and other relevant cell cycle-related information. 

3.3.5 Methodological considerations 

By fixing fresh cells suspended in PBS with 80-90 % alcohol and storing them at – 20 ºC we 

circumvented the fact that fresh unfixed cells prepared with Vindelov’s method should be 

analyzed in the flow cytometer within 3 hours of harvest. This was advantageous as it gave us 

time to run samples in the flow cytometry whenever we wanted. 

Events of larger size and more intense fluorescence than G2/M-phase are aggregates 

and doublets of cells (174). The use of doublet discrimination and proper gating is necessary 

to exclude these signals (175). If doublets are not excluded, they will contribute to an 

incorrect estimation of the percentage of G2-phase-cells.  

Use of flow cytometry for the analyses of various cellular phenotypes provides several 

advantages. It is a quick and easy way to measure thousands of cells in short time. It measures 

several features at once, like size and granularity. By marking cells with DNA-intercalating 

fluorochromes one can measure the number of cells in the different cell cycle-phases. It also 

separates dead cells from live cells, although misclassification of apoptotic cells is a common 

problem. Possible sources of error are wrong classification of cells, where cell debris can be 

seen as aneuploid cells, and clumping of cells as cells in S- or G2/M-phase.    

A marker of cell death by apoptosis in drug-treated cultured cells is the appearance of 

events with DNA stainability lower than the G0/G1-phase. Sherwood et al. (1995) found this 

and concluded that there are strong associations between drug-induced cell-cycle-arrest and 

the initiation of apoptosis. Chemotherapeutic agents inhibit DNA synthesis, which may lead 

to the preceding aberrant mitosis and the subsequent cell cycle stasis, causing apoptosis (176). 

This suggests that treatment with chemotherapy leads to apoptosis.  
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 As long as the apoptotic bodies retain their membrane integrity, these cells will be 

counted as viable (58). However, due to their decreased size and elevated granular content a 

histogram of fluorescence area versus fluorescence width will detect them as smaller sized 

cells with lesser fluorescence. There are several artifacts with low fluorescence which may be 

mistaken for apoptotic cells. These are cellular debris, artifacts (174, 175), bacterial 

contamination, clumps of chromosomes, and broken mitotic cells (56). In contrast, late 

apoptotic cells will differ in light scatter properties from that in viable and early apoptotic 

cells (55), and are thus more easily distinguished from other cells. Using the flow cytometer, 

identification of apoptotic cells is recommended to include cells with 10-20 % reduced DNA-

content compared to G1 cells. This will give a little lower value of apoptotic cells than what is 

correct, but it should be done to avoid miscounting particles with low DNA content as 

apoptotic cells.  

 

3.4 Western blotting 

3.4.1 Principles, procedure, and methodological considerations 

Western blotting or immunoblotting is a technique for blotting fragments of cell extracts from 

an electrophoresis gel to a membrane. These can be detected and visualized by specific 

labeled antibodies (44, 61). A complex mixture of extracted proteins must first be denatured 

by breaking all non-covalent bondings, and by reducing disulfide bridges, before loading into 

wells in an electrophoresis gel (61). Polyacrylamide gel electrophoresis (PAGE), which was 

used in this work, utilizes very thin gels for faster separation, faster staining, better staining 

efficiency, higher sensitivity, and more defined resulting bands. By using two different gels, a 

stacking gel for applying the samples, and a resolution gel for separation, one can avoid 

protein aggregation during application. The stacking gel has less acrylamide, larger pores and 

lower pH-value (6.8), while the resolution gel has more acrylamide, smaller pores and higher 

pH (8.8). In the stacking gel the proteins are separated according to their mobility, which 

depends on their charge. If one is looking for a protein of a specific length one must choose 

the percentage of the polyacrylamide gel carefully. Gels with higher percentage of 

polyacrylamide will have smaller pores, which makes them suitable for separating proteins of 

low molecular weight. Gels with lower percentage of polyacrylamide give larger pores and 

are suitable for separating proteins of high molecular weight (44). After size-fractioning of 

proteins in the polyacrylamide gel the proteins are transferred over to a membrane by 
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electroblotting. Bound to the membrane the proteins can be detected by antibodies against the 

proteins of interest and identified according to their size relative to molecular weight 

standards that are also loaded on the same gel with the samples of interest (61, 177). 

 We denatured the samples of interest using a Laemmli stock buffer, approximately 8 

ml, that consisted of 3 ml ddH2O mixed with 1 ml 0.5 M Tris-HCl (pH 6.8), 1.6 ml glycerol, 

1.6 ml 10 % sodium dodecyl sulphate (SDS), and 0.4 ml 0.5 % bromophenol blue (in water). 

5 % β-mercaptoethanol and 5 µl 200 mM protease inhibitor (PMSF, 

phenylmethanesulfonylfluoride) per ml Laemmli-buffer were added shortly before use. Cells 

suspended in PBS were diluted with Laemmli-buffer 1:3 (0.5 ml cell suspension + 1 ml 

Laemmli-buffer) in eppendorf tubes. The tubes were heated at 95 °C until the solution turned 

transparent (approximately 5-10 minutes). Samples were cooled down to room temperature 

before stored for later use at -20 °C. 

The use of SDS in the Laemmli buffer is important. It is an anionic detergent which 

gives the proteins a highly negative charge by converting native proteins into SDS-protein 

micelles. The SDS-protein complexes have a higher electrophoretic mobility than the proteins 

themselves. SDS solubilises proteins, unfolds and stretches them so they lose their secondary 

and tertiary structure, and their association with other molecules. To make the proteins unfold 

properly one has to use a reducing thiol agent like β-mercaptoethanol. This makes it possible 

to separate the proteins due to their molecular weight. Proteins treated with SDS bind dye 

more easily, and it increases the resolution so that sharp bands are visible. Another advantage 

is that SDS in the SDS-protein complex can be removed after blotting over to a membrane 

without eluting the protein (178). 

3.4.2 Total protein measurement in protein lysate samples  

We measured the total protein concentration in each sample using a reducing agent and 

detergent compatible protein assay (RC DC) from Bio-Rad. This is a colometric assay based 

on the well-documented Lowry assay from 1951 (179), but with a few modifications. Proteins 

may be measured in both reducing agents and detergents. The assay achieves linearity 

between protein concentration and absorbance at a range of 0.2-1.5 mg/ml. Absorbance is the 

ratio measurement of the steadily decreased amount of light as it is transmitted through a 

material (in this case proteins). As absorbance does not have true units of measurement, it is 

called “Absorbance Units” (AU) (180).   
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The method’s principle consists of two parts. The first is the Biuret test for detecting 

the presence of peptide bonds in the solution (RC reagents I and II). The proteins’ peptide 

bonds and the copper ions in an alkaline solution results in a blue-violet colored complex 

(179, 181), due to an alkaline copper tartrate solution in the RC DC-reagent A. The second 

part is to add a Folin reagent, which is a mixture of phosphotungstic acid and 

phosphomolybdic acid (in RC DC reagent B). The copper-treated proteins catalyze an 

oxidation of aromatic acids. The reduced Folin reagent produces a blue color with an 

absorbance spectrum of 405-750 nm, which has its maximum color development (90 %) after 

15 minutes. Absorbance is usually measured at 750 nm. The samples can still be measured 

after 1 hour, since the reduction of color is only 5 %, or after 2 hours with 10 % color change 

(179, 181).  

We used the microfuge tube assay protocol and transferred the samples to a 96 well 

microtiter plate (Bio-Rad) during the last incubation. A standard set of locations of blanks, 

standards and samples, each applied in triplicates, were used. Blanks consisted of only buffer.   

A cell suspension diluted 1:3 with Laemmli buffer including β-mercaptoethanol and 

PMSF (phenylmethanesulfonylfluoride) constitutes a protein lysate, in which protein 

concentration can be measured. 25 µl standards and samples were pipetted in each microfuge 

tube in three parallels. Then we added 125 µl RC reagent I into each tube, followed by 

vortexing and 1 minute incubation at room temperature. 125 µl reagent RC II were added and 

followed by vortexing, and subsequent centrifugation at 1500 G for 4 minutes. We discarded 

the supernatant and let the remaining fluid drain off to a tissue paper. 127 µl reagent working 

solution A’ (20 µl reagent S per 1 ml reagent A) was added. After vortexing, tubes were 

incubated for 5 minutes at room temperature until the precipitates were completely dissolved. 

A short vortexing was done before 1 ml reagent B was added (all reagents from Bio-Rad), and 

the tubes were vortexed and incubated for 15 minutes at room temperature. Then the blanks, 

standards and samples were transferred into a 96 well micro titerplate. Samples were 

measured by a Sunrise photometer (Tecan) for microtiter plates. A standard curve based on 

the standards, to ensure approximately linearity between measured absorbance and protein 

concentration, was made by Magellan software (Tecan).  

3.4.3 Preparation of resolving gel and stacking gel 

For gel preparation, disposable Criterion cassettes from BIO-RAD were used. Each 12 % 

resolving gel was made of 6 ml 30 % acrylamide/bis, 3.75 ml 1.5 M Tris-HCl (pH 8.8), 150 
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µl 10 % SDS, 5.03 ml ddH2O water, 7.5 µl TEMED (Tetramethylethylenediamine), and 7.5 

µl freshly made 10 % ammonium persulfate (APS). Each 4 % stacking gel was made of 1.98 

ml 30 % acrylamide/bis, 3.78 ml 0.5 M Tris-HCl (pH 6.8), 150 µl 10 % SDS, 9 ml ddH2O, 15 

µl TEMED, and 75 µl 10 % APS. The stacking gel solution was poured into the cassette 

nearest the upturned side of the comb, while holding the comb in a 10 % angle. When all teeth 

of the comb were approximately 50 % covered, the comb was aligned properly. 

Polymerization of each gel lasted 45-60 minutes. 

3.4.4 Gel-electrophoresis: 

For gel electrophoresis we used a Criterion cell from BIO-RAD. The gel cassettes were 

placed in the tank, and the tank was filled with running buffer, also between the cassettes, and 

on top of cassettes. Running buffer was made from a stock solution from BIO-RAD with 10x 

Tris/Glycine/SDS buffer (161-0732), and diluted to 1x 15 µg proteins in prepared samples 

were loaded slowly into the wells using a pipette, the volume ranging from 5 to 30 µl. In some 

runs cultures from 4 hour time point were left out to match samples to the number of wells. 5 

µl Precision Plus Protein Standards (BIO-RAD) was also used. Gels were run at constant 200 

V for 1 hour.  

3.4.5 Electrophoretic blotting and antibodies used 

The gel was covered by a polyvinylidine fluoride membrane (PVDF-membrane), which was 

pre-soaked in methanol, ddH2O, and transfer buffer. Porous pads and filter papers were used 

as the outer layers in the blotter cassette. A Criterion blotting chamber (BIO-RAD) was filled 

with transfer buffer, and the closed cassettes were loaded into the tank, red side towards red 

electrode (anode). The transferbuffer was a Towbin buffer with 20 % methanol, 25 mM Tris, 

and 192 mM glycine. The blotting lasted for 60 minutes with constant 100 V as power.   

The addition of electricity made the negatively charged proteins in the gel wander 

towards the positive cathode, which is where the membrane is. The electrical field is the 

driving force to eluate the proteins from the gel and over to the membrane. Once proteins are 

on the membrane, the membrane can be stored for later use, and proteins of one blot can be 

applied to multiple analyses (182).  

After completing the blotting we blocked the membranes in a blocking solution 

containing 5 % non-fat dry milk in tween tris-buffered saline (TTBS) for 60 minutes. This 

was done to prevent non-specific staining from macromolecular substances with free binding 

sites which do not take part in the visualization reaction, before adding labeled, specific 



47 

 

antibodies (178). The blocking was followed by wash with TTBS. TTBS was made by 

diluting 10x TBS (tris buffered saline) stock solution containing 20 mM Tris, 500 mM NaCl 

and pH adjusted to 7.5 (BIO-RAD), to 1x TBS, and adding 450 µl tween-20 to 900 ml 

1xTBS.   

Antibodies used were directed towards proteins involved in the regulation of 

proliferation and apoptosis, as we wanted to assess the effect of BIRC7- and RTEL1-

knockdowns on proliferation and apoptosis induction, in both untreated and 5-FU-treated 

cultures. A not uncommon problem in Western blotting (and other immunological detection 

methods) is the specificity of antibodies used to detect blotted proteins. The same antibody 

produced by different manufacturers may give different results. Most of the antibodies used in 

this work were previously tested and compared with similar antibodies from several 

manufacturers. This allowed us to choose the antibody with best specificity. BIRC7- and 

RTEL1-antibodies were the new antibodies that were tested in this work. Four antibodies 

against BIRC7 (from Santa Cruz, Abcam, Imgenex, Lifespan BioSciences, and GenWay) 

were tested, and three different antibodies against RTEL1 (Santa Cruz, Abcam, LifeSpan 

Biosciences) were tested.  

All antibodies were diluted from stock to 2 μg/ml in sterile filtered TTBS added 5 % 

bovine serum albumin (BSA), 0.1 % Tween-20, and 0.05 % Na-Azide (Upstate cat*06-570). 

As a loading-control we used mouse monoclonal anti-actin (C-2, sc-8432, Santa Cruz 

Biotechnology). 

We used the following antibodies to detect the proliferation-related proteins listed in 

this table: 

 

Primary antibody Supplier Size(kDa) Host Company 

Anti-phospho-histone H3 17 kDa Rabbit, polyclonal IgG Upstate Cell Signaling 

solutions 

Anti-phospho-histone 

H2AX 

15 kDa Mouse, monoclonal IgG Upstate Cell Signaling 

solutions  

Cyclin D1 36 kDa Mouse, monoclonal IgG Calbiochem 

RTEL1 152 kDa   

 

Table 1: Overview of antibodies used to detect proliferation. 

 

 

Antibodies towards actin (44 kDa, Mouse, monoclonal IgG, Santa Cruz) were used to ensure 

even loading of samples, since this protein is expressed in all cell types. 
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We used the following antibodies to detect the apoptosis-related proteins listed in this table: 

 

Primary antibody Supplier Size (kDa) Host Company 

Cleaved PARP (Asp214) 89 kDa Rabbit, polyclonal IgG Cell Signaling 

Technology 

BIRC7/LIVIN 39 kDa (α), 37 kDa (β) Mouse, monoclonal IgG GenWay 

TP53 53 kDa Mouse, monoclonal IgG Calbiochem 

 

Table 2: Overview of antibodies used to detect cell death.  

 

3.4.6 Detection and color development 

Monoclonal antibodies are so specific that they attach to only one epitope on the target. 

Polyclonal antibodies are less specific and may attach to several epitopes. This may give a 

higher background, seen as a darker shade on the membranes after development.   

Incubation with primary antibodies lasted one hour or one night in a cool room on a 

lab rocker. The secondary antibodies were biotinylated anti-mouse IgG (H and L, made in 

horse) or biotinylated anti-rabbit (made in goat) (Vector Laboratories, Inc. Burlingame, CA, 

94010, USA), and incubation lasted one hour. The third solution contained a streptavidin-

biotinylated alkaline phosphatase complex. Subsequent of all incubations membranes were 

washed two or three times with TTBS, before color development.    

Development of color was performed using NBT/BCIP ready-to-use tablets (Nitro 

blue tetrazolium chloride/5-Bromo-4-chloro-3-indolyl phosphate, toludine salt) (Roche). 

Finished solution, 1 tablet resolved in 10 ml ddH2O, gave a concentration of 0.4 mg/ml NBT, 

0.19 mg/ml BCIP, 100 mM tris buffer, and 50 mM MgSO4 (pH 9.5). 

 BCIP is the substrate of alkaline phosphatase. Alkaline phosphatase dephosphorylates 

BCIP. Then NBT can oxidize BCIP, which gives a dark blue-indigo color. Then NBT itself is 

reduced to a dark blue precipitating dye, which intensifies the color reaction and sensitizes the 

detection.  

Membranes were scanned and analyzed by UN-SCAN-IT-Gel Analysis Software to 

determine the density of the electrophoresis bands.    
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3.5 Fluorescence in situ hybridization  

3.5.1 Background 

Fluorescence in situ hybridization (FISH) can be used to detect and visualize certain genomic 

sequences (183) which are associated with human disease, for example an amplified gene in 

tumor diagnostics (183, 184). FISH can also be used to examine ploidy of cells, for example, 

to detect aneuploidy in specific chromosomes in tumor cells (47).  

3.5.2 Principle 

The FISH technique includes several steps. It is performed by heating the samples, in our case 

cytospins made from trypsinized cell cultures, at 80 °C so that the DNA becomes denatured 

and single-stranded. Samples are then ready to be hybridized to a fluorescence labeled probe. 

The probe is a conjugated nucleotide substrate uniquely complementary to the specific DNA 

sequence of interest. This is the time when the probe attaches to its complementary single 

stranded DNA (183). Hybridization is also called renaturation because it involves re-forming 

of complementary DNA strands, in this case including DNA strand and probe. Unbound 

probe is washed away in warm and stringent solutions, which can cause the fixed cells on the 

slides to fall off, but this can be avoided by using superfrost or polysine-l-lysine coated 

microscope slides (185). Counterstaining, mounting, and application of coverglass are then 

done. Antifade mounting media includes the dye DAPI (4’,6-diamidino-2-phenylindole), 

which stains DNA uniquely and only in AT-rich areas. DAPI is used to facilitate the search 

for cells in the fluorescence microscope because it stains the cells strongly blue (with UV 

excitation), making them easy to spot. Signals from specific FISH-probes bound to 

complementary DNA sequences can be seen as small glowing spots, sometimes surrounded 

by a cloud of unspecific staining (183, 185). 

3.5.3 Cytospin: Preparation for FISH 

Cells in culture were trypsinized and counted using the Invitrogen Countess automated cell 

counter, before applying approximately 100 µl fluid containing approximately 100 000 cells 

in single disposable cytospin funnel (Shandon Cytospin 2). This gives normally a higher 

density of cells, which is an advantage when counting cells in FISH. Cytocentrifugation 

transferred cells from the funnel on to superfrost slides during a 3-minute centrifugation at 

800 rpm. Slides were air dried overnight and were fixed in Carnoy’s fixation solution 
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(methanol and acetic acid 3:1) for 20 minutes, packed in aluminum foil, and frozen at minus 

20 °C until use.  

3.5.4 FISH procedure 

The slides were post-fixed in 1 % formaldehyde mixed with PBS (1:4) at 4 °C for 12 minutes, 

followed by wash in PBS (pH 7,2) twice, 5 minutes each. A quick dip in ddH2O was done 

before dehydration in 70 %, 85 %, and 100 % ethanol. Slides were then air dried. 

Hybridization solutions were prepared and consisted of 1 µl FISH-probe, 2 µl purified 

water, and 7 µl hybridization buffer per sample. The probe used was Vysis Centromere 

Enumerisation Probe (CEP) 20 Spectrum orange (Abbott). It hybridizes to the centromere of 

human chromosome 20, more specifically to the 20p11.1-q11.1, locus D20Z1. This probe 

fluoresces moderately to brightly in both interphase nuclei (our slides) and on metaphase 

chromosomes (Abbott). The probe may reveal copy number change or amplification in this 

area by showing more than two orange signals within each cell (normal copy number).  

We applied 10 µL hybridization solution to the hybridization area on the slides, 

covered it with a 22x22 mm coverglass, and sealed the edges with Fixogum. The slides were 

placed on an 80 °C slide warmer for 10 minutes to denature both the target slides and the 

probe simultaneously. Then we incubated the slides in a pre-warmed damp hybridization box 

at 37 °C overnight (12-16 hours).  

Fixogum was removed together with the cover glass, and we immersed the slides in 

the first wash solution (50 % formamide, 50 % methanol) kept in a coplin jar in a 43°C warm 

water bath. After 15 minutes, we washed the slides in 43ºC 2xSSC (Sodium Standard Citrate) 

twice, 7 minutes each. The last wash with 2xSSC was done at room temperature. After a 

quick dip in ddH2O we dehydrated the slides with 70 %, 85 %, and 100 % ethanol, 2 minutes 

in each solution. Air dried slides were mounted with 10 µl Anti-Fade with DAPI, and a 22x22 

mm coverglass was applied. We counted the numbers of signals per cell for 300 cells for each 

cell line.  

3.5.5 Methodological considerations 

One of the disadvantages of FISH is the possibility for false negative results despite the 

presence of a small genetic aberration. FISH is not sensitive enough to detect small genetic 

changes like a mutation in one single gene (186), because the highest resolution obtained is 

down to a target size of 10-50 kb (184). A little better resolution is obtained using interphase 



51 

 

nuclei FISH on chromosomes since the interphase provides naturally extended chromosomes 

(61). We used interphase nuclear FISH, which gives us the possibility to assess simultaneous 

phenotypes (187). Despite this, FISH can be used to screen for larger chromosomal 

aberrations (187), which can be detected by techniques with higher resolution.  

 Sometimes signals from probes may be hard to spot as they may be surrounded by a 

cloud of unspecific staining. The unspecific staining is unbound probe which did not get 

washed off during the wash procedure. It might be possible to increase the length of the wash 

procedure, however, as this is done in warm and stringent solutions, fixed cells may fall off 

the slide, leading to a low density of cells. 

 

3.6 Statistical analyses 

All data plots and statistical analyses were done using GraphPad Prizm 4.03 software 

(GraphPad Software, Inc., San Diego, CA, USA). One-way or two-way ANOVA with non-

paired Bonferroni post-testing was used to calculate significant differences between means for 

greater than two columns of data. Differences were considered to be statistically significant 

when the (two-tailed) P values were less than 0.05 (95 % confidence interval).  

Bands from Western were quantified with UN-SCAN-IT Gel Automated Digitizing 

System, version 5.1 (Silk Scientific Inc., Utah, USA). The software calculates the total 

number of pixels in each band as a measure of the band density for the protein detected. 

Adobe Photoshop CS2 version 9.0 was used for picture processing (conversion to grayscale, 

adjusting contrast, and cropping).  
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4 Results 

4.1 Fluorescence in Situ Hybridization (FISH) 

FISH was performed to determine the copy number of chromosome 20 in both the HCT116 

and the HT29 human colorectal cancer cell lines. We used a centromere 20 probe from Abbott 

(Centromere Enumerisation Probe (CEP) 20 Spectrum Orange that hybridizes to the 20p11.1-

q11.1, locus D20Z1). Normal cells have two copies of each chromosome (copy number of 2). 

A copy number greater than two or less than two for one or more chromosomes indicates a 

genomic amplification (gain) or deletion, respectively. Both cell lines were hybridized with 

the centromere 20 probe in order to determine whether chromosome 20 was amplified. 

Hybridized FISH slides were examined using an Axioplan 2 imaging fluorescence microscope 

from Zeiss with ISIS software from Metasystems.  

 

Figure 9: Overview of the results from spot counting in 300 cells and centromere copy number for cell lines 

HCT116 and HT29. A: HCT116-cells had a median centromere 20 copy number of 2 per cell. This is seen in the 

photo at the top as 2 spots per cell for the most part. B: HT29 had a median centromere 20 copy number of 4 per 

cell. The photo at the bottom shows cells with 3, 4, and 5 spots.  

 

Appropriate excitation and emission filters for Spectrum Orange were used to excite the 

fluorochrome and to measure its fluorescence intensity. Four color images were captured, as 

well as one focusing stack (horizontal ‘slices’ of a cell or group of cells in order to increase 

spot resolution). 300 cells per slide were counted and categorized according to the number of 

A 

B 
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Spectrum Orange fluorescence signals, from 0 to 8 spots, representing the number of 

chromosome 20 centromeres. The results show that the HCT116 cell line has 2 copies of 

chromosome 20 (median centromere copy number of 2) (figure 9A), whereas the HT29 cell 

line has 4 copies of chromosome 20 (median centromere copy number of 4) (figure 9B).  

 

4.2 Transfection efficiencies 

Cells transfected with siRNAs were also transfected with a FITC-conjugated BLOCK-iT 

oligo (fluoresces green) to assess transfection efficiency. Cell cultures following transfection 

were examined in an inverted fluorescence microscope. The microscope’s camera was not 

working at the time of the experiments, thus no photos of the transfected cells with Block iT-

FITC could be taken. The transfection efficiency was estimated by manually counting 100 

cells and calculating the number of transfected (green) cells relative to the total number of 

counted cells. This gave a percentage of transfection efficiency. The transfection efficiency 

was calculated to be 50-60 % for HCT116-cells and 80-90 % for HT29-cells.  

Since transfection efficiency was never 100 % in either cell line, untransfected cells 

were thus present in all samples, and can have affected Western blotting results. For example, 

if the RNAi transfection efficiency is 50 %, the protein should be absent in the transfected 

cells and present in the untransfected cells. This could lead to a detectable albeit weak protein 

band for the protein of interest despite knockdown, as the protein would still be detectable in 

the untransfected cells.   

Samples at each time point demonstrated similar actin band densities, demonstrating 

more or less similar protein loading (data not shown). 

 

4.3 Assessment of BIRC7 and RTEL1 knockdown 

To assess knockdown of BIRC7 we tried four different antibodies against BIRC7 (from Santa 

Cruz, Abcam, Imgenex, Lifespan BioSciences, and GenWay), but only two of them, the ones 

from Genway and Imgenex, worked. The two antibodies showed similar blot data at 24 and 

48 hour time points. However, the antibody from GenWay was used in this work as it 

produced better resolution of the BIRC7 isoforms. We were able to confirm knockdown in the 

HT29 cell line via Western blotting, as well as by studying effects on cell cycle progression 

and cell viability.  
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 We tested three different antibodies against RTEL1 (Santa Cruz, Abcam, LifeSpan 

Biosciences) without much success in terms of identifying a clear band at the reported 

molecular weight. A study from 2008 was also unable to detect RTEL1 with antibodies, 

because in whole cells and in nuclear lysates RTEL1 was not sufficiently present (153). This 

may explain why we were unable to detect RTEL1.  

The lack of a suitable antibody against RTEL1 made us unable to confirm knockdown of 

RTEL1 by Western blotting. We thus focused on investigating the differences in cell cycle 

effects and cell viability between knockdown and control-cultures. RT-PCR to assess mRNA 

levels after knockdown was not done for either protein.  

 

4.4 Effects of BIRC7-knockdown and 5-fluorouracil (5-FU)-treatment in 

HCT116 and HT29 cell cultures 

4.4.1  Cell viability and cell death 

HCT116 

Viable cell numbers in untreated cell cultures (siBIRC7 versus siControl) 

No significant differences in cell numbers were seen at any time point in untreated BIRC7-

cultures relative to untreated siControl-cultures (p > 0.05 for all time points). At 24 hours 

untreated siBIRC7-cultures tended to have higher numbers of viable cells than untreated 

siControl-cultures. At 48 hours they tended to have lower numbers of viable cells (figure 

10A).  

Viable cell numbers in 5-FU-treated cell cultures (siBIRC7 versus siControl) 

No significant differences in cell numbers were seen at any time point in 5-FU-treated 

siBIRC7-cultures relative to treated siControl-cultures (p > 0.05 for all time points). At 24 and 

48 hours, 5-FU-treated siBIRC7-cultures tended to have higher numbers of viable cells than 

5-FU-treated siControl-cultures (figure 10A).  

Comparison of viable cell numbers in treated versus untreated cultures  

At 2, 4, and 8 hours no significant differences in cell numbers were seen between treated and 

untreated cultures. At 24 hours large standard error bars made it difficult to determine 

possible differences between treated and untreated cultures. At 48 hours, treated cultures had 

lower numbers of viable cells compared to untreated cultures. The numbers of dead cells 
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(measured by trypan blue exclusion assay) were highest and had similar numbers in all treated 

cultures at this time point (figure 10A).  

 

HT29 

Viable cell numbers in untreated cell cultures (siBIRC7 versus siControl) 

No significant differences in cell numbers were seen at 2, 8 and 24 hours in untreated BIRC7-

cultures relative to untreated siControl-cultures. At 4 hours untreated siBIRC7-cultures had a 

significantly greater number of viable cells compared to untreated siControl-cultures 

(p < 0.05). At 48 hours untreated siBIRC7-cultures had significantly lower numbers of viable 

cells compared to untreated siControl-cultures (p < 0.05) (figure 10B).  

Viable cell numbers in 5-FU- treated cell cultures (siBIRC7 versus siControl) 

No significant differences in cell numbers were seen at 2 or 8 hours in treated siBIRC7-

cultures relative to treated siControl-cultures. At 4 hours treated siBIRC7-cultures had a 

greater number of viable cells compared to treated siControl-cultures, but this difference was 

not significant (p > 0.05). At 24 and 48 hours there were higher numbers of viable cells in 

siBIRC7-cultures compared to siControl-cultures, but these differences were not significant 

(p > 0.05) (figure 10B).  

Comparison of viable cell numbers in treated versus untreated cultures  

At 2 and 8 hours no significant differences in cell numbers were seen between treated and 

untreated cultures. At 4 hours, siBIRC7-cultures (treated and untreated) tended to have higher 

numbers of viable cells than siControl-cultures (treated and untreated). At 24 and 48 hours, 

there were no clear patterns for treated cultures compared to untreated cultures. At 4 hours 

there were higher numbers of dead cells in untreated compared to treated cultures, but at 48 

hours there were most dead cells in treated cultures (figure 10B). 

 

 



56 

 

 
 

Figure10: Total cell counts after BIRC7 knockdown at all time points. Colored bars represent viable cells and 

black bars represent dead cells. A: HCT116 B: HT29 
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4.4.2 Cell cycle effects 

HCT116 

Cell cycle effects in untreated cultures (siBIRC7 versus siControl) 

At 2 hours the number of cells in G1-phases tended to be slightly lower and the number of 

cells in S-phases slightly higher in siBIRC7 compared to siControl-cultures. At 4 hours we 

observed an increase in the size of the G1-phase and decreases in the sizes of the S and G2/M 

fractions. Confluence effects were seen at 24 hours in both, as manifested by increased G1-

phases and decreased S- and G2/M-phases compared to earlier time points (figure 12A, and IA 

and C in appendix). We did not have replicate experiments for HCT116 at 2, 4 or 8 hours, 

only for 24 hours, thus we can only report cell cycle trends at time points prior to 24 hours. 

Cell cycle effects in 5-FU-treated cultures (siBIRC7 versus siControl) 

At 2, 4 and 24 hours, treated siBIRC7-cultures tended to have higher S-phases and lower G1-

phases compared to treated siControl-cultures. This difference was most pronounced at 24 

hours (figure 12A, and IB and D in appendix), but was not significant for either G1 or S at 24 

hours (p > 0.05).  

Comparison of cell cycle effects in untreated versus treated samples 

At 8 hours untreated and treated cultures had similarly-sized G1- and S-phases, but G2/M-

phases were lower in treated cultures. At 24 hours S-phase-arrests were indicated in treated 

siBIRC7 and siControl-cultures relative to their respective untreated cultures (figure 12A, and 

IA-D in appendix). The difference between treated versus untreated siBIRC7 was significant 

(p < 0.05), but this was not the case for treated versus untreated siControls (p > 0.05).  

 

HT29 

Cell cycle effects in untreated cultures (siBIRC7 versus siControl) 

No significant differences were seen for any cell-cycle-phase between untreated siBIRC7 and 

untreated siControl-cultures at any time point (p > 0.05). However, trends were observed at 

the different time points. At 2 hours the G1-phase was larger and the S-phase smaller in 

untreated siBIRC7-cultures compared to untreated siControl-cultures. At 8 hours a decreased 

G1-phase and an increased S-phase were observed in untreated siBIRC7-cultures relative to 

untreated siControl-cultures. Confluence effects were seen at 24 and 48 hours in both cultures, 

manifested by increased G1-phases and decreased S- and G2/M-phases compared to earlier 

time points (figure 11A, 12B, and IIA and C in appendix). 
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Cell cycle effects in treated cultures (siBIRC7 versus siControl) 

There were no significant differences for any cell-cycle-phase between treated siBIRC7 and 

treated siControl-cultures at any time point. The pattern of response to 5-FU-treatment was 

similar (figure 11B, 12B, and IIB and D in appendix).  

Comparison of cell cycle effects in untreated versus treated samples 

At 24 hours significant differences in the sizes of S-phase fractions were seen between treated 

and untreated cultures for both siBIRC7 and siControl-cultures (p < 0.05). This was also seen 

at 48 hours for siControl (p < 0.05), but not for siBIRC7 (p > 0.05). There were significant 

differences in the sizes of G1-phase fractions between treated and untreated siBIRC7 as well 

as between treated and untreated siControl-cultures at 24 and 48 hours (p < 0.01). This was 

caused by confluence effects in the untreated cultures, in combination with 5-FU-treatment 

effects in the treated cultures (figure 11, 12B, and II in appendix).  

 

 

 

 

Figure 11: Representative cell cycle histograms for BIRC7-cultures at 24 hour time point generated from DNA 

flow cytometry data showing the fractions of HT29-cells in the different cell-cycle- phases and the gating used. 

Untreated siControl cells (figure IIA in appendix) and untreated siBIRC7cells (figure 11A, and IIC in appendix) 

had similar distributions with a tall peak of G1, and very small fractions of cells in S-phase and G2/M-phase. The 

5-FU-treated HT29-cells, siControl (figure IIB in appendix) and siBIRC7 (figure 11B, and IID in appenndix), 

both had smaller G1-peaks and larger fractions of cells in S-phase. 

 

C A B 
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Figure 12: Cell cycle effects after BIRC7 knockdown points. A: HCT116 B: HT29. 
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4.4.3 Expression of apoptosis and proliferation biomarker proteins after BIRC7 

knockdown and drug treatment in HCT116  

BIRC7 was not expressed at early time points, or in control cultures, and seemed to be 

induced first at the 24 hour time point at similar levels in all cultures regardless of treatment 

or knockdown status (figure 13 and 14). Only the β isoform was detected. At 48 hours BIRC7 

bands were stronger in untreated BIRC7- and control-transfected cultures, but missing in 

treated BIRC7- and control-transfected cultures. We are not able to verify or disprove 

knockdown of BIRC7 in HCT116-cultures in the experimental time window studied.  

 

 

Figure 13: Effect of BIRC7-knockdown and 5-FU-treatment in HCT116 cell cultures assessed using an antibody 

against BIRC7 (GenWay). Protein bands were undetectable at 2, 4, and 8 hours, but BIRC7 β was moderately to 

strongly detectable at 24, and 48 hours, except in BIRC7-cultures at 48 hours, where they were lacking.  

 

 

 

Figure 14: Expression of isoform β of BIRC7 after BIRC7 knockdown and 5-FU-treatment in the HCT116 cell 

line, as shown by band density distributions. BIRC7 expression was decreased in treated cultures compared to 

untreated at 48 hours. The red line indicates the cutoff between blot background and protein signal. There was a 

fair amount of background on the BIRC7 blots despite that the BIRC7 antibody was a monoclonal antibody.  
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TP53 was not detected at the 2 hour time point in any cultures. TP53 was strongly detected in 

treated cultures whereas expression was negligible to weak in untreated cultures at 8, 24 and 

48 hours. The levels of TP53 induction were similar in treated siBIRC7-cultures and 

siControl-cultures (figure V and X in appendix). 

 Cleaved PARP was weakly expressed prior to 8 hours, after which its expression 

increased slightly, especially in the treated cultures. At 24 and 48 hours, cleaved PARP levels 

were strongly detected in treated cultures compared to untreated. At 24 hours treated 

siBIRC7-cultures expressed less cleaved PARP compared to siControl-cultures (figure V and 

X in appendix). 

Phospho-H3 was weakly expressed at the 2 hour time point. The first differences in 

treated versus untreated cultures were seen at 4 hours. This continued at 24 and 48 hours 

where the difference in expression was most pronounced at 24 hours. Mitotic fractions were 

higher in untreated cultures compared to treated. At 8 hours however, treated siBIRC7-

cultures expressed phospho-H3 strongly compared to the treated siControl culture (figure V 

and IX in appendix). 

CCND1 levels at 2, 4, and 8 hours were similar in treated versus untreated cultures. At 

24 and 48 hours treated cultures had reduced CCND1 levels compared to untreated cultures, 

indicating reduced proliferation in response to 5-FU-treatment (figure V and IX in appendix). 

 Phospho-H2AX was weakly expressed at 2 and 8 hour time point. In untreated 

cultures at 24 and 48 hours it seemed increased compared to treated cultures, and also more 

expressed in control-cultures than in siBIRC7-cultures in both treated and untreated cultures 

(figure V and X in appendix).  

4.4.4 Expression of apoptosis and proliferation biomarker proteins after BIRC7 

knockdown and drug treatment in HT29  

BIRC7 was constitutively expressed from the experimental start point in HT29-cultures 

(figure 15 and 16) in contrast to HCT116-cultures (no expression), and both isoforms (α and 

β) were detected. This is indicative of overexpression of BIRC7 in HT29-cells, taking into 

consideration equal loading of protein samples for both cell lines during Western blotting.  

The β isoform was expressed more or less strongly at all time points, except in BIRC7 

treated and untreated cultures at 8 and 24 hours where expression was considerably less, 

which indicates knockdown. The weak expression seen at these time points is most likely due 

to the presence of untransfected cells which expressed BIRC7. Isoform α was expressed at 

lower levels than β at all time points. It was completely lacking at 4 hours in all cultures, and 
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the expression was also low at 48 hours. At 8 and 24 hours the expression of α was slightly 

reduced in treated and untreated BIRC7-cultures compared to their control cultures, which 

indicates knockdown. 

 

 

 

Figure 15: Effect of BIRC7-knockdown and 5-FU-treatment in HT29 cell cultures assessed with an antibody 

against BIRC7 (GenWay). Protein bands of BIRC β show effects at 2, 4, 8, 24, and 48 hour time points, while 

BIRC7 α is expressed at lower levels at all time points. 

 

 

 
 

Figure 16: Expression of the two isoforms of BIRC7 (α and β) after BIRC7 knockdown and 5-FU-treatment in 

the HT29 cell line, as shown by band density distribution. The red line indicates the cutoff between blot 

background and protein signal. There was a fair amount of background on the BIRC7 blots despite that the 

BIRC7 antibody was a monoclonal antibody.  
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HT29 8 hours: 

S - 

pH3 ↓ 

CCND1 ↑ 

Viable cells ↑ 

Cleaved PARP ↓ 

pH2AX ↑ 

BIRC7: 
  

Untreated   

 

Treated 

Treated 

versus 

untreated 

α - ↑ ↓ 

β ↓ ↓ ↓ 

 

Cleaved PARP levels at the 2-hour time point were higher in untreated and treated siBIRC7-

cultures compared to corresponding control-transfected cultures. At 24 hours cleaved PARP 

levels were lowest in treated siBIRC7-cultures compared to untreated siBIRC7-cultures, but 

also compared to corresponding siControl-cultures. At 48 hours, levels of cleaved PARP were 

similarly elevated for both siBIRC7- and siControl-cultures, regardless of treatment status 

(figure VI and XII in appendix). 

Phospho-H3 levels were higher in treated siBIRC7-cultures compared to siControl-

cultures at 2 hours. Phospho-H3 levels were similar in treated cultures at the 4 hour time 

point, while in untreated cultures siBIRC7 had lower level than its untreated corresponding 

control cultures. At 8 and 24 hours there was a decrease in the mitotic fraction in treated 

cultures compared to untreated cultures. Lowest phospho-H3 levels were seen in treated 

siBIRC7-cultures at 24 and 48 hours (figure VI and XI in appendix).  

Levels of CCND1 were mostly similar in both treated and untreated siBIRC7 and 

siControl-cultures at 2, 8 and 24 hours. At 48 hours CCND1 levels were similar in treated and 

untreated cultures, except that the expression levels were lower than at all the other time 

points (figure VI and XI in appendix). 

Phospho-H2AX showed no specific pattern of expression at 2 and 8 hours. At 24 and 

48 hours treated cultures expressed more phospho-H2AX than untreated cultures, indicating 

DNA damage in the treated cultures. Treated siBIRC7-cultures had slightly lower phospho-

H2AX levels than siControl-cultures at 48 hours, indicating less DNA damage in these 

cultures (figure VI and XII in appendix). 

4.4.5 Summary of phenotypes after BIRC7 knockdown and drug treatment in HT29 

 8 hour time point 

At 8 hours the number of viable cells was increased in 

treated cultures, and together with increased CCND1 

expression indicated increased proliferation. Increased 

phospho-H2AX levels indicate increased levels of 

DNA damage. The fraction of cells in S-phase was 

unaffected. 

 When untreated siBIRC7-cultures were 

compared to untreated siControl-cultures the 

expression of isoform α was unchanged, while the 

expression of isoform β was reduced. Drug-treated 
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HT29 48 hours: 

S ↑ 

pH3 ↓ 

CCND1 ↓ 

Viable cells ↑ 

Cleaved PARP - 

pH2AX ↓ 

BIRC7: 
  

Untreated   

 

Treated 

Treated 

versus 

untreated 

α ↓ ↓ ↓ 

β ↓ ↓ ↓ 

 

HT29 24 hours: 

S ↑  
pH3 ↓ 

CCND1 ↑ 

Viable cells ↓ 

Cleaved PARP ↓ 

pH2AX ↑ 

BIRC7: 
  

Untreated   

 

Treated 

Treated 

versus 

untreated 

α ↓ ↓ ↓ 

β ↓ ↓ ↑ 

 

BIRC7-cultures were characterized by an increased α, and a decreased β when compared to 

treated control-transfected cultures. When treated cultures were compared to untreated 

cultures, both isoforms were reduced.  

 24 hour time point 

At 24 hours the numbers of viable cells were decreased 

in treated cultures. Together with a decreased amount 

of phospho-H3 this suggests decreased proliferation. 

The fraction of cells in S-phase was increased. CCND1 

was present, indicating progression of cells from G1-to 

S-phase. Increasing damage to DNA was suggested by 

increased phospho-H2AX.  

 When untreated and treated BIRC7-cultures 

were compared to their respective control-transfected 

cultures, both isoforms of BIRC7 were decreased. 

BIRC7 α was also decreased when treated BIRC7-cultures were compared to untreated 

BIRC7-cultures, while β was increased.  

 48 hour time point   

At 48 hours the number of viable cells was increased, suggesting increased proliferation. The 

numbers of cells in S-phase were increased, indicating S-phase-arrest. Decreased amounts of 

phospho-H3 and CCND1 indicate reduced proliferation 

and a halt in cell cycle progression. Cleaved PARP 

levels were similar for all cultures at this time point. 

Phospho-H2AX was somewhat decreased suggesting 

repair of DNA damage.  

When untreated siBIRC7-cultures were 

compared to untreated siControl-cultures the expression 

of isoforms α and β was decreased. This pattern was 

also seen when treated siBIRC7-cultures were 

compared to treated siControl-cultures, and when 

treated BIRC7-cultures were compared to untreated BIRC7-cultures.  
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4.5 Effects of RTEL1-knockdown and 5-fluorouracil (5-FU)-treatment in 

HCT116 and HT29 cell cultures 

4.5.1 Cell viability and cell death 

HCT116 

Cell viability in untreated cell cultures (siRTEL1 versus siControl) 

No significant differences in numbers of viable cells were seen at any time point in untreated 

siRTEL1-cultures relative to untreated siControl-cultures (p > 0.05 for all time points). At all 

time points, except 48 hours, untreated siRTEL1-cultures tended to have higher numbers of 

viable cells than untreated siControl-cultures. At 48 hours they tended to have lower numbers 

of viable cells (figure 17A).  

Cell viability in 5-FU-treated cell cultures (siRTEL1 versus siControl) 

No significant differences in numbers of viable cells were seen at any time point in siRTEL1 

relative to siControl in 5-FU-treated cultures (p > 0.05 for all time points). At 8 and 24 hours, 

treated siRTEL1-cultures tended to have lower numbers of viable cells than 5-FU-treated 

siControl-cultures. At 2, 4, and 48 hours they had a higher number of viable cells (figure 

17A).  

Comparison of cell viability in treated versus untreated cultures  

No significant differences in numbers of viable cells were seen at any time point between 

treated and untreated cultures (p > 0.05 for all time points). At all time points except 2 hours 

treated cultures tended to have lower numbers of viable cells compared to untreated cultures. 

The numbers of dead cells were highest (similar numbers) in treated cultures at 48 hours 

(figure 17A).   

 

HT29 

Cell viability in untreated cell cultures (siRTEL1 versus siControl) 

No significant differences in numbers of viable cells were seen at any time point in untreated 

siRTEL1-cultures relative to untreated siControl-cultures (p > 0.05 for all time points). 

Untreated siRTEL1-cultures tended to have a higher number of viable cells compared to 

untreated siControl-cultures at all time points, except at 24 hours, where siRTEL1-cultures 

had a slightly lower number of viable cells than siControl-cultures (figure 17B).  

Cell viability in 5-FU-treated cell cultures (siRTEL1 versus siControl) 

No significant differences in numbers of viable cells were seen at any time point in treated 

siRTEL1-cultures relative to treated siControl-cultures (p > 0.05 for all time points). 
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siRTEL1-cultures tended to have higher numbers of viable cells compared to siControl-

cultures in 5-FU-treated cells at all time points (figure 17B).  

Comparison of cell viability in treated versus untreated cultures  

No significant differences in numbers of viable cells were seen at any time point between 

treated and untreated cultures (p > 0.05 for all time points). At 2, 24, and 48 hours 5-FU-

treated cultures tended to have lower number of viable cells than untreated cultures, but the 

opposite was true at 4 and 8 hours. Dead cells had slightly higher numbers in treated 

compared to untreated cultures at 48 hours (figure 17B).  
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Figure 17: Total cell counts after RTEL1 knockdown and 5-FU-treatment at all experimental time points. 

Colored bars represents viable cells and black bars represents dead cells. A: HCT116 B: HT29 
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4.5.2 Cell cycle effects 

HCT116 

Since we did not have replicate experiments for HCT116 prior to 24 hours, we can only report 

cell cycle trends for early time points. 

Cell cycle effects in untreated cultures (siRTEL1 versus siControl) 

At 2 and 4 hours G1 was slightly decreased and S-phases were slightly increased in untreated 

siRTEL1- compared to untreated siControl-cultures. At 8 and 24 hours the opposite was true, 

as G1 was slightly increased and S-phases were slightly decreased in siRTEL1-cultures 

compared to siControl-cultures (figure 19A, and IIIA and C in appendix). This is likely due to 

confluence effects where increasing confluence led to increased G1-fractions and decreased S-

phase fractions. 

Cell cycle effects in 5-FU-treated cultures (siRTEL1 versus siControl) 

No real differences were seen at 2 and 8 hour time points. At 4 hours G1-phase was higher in 

siRTEL1-cultures compared to siControl-cultures. At 24 hours siRTEL1-cultures had an 

increased S-phase and a decreased G1-phase compared to siControl-cultures (figure 19A, and 

IIIB and D in appendix).  

Comparison of cell cycle effects in untreated versus treated samples 

At 4 hours G1 was increased and S was decreased in treated cultures compared to untreated 

cultures. At 8 hours G1 was slightly increased in treated cultures, while S stayed the same. 

G2/M-phase was decreased when treated cultures were compared to untreated. At 24 hours G1 

was decreased and S was increased in treated cultures compared to untreated cultures (figure 

19A, and IIIA-D in appendix). Both differences were significant (p < 0.05).  

 

HT29 

Cell cycle effects in untreated cultures (siRTEL1 versus siControl) 

G1-phases were increased and S-phases were decreased in untreated siRTEL1-cultures 

compared to untreated siControl-cultures at 2, 24, and 48 hours. Confluence effects were seen 

at 24 hours (figure 18A, 19B, and IVA and C in appendix). 

Cell cycle effects in treated cultures (siRTEL1 versus siControl) 

G1-phases were slightly increased and S-phases were slightly decreased in siRTEL1cultures 

compared to siControl cultures at 4 and 8 hours. At 24 hours the opposite was true. No 

differences were seen at 48 hours in treated cultures. The pattern of response to 5-FU-

treatment was similar for S-phase fractions and G1-phase fractions in treated cultures at all 

time points (figure 18B, 19B, and IVB and D in appendix). 
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Comparison of cell cycle effects in untreated versus treated samples 

Significant differences in S-phase and G1-phase fractions were seen at 24 and 48 hours when 

treated cultures were compared to untreated control cultures (p < 0.01) (figure 18, 19B, and 

IVA-D in appendix). These significant differences were probably caused by confluence 

effects in the untreated cultures (increased G1 fractions), in combination with 5-FU-treatment 

effects (increased S-phase fractions) in the treated cultures. 

 

 

 

 
 

 
Figure 18: Cell cycle analyses by DNA flow cytometry. The graphs represent the fractions of HT29-cells in 

different cell-cycle-phases at 24 hours. The gating used (doublet discrimination, region R1) is shown underneath 

each graph. Untreated siControl-cultures (figure IVA in appendix) and untreated siRTEL1cultures (figure 18A, 

and IVC in appendix) had similar distributions with large G1 fractions, and very small S- and G2/M-fractions 

(confluence effects). The 5-FU-treated siControl (figure IVB in appendix) and siRTEL1- (figure 18B, and IVD in 

appendix) cultures, both had smaller G1-peaks and larger fractions of cells in S-phase (indicative of S-phase- 

arrest). However, the S-phase-fraction and the G2/M-fractions were larger in treated siRTEL1-cultures 

compared to treated siControl cultures.  

 

B A 



70 

 

 

Figure 19: Cell cycle effects after RTEL1-knockdown and 5-FU-treatment at all experimental time points. A: 

HCT116, B: HT29.  
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4.5.3 Expression of apoptosis and proliferation biomarker proteins after RTEL1 

knockdown and drug treatment in HCT116 and HT29 cell lines  

Three RTEL1-antibodies (Santa Cruz, Abcam, and LifeSpan Biosciences) were tested in this 

experiment with no success. Finding specific and reliable antibodies is a relatively frequent 

problem. We can thus not present data for detection of RTEL1-expression in this section. This 

section will however present the effects of RTEL1 knockdown and 5-FU-treatment on 

proteins associated with proliferation, apoptosis, and DNA damage.  

HCT116 

Cleaved PARP was weakly expressed at similar levels until 24 and 48 hour time points, 

whereas in treated cultures it increased dramatically compared to untreated control cultures. 

At 24 and 48 hours untreated siRTEL1-cultures expressed less cleaved PARP compared to 

untreated siControl-cultures. This was also true for treated cultures at 24 hours, but at 48 

hours treated siRTEL1-cultures expressed more cleaved PARP than treated siControl-cultures 

(figure VII and XIV in appendix).  

 TP53 was not detected or only weakly detected in untreated cultures. Treated cultures 

at 8, 24, and 48 hours had increased amounts of TP53 compared to untreated cultures. At 8, 

24, and 48 hours 5-FU-treated siControl-cultures had higher levels of TP53 compared to 

treated RTEL1-cultures. This was most pronounced at 24 hours (figure VII and XIV in 

appendix).  

 Phospho-H3 was weakly expressed in all untreated cultures at the 2 hour time point, 

but in treated cultures siRTEL1 expressed slightly more phospho-H3 than siControls. At 4 

hours both treated and untreated siRTEL1-cultures had weaker bands than siControl-cultures. 

At 8 hours untreated siRTEL1-cultures expressed less phospho-H3 than untreated siControl-

cultures, but in treated cultures this was opposite. At 24 and 48 hours a pattern where treated 

cultures were lacking phospho-H3-expression completely was observed, while untreated 

cultures expressed phospho-H3 at moderate to strong levels (figure VII and XIII in appendix).  

CCND1 levels at 2, and 4 hours were similar in treated versus untreated cultures. At 8 

hours protein bands were slightly stronger expressed. Western blots for CCND1 at 24 hours 

were not technically optimal. At 48 hours treated cultures had reduced CCND1 levels 

compared to untreated cultures, indicating reduced proliferation in response to 5-FU-treatment 

(figure VII and XIII in appendix). 

 Phospho-H2AX was weakly expressed at 2 hours. Untreated siRTEL1-cultures had 

slightly weaker bands than untreated siControl-cultures at 24 and 48 hours. This was also true 



72 

 

HCT116 24 and 48 hours: 

S ↑ 24 hours only 

Viable cells ↓ 

pH3 ↓ 

CCND1 ↓ 

Cleaved PARP ↑ 

TP53 ↑ 

pH2AX↓ 

for cultures at 8 hours, although most pronounced at 24 hours. Treated siRTEL1-cultures 

tended to express less phospho-H2AX than untreated cultures at 24 and 48 hours (figure VII 

and XIV in appendix).  

HT29 

In untreated cultures no differences in phospho-H3-expression were seen until 24 and 48 

hours. At 24 and 48 hours siRTEL1-cultures had reduced phospho-H3 levels, indicating 

reduced mitotic fractions, compared to siControl-cultures, both in untreated and treated 

cultures. At 2, 4, and 8 hours the expression of phospho-H3 was higher for treated siRTEL1 

than for treated siControl-cultures (figure VIII and XV in appendix). 

CCND1 levels were similar in all cultures, both treated and untreated, prior to 48 

hours, where they decreased similarly in all cultures (figure VIII and XV in appendix). 

siRTEL1-cultures expressed more phospho-H2AX than siControl-cultures at 2 hours, 

both in treated and untreated cultures. At 8 hours the opposite was seen. In treated cultures at 

24 and 48 hours siRTEL1-cultures had weaker phospho-H2AX bands than siControl-cultures 

(figure VIII and XVI in appendix). 

Cleaved PARP expression was weak and relatively similar in all cultures prior to 24 

and 48 hours. Cleaved PARP levels increased with time, with highest expression seen at 48 

hours. At 24 and 48 hours siRTEL1-cultures tended to have lower levels of cleaved PARP 

than siControl-cultures. This was seen in both treated and untreated cultures (figure VIII and 

XVI in appendix). 

4.5.4 Summary of phenotypes after RTEL1 knockdown and drug treatment 

HCT116 

 24 and 48 hour time points 

Larger S-phase fractions in combination with a decreased G1-

fraction were seen at 24 hours, indicating an S-phase-arrest. 

This was concomitant with reduced numbers of viable cells, 

increased numbers of dead cells, and higher levels of 

apoptotic markers cleaved PARP and TP53. A decreased 

mitotic fraction (phospho-H3) and CCND1 levels indicate 

that proliferation and cell cycle progression were also reduced. The DNA damage marker 

phospho-H2AX was decreased, suggesting that DNA damage had been repaired or that DNA 

replication was occurring.   
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HT29 48 hours: 

S ↑ 

CCND1 ↑ 

pH3 - 

Viable cells ↓ 

pH2AX ↓ 

Cleaved PARP - 

HT29 24 hours: 

S ↑ 

Viable cells ↓ 

CCND1 ↓ 

pH3 ↓ 

Cleaved PARP ↓ 

pH2AX ↑ 

 

HT29   

 24 hour time point 

Cellular phenotypes observed at the 24 hour time point were as 

follows: Larger S-phases and increased levels of the DNA damage 

marker phospho-H2AX, suggesting S-phase-arrest and DNA damage, 

respectively, due to 5-FU-treatment. This is supported by decreased 

expression of the proliferative markers phospho-H3 and CCND1. The 

apoptotic marker cleaved PARP was decreased.  

 48 hour time point 

At the 48 hour time point S-phase fractions were increased, indicating 

a continued S-phase-arrest. The numbers of viable cells were 

decreased, and the proliferative markers phospho-H3 and CCND1 

were increased or did not change. This suggests reduced exit of cells 

from mitosis, but a progression of cells from G1-to S-phase where they 

arrested. Phospho-H2AX was decreased at this time point, and no 

changes were seen in the expression of cleaved PARP. 
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5 Discussion 
 

BIRC7 

5.1 Amplification of chromosome 20 and overexpression of BIRC7 

FISH confirmed amplification of chromosome 20 in the HT29 cell line, as centromere copy 

number was found to be 4. This is consistent with the results of earlier studies (51, 188, 189). 

Chromosome 20 in the HCT116 cell line was not amplified as it has a centromere copy 

number of 2, according to our FISH-results. Our results are in agreement with earlier 

cytogenetic analyses of these cell lines (189, 190). These reconfirmations were necessary 

because both cell lines have been in existence for many years and propagated through many 

passages, with possible accompanying cytogenetic changes.  

In untreated HT29 siControl-cultures BIRC7 was moderately expressed at the start of 

the experiment, whereas untreated HCT116 siControl-cultures did not express BIRC7 at the 

start point. Since the same amount of protein was loaded for each cell line during Western 

blotting, this supports constitutive overexpression of BIRC7 in HT29-cells compared to 

HCT116-cells. This is most likely due to amplification of chromosome 20. The HT29 cell line 

has previously been reported to express high levels of BIRC7 (125, 191), and our results 

confirm these data. BIRC7 has also been found to be expressed at the mRNA level in the 

HCT116 cell line (192), but this was not demonstrated in our study. The apparent association 

between BIRC7 overexpression and chromosome 20 amplification is supported by Tsafrir et 

al. (2006) who concluded that most chromosomal amplifications result in increased gene 

expression of genes localized to the amplified chromosomal area (101). The association is 

also supported by the fact that cancer cells with several gene copies, including oncogenes, 

very often have elevated gene expression (61). 

 

5.2 BIRC7 knockdown 

We estimated a transfection efficiency of 80-90 % for HT29-cultures and 50-60 % for 

HCT116-cultures via microscopic observation during the transfection experiments. This 

indicated that transfection conditions were satisfactory. The 1.5 hours transfection time for 

both cell lines also proved to be satisfactory. It has been shown previously in our lab that 

increased transfection times reduced the number of viable cells, but did not increase the 

transfection efficiency (unpublished data).  
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Two methods for detecting knockdown of BIRC7 were used. We quantified changes 

in the target protein-levels using Western blotting, and examined the impact of BIRC7 

knockdown on specific cellular phenotypes. Gene expression analyses to confirm 

overexpression and subsequent silencing of BIRC7 in the HT29 cell line were not done due to 

time constraints.  

The presence of constitutive BIRC7 expression in untransfected cells in transfected 

cultures could lead to the detection of BIRC7 in cultures that had been knocked down for 

BIRC7. This may make the assessment of knockdown more difficult to interpret on the 

Western blots, and is best exemplified in the HT29 cell line. Although 80-90 % transfection 

efficiency was assessed microscopically during transfection for this cell line, the remaining 

10-20 % untransfected cells likely expressed fairly high levels of BIRC7. This may be one 

reason why Western blots for HT29-cultures did not show a ‘complete’ knockdown of 

BIRC7. However, weaker bands of BIRC7 β were observed in both treated and untreated 

BIRC7-cultures at 8 and 24 hour experimental time points (32 and 48 hours post-transfection 

respectively) compared to control-transfected cultures, confirming knockdown of BIRC7 in 

the HT29 cell line at these time points. BIRC7 α was moderately expressed at 2 hours, but 

was lacking at 4 hours (28 hours after transfection). As it reappeared at 8 and 24 hours, and 

showed weak bands at 48 hours, this suggests that isoform α was knocked down in HT29 28 

hours post-transfection but that its silencing duration was limited. The different isoforms thus 

seem to be knocked down at slightly different time points, and the duration of silencing 

differed between them.  

Compared to our results, a very long knockdown time window was found in an 

investigation of the duration of siRNA-mediated knockdown. Transfection lasted up to 7 days 

post-transfection with 80 % transfection in HeLa cells (193). Although HeLa cells are 

considered to be easily transfected and the study was performed by a commercial company, it 

is still indicative of the existence of a much wider knockdown time window compared to our 

results.   

Successful and significant (p < 0.01) knockdown of BIRC7 in the HT29 cell line was 

achieved by ZhenFa et al. in 2009 after transfecting cells with a recombinant plasmid vector 

(191). Although we did not use plasmid vectors, but rather performed transfection with a 

lipid-based delivery system, we did manage to achieve knockdown of BIRC7 in the HT29 cell 

line within a limited time window.  
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The HCT116 cell line showed no expression of BIRC7 at early time points in either 

treated or untreated siControl-cultures. BIRC7 was not expressed (induced) until the 24 hour 

experimental time point, and then only as isoform β. Expression at this time point suggests 

induction of the protein in response to a cellular signal, perhaps increasing cell density due to 

confluence effects in the untreated cultures, and response to 5-FU in the drug-treated cultures. 

In any case, expression levels and induction levels were similar between siBIRC7 and 

siControl-cultures at this time point, indicating that BIRC7 knockdown had not occurred. By 

the 48-hour experimental time point (72 hours post-transfection), BIRC7 expression was 

lacking in the drug-treated siControl and siBIRC7-cultures, but was strongly expressed in the 

untreated siControl and siBIRC7-cultures. This indicates that knockdown had not occurred in 

the siBIRC7-cultures. It is unclear as to why BIRC7 expression was lacking in the drug-

treated cultures.  

A recent study reported that the expression of BIRC7 was restored 30 hours post-

transfection in the HCT116 cell line (192). This was not in agreement with our data, as our 

HCT116-cultures did not even start to induce/express BIRC7 until the 24-hour experimental 

time point (48 hours post-transfection), and did so regardless of treatment status. Had there 

been knockdown at this time point, we would have expected the siBIRC7-cultures to have 

been lacking BIRC7 expression or that expression levels would have been considerably lower 

than those seen in control-transfected cultures, and this was not the case. We did not track the 

cells past the 48-hour experimental time point, so we cannot know whether knockdown would 

have occurred at later time points. It appears that we were unable to achieve BIRC7 

knockdown in HCT116-cultures, at least within the experimental time window used. This 

may have been due to a number of factors such as cell density at the time of transfection, the 

health of the cultured cells to be transfected, the quality and concentration of siRNAs used, 

transfection times, among others. In the case of HCT116, perhaps the cell density at the time 

of transfection was too high, such that the cells were moving toward confluence already at 48 

hours after transfection (24 hour experimental time point).  

 

5.3 Cellular phenotypes 

We observed a number of changes in proliferation- and apoptosis-related phenotypes in both 

cell lines in response to transfection with siBIRC7.  
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It appeared that BIRC7 was not silenced in the HCT116 cell line. It was neither 

constitutively expressed from the experimental start point, but was induced similarly in all 

cultures at the 24-hour experimental time point, independently of treatment status, most likely 

due to confluence effects in untreated cultures and drug effects in the treated cultures. At 48 

hours, BIRC7 expression was lacking in drug-treated cultures but present in untreated 

cultures. The explanation for this remains unclear.  

The discussion of BIRC7 silencing will thus mostly be focused on the HT29 cell line. 

5.3.1 Untreated HT29-cultures   

As BIRC7 is foremost known as an IAP the expected phenotype in untreated cultures with 

BIRC7-knockdown would be a reduction both in total cell numbers and in numbers of viable 

cells due to increased apoptosis, when compared to control-transfected cultures.  

Untreated HT29-cultures with BIRC7 knockdown at the 8-hour time point showed a 

slight decrease in the number of viable cells, which together with increased cleaved PARP, 

and decreased amount of proliferative markers, indicated an apoptotic phenotype. This was 

consistent with the expected phenotype.  

Untreated HT29-cultures with BIRC7 knockdown had a significant reduction of viable 

cells compared to control-transfected cultures only at 48 hours. This would be consistent with 

the silencing of an apoptotic inhibitor, suggests an apoptotic phenotype, and is consistent with 

several previous studies (192, 194, 195). At the 24 hour experimental time point the same 

cultures had significantly greater numbers of viable cells compared to control-transfected 

cultures. Cleaved PARP seemed to increase with time and was most pronounced at 24 and 48 

hours, but the expression of cleaved PARP as an apoptosis indicator did not differ much in 

BIRC7-knockdown-cultures compared to control-cultures, especially at the 48-hour time 

point. We observed confluence effects, as in the HCT116 cell line, which matches the 

apoptotic or non-proliferative phenotype seen at this time point.  

 The BIRC7 isoform α was stably expressed in both BIRC7-transfected and control-

transfected HT29-cultures at the 8-hour experimental time point (32 hours after transfection). 

Isoform β was decreased in BIRC7 knockdown cultures compared to their corresponding 

control-cultures. At 24 and 48 hours BIRC7 HT29 cultures expressed less of both isoforms 

than control-cultures, although the reduction was largest for isoform β in cultures at 48 hours. 

The weak bands seen in the BIRC7-transfected cultures most likely result from the expression 

of BIRC7 in the untransfected cells present in the transfected cultures.  
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5.3.2 Treated HT29-cultures 

We expected 5-FU-treated cultures with BIRC7-knockdown to have an apoptotic phenotype, 

and that it would be more pronounced than in untreated cultures due to 5-FU-treatment.  

For HT29-cultures treated for 8, 24, and 48 hours there was an increased number of 

viable cells in BIRC7-cultures compared to treated control-transfected cultures, suggesting a 

proliferative effect of knockdown. However, mitotic fractions were smaller in treated BIRC7-

cultures at 24 and 48 hours compared to treated control-transfected cultures, which argue 

against such a proliferative effect. Drug-treated BIRC7 and control-transfected cultures had 

elevated and similar levels of apoptosis at the 48-hour experimental time point.  

The expression of both BIRC7 isoforms in drug-treated HT29-cultures was similar to 

the expression observed in the untreated cultures at most time points (8, 24, and 48 hours). 

This means unchanged expression of isoforms α at 8 and 48 hours and decreased at 24 hours, 

compared to control-cultures. The expression of isoform β was decreased at 8, 24, and 48 

hours compared to control-cultures. The similar expression of BIRC7 indicates that cultures 

were not very affected by 48 hour 5-FU-treatment compared to 24 hour 5-FU-treatment.  

5.3.3 Treated compared to untreated HT29-cultures  

In HT29-cultures there were negligible differences in the expression of BIRC7 isoform α at 8 

and 48 hours, while at 24 hours α was slightly decreased when treated cultures were compared 

to untreated cultures. β was slightly increased at 24 hours, but slightly decreased at 8 and 48 

hours.  

At 8 hours, HT29-cultures showed a proliferative phenotype with increased numbers 

of viable cells, and decreased levels of apoptosis. The amount of DNA damage was, however, 

increasing. At 24 hours, the phenotypes were more complex, showing both proliferative and 

apoptotic tendencies.  

Several studies have shown that silencing of BIRC7 followed by treatment with pro-

apoptotic stimuli led to a strongly increased rate of apoptosis in lung and colorectal carcinoma 

cell lines (136), in colon cancer cells (HCT-8/V) (196), in a neuroblastoma cell line (195), in 

melanoma (34), in renal cell carcinoma (33), and in non-small cell lung cancer (197). This 

was not confirmed for HT29-cultures treated for 8, 24, or 48 hours with the DNA-damaging 

agent 5-FU. Two previous studies reported that apoptosis was not affected in BIRC7-

knockdown-cells in the absence of apoptosis-inducing agents like 5-FU (34, 141). This was 

consistent with our data for untreated cultures at 48 hours. What is clear, however, is that 
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BIRC7 knockdown plus 5-FU-treatment in HT29-cells led to markedly reduced mitotic 

fractions. This was most pronounced at the 48 hours experimental time point, compared to 

drug-treated control-transfected cells at the same time point.  

 

5.4 Isoform-specific knockdown  

The HT29 cell line expressed both isoforms of BIRC7, and isoform β was expressed at higher 

levels than α. β was downregulated at the 8 and 24 hour experimental time points in BIRC7-

cultures compared to control-transfected cultures, and this indicates that BIRC7 β was 

transiently silenced at these time points. The knockdown seemed most pronounced at 8 hours. 

Isoform α was expressed at similar levels in all cultures at 8 hours, but at 24 hours there was a 

slightly stronger expression of α in control-transfected cultures than in BIRC7-cultures. 

Brought together, this is indicative of isoform-specific knockdown of β at 8 hours (32 hours 

post-transfection), or it might be possible that β was knocked down earlier than, and more 

strongly, than α. At 48 hours treated BIRC7-cultures nearly lack expression of isoform β. This 

indicates that a combination of knockdown of BIRC7 and 5-FU-treatment for 48 hours 

resulted in lower BIRC7-expression than that seen in control-transfected cultures and 

untreated BIRC7-cultures.   

 At 4 hours, isoform α was lacking in all cultures, while β was present and expressed 

moderately to strongly. Although there might be other reasons for the missing BIRC7 in 

control-cultures, α was probably knocked down in BIRC7-cultures 28 hours after transfection 

(would correspond to a 4 hour experimental time point), but not at 26 hours or 32 hours (2 and 

8 hour time point). This is a very narrow time window, even smaller than for β, which 

appeared to be knocked down between 32 and 48 hours after transfection (8 and 24 hour 

experimental time points). It thus appears that there was evidence of isoform-specific 

knockdown of BIRC7 in the HT29 cell line. Oh et al. (2011) found that BIRC7 expression 

was restored 30 hours after transfection in HCT116-cultures (192). This was not consistent for 

our HT29-cultures, as they showed a knockdown of BIRC7 β between 32 and 48 hours after 

transfection, and a knockdown of α at 28 hours after transfection.  
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5.5 Isoform-specific knockdown, and sensitization to chemotherapeutic 

treatment 

Crnkovic-Mertens et al. (2006) found that knocking down the β isoform in HeLa-cells made 

the cells significantly more sensitive to pro-apoptotic stimuli, and that this was isoform 

specific (did not occur when α was silenced) (141). This is supported by several studies where 

knockdown of BIRC7 reduced cancer cells’ drug resistance and made them more sensitive to 

apoptosis-inducing agents (136, 194, 196, 198). If we assume that knockdown was achieved 

in the HT29 cell line, our data do not support a sensitization of cells to 5-FU due to BIRC7 

knockdown. In HT29-cultures the overexpression of BIRC7 seemed rather to inhibit 5-FU-

induced apoptosis, which was consistent with another study (126).  

 

5.6 The functions of BIRC7’s two isoforms  

The full-length versions of BIRC7 have been shown in several studies (128, 133, 135) to have 

anti-apoptotic properties, which is consistent with BIRC7 being a member of the IAP family. 

Caspase-mediated cleavage makes BIRC7 lose its anti-apoptotic effect and gain pro-apoptotic 

activity through two truncated versions, Tα and Tβ. These were not detected in our study 

(125, 135, 199). The lack of detection of these cleaved forms of BIRC7 could be due to the 

specificity of the antibody used against BIRC7, which may not be able to detect these. 

However, this is not a plausible explanation as both isoforms and their truncated versions 

have very similar nucleotide sequences which most likely can be detected by the same 

antibody. Another possibility is that BIRC7 was not targeted for cleavage in these cell lines, 

and this may be due to tumor cells’ abilities to avoid pro-apoptotic activity.  

 However, one of the studies found that the sole presence of isoform α in an animal 

model led to tumor initiation. In tumors expressing only isoform β, the tumors were 

suppressed due to increased apoptosis when β was cleaved to truncated β (Tβ). β’s function as 

an inhibitor of tumor development was also found to dominate over the tumor initiating 

effects of α, when both isoforms were present together (135). The same study revealed that 

cleavage of β occurred during tumor progression and led to tumor cell death, while α was not 

cleaved during tumor progression. However, when Tα was introduced ectopically, tumor 

development was inhibited (135). This suggests that Tα has similar properties as β (but not as 

α) as they both hindered the development of tumors.  
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A study by Ashhab et al. (2001) indicated that the expression of the two splicing 

variants of BIRC7 to a large extent fine-tunes whether the result of an apoptosis-inducing 

treatment promotes or inhibits cell death (125). Interestingly, a more recent study supports 

this, as the authors believe that it is the balance between Tα/Tβ and α/β that determines 

BIRC7’s effect (135). This is consistent with the complex expression patterns seen for the 

HT29 cell line in our study. Because β dominates over α, the overexpression of both isoforms 

in HT29-cultures should be seen as an apoptotic phenotype in untreated control-cultures, 

although this is not beneficial for the tumor. The low levels of apoptosis observed for HT29 

and the variable amounts of viable cells confirm a more complex phenotype. The tumor cells 

have most likely found a way to circumvent or inactivate BIRC7’s pro-apoptotic ability, even 

if BIRC7 was found to be overexpressed in HT29 cell line. Apoptosis induction may have 

been prevented by the mutated TP53 found in HT29 cell line. At 4 hours, when α is missing, a 

proliferative phenotype was found, which did not confirm this. However, at 8 and 24 hours, 

when expression of β was reduced and α weakly expressed, an apoptotic phenotype was 

observed. This confirms that β’s pro-apoptotic features dominated over α’ anti-apoptotic, and 

supports the latter studies.  

 

5.7 Different genotypes affect response to chemotherapeutic treatment 

5-FU triggers different responses in different cell lines depending on their individual 

genotypes and phenotypes, for example their TP53 genotype (67). A mutated TP53 gene is 

the most common mechanism to obtain resistance to apoptosis (68, 69). Silencing of BIRC7 

had little effect on cell cycle progression in the presence of 5-FU, except possibly at the 24 

and 48 hours. There were minimal differences in S-phase between siControl- and siBIRC7-

samples. This is an indication of cells being arrested in S-phase. If they fail to repair their 

damaged DNA, cells will commit to apoptosis.  

5-FU is a DNA damaging agent that affects cells in S-phase of the cell cycle, as cells 

generally arrest in S-phase in response to 5-FU-treatment. Arrest allows time for the cells to 

repair DNA damage, and if they fail to do so, apoptosis is induced in cells with intact 

apoptotic capability. The levels of apoptosis induced in response to 5-FU were much larger in 

HCT116-cultures than in HT29-cultures, even if both cell lines were treated with a 

concentration of 5-FU that should result in 50 % growth inhibition. The HCT116 cell line is 

TP53-proficient, that is, it has a wild-type TP53, which is thus functional and which can 
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detect DNA damage and induce apoptosis. The HT29 cell line is TP53-deficient, that is, it has 

mutated and non-functional TP53, thus apoptosis is not induced in response to irreparable 

DNA damage. At 48 hours this was reflected by the larger S-phase-arrest and higher levels of 

apoptosis in HCT116-cultures compared to in HT29-cultures. HT29-cells had thus reduced 

ability to induce apoptosis through TP53. The HT29 cell line could thus be considered more 

resistant to apoptosis than HCT116, but the situation is more complex, as both cell lines have 

different MMR statuses that affect their response to 5-FU-induced DNA damage. 

5-FU seems to have more cytotoxicity towards cancer cells with a proficient MMR 

system than cells with a deficient MMR system (76, 200). With a non-functional MMR there 

will be no recognition of 5-FU incorporation, and thus, no repressed cell growth (200). This is 

consistent with our experimental setup based on recent work from our group (Adamsen et al. 

2011). We used a much higher concentration of 5-FU to induce apoptosis in the MMR-

deficient HCT116 cell line, a dose that would have been completely cytotoxic for the MMR 

proficient cell line HT29. 

 

5.8 BIRC7 is involved in cell cycle control 

Knockdown of BIRC7 has been found to lead to cell-cycle-arrest in G0/G1-phase, reduced rate 

of entry of cells into S-phase, and decreased proliferation (137). It has thus been associated 

with cell cycle control and with regulation of proliferation (136, 137). The fraction of cells in 

G1 was increased simultaneously as the rate of cells in S-phase decreased at 2 and 4 hours in 

untreated HT29-cultures. Reduced proliferation occurred at the same time points according to 

most protein data. However, the number of viable cells was decreased from 8 hours on, and 

did not support a G1-arrest.  

 

RTEL1 

5.9 Amplification of chromosome 20 and RTEL1-expression  

RTEL1 is localized to a four-gene cluster on chromosome 20. Both the cluster and the 

chromosome have often been found to be amplified in CRC (49, 156). If the expression of 

RTEL1 in cancer cell lines is affected by this, it is probably in a way that supports tumor-

growth and -development, for example by being less effective in DNA repair, as suggested by 

Bai et al. (2000) (155). 
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Due to the fact that we did not manage to find a good antibody against RTEL1, we 

unfortunately were not able to conclude whether there were correlations between normal copy 

number and normal RTEL1 expression in the HCT116 cell line, or between amplified copy 

number and possible overexpression of RTEL1 in the HT29 cell line.  

 

5.10 Silencing of RTEL1 and knockdown time window 

We detected knockdown of RTEL1 by examining RTEL1’s impact on cellular phenotypes. 

Knockdown was not possible to confirm from Western data since we were unable to find an 

antibody against RTEL1 that worked properly. Therefore, we could not estimate the time 

window for knockdown of RTEL1. We could have analyzed gene expression levels using 

qRT-PCR, but we chose rather to focus on the effects of knockdown on cellular phenotypes.  

 

5.11  Cellular phenotypes  

Changes in phenotypes were assessed at 24 and 48 hours for both cell lines. These were 

observed as changes in cell viability, cell cycle progression, and expression of proteins related 

to proliferation, apoptosis, and DNA damage. 

RTEL1 plays a role in telomere maintenance (elongation of telomeres) and in repair of 

DNA damage (double-strand breaks) caused by radiation or DNA-damaging agents. 

Knockdown of RTEL1 in normal cells is thus expected to lead to shortened telomeres and 

increased sensitivity to DNA damage, respectively. This would likely result in cell-cycle-

arrest and decreased proliferation, DNA damage signaling, and increased apoptosis in the 

event that cells could not repair DNA damage. The situation is less clear for cancer cells, as 

cellular phenotypes would be expected to vary due to a cell line’s characteristics and whether 

it benefits from the loss of RTEL1 or not.  

5.11.1 Untreated cultures  

We expected that knockdown of RTEL1 would increase the levels of DNA damage due to 

fewer repairs of DNA-breakages, hyper-recombination, and generally a silencing of RTEL1’s 

tumor suppressive activity. This is most likely in favor of the tumor, as suggested by Uringa 

et al. (2011) (157), and indicates a proliferative phenotype in tumor cell lines like HCT116 

and HT29.  
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Proliferating phenotypes were seen for HCT116 at 24 and 48 hours. At 24 hours DNA 

damage (assessed by the use of phospho-H2AX) had increased in RTEL1 knockdown-

cultures compared to control-transfected cultures. This was also consistent with the expected 

phenotype. At 48 hours, protein data suggested proliferative activity and no apoptosis, but the 

numbers of viable cells were paradoxically decreasing. This may be due to confluence effects 

that were observed already at 24 hours.  

 For HT29-cultures the phenotypes were more complex. At 24 hours an apoptotic 

phenotype with decreased numbers of viable cells was observed. This was confirmed by 

protein data. At 48 hours the number of viable cells increased, protein data were split, and the 

amount of DNA damage had increased. According to cell cycle data both time points were 

influenced by confluence effects.  

5.11.2 5-FU-treatment and comparison with untreated cultures 

In 5-FU-treated cultures with RTEL1-knockdown we expected to see more complex 

phenotypes due to 5-FU-induced DNA damage and eventual apoptosis of cells that could not 

repair DNA damage.  

 For HCT116, treated cultures with knockdown of RTEL1 had increased apoptosis, 

decreased mitotic fractions, and decreased number of viable cells compared to untreated 

cultures. The apoptotic phenotype observed differs from the proliferative phenotype seen in 

untreated RTEL1-knockdown cultures at the same time points. This indicates that 5-FU-

treatment induced higher levels of apoptosis, possibly by increasing sensitivity to DNA 

damage in HCT116-cells with RTEL1-knockdown.  

Treated HT29-cultures with knockdown of RTEL1 had decreased or unchanged 

amounts of apoptosis, decreased mitotic fractions, and decreased numbers of viable cells, but 

not much change in DNA damage, when treated cultures were compared to untreated cultures. 

This indicates that HT29-cells did not die from 5-FU-induced apoptosis. 5-FU did not seem to 

affect RTEL1-silenced HT29-cells very much, except maybe by stalling replication or 

inhibiting proliferation to some degree. RTEL1 silencing thus did not seem to increase 

sensitivity to DNA damage in the HT29 cell line, in contrast to what was seen in the HCT116 

cell line.  
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5.12 Knockdown of RTEL1 increases viability and DNA damage 

The level of DNA damage was generally higher in HT29 than in HCT116. As cancer cells 

have been shown to have a higher growth rate when RTEL1 is knocked down (200), this 

should also affect the numbers of viable cells. Our results confirmed this, as HT29-cultures 

had a higher number of viable cells compared to HCT116-cultures. A correlated increased 

numbers of viable cells with increased damage to DNA were also observed for untreated 

HCT116-cultures at 24 hours.  

Knockdown of RTEL1 in untreated HCT116 and HT29 thus led to loss of RTEL1’s 

tumor suppressor activity at 24 and 48 hours, respectively, which is consistent with the 

expected phenotype for cancer cells with silenced RTEL1. This is supported by Uringa et al. 

(2011) who proposed that RTEL1 works as a tumor suppressor gene, and that RTEL1-

deficient cells would gain uncontrolled homologue recombinations, telomere loss, 

translocations and other genomic aberrations that are typically for, and probably in favor of, 

cancer cells (157). 

Ding et al. (2004) created RTEL1 knockout mice that die early in gestation due to 

damaged hearts and nervous system, and failure in the equilibrium vasculature. When they 

knocked down RTEL1 in embryonic stem cells, the cells grew like normal, but they had 

shortened telomeres and genomic instability. In vitro, differentiation of these stem cells 

resulted in defective growth (149). This suggests that depletion of RTEL1 in normal healthy 

cells and animal models gives destructive and ultimately lethal effects. However, in cancer 

cells the silencing of RTEL1 seems to promote cell viability. This is confirmed by Uringa et 

al. (2011) (157).   

 

5.13 Cell line-specific change of phenotype due to RTEL1-knockdown 

The most pronounced protein phenotype seen was the reduction of mitotic fraction (phospho-

H3 levels) in siRTEL1-cultures, both treated and untreated, compared to corresponding 

siControl-cultures in HT29. The numbers of viable cells were increased for three out of four 

cultures. This suggests that the cells that were already in G2/M-phase when transfection or 

treatment was applied may have continued to divide. These may thus account for the increase 

of viable cells. Cell division may have been stalled in the rest of the cells, while they tried to 

repair themselves. This is supported by another study that showed that knockdown of RTEL1 

leads to increased viability (157).  
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In HCT116-cultures, knockdown of RTEL1 led to increased mitotic fractions and 

CCND1 levels, suggesting increased proliferation. The numbers of viable cells were also 

increased in two out of four cultures, and one was unchanged. Due to this complexity in 

phenotype, we cannot say whether this is consistent with the mentioned study, or not.   

These differences in proliferative markers after RTEL1 silencing in the HCT116 and 

HT29 cell lines, suggests a cell line-specific difference, probably caused by differences in 

specific genotypes and resulting phenotypes. For example, HT29 is TP53-deficient due to a 

TP53 gene mutation, which is reflected by the lower rate of apoptosis in drug-treated cultures. 

The TP53-proficient HCT116 cell line has, in contrast, a functional TP53 protein and can 

induce apoptosis in response to drug treatment.  
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6 Conclusion 

We confirmed that the HT29 cell line has chromosome 20 amplification and overexpression 

of both isoforms of BIRC7, whereas the HCT116 cell line has a normal chromosome 20 copy 

number and does not express BIRC7 constitutively. HCT116 expresses BIRC7 when there is 

some cellular signal that leads to induction of the protein, e.g. confluence effects, and then it 

expresses the β isoform. Our results were indicative of a time-dependent isoform-specific 

knockdown of BIRC7 in HT29. Additionally, we observed slightly different knockdown time 

windows for isoform α and β. 

We also found that BIRC7 knockdown in HT29-cultures followed by 5-FU-treatment 

led to markedly reduced mitotic fractions compared to control-cultures treated with 5-FU (at 

48 hours of drug treatment). This was an indication that BIRC7 silencing was still in effect 72 

hours after transfection. Apoptotic levels at the same time point were similarly elevated in 

both treated cultures, and were again similar to levels seen in corresponding untreated 

cultures. This indicates that apoptosis was induced in untreated cultures due to confluence 

effects and to drug treatment in the treated cultures, but not as a result of knockdown at this 

experimental time point.  

Knockdown of RTEL1 in untreated tumor cells seemed to be tumor-promoting as it 

increased the number of viable cells, and did not result in elevated rates of apoptosis. This 

exemplifies RTEL1’s suggested role as a tumor suppressor gene. Knockdown also led to 

increased DNA damage, which is indicative of RTEL1’s function as a maintainer of telomeric 

and genomic DNA.  

We suggest that the cellular response to RTEL1-knockdown is influenced by cell-line-

specific characteristics, for example the TP53-genotype and MMR-status. Subsequent 

treatment with DNA-damaging agent 5-FU led to cell death in HCT116, while HT29-cells 

were less affected. This is indicating that RTEL1 knockdown led to increased sensitivity to 

DNA damaging agents in the HCT116 cell line. 
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7 Future considerations 

A correlation between poor patient outcome and BIRC7 (over)expression has been 

demonstrated in several previous studies of neuroblastoma (201), bladder cancer (134), and 

CRC (202). However, other studies did not find such a correlation (203-205). Upregulated 

expression of BIRC7 has also been found to correlate with tumor progression in CRC (202). 

The overexpression of BIRC7 in many cancer cells, and the negligible or low expression in 

most normal cells, suggest that knockdown of BIRC7 has a therapeutic potential.  

RTEL1 is needed for proper repair of DNA double strand breaks (153) and for 

telomere maintenance (149), and is thus important for protection of genomic stability. As 

DNA repair activity is often compromised in cancer, RTEL1 is most likely a tumor suppressor 

gene that is inactivated, regardless of whether it is amplified or not. The loss of RTEL1-

function in many tumors may thus promote genomic instability and tumor development and 

progression. Knockdown of RTEL1 is thus not beneficial in potential cancer therapy, but an 

approach to reintroduce functional RTEL1 into tumor cells might be promising for inhibiting 

further genomic aberrations and tumor progression.   

 

As a concluding remark, knockdown of genes is not always successful, and it does not have a 

therapeutic potential for all genes in question, as seen for knockdown of RTEL1. However, 

this depends on the gene, for example knockdown of BIRC7 seems to be a possible approach 

to optimize treatment, and should be properly investigated before its use is even considered in 

clinical contexts. There are many obstacles to overcome before gene knockdown can be 

useful clinically, as delivery and non-target effects may impact treated patients in unknown or 

even harmful ways. Thorough research should be performed before starting clinical testing, 

but the future is promising.  
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Appendix 
 

I. DNA flow cytometry data 

After BIRC7 knockdown and drug treatment in HCT116 cell line 

 

 

 

 

Figure I: Representative cell cycle histograms for cultures at 24 hour time point generated from DNA flow 

cytometry data showing the fractions of HCT116-cells in different cell-cycle-phases and the doublet 

discrimination gating (Region R1) used to exclude doublets and aggregates. Untreated HCT116-cells were in 

late log phase in both siControl- (A) and siBIRC7- (C) cultures. 5-FU-treated cells had larger S-phases and 

smaller G1-phases in both siControl cells (B) and siBIRC7 cells (D). In treated siBIRC7 cells (D) the fraction of 

cells in S-phase was larger and the fraction of cells in G1-phase was smaller than for treated siControl cells (B).  
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After BIRC7 knockdown and drug treatment in HT29 cell line 

 

 
 
 

Figure II: Representative cell cycle histograms for cultures at 24 hour time point generated from DNA flow 

cytometry data showing the fractions of HT29-cells in the different cell-cycle-phases and the gating used. 

Untreated siControl cells (A) and untreated siBIRC7cells (C) had similar distributions with a tall peak of G1, 

and very small S-fractions and G2/M-fractions. The 5-FU-treated HT29-cells, siControl (B) and siBIRC7 (D), 

both had smaller G1-peaks and larger fractions of cells in S-phase.  
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After RTEL1 knockdown and drug treatment in HCT116 cell line 

 

 
 

 

Figure III: Cell cycle analyses by DNA flow cytometry showed fractions of HCT116-cells in the different cell- 

cycle-phases. Doublet discrimination was used to gate away doublets and aggregates (region R1 contains the 

cells of interest). The cell cycle distribution for untreated HCT116-cells at 24 hours is shown for siControl (A) 

and siRTEL1 (C) cultures. 5-FU-treated cells had larger S-phases and smaller G1-phases in both siControl- 

cultures (B) and siRTEL1-cultures (D). In treated siRTEL1-cultures (D) the fraction of cells in S-phase was 

larger and the fraction of cells in G1-phase was smaller than for treated siControl cells (B). 
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After RTEL1 knockdown and drug treatment in HT29 cell line 

 

 
 
 

Figure IV: Cell cycle analyses by DNA flow cytometry. The graphs represent the fractions of HT29-cells in 

different cell-cycle-phases at 24 hour. The gating used (doublet discrimination, region R1) is shown underneath 

each graph. Untreated siControl-cultures (A) and untreated siRTEL1-cultures (C) had similar distributions with 

large G1 fractions, and very small S-fractions and G2/M-fractions (confluence effects). The 5-FU-treated 

siControl- (B) and siRTEL1- (D)-cultures, both had smaller G1-peaks and larger fractions of cells in S-phase 

(indicative of S-phase-arrest). However, the S-phase-fraction and the G2/M-fractions were larger in treated 

siRTEL1-cultures compared to treated siControl-cultures.  
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II. Band blots 

After BIRC7 knockdown and drug treatment in HCT116 cell line 

 

 
 

 
Figure V: Effect of BIRC7-knockdown and 5-FU-treatment in HCT116 cell cultures assessed using antibodies 

against the proliferation biomarkers phospho-H3and CCND1, antibodies against the cell death biomarkers 

TP53 and cleaved PARP, and against DNA damage marker phospho-H2AX.  
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After BIRC7 knockdown and drug treatment in HT29 cell line 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI: Proliferative and apoptotic effects of BIRC7-knockdown and 5-FU-treatment in HT29 cell cultures 

assessed using antibodies against phospho-H3and CCND1 (proliferation), cleaved PARP (apoptosis), and 

phospho-H2AX (DNA damage biomarker).  
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- + - + - + - + - + - + - + - + 

 
HCT116, phospho-H2AX  
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HCT 116, cleaved PARP 

2 hr 4 hr 8 hr 24 h 48 hr 

siCtrl. siRTEL1 siCtrl. siRTEL1 siCtrl. siRTEL1 siCtrl. siRTEL1 siCtrl. siRTEL1 

- + - + - + - + - + - + - + - + - + - + 

 
HCT 116, phospho-H3 

2 hr 4 hr 8 hr 24 hr 48 hr 

siCtrl. siRTEL1 siCtrl. siRTEL1 siCtrl. siRTEL1 siCtrl. siRTEL1 siCtrl. siRTEL1 

- + - + - + - + - + - + - + - + - + - + 

 

 

HCT 116, CCND1 

2 hr 4 hr 8 hr 24 hr 48 hr 

siCtrl. siRTEL1 siCtrl. siRTEL1 siCtrl. siRTEL1 siCtrl. siRTEL1 siCtrl. siRTEL1 

- + - + - + - + - + - + - + - + - + - + 

 

After RTEL1 knockdown and drug treatment in HCT116 cell line 

 

 

Figure VII: Effects of RTEL1-knockdown and 5-FU-treatment on proliferation and induction of cell death in 

HCT116 cell cultures assessed using antibodies against phospho-H3 and CCND1 (proliferation), cleaved PARP, 

TP53 (apoptosis), and phospho-H2AX (DNA damage antibody).  
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After RTEL1 knockdown and drug treatment in HT29 cell line 

 

 

 

Figure VIII: Effects of RTEL1-knockdown and 5-FU-treatment on protein expressions at all experimental time 

points for proliferative proteins phospho-H3 and CCND1, apoptotic protein cleaved PARP, and DNA damage 

protein phospho-H2AX in the HT29 cell line. 
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III. Band density plots 

 

 

After BIRC7 knockdown and drug treatment in HCT116 cell line 

 

 
 

 
Figure IX: Effect of BIRC7-knockdown and 5-FU-treatment on protein levels at the all time points for 

proliferative proteins phospho-H3 and CCND1, in the HCT116 cell line. The horizontal lines represent the 

backgrounds on the Western blot, and bars below this should be considered as no or very low expression of the 

respective protein.  
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Figure X: Effect of BIRC7-knockdown and 5-FU-treatment on protein levels for apoptotic proteins TP53 and 

cleaved PARP, and the DNA damage marker phospho-H2AX, in the HCT116 cell line. The horizontal lines 

represent the backgrounds on the Western blot, and bars below this should be considered as no or very low 

expression of the respective protein.  
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After BIRC7 knockdown and drug treatment in HT29 cell line 

 
 

 
Figure XI: Effect of BIRC7-knockdown and 5-FU-treatment on protein levels for proliferative proteins CCND1 

and phospho-H3, in the HT29 cell line. The horizontal lines represent the backgrounds on the Western blot, and 

bars below this should be considered as no or very low expression of the respective protein.  
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Figure XII: Effect of BIRC7-knockdown and 5-FU-treatment on protein levels for apoptotic protein cleaved 

PARP and the DNA damage marker phospho-H2AX, in the HT29 cell line. The horizontal lines represent the 

backgrounds on the Western blot, and bars below this should be considered as no or very low expression of the 

respective protein.  
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After RTEL1 knockdown and drug treatment in HCT116 cell line 

 

Figure XIII: Effect of RTEL1-knockdown and 5-FU-treatment on protein levels at the all time points for 

proliferative proteins phospho-H3 and CCND1, in the HCT116 cell line. The horizontal lines represent the 

backgrounds on the Western blot, and bars below this should be considered as no or very low expression of the 

respective protein.  
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Figure XIV: Effect of RTEL1-knockdown and 5-FU-treatment on protein levels for apoptotic proteins cleaved 

PARP and TP53, and the DNA damage marker phospho-H2AX, in the HCT116 cell line. The horizontal lines 

represent the backgrounds on the Western blot, and bars below this should be considered as no or very low 

expression of the respective protein.  
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After RTEL1 knockdown and drug treatment in HT29 cell line 

 

 
 
Figure XV: Effect of RTEL1-knockdown and 5-FU-treatment on protein levels for the proliferative proteins 

phospho-H3 and CCND1, in the HT29 cell line. The horizontal lines represent the backgrounds on the Western 

blot, and bars below this should be considered as no or very low expression of the respective protein. 
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Figure XVI: Effect of RTEL1-knockdown and 5-FU-treatment on protein levels for apoptotic protein cleaved 

PARP and the DNA damage marker phospho-H2AX, in the HT29 cell line. The horizontal lines represent the 

backgrounds on the Western blot, and bars below this should be considered as no or very low expression of the 

respective protein. 
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