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Abstract. For the q-deformation Gq, 0 < q < 1, of any simply connected simple
compact Lie group G we construct an equivariant spectral triple which is an isospectral
deformation of that defined by the Dirac operator D on G. Our quantum Dirac operator
Dq is a unitary twist of D considered as an element of UgnClðgÞ. The commutator of Dq

with a regular function on Gq consists of two parts. One is a twist of a classical commutator
and so is automatically bounded. The second is expressed in terms of the commutator of
the associator with an extension of D. We show that in the case of the Drinfeld associator
the latter commutator is also bounded.

Introduction

The Dirac operator on Minkowski space was introduced in 1928 by P. Dirac who
sought a first order di¤erential operator with square equal to the Laplacian and found in
e¤ect the fundamental mechanisms governing spin-half particles obeying Fermi statistics.
Its generalization by Atiyah and Singer plays an essential role in index theory, mathemati-
cal physics and representation theory, and its axiomatization in terms of spectral triples is
at the heart of Connes’ non-commutative geometry [7].

Quantum groups being quantizations of Poisson Lie groups should by all accounts be
non-commutative manifolds, but it has proved di‰cult to put them rigorously into Connes’
framework. In the quest for an appropriate Dirac operator on quantum groups and their
homogeneous spaces basically two approaches have been adopted.

One consists of developing q-analogues of standard di¤erential geometric notions, but
this poses several immediate problems. Firstly, it is not clear what a quantum Cli¤ord
algebra should be. The natural suggestion using braidings [2], [22], [25] seems reasonable
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only when the braiding is su‰ciently simple, e.g. a Hecke symmetry, see for instance the
discussion in [22]. Secondly, di¤erential calculi are defined in terms of elements of quan-
tized universal enveloping algebras that do not act as derivations and yield unbounded
commutators with some regular functions, see e.g. [38], rendering this approach successful
so far only for irreducible quantum flag manifolds. The case of the quantum 2-sphere is
considered in [37], [11], [39], [33] and the general case is due to Krähmer [32], who circum-
vents the Cli¤ord algebra problem at the cost of including operators with unconventional
classical limits, see the remark after [32], Prop. 2. Also, spectral triples obtained using this
approach cannot be expected to be regular [35].

The other approach was suggested by Connes and Landi [9] and consists of looking
for isospectral deformations of Dirac operators. To write down explicitly what this means
and to handle such operators e‰ciently requires a good understanding of Clebsch-Gordan
coe‰cients and spectral properties of classical Dirac operators. The first result in this direc-
tion was obtained by Chakraborty and Pal [3], who constructed a spectral triple on SUqð2Þ
which was then studied in detail by Connes [8]. Their Dirac operator is not exactly an
isospectral deformation of the classical one, but is closely related [4] to such an operator
defined later by Da̧browski et al. [10]. Since then similar results have been obtained for 2-
and 4-dimensional quantum spheres [12], [13]. Finally, a class of operators on quantum
SUðNÞ and the odd-dimensional spheres is introduced in [5], but again it seems di‰cult to
single out which of these operators have the right classical limit.

The two approaches should be related in the same way as the universal R-matrix is
related to the element t A gn g defined by the symmetric invariant form; although we are
not going to discuss this issue in this paper, see Example 2.6 below.

Our construction of the Dirac operator on the q-deformation Gq of a group G is
inspired by work of Fiore [21], [23], brought to our attention by Ulrich Krähmer. Let V
be a finite dimensional g-module with fixed invariant symmetric form. The Cli¤ord alge-
bra ClðVÞ is semi-simple and thus has no nontrivial deformations. For a fixed algebra
isomorphism j : Uhg ! Ug½½h��, Fiore seeks a map V ½½h�� ! ClðVÞ½½h�� which coincides
with the embedding V ! ClðVÞ modulo h and is Uhg-equivariant. He shows that such
a map can be gotten by using a twist, i.e. an element F A ðUgnUgÞ½½h�� such that

ðjn jÞD̂Dh ¼ FD̂Djð�ÞF�1.

Consider now the Dirac operator on G regarded as an elementD ofUgnClðgÞ. In the
formal deformation setting define the quantumDirac operator as the element ofUhgnClðgÞ
obtained by conjugating ðj�1 n iÞðDÞ by ðj�1 nfadadÞðFÞ, wherefadad : Ug ! ClðgÞ is induced
by the Lie algebra homomorphism g ! soðgÞ. This can also be done for real parameters
h ¼ 2 log q, but then instead of Uqg and Ug one has to consider appropriate completions.

Although twists exist, their analytical properties are di‰cult to study. From a repre-
sentation theoretical point of view, however, it is not the twist but the associator and braid-
ing that matter. More precisely, by a famous result of Drinfeld [14], [15] the appropriate
braided tensor category of Uhg-modules with braiding defined by the universal R-matrix
and with trivial associativity morphisms is equivalent to a category of Ug½½h��-modules
with braiding given by eht=2 and associativity constraints defined by the monodromy of
the Knizhnik-Zamolodchikov (KZ) equations. Then choosing a twist essentially means
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that one fixes such an equivalence of categories. In the same spirit we show that analytic
properties of our quantum Dirac operator are determined by the associator rather than
the twist, and indeed a form of the KZ-equations is used crucially to show that we actually
get a spectral triple.

1. Drinfeld associator

Let G be a simply connected simple compact Lie group, g its complexified Lie al-
gebra. Fix a maximal torus in G, and let hH g be the corresponding Cartan subalgebra.
Choose a system fa1; . . . ; ang of simple roots. Let ðaijÞ1ei; jen be the Cartan matrix of g,

and d1; . . . ; dn be coprime positive integers such that ðdiaijÞi; j is symmetric. Define as
usual a bilinear form on h� by ðai; ajÞ ¼ diaij. For each integral dominant weight l we
fix an irreducible unitary representation pl : G ! BðVlÞ with highest weight l. Then the
group von Neumann algebra W �ðGÞ of G is the C�-product (or in other words, the
ly-direct sum) of the algebras BðVlÞ. The algebra UðGÞ of closed unbounded densely
defined operators a‰liated with W �ðGÞ is the algebraic product

Q
l

BðVlÞ. We denote by

D̂D the comultiplication W �ðGÞ ! W �ðGÞnW �ðGÞ. It extends to a �-homomorphism
UðGÞ ! UðG � GÞ ¼

Q
l;m

BðVl nVmÞ which we denote by the same symbol.

For q A ð0; 1Þ denote by Gq the q-deformation of G, see e.g. [29]. Consider the von
Neumann algebra W �ðGqÞ of Gq, that is, the von Neumann algebra generated by the con-
volution algebra of Gq in the left regular representation, see e.g. [34]. The algebra UðGqÞ of
closed unbounded densely defined operators a‰liated with W �ðGqÞ contains the algebra
Uqg generated by Xi, Yi, Ki, K

�1
i ð1e ie nÞ such that the relations

KiK
�1
i ¼ K�1

i Ki ¼ 1; KiKj ¼ KjKi; KiXjK
�1
i ¼ q

aij=2
i Xj; KiYjK

�1
i ¼ q

�aij=2
i Yj;

XiYj � YjXi ¼ dij
K 2

i � K�2
i

qi � q�1
i

as well as the quantum Serre relations are satisfied, where qi ¼ qdi . The algebra Uqg is a
Hopf �-algebra with comultiplication D̂Dq and involution given by

D̂DqðKiÞ ¼ Ki nKi; D̂DqðXiÞ ¼ Xi nKi þ K�1
i nXi; D̂DqðYiÞ ¼ Yi nKi þ K�1

i nYi;

K �
i ¼ Ki; X �

i ¼ Yi:

Denote by R A UðGq � GqÞ the universal R-matrix, see e.g. [6], Theorem 8.3.9 for an
explicit formula. It is the unique element satisfying the following two properties. We have

D̂Dop
q ¼ RD̂Dqð�ÞR�1;

and if pl;q is a finite dimensional representation with a highest weight vector xl (that is,

pl;qðXiÞxl ¼ 0 and pl;qðKiÞxl ¼ q
lðHiÞ=2
i xl, where Hi A h is such that ajðHiÞ ¼ aij) and p 0

m;q

a finite dimensional representation with a lowest weight vector x 0
m (so p 0

m;qðYiÞx 0
m ¼ 0 and
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p 0
m;qðKiÞx 0

m ¼ q
mðHiÞ=2
i x 0

m) then

ðpl;q n p 0
m;qÞðRÞðxl n x 0

mÞ ¼ qðl;mÞxl n x 0
m:

Since finite dimensional representations of Gq are again classified by integral domi-
nant weights, we have a canonical identification of the centers of W �ðGqÞ and W �ðGÞ. It
extends to a �-isomorphism W �ðGqÞGW �ðGÞ, and therefore UðGqÞGUðGÞ. Such an iso-
morphism does not respect comultiplications, and to compare them we recall the notion of
the Drinfeld associator, see e.g. [16] and [26] for more details.

Let A and B be operators on a finite dimensional vector space V . Put

�h ¼ log q

pi
:

Consider the di¤erential equation

G 0ðxÞ ¼ �h
A

x
þ B

x� 1

� �
GðxÞ;

where G : ð0; 1Þ ! EndðVÞ. Assume that neither A nor B has eigenvalues which di¤er by

a nonzero integral multiple of
1

�h
. Then there exist unique solutions G0 and G1 such that

the functions G0ðxÞx��hA and G1ð1� xÞx��hB extend to holomorphic functions in the unit
disc with value 1 at x ¼ 0. These solutions are in fact GLðVÞ-valued, hence there exists
FðA;BÞ A GLðVÞ such that

G0ðxÞ ¼ G1ðxÞFðA;BÞ for all x A ð0; 1Þ:

We will be interested only in the case when V is a Hilbert space and the operators
A and B are self-adjoint. Then the assumptions on the spectra are automatically satisfied.
For a A ð0; 1Þ let Ga be the unique solution such that GaðaÞ ¼ 1. Note that GaðxÞ is unitary.

Indeed, �h
A

x
þ B

x� 1

� �
is skew-adjoint, so Ga is an integral curve of a time-dependent vec-

tor field on the unitary group. By uniqueness of solutions we have GaðxÞ ¼ G0ðxÞG0ðaÞ�1,
so

a��hBGað1� aÞa�hA ¼ a��hBG0ð1� aÞG0ðaÞ�1
a�hA ¼ a��hBG1ð1� aÞFðA;BÞG0ðaÞ�1

a�hA:

Since a��hB is unitary for any a A ð0; 1Þ, the operators

a��hBG1ð1� aÞ ¼ a��hB
�
G1ð1� aÞa��hB

�
a�hB

converge to 1 as a ! 0þ. Similarly G0ðaÞ�1
a�hA ! 1 as a ! 0þ. It follows that

FðA;BÞ ¼ lim
a!0þ

a��hBGað1� aÞa�hA:ð1:1Þ

This expression makes it in particular obvious that FðA;BÞ is unitary.
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Consider the rescaling ð� ; �Þ of the Killing form on g such that its restriction to h is the
one induced by the symmetric form on h� defined above. Let fxkgk be a basis in the real Lie
algebra of G such that ðxk; xlÞ ¼ �dkl. Put

t ¼ �
P
k

xk n xk A gn gHUðG � GÞ:

This element is self-adjoint, e.g. because xk lie in the real Lie algebra of G and so x�
k ¼ �xk.

The Drinfeld associator is defined by

FKZ ¼ Fðt12; t23Þ:

More precisely, it is the unique unitary element in W �ðGÞnW �ðGÞnW �ðGÞ such that
for any finite dimensional representations pi : G ! BðViÞ, i ¼ 1; 2; 3, we have

ðp1 n p2 n p3ÞðFKZÞ ¼ F
�
ðp1 n p2n p3Þðtn 1Þ; ðp1 n p2 n p3Þð1n tÞ

�
:

The following variant of a famous result of Drinfeld will play a central role in the
paper.

Theorem 1.1. There exist a �-isomorphism j : W �ðGqÞ ! W �ðGÞ extending the ca-

nonical identification of the centers and a unitary F A W �ðGÞnW �ðGÞ such that

(i) ðjn jÞD̂Dq ¼ FD̂Djð�ÞF�1;

(ii) ðêen iÞðFÞ ¼ ðin êeÞðFÞ ¼ 1, where êe is the trivial representation of G;

(iii) ðjn jÞðRÞ ¼ F21q
tF�1;

(iv) the associator F ¼ ðin D̂DÞðF�1Þð1nF�1ÞðFn 1ÞðD̂Dn iÞðFÞ coincides with

the Drinfeld associator FKZ.

If F A UðG � GÞ is an element satisfying (i) for some isomorphism

j : UðGqÞ ! UðGÞ

extending the identification of the centers, then we say that F is a twist. If in addition j is a
�-homomorphism and F is unitary, we say that F is a unitary twist. If all four conditions
(i)–(iv) are satisfied, we talk about Drinfeld twists and unitary Drinfeld twists.

Proof of Theorem 1.1. The existence of a Drinfeld twist in the formal deformation
setting is due to Drinfeld [14], [15]. There it is proved by inductive cohomological argu-
ments, so the twist makes sense only as a formal power series and a priori cannot be
specialized to a complex deformation parameter. The result implies the equivalence of cer-
tain braided tensor categories. A constructive proof of this equivalence was later given by
Kazhdan and Lusztig [27], [28], the advantage being that the specialization makes sense
(for nonzero complex parameters di¤erent from nontrivial roots of unity). It also implies
the existence of a Drinfeld twist. The construction of Kazhdan and Lusztig was further
clarified and extended by Etingof and Kazhdan [17], [18], [19]. We refer the reader to [36]
for a thorough discussion.
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Therefore there exist an isomorphism j : UðGqÞ ! UðGÞ and a Drinfeld twist
F A UðG � GÞ, and the only additional claim we make is that one can choose j to be
�-preserving and F unitary.

Let us show first that j can be assumed to be �-preserving. Since every homomor-
phism of full matrix algebras is equivalent to a �-homomorphism, there exists an invertible
element u A UðGÞ such that the homomorphism

ju ¼ ujð�Þu�1

is �-preserving. We may assume êeðuÞ ¼ 1. Then

Fu ¼ ðun uÞFD̂Dðu�1Þ

is a Drinfeld twist for ju. Indeed, the conditions (i) and (ii) are obviously satisfied. To show
(iii) recall that t is g-invariant, i.e. ½t; D̂DðxÞ� ¼ 0 for any x. In particular, D̂DðuÞ commutes
with t and recalling that D̂Dop ¼ D̂D we get

ðju n juÞðRÞ ¼ ðun uÞF21q
tF�1ðu�1 n u�1Þ

¼ ðun uÞF21D̂Dðu�1ÞqtD̂DðuÞF�1ðu�1 n u�1Þ ¼ ðFuÞ21qtF�1
u :

Finally, a direct computation shows that the new associator

Fu ¼ ðin D̂DÞðF�1
u Þð1nF�1

u ÞðFu n 1ÞðD̂Dn iÞðFuÞ

equals D̂Dð2ÞðuÞFD̂Dð2Þðu�1Þ. It remains to recall that F is g-invariant, since D̂Dq is coassociative.
This is also clear by definition of FKZ, as t is g-invariant and hence Fðt12; t23Þ is g-invariant.

Assuming now that j : UðGqÞ ! UðGÞ is a �-isomorphism and E is a Drinfeld twist,
we assert that the unitary F in the polar decomposition E ¼ FjEj is a unitary Drinfeld
twist for j. Indeed, since D̂Dq, D̂D and j are �-homomorphisms, condition (i) on E implies that

ED̂Djð�ÞE�1 ¼ ðE�1Þ�D̂Djð�ÞE�;

that is, E�E is g-invariant. It follows that jEj is also g-invariant. Hence

ED̂Djð�ÞE�1 ¼ FjEjD̂Djð�ÞjEj�1F�1 ¼ FD̂Djð�ÞF�1;

so condition (i) for F is satisfied. Condition (ii) is also obviously satisfied. Turning to (iii)
recall that the R-matrix has the property R� ¼ R21. So applying the �-operation and then
the flip to the identity ðjn jÞðRÞ ¼ E21q

tE�1 we get ðjn jÞðRÞ ¼ ðE�1Þ�21qtE�. Therefore

ðE�EÞ21qt ¼ qtE�E

and hence jEj21qt ¼ qtjEj. It follows that

ðjn jÞðRÞ ¼ E21q
tE�1 ¼ F21jEj21qtjEj�1F�1 ¼ F21q

tF�1:
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It remains to check (iv). Consider the new associator

F0 ¼ ðin D̂DÞðF�1Þð1nF�1ÞðFn 1ÞðD̂Dn iÞðFÞ:

We have to show that F0 ¼ F. Since jEj is g-invariant, one easily checks that

F ¼ ðin D̂DÞðjEj�1Þð1n jEj�1ÞF0ðjEjn 1ÞðD̂Dn iÞðjEjÞ:ð1:2Þ

Since F0 is defined by the unitary element F, it is itself unitary. Since F ¼ FKZ is also uni-
tary, taking the inverses in the above identity and then applying the �-operation we get

F ¼ ðin D̂DÞðjEjÞð1n jEjÞF0ðjEj�1 n 1ÞðD̂Dn iÞðjEj�1Þ:

Therefore

ðin D̂DÞðjEj�1Þð1n jEj�1ÞF0ðjEjn 1ÞðD̂Dn iÞðjEjÞ

¼ ðin D̂DÞðjEjÞð1n jEjÞF0ðjEj�1 n 1ÞðD̂Dn iÞðjEj�1Þ:

Since jEj is g-invariant, the positive operators ðin D̂DÞðjEjÞ and 1n jEj, as well as jEjn 1

and ðD̂Dn iÞðjEjÞ, commute. So we can write

F0

�
ðjEjn 1ÞðD̂Dn iÞðjEjÞ

�2 ¼ �ð1n jEjÞðin D̂DÞðjEjÞ
�2
F0:

Consequently

F0ðjEjn 1ÞðD̂Dn iÞðjEjÞ ¼ ð1n jEjÞðin D̂DÞðjEjÞF0;

and returning to (1.2) we get F ¼ F0. r

Remark 1.2. For any �-isomorphism j : W �ðGqÞ ! W �ðGÞ extending the identifi-
cation of the centers, the existence of a unitary twist satisfying also condition (ii) follows
immediately from the fact that the fusion rules for G and Gq are the same. Then one can
modify the twist to satisfy condition (iii) using the symmetrization procedure of Drinfeld
together with the identity

R�R ¼ D̂DqðqCqÞðq�Cq n q�CqÞ;ð1:3Þ

where Cq ¼ j�1ðCÞ and C ¼ �
P
k

x2
k is the Casimir, and the identity

t ¼ 1

2

�
D̂DðCÞ � 1nC � Cn 1

�
:ð1:4Þ

Note in passing that the above two identities imply that

ðjn jÞðR�RÞ ¼ Fq2tF�ð1:5Þ

holds for any unitary twist F.
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Therefore the key condition is number (iv). In the formal deformation setting Drin-
feld proves a stronger result, so it makes sense to ask the following question. Given a
unitary twist F satisfying conditions (i)–(iii), does there exist a g-invariant unitary E such
that E21 ¼ E and the associator defined by FE coincides with the Drinfeld associator?

2. Dirac operator

Recall that the Dirac operator D on a spin manifold M is defined as the composition

GðSÞ !
~‘‘
GðT �MnSÞ !@ GðTMnSÞ !c GðSÞ

of the Cli¤ord action c on the spin bundle S with the spin connection ~‘‘, using the metric to
identify tangent and cotangent bundles. Thus with respect to an orthonormal local frame
feigi the Dirac operator is given by D ¼

P
i

cðeiÞ~‘‘ei .

Turning to the Dirac operator on G, trivialize the complexified tangent bundle TG by
left translations and identify GðTGÞ with CyðGÞn g. Define a Riemannian metric on G

using the form on g introduced earlier multiplied by �1. The Levi-Civita connection is
given by

‘fnx ¼ f qðxÞn 1þ 1

2
f n adðxÞ;

where q is the representation of Ug by left-invariant di¤erential operators.

Denote by ClðgÞ the complex Cli¤ord algebra of g and by g : g ! ClðgÞ the canonical
embedding, so ClðgÞ is generated by gðxÞ, x A g, and gðxÞ2 ¼ ðx; xÞ1. We regard ClðgÞ as a
�-algebra by requiring the map g to be �-preserving. The spin group SpinðgÞ is the con-
nected Lie subgroup of the group of invertible elements of ClðgÞ with real Lie algebra
spanned by the elements gðxkÞgðxlÞ, k3 l. It acts on ClðgÞ by inner automorphisms. The
adjoint action of G on g extends to an action of G on ClðgÞ which lifts to a homomorphism
G ! SpinðgÞ. At the Lie algebra level it is given by

g C x 7!fadadðxÞ :¼ 1

4

P
k

gðxkÞgð½x; xk�Þ:

We denote by the same symbolfadad the corresponding homomorphism UðGÞ ! ClðgÞ. Note
that by definition the map g is equivariant, so gð½x; y�Þ ¼ ½fadadðxÞ; gðyÞ� for x; y A g.

Fix a spin module, that is, an irreducible �-representation s : ClðgÞ ! BðSÞ. Recall
that if g is even dimensional then s is unique up to equivalence and faithful, and there are
two possibilities for s in the odd dimensional case. Identifying the smooth sections of the
spin bundle S ¼ G � S with CyðGÞnS, the spin connection is

~‘‘fnx ¼ f qðxÞn sð1Þ þ 1

2
f n sfadadðxÞ:
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The Cli¤ord action of 1n x is given by 1n sgðxÞ. Hence using the orthonormal global
frame fek ¼ 1n xkgk, we see that the Dirac operator D : CyðGÞnS ! CyðGÞnS is
given by

D ¼
P
k

qðxkÞn sgðxkÞ þ
1

2
n s
�
gðxkÞfadadðxkÞ�� �

:

This can be written as D ¼ ðqn sÞðDÞ, where

D ¼
P
k

xk n gðxkÞ þ
1

2
n gðxkÞfadadðxkÞ� �

is an element of the non-commutative Weil algebra UgnClðgÞ, see [1].

Remark 2.1. One can use other connections than the Levi-Civita one to define a
Dirac operator by varying the coe‰cient 1=2 in the above expressions [40]. Taking 0
one gets an operator corresponding to the reductive connection, and taking 1=3 one gets
Kostant’s cubic Dirac operator [31].

Now fix a unitary twist F corresponding to a �-isomorphism j : W �ðGqÞ ! W �ðGÞ.
Define an element Dq A UðGqÞnClðgÞ by

Dq ¼ ðj�1 n iÞ
�
ðinfadadÞðFÞDðinfadadÞðF�Þ

�
:

Denote by C½Gq� the linear span of matrix coe‰cients of finite dimensional representations
of Gq. It is a Hopf �-algebra with comultiplication Dq, and UðGqÞ is its dual space. Let�
L2ðGqÞ; pr;q; xq

�
be the GNS-triple defined by the Haar state on C½Gq�. The left and right

regular representations of W �ðGqÞ on L2ðGqÞ, denoted by p̂pr;q and qq correspondingly, are
defined by

p̂pr;qðoÞpr;qðaÞxq ¼ ðoS�1 n pr;qÞDqðaÞxq;

where S is the antipode on C½Gq�, and

qqðoÞpr;qðaÞxq ¼ ðpr;q noÞDqðaÞxq ¼ að1ÞðoÞpr;qðað0ÞÞxq:ð2:1Þ

Definition 2.2. The quantum Dirac operator Dq is the unbounded operator on
L2ðGqÞnS defined by

Dq ¼ ðqq n sÞðDqÞ:

Remark 2.3. The element Dq depends a priori on the choice of j and F. There are
strong reasons to believe that for j fixed the Drinfeld twist is unique up to the coboundary
of a central element, that is, any other twist has the form ðun uÞFD̂Dðu�1Þ, where u is
central. This is indeed the case in the formal deformation setting. If this is true in the
analytic setting as well, then Dq does not depend on F for fixed j. On the other hand, the
dependence on j is very mild. Namely, if we replace j by j 0 then there exists a unitary
v A W �ðGÞ such that j 0 ¼ vjð�Þv� and Fv ¼ ðvn vÞFD̂Dðv�Þ is a unitary twist for j 0. Since
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D commutes with the image of ðinfadadÞD̂D, for the element D 0
q defined by j 0 and Fv we get

D 0
q ¼

�
1nfadadðvÞ�Dq

�
1nfadadðv�Þ�.

As we shall see in Example 2.6 below, for SUqð2Þ the element Dq does not depend
on F (for j fixed) unconditionally. But this case is special since then sg coincides with
sfadad up to a scalar factor, and consequently D commutes with all g-invariant elements in

ðinfadadÞðUgnUgÞ. We do not know whether one can expect the latter property to hold in
general.

The quantum group Gq acts on itself from the left and from the right, and the
operator Dq is equivariant with respect to these two actions. More formally, we have two
coactions of C½Gq� on itself. They can be implemented by the representations p̂pr;qð�Þn 1
and qq � sfadadq ¼ ðqq n sfadadqÞD̂Dq of W �ðGqÞ, where fadadq ¼fadad j : W �ðGqÞ ! ClðgÞ. Then
we have the following.

Proposition 2.4. The element Dq A UðGqÞnClðgÞ commutes with all elements of

the form ðinfadadqÞD̂DqðxÞ, where x A W �ðGqÞ. In particular, the quantum Dirac operator Dq

commutes with all operators of the form p̂pr;qðxÞn 1 and ðqq � sfadadqÞðxÞ.
Proof. Recall that as t ¼ �

P
k

xk n xk is g-invariant and the map g is equivariant,

the element ðin gÞðtÞ commutes with any element of the form ðinfadadÞD̂DðxÞ, and similarlyP
k

gðxkÞfadadðxkÞ commutes with any element in the image of fadad. So D commutes with any

element of the form ðinfadadÞD̂DðxÞ. Thus ðjn iÞðDqÞ commutes with any element of the
form

ðinfadadÞ�FD̂DjðxÞF�� ¼ ðjnfadad jÞD̂DqðxÞ ¼ ðjnfadadqÞD̂DqðxÞ; x A UðGqÞ;

so Dq commutes with ðinfadadqÞD̂DqðxÞ.

By applying qq n s we see that Dq commutes with ðqq � sfadadqÞðxÞ. Finally Dq com-
mutes with p̂pr;qðxÞn 1 simply because p̂pr;qðxÞ commutes with qqðyÞ for all y. r

Next note that by definition the operator Dq is unitarily equivalent to D. In particu-
lar, Dq is self-adjoint and its spectrum is the same as that of D. Recall that one can compute
the squares of the eigenvalues of D by using the Weitzenböck formula:

D2 ¼ 1

2
ðinfadadÞD̂DðCÞ þ 1

2
Cn 1þ 1

4
nfadadðCÞ:

Recall also that fadadðCÞ ¼ 3krk2, where r is half the sum of the positive roots, which can be
seen using the well-known result of Kostant [30] that the representation sfadad is equivalent to
several copies of the irreducible representation with highest weight r, and that the image of
C under an irreducible representation with highest weight l is the scalar klþ rk2 � krk2.
Therefore

D2 ¼ 1

2
ðinfadadÞD̂DðCÞ þ 1

2
Cn 1þ 3

4
krk2:

For Dq this can be reformulated as follows.
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Proposition 2.5. We have

D2
q ¼ 1

2
ðinfadadqÞD̂DqðCqÞ þ

1

2
Cq n 1þ 3

4
krk2:

It follows that

q2D
2
q ¼ ðq2Cqþ9

2
krk2 n 1ÞðinfadadqÞðR�RÞ:

Proof. The first identity follows immediately from definitions and the Weitzenböck
formula. The second follows from (1.3) and the equality fadadqðCqÞ ¼ 3krk2. r

The proposition shows that D2
q does not depend on the choice of F. Moreover, one

can get an explicit formula for q2D
2
q in terms of the generators of Uqg (recall that Cq can also

be expressed in terms of the R-matrix by q�2Cq ¼ m̂mqðin ŜSqÞðR�RÞ, where m̂mq and ŜSq are
the multiplication and the antipode on UðGqÞ).

As in the classical case, the Weitzenböck formula allows one to compute the spectral
subspaces of D2

q . Namely, let ~VVl;q HL2ðGqÞ be the linear span of the matrix coe‰cients of
an irreducible representation with highest weight l. Then ~VV l;qnS is ðqq � sfadadqÞ�W �ðGqÞ

�
-

invariant, and if V H ~VV l;qnS is an irreducible submodule with highest weight m, then D2
q

acts on V as the scalar

1

2
kmþ rk2 þ 1

2
klþ rk2 � 1

4
krk2:

It is worth recalling that if we use the reductive connection instead of the Levi-Civita one,
then using a similar result we can compute the spectrum of Dq completely, as then for any
eigenvalue b the number �b is again an eigenvalue with the same multiplicity [20].

Example 2.6. Consider the simplest case G ¼ SUð2Þ. Then ClðgÞ can be iden-
tified with the algebra BðV1=2ÞlBðV1=2Þ in such a way that fadad ¼ p1=2 l p1=2 and
gðxÞ ¼

ffiffiffi
2

p �
p1=2ðxÞ;�p1=2ðxÞ

�
, x A g. Choose s : BðV1=2ÞlBðV1=2Þ ! BðV1=2Þ to be the

projection on the first factor. We then see that the map ð
ffiffiffi
2

p
Þ�1

sg coincides with the restric-
tion of sfadad to g, in particular, it extends to a homomorphism UðGÞ ! BðV1=2Þ. This im-
plies that the element D commutes with any element of the form ðinfadadÞðEÞ, where E is a
g-invariant unitary, since t commutes with any such unitary by virtue of (1.4). Hence for
any fixed j the operator Dq is independent of the twist F. Therefore by Remark 2.3 we
conclude that Dq is unique up to the inner automorphism of UðGqÞnClðgÞ defined by
a unitary of the form 1nfadadðuÞ, u A W �ðGqÞ.

Since in our case
P
k

fadadðx2
kÞ ¼ �fadadðCÞ ¼ �3=2, we have

ðin sÞðDÞ ¼ �
ffiffiffi
2

p
ðin sfadadÞðtÞ � 3

ffiffiffi
2

p

4
;

whence

q�
ffiffi
2

p
ðinsÞðDÞ ¼ q

3
2ðin sfadadÞðq2tÞ:
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Recall that by (1.5) we have ðjn jÞðR�RÞ ¼ Fq2tF�. It follows that

q�
ffiffi
2

p
Dq ¼ q

3
2ðqq n sfadadqÞðR�RÞ:

To get an explicit expression for q�
ffiffi
2

p
Dq , consider the standard generators e ¼ X1,

f ¼ Y1, k ¼ K1 of Uqg. The representation sfadadq is an irreducible representation of spin
1=2, so with an appropriate choice of basis we have

e 7! 0 1

0 0

� �
; f 7! 0 0

1 0

� �
; k 7! q

1
2 0

0 q�
1
2

 !
:

Recall next that the R-matrix has the form

R ¼ q2 logq knlogq k
Py
n¼0

RnðqÞðkeÞnn ð fk�1Þn;

where logq is the usual logarithm with base q and R0ðqÞ ¼ 1 and R1ðqÞ ¼ q� q�1. Since
ðsfadadqÞð f nÞ ¼ 0 for nf 2, we get

ðin sfadadqÞðRÞ ¼ k 0

q�
1
2ðq� q�1Þe k�1

� �
;

whence

q�
ffiffi
2

p
Dq ¼ q

3
2

qq
�
k2 þ q�1ðq� q�1Þ2fe

�
q�

1
2ðq� q�1Þqqð fk�1Þ

q�
1
2ðq� q�1Þqqðk�1eÞ qqðk�2Þ

 !
:

3. Spectral triple

Our next goal is to study commutators of Dq with regular functions on Gq.

Proposition 3.1. For any a A C½Gq� we have

½Dq; pr;qðaÞn 1� ¼ �
�
pr;qðað0ÞÞn 1

�
ðqqj�1 n sÞðað1Þj�1 n in iÞðUTU �Þ;

where

U ¼ ðin infadadÞ�ðFn 1ÞðD̂Dn iÞðFÞ
�

is a unitary operator in W �ðGÞnW �ðGÞnClðgÞ, the operator T A UðG � GÞnClðgÞ is

defined by

T ¼ ðin in gÞðt13Þ þ ðin in gÞðt23Þ � ðin infadadÞðF�Þðin in gÞðt23Þðin infadadÞðFÞ;

and

F ¼ ðin D̂DÞðF�Þð1nF�ÞðFn 1ÞðD̂Dn iÞðFÞ A W �ðGÞnW �ðGÞnW �ðGÞ

is the associator defined by the unitary twist F.
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Note that in the case q ¼ 1 we can take F ¼ 1, then U ¼ 1, F ¼ 1,
T ¼ ðin in gÞðt13Þ ¼ �

P
k

xk n 1n gðxkÞ, and we recover the familiar formula

½D; prðaÞn 1� ¼
P
k

að1ÞðxkÞprðað0ÞÞn sgðxkÞ ¼ cðdaÞ:

Proof of Proposition 3.1. Since pr;qðaÞn 1 commutes with
P
k

1n s
�
gðxkÞfadadðxkÞ�, it

is only the part �ðin gÞðtÞ of D which contributes to the commutator. Thus the commuta-
tor is the di¤erence of�

pr;qðaÞn 1
�
ðqqj�1 n sÞ

�
ðinfadadÞðFÞðin gÞðtÞðinfadadÞðF�Þ

�
ð3:1Þ

and

ðqqj�1 n sÞ
�
ðinfadadÞðFÞðin gÞðtÞðinfadadÞðF�Þ

��
pr;qðaÞn 1

�
:ð3:2Þ

Applying (3.2) to a vector pr;qðbÞxq n z with b A C½Gq� and z A S, by definition (2.1) of qq
we get

ðað1Þbð1Þj�1 n sÞ
�
ðinfadadÞðFÞðin gÞðtÞðinfadadÞðF�Þ

��
pr;qðað0Þbð0ÞÞxq n z

�
:ð3:3Þ

For any c; d A C½Gq� we have

ðcdj�1 n iÞ
�
ðinfadadÞðFÞðin gÞðtÞðinfadadÞðF�Þ

�
¼ ðcn dn iÞðD̂Dqj

�1 n iÞ
�
ðinfadadÞðFÞðin gÞðtÞðinfadadÞðF�Þ

�
¼ ðcj�1n dj�1 n iÞ

�
ðFn 1ÞðD̂Dn iÞ

�
ðinfadadÞðFÞðin gÞðtÞðinfadadÞðF�Þ

�
ðF� n 1Þ

�
¼ ðcj�1n dj�1 n iÞ

�
UðD̂Dn gÞðtÞU ��:

Therefore (3.3) equals

ðað1Þj�1 n bð1Þj
�1 n sÞ

�
UðD̂Dn gÞðtÞU ���pr;qðað0Þbð0ÞÞxq n z

�
¼
�
pr;qðað0ÞÞn 1

�
ðað1Þj�1 n qqj

�1 n sÞ
�
UðD̂Dn gÞðtÞU ���pr;qðbÞxq n z

�
:

In other words, (3.2) is equal to�
pr;qðað0ÞÞn 1

�
ðqqj�1 n sÞðað1Þj�1 n in iÞ

�
UðD̂Dn gÞðtÞU ��:ð3:4Þ

Consider now the operator (3.1). We can write it as�
pr;qðað0ÞÞn 1

�
ðqqj�1 n sÞðað1Þj�1 n in iÞ

�
�
ðin infadadÞð1nFÞðin in gÞðt23Þðin infadadÞð1nF�Þ

�
:

Since ðin in gÞðt23Þ commutes with ðin infadadÞðin D̂DÞðFÞ, instead of conjugating
ðin in gÞðt23Þ by ðin infadadÞð1nFÞ in the above expression, we can conjugate it by
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ðin infadadÞ�ð1nFÞðin D̂DÞðFÞ
�
¼ Uðin infadadÞðF�Þ:

Thus (3.1) equals�
pr;qðað0ÞÞn 1

�
ðqqj�1n sÞðað1Þj�1 n in iÞð3:5Þ

�
�
Uðin infadadÞðF�Þðin in gÞðt23Þðin infadadÞðFÞU ��:

To summarize, the commutator ½Dq; pr;qðaÞn 1� is equal to the di¤erence of (3.5) and
(3.4). Since ðD̂Dn iÞðtÞ ¼ t13 þ t23, this is exactly what the proposition states. r

Corollary 3.2. The commutator ½Dq; pr;qðaÞn 1� is bounded for all a A C½Gq� if and
only if the commutator

½ðpn in gÞðt23Þ; ðpn infadadÞðFÞ�

is bounded for any finite dimensional representation p : G ! BðVpÞ.

One can equivalently formulate the above condition by saying that the operator

½1nD; ðpn infadadÞðFÞ�

a‰liated with BðVpÞnW �ðGÞnClðgÞ is bounded for any finite dimensional representa-
tion p of G.

Proof of Corollary 3.2. First observe that ½Dq; pr;qðaÞn 1� is bounded for all
a A C½Gq� if and only if the operator

ðaj�1 n in sÞðUTU �Þ A UðGÞnBðSÞ

is bounded for all a A C½Gq�. Indeed, it is clear that boundedness of such operators im-
plies boundedness of the commutators. Conversely, assume that all the commutators are
bounded, and write 1n a as a finite sum of elements of the form ðbn 1ÞDqðcÞ with
b; c A C½Gq�, which is possible by the cancellation property. Since pr;qð1Þ ¼ 1 and�

pr;qðbcð0ÞÞn 1
�
ðqqj�1 n sÞðcð1Þj�1 n in iÞðUTU �Þ

is bounded by assumption, we conclude that

ðaj�1n qqj
�1 n sÞðUTU �Þ

is bounded. Then ðaj�1 n in sÞðUTU �Þ is bounded as the representation qqj
�1 is faithful.

Next notice that when a runs through all elements of C½Gq�, the functionals aj�1 run
through the linear span C½G� of matrix coe‰cients of all finite dimensional representations
of G. So to say that ðaj�1 n in sÞðUTU �Þ is bounded for all a A C½Gq� is the same as
saying that

ðpn in sÞðUTU �Þ
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is bounded for any finite dimensional unitary representation p of G. Since ðpn in sÞðUÞ is
unitary, this in turn is equivalent to boundedness of ðpn in sÞðTÞ.

Now consider the expression for ðpn in sÞðTÞ. The first term ðpn in sgÞðt13Þ is

clearly bounded. On the other hand, since ðpn in sfadadÞðFÞ is unitary, the remaining part
of ðpn in sÞðTÞ can be written as

�ðpn in sfadadÞðF�Þ½ðpn in sgÞðt23Þ; ðpn in sfadadÞðFÞ�:

Therefore the commutators ½Dq; pr;qðaÞn 1� are bounded if and only if

ðin in sÞ
�
½ðpn in gÞðt23Þ; ðpn infadadÞðFÞ�

�
is bounded for any p. This is what we need if g is even dimensional, as the representation s

is then faithful. In the odd dimensional case there exists another irreducible representation
~ss : ClðgÞ ! BðSÞ. Then sl~ss is faithful. The representations s and ~ss are equivalent when
restricted to the even subalgebra of ClðgÞ. It follows that s is isometric on the even subalge-
bra. But then we conclude that it is also isometric on the odd part of ClðgÞ by observing
that kxk2 ¼ kx�xk and if x A ClðgÞ is odd then x�x is even. Now note that ðin in gÞðt23Þ
is odd, while ðpn infadadÞðFÞ is even, so their commutator is odd. r

We now want to get an estimate of the norms of the above commutators in the case
of the Drinfeld associator. But first we establish a couple of commutation relations.

Lemma 3.3. We have ½ðin gÞðtÞ; ðinfadadÞðtÞ� ¼ 0.

Proof. By (1.4) we have

2ðinfadadÞðtÞ ¼ ðinfadadÞD̂DðCÞ � Cn 1� 1nfadadðCÞ:

As we know, ðin gÞðtÞ commutes with any element of the form ðinfadadÞD̂DðxÞ. Thus it com-
mutes with the first term on the right-hand side of the above identity. It also clearly com-
mutes with the second term. Finally, as we already remarked prior to Proposition 2.5, the
third term is a scalar. r

It is well-known that ½tik; tij þ tjk� ¼ 0 for nonequal i, j, k. For the same reasons in the
spin representation we have the following relation.

Lemma 3.4. We have ½ðin in gÞðt13Þ; ðin infadadÞðt12 þ t23Þ� ¼ 0.

Proof. Applying the flip to the first two factors, we can equivalently check

½ðin in gÞðt23Þ; ðin infadadÞðt12 þ t13Þ� ¼ 0:

This follows immediately from t12 þ t13 ¼ ðin D̂DÞðtÞ. r

The relations ½tik; tij þ tjk� ¼ 0 imply consistency of the Knizhnik-Zamolodchikov
equations, or equivalently, mutual commutativity of the Hamiltonians of the Gaudin
model [16]. Similarly, using the two previous lemmas we get the following.
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Lemma 3.5. For any z A C we have

�
ðin in gÞ

�
ð1� zÞt13 þ t23

�
; ðin infadadÞ�ðz� 1Þt12 þ zt23

��
¼ 0:

Proof. By Lemma 3.4 we have

ð1� zÞ
�
ðin in gÞðt13Þ; ðin infadadÞ�ðz� 1Þt12 þ zt23

��
¼ ðz� 1Þ½ðin in gÞðt13Þ; ðin infadadÞðt12Þ�:

By Lemma 3.3 we also have

�
ðin in gÞðt23Þ; ðin infadadÞ�ðz� 1Þt12 þ zt23

��
¼ ðz� 1Þ½ðin in gÞðt23Þ; ðin infadadÞðt12Þ�:

So we just have to check that

½ðin in gÞðt13 þ t23Þ; ðin infadadÞðt12Þ� ¼ 0:

This is indeed true as t13 þ t23 ¼ ðD̂Dn iÞðtÞ. r

We can now prove our main technical result.

Proposition 3.6. If F ¼ FKZ is the Drinfeld associator, then for any finite dimensional

unitary representation p : G ! BðVpÞ we have

k½ðpn in gÞðt23Þ; ðpn infadadÞðFÞ�ke 6kðpn gÞðtÞk:

Proof. Fix finite dimensional unitary representations p and p 0 of G. Put

A ¼ ðpn p 0 nfadadÞðt12Þ and B ¼ ðpn p 0 nfadadÞðt23Þ:
According to (1.1) we have

ðpn p 0nfadadÞðFÞ ¼ lim
a!0þ

a��hBGað1� aÞa�hA;

where Ga is such that GaðaÞ ¼ 1 and

G 0
aðxÞ ¼ �h

A

x
þ B

x� 1

� �
GaðxÞ:

Since all three operators a��hB, Gað1� aÞ and a�hA are unitary, to prove the proposition it
su‰ces to show that

½ðpn p 0 n gÞðt23Þ; a��hB� ¼ 0;ð3:6Þ
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k½ðpn p 0 n gÞðt23Þ;GaðxÞ�ke 4kðpn gÞðtÞk;ð3:7Þ

k½ðpn p 0 n gÞðt23Þ; a�hA�ke 2kðpn gÞðtÞkð3:8Þ

for all a; x A ð0; 1Þ.

Equality (3.6) follows from Lemma 3.3.

To show (3.8) recall that A commutes with

ðpn p 0 n gÞðt13 þ t23Þ ¼ ðpn p 0n gÞðD̂Dn iÞðtÞ:

Hence the left-hand side of (3.8) equals k½ðpn p 0 n gÞðt13Þ; a�hA�k. Since a�hA is unitary, the
latter norm is not larger than

2kðpn p 0 n gÞðt13Þk ¼ 2kðpn gÞðtÞk:

Turning to (3.7), for a fixed a A ð0; 1Þ consider the commutator

LðxÞ ¼
�
ðpn p 0 n gÞ

�
ð1� xÞt13 þ t23

�
;GaðxÞ

�
:

Then, as GaðxÞ is unitary and so k½ðpn p 0 n gÞðt13Þ;GaðxÞ�ke 2kðpn gÞðtÞk, it is enough
to check that

kLðxÞke 2kðpn gÞðtÞkð3:9Þ

for all x A ð0; 1Þ. We have for the derivative of L that

L 0ðxÞ ¼ ðpn p 0n gÞ
�
ð1� xÞt13 þ t23

�
; �h

A

x
þ B

x� 1

� �
GaðxÞ

� 	
� ½ðpn p 0 n gÞðt13Þ;GaðxÞ�:

Since ðpn p 0n gÞ
�
ð1� xÞt13 þ t23

�
commutes with

A

x
þ B

x� 1
by Lemma 3.5, we thus see

that L satisfies the di¤erential equation

L 0ðxÞ ¼ �h
A

x
þ B

x� 1

� �
LðxÞ � ½ðpn p 0n gÞðt13Þ;GaðxÞ�

with initial condition LðaÞ ¼ 0. Consequently

LðxÞ ¼ �
Ðx
a

GyðxÞ½ðpn p 0n gÞðt13Þ;GaðyÞ� dy;

from which we get (3.9) using again unitarity of GyðxÞ and GaðyÞ. r

Therefore we get an equivariant spectral triple
�
C½Gq�;L2ðGqÞnS;Dq

�
. Since Dq is

unitarily equivalent to D, this spectral triple has the same summability properties as the
classical one.
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Recall next that if g is of even dimension 2m then the classical spectral triple is graded
by the chirality element w ¼ imgðx1Þ . . . gðx2mÞ. Since 1n w anticommutes with D and

commutes with elements in the image of infadad, we see that 1n w anticommutes with Dq,
so our spectral triple for Gq is even.

To summarize, we have the following result.

Theorem 3.7. If the operator Dq is defined using a unitary Drinfeld twist then

�
C½Gq�;L2ðGqÞnS;Dq

�
is an equivariant spectral triple of the same parity as the dimension of G.

Remark 3.8. (i) According to Remark 2.1 we can use connections

‘fnx ¼ f qðxÞn 1þ lf n adðxÞ; l A R;

to define Dirac operators. By the same procedure as before we then get Dirac operators on
Gq. Since the commutators of these operators with pr;qðaÞn 1, a A C½Gq�, do not depend on
l, the above theorem remains true for all such operators.

(ii) If KqHGq is a quantum subgroup of Gq, we can define a spectral triple for the
quantum homogeneous space Gq=Kq by restricting Dq to the space of Kq-invariant vectors
(with respect to the representation qq � sfadadq). Classically such spectral triples are closely
related to the ones defined by Dirac operators on homogeneous spaces.

More precisely, consider a homogeneous space G=K . Assume it has a G-equivariant
spin structure, which is then necessarily unique. Fix a spin module Sk for ClðkÞ. Denote by
Dk the Dirac operator on the spin bundle over G=K twisted by the bundle induced by the
representation K ! BðSkÞ. On the other hand, we can consider the restriction of the Dirac
operator on G to the space of K-invariant sections. These two operators can be expressed in
terms of each other. The relation is most transparent when G=K is even dimensional; then
the spaces on which these operators act can be identified, and the di¤erence of the opera-
tors is bounded. In particular, if K ¼ T is a maximal torus then the spectral triple for G=T
obtained by restricting the Dirac operator on G to the space of T-invariant L2-spinors, is
the direct sum of 2½rank g=2� copies of the spectral triple defined by the Dirac operator on
G=T .
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