Families of Artinian and one-dimensional algebras

Abstract
The purpose of this paper is to study families of Artinian or one dimensional quotients of a polynomial ring R with a special look to level algebras. Let GradAlg^H(R) be the scheme parametrizing graded quotients of R with Hilbert function H. Let B -> A be any graded surjection of quotients of R with Hilbert function H_B=(1,h_1,...,h_j,...) and H_A respectively. If dim A = 0 (resp. dim A = depth A = 1) and A is a "truncation" of B in the sense that H_A=(1,h_1,...,h_{j-1},s,0,0,...) (resp. H_A=(1,h_1,...,h_{j-1},s,s,s,...)) for some s < 1+h_j, then we show there is a close relationship between GradAlg^{H_A}(R) and GradAlg^{H_B}(R) concerning e.g. smoothness and dimension at the points (A) and (B) respectively, provided B is a complete intersection or provided the Castelnuovo-Mumford regularity of A is at least 3 (sometimes 2) larger than the regularity of B. In the complete intersection case we generalize this relationship to "non-truncated" Artinian algebras A which are compressed or close to being compressed. For more general Artinian algebras we describe the dual of the tangent and obstruction space of deformations in a manageable form which we make rather explicit for level algebras of Cohen-Macaulay type 2. This description and a linkage theorem for families allow us to prove a conjecture of Iarrobino on the existence of at least two irreducible components of GradAlg^H(R), H=(1,3,6,10,14,10,6,2), whose general elements are Artinian level algebras of type 2.
Collections
Date
2007Author
Kleppe, Jan Oddvar
Related items
Showing items related by title, author, creator and subject.
-
Unobstructedness and dimension of families of Gorenstein algebras
Kleppe, Jan Oddvar (Universitat de Barcelona, 2007)The goal of this paper is to develop tools to study maximal families of Gorenstein quotients A of a polynomial ring R. We prove a very general Theorem on deformations of the homogeneous coordinate ring of a scheme Proj A ... -
The Dirac operator on compact quantum groups
Neshveyev, Sergey; Tuset, Lars (Walter de Gruyter, 2010-01-20)For the q-deformation Gq, 0 < q < 1, of any simply connected simple compact Lie group G we construct an equivariant spectral triple which is an isospectral deformation of that defined by the Dirac operator D on G. Our ... -
Families of Determinantal Schemes
Kleppe, Jan Oddvar; Miro-Roig, Rosa Maria (American Mathematical Society, 2011-03-16)Given integers a_0 <= a_1 <= ... <= a_{t+c-2} and b_1 <= ... <= b_t, we denote by W(b;a) \subset Hilb^p(P^n) the locus of good determinantal schemes X in P^n of codimension c defined by the maximal minors of a t x (t+c-1) ...