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Abstract
The Transmission Control Protocol (TCP) has proved to be a reliable transport protocol
that has withstood the test of time. It is part of the TCP/IP protocol suite deployed on
the Internet, and it currently supports a variety of underlying networking technologies
such as Wireless, Satellite and High-Speed networks.

The congestion control mechanism used by current implementation of TCP ( known
as TCP-Reno/new Reno) is based on the Additive Increase Multiple Decrease (AIMD)
algorithm that was first introduced by Van Jacobsen in 1988[1] after the Internet expe-
rienced heavy congestion which subsequently led to a phenomenon calledcongestion
collapse. The algorithm assumes no prior knowledge of end-to-end path conditions
and blindly follows the same routine at the beginning of every connection namely,
a slow start phase, a congestion avoidance phase and in the event of a lost segment
reduces the transmission rate accordingly.

The network will experience different conditions depending on the amount of traffic
exerted on it. At times it will endure heavy load while at other times there will be
small amount of traffic. In the event that the end-to-end path characteristics are known
and the amount of traffic generated is predictable, the AIMD algorithm does not take
advantage of that information. In this thesis we investigate ways of predicting the
available bandwidth between two hosts frequently in contact with each other through
the deployment of bandwidth estimation tools. We would like to explore the possibility
that AIMD can take advantage of bandwidth measurements collected between these
hosts.
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Chapter 1

Introduction

The Transmission Control Protocol (TCP) has proved to be a reliable transport proto-
col that has withstood the test of time. It is part of the TCP/IP protocol suite deployed
on the Internet, and it currently supports a variety of underlying networking technolo-
gies such as Wireless, Satellite and High-Speed networks. From its original standard
[2], the protocol has undergone several face lifts[3] in order to cope with emerging
technological demands. Most of the changes made to TCP primarily addressed ways
of dealing with or avoiding congestion on the Internet. Congestion arises when inter-
mediate devices such as routers and switches cannot cope with the traffic generated by
the end systems.

The congestion control mechanism used by current implementation of TCP ( known
as TCP-Reno/new Reno) is based on the Additive Increase Multiple Decrease (AIMD)
algorithm that was first introduced by Van Jacobsen in 1988[1] after the Internet expe-
rienced heavy congestion which subsequently led to a phenomenon calledcongestion
collapse. AIMD was later supplemented with two more algorithm[3] called Fast re-
transmit and Fast recovery to further enhance the performance in certain situations.
The algorithm assumes no prior knowledge of end-to-end path conditions and blindly
follows the same routine at the beginning of every connection namely, a slow start
phase, a congestion avoidance phase and in the event of a lost segment reduces the
transmission rate accordingly.

The network will experience different conditions depending on the amount of traffic
exerted on it. At times it will endure heavy load while at other times there will be
small amount of traffic. In the event that the end-to-end path characteristics are known
and the amount of traffic generated is predictable, the AIMD algorithm does not take
advantage of that information. If congestion normally occurs at a particular time of
the day between host A and host B, there is a high probability that congestions will
happen at similar times in the future also. Having such knowledge about the long time
behavior of an end-to-end path is indispensable information that is not incorporated in
current implementations of TCP congestion control.
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1.1 Motivation

Research conducted at Oslo University College in[4, 5] indicate that system activity
is influenced by the behavior of users. Users exert a random influence on the system
leading to fluctuating levels of demand and supply for resources. In such systems, one
finds a number of regularities that reflect the social work and leisure patterns of the
users over time. The amount of network traffic exerted on to the network is obviously
influenced by these fluctuating demand and supply for resources. Taking that into
consideration, we would like to investigate how the social work and leisure patterns
impact the available bandwidth in a network?

1.2 Research objectives

• Investigate the behavior of the network traffic and distinguish if there exists a
long term relationship between two peers. If a user has a preference in such
way that the individual more often connects to certain hosts compared to others.
The definition of what we mean by a long term relationship is described having
contact with each other on a daily basis for a minimum of a week.

• Whether the path taken by a packet from host A to host B is stable. Does the
packet take the same route every time?

• Find out ways to estimate available bandwidth and explore ways that these esti-
mations can be helpful to TCP.

In this thesis we investigate ways of predicting the available bandwidth between two
hosts frequently in contact with each other through the deployment of bandwidth esti-
mation tools. We would like to explore the possibility that congestion control mecha-
nism in TCP can take advantage of bandwidth measurements collected between these
hosts. The aim is to have a good initial estimate of the starting transmission rate based
on predictions calculated from long periods of measurements rather than resorting to
slow start. We are also interested in predicting slow start threshold(ssthresh)from
these calculations.

1.3 Thesis Structure

An overview of TCP fundamentals and issues encountered with its algorithms are pre-
sented in Chapter 2. The purpose of this chapter is to give the reader an understanding
of the basics of TCP. Chapter 3 describes some related work. The methodology de-
ployed in this thesis and experiments conducted are described in chapter 4. The results
obtained through the tests are presented in Chapter 5. Proposals and limitations are
discussed in Chapter 6. Conclusion and further work are presented in Chapter 7.
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Chapter 2

Background

2.1 TCP/IP history

The Transmission Control Protocol/Internet Protocol (TCP/IP) is composed of a num-
ber of protocols that together specify how data can be exchanged between machines.
A descendant of the Advanced Research Project Agency Network (ARPANET) which
was established and funded by the U.S. defense department in 1969, it has become the
de facto standard that is used on the Internet today. TCP/IP deploys the concept of
layering in which each layer has a distinct task to perform. The idea of having separate
layers stems from the computer programming world, where programs are divided into
smaller functions/methods and structs/classes communicating with each other through
calls (message passing). The aim is to let software developers concentrate on a partic-
ular layer and not be bothered by the other layers.

Application programmers for example do not require to know about the underlying
infrastructure and are provided with the library/interface needed to pass a message
to the layer below. The Berkley Socket API which is a set of C function calls that
support network communication is such a library. Hardware developers benefit also
from this separation of layers since they can produce a product specifically tailored for
a defined layer quickly and cheaply. Cisco routers and switches are such products that
mainly deal with the Network and the Data Link layers respectively see figure 2.1 for
description on layers.

Another advantage with the layering concept is the ability to cope with technological
changes. A new and better performing protocol can easily be adapted at any of the
layers without having a profound impact on the other layers.
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2.1.1 The layering concept

In the 1980’s the International Standards Organization (ISO) began developing a model
for a network system, called Open Systems Interconnection (OSI) model. This model
had 7 layers and is mostly used as a reference in the networking world. The model
never appealed to a wide audience and instead TCP/IP became the widely accepted
and deployed model. We will now describe the different layers of TCP/IP and how
they interact with each other. This is also depicted in figure 2.1.

The Application layer

The application layer is where data starts its journey. At this layer we have the popular
applications such as the Web (HTTP), Mail(SMTP) and File Transfer Protocol(FTP).
After data is generated by the application, it passes it to the layer below in this case
the transport layer. Application programmers decide in advance the type of transport
protocol that is suitable for the particular application. Depending on whether a reliable
transport protocol is needed or not, the programmer either chooses TCP or UDP as
means of transporting the packet.

Figure 2.1: TCP/IP layer structure
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Transport layer

When the transport protocol is handed a packet by the application, it extracts the nec-
essary information from it. The most important been the port number that identifies the
receiving application. This information is populated into a header see figure 2.4 and
the data is encapsulated with this header. The header is nothing more than a marker
which indicates the transition from the bits that belong to the data part and the ones
that belong to TCP/UDP see figure 2.2. The header + data is called a segment at the
transport layer, and this segment is passed to the Network layer.

Figure 2.2: Frame

Network layer

The Network layer (Layer 3) is responsible for moving data across an internetworking.
All the information needed to do so is contained in its header. IP is the protocol that
operates at this layer. The protocol encapsulates the segment with its header and passes
the datagram (segment + IP header) to the data link layer.

Data Link layer

Just before data is injected into the transmission media, the Data Link layer receives
the datagram from IP and encapsulates it with a header and a trailer. The task of the
Data Link layer is to move data across a link. A link is usually a direct connection
between two devices that operate at layer 2 or 3.

Protocols that operate at this layer are among others, Point-to-Point Protocol (PPP)
and Serial Line Interface Protocol (SLIP). Ethernet/IEEE 802.3, Token Ring / IEEE
802.5 and Fiber Distributed Data Interface (FDDI) are also Data Link protocols, but
they also stretch to layer 1. After the header and the trailer are put in place, the frame
is passed to the physical layer.
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Physical layer

This is the actual physical media that is in use by the host. It could be a wired media
such as Ethernet, Frame -relay or Fiber Optics. It could be wireless i.e IEEE 802.11,
IEEE 802.16 or Bluetooth. The Network Interface Card (NIC) installed on the machine
decides the type of media it can communicate with.

2.2 The Transmission Control Protocol (TCP)

The TCP/IP protocol suite includes two transport protocols, namely TCP and UDP.
Applications such as web browsing (HTTP), e-mail (SMTP) and file transfer (FTP)
all use TCP as the underlying transport protocol. TCP provides a reliable, connection
oriented transport service that guarantees the delivery of data in order before gracefully
terminating the connection. It also has a way of controlling the amount of traffic
injected into the network through a process known as flow control and congestion
control. We will further elaborate on how TCP-Reno/new Reno (refer to as TCP in
this thesis) accomplishes this complex tasks in the following sections.

2.2.1 Connection oriented

Before an application using TCP as a transport protocol can transfer any data, it has
to establish a connection with the receiving end by going through a process called the
three-way handshake. The sender initially sends a SYN packet, waits for a SYN-ACK
reply packet from the receiver and then replies with an ACK to complete the process.
This is depicted in 2.3.

During the three-way handshake the sequence numbers are initialized randomly,
thereafter each segment that is exchanged by the peers is assigned a unique sequence
number which also indicates the amount of bytes sent. Upon completion of the three
way handshake, the connection is established and data transmission can start. When all
the data is sent, the sender and the receiver exchange FIN and ACK in both directions
to terminate the connection.

2.2.2 Reliable delivery

TCP guarantees the delivery of data in order and without any duplication. It achieves
this through the use of positive acknowledgment and retransmissions. The TCP sender
assigns a sequence number to each byte sent, and expects an acknowledgment to be
returned by the receiver. There is a sequence number field and acknowledgment filed in
the TCP header which allows the sender and the receiver to exchange this information
see figure 2.4. It also associates a timer with the sent data and if acknowledgments
are not received within the given time period, it retransmits the data. TCP has another
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Figure 2.3: Connection establishment

mechanism which can trigger retransmission and that is duplicate acknowledgments
(DACK) see section 2.2.4. When bytes arrive out of order at the receiver, it would
generate DACK to inform the sender of the situation asking for the next expected
bytes in order.

2.2.3 Flow control

Flow control ensures that the sender does not overwhelm the receiver with too much
traffic. Buffers are allocated during the three-way handshake phase at both the sender
and the receiver to accept incoming packets. To avoid buffer overflow which can lead
to packet drops, messages are exchanged between the sender and the receiver indicat-
ing the buffer size. The sender is informed explicitly about available buffer size at the
receiver through the window field of the TCP header (see figure 2.4). The receiver side

Figure 2.4: TCP header

of the connection keeps count of the number of the last byte read (lastByteRead) by
the receiving application i.e. HTTP, FTP, SMTP and etc. It also keeps count of the
number of the last byte that has arrived in-order from the network and placed in the
buffer (lastbyteRcvd). Buffers for incoming packets (rcvBuffer) is adjusted as follows:
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lastbyteRcvd - lastByteRead≤ rcvBuffer.

The window that is advertised to the sender is calculated based on the following:

window = rcvBuffer - (lastbyteRcvd - lastByteRead).

The sender side of the connection must also ensure that the amount of data it sends is
accordance with the size of thewindow, therefore it maintains the variable advertised-
Wnd which is calculated from:

lastByteSent - lastByteAcked≤ advertisedWnd.

Apart from congestion window which we will elaborate on in the next section, the
amount of data the sender can send is limited by its effective window (effWnd).

effWnd = advertisedWnd (lastByteSent - lastByteAcked).

2.2.4 Congestion control

Congestion control mechanism in TCP plays an essential role both for the applica-
tion requesting the service and the Internet as whole. The mechanism provisions the
amount of traffic that can be injected into the network thus governing the overall perfor-
mance of the communicating processes. Congestion occurs when demand for network
resources is larger than what the network can supply, thus leading to some packets
been dropped along the way. For TCP, dropped packets means retransmissions.

Routers along the path of a connection cannot explicitly inform TCP of any con-
gestion, due to the separation of layers. Intermediate routers operate at the network
layer and therefore do not interact with the transport layer. This preserves the layered
structure of the TCP/IP suite where every layer has a distinct function. Congestion is
therefore detected through the loss of a packet. A packet is considered lost if an ACK
is not received within a time frame (RTO) or upon the reception of duplicate ACKs.
The algorithms that dictate congestion control are respectively Slow Start (SS), Con-
gestion Avoidance (CA), Fast Retransmit and Fast Recovery [3]. Further explanation
of these algorithms will be done in the following sections.

Slow start & Congestion avoidance

TCP has no knowledge of the paths bandwidth capacity upon establishing a new con-
nection, and must therefore resort to an estimation of the available bandwidth. It
accomplishes this by going through a process known as Slow Start and Congestion
Avoidance. In Slow Start, the sender side of the connection maintains a variable called
Congestion Window (CWN) which is initialized to 1 Maximum Segment Size (MSS).
CWN determines the maximum number of outstanding packets that have been trans-
mitted but not yet acknowledged. The TCP sender also keeps track of the receiver’s
advertised window size (RcvWnd) and calculates its transmission rate (sendWnd) as
follows:
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Figure 2.5: AIMD congestion control behavior

SendWnd = min(CWN, RcvWnd).

Where RcvWnd is the receiver advertised window through the TCP header see fig-
ure 2.4. Whenever the sender receives an ACK that confirms the reception of a sent
packet, CWN is increased accordingly see figure 2.6. Thus, the CWN is increased
exponentially during the SS phase.

Obviously if this increase continues without provisioning, the congestion window
could exceed the available capacity and thereby overflow intermediate routers. To
overcome this particular problem, the sender also maintains another variable called
slow start threshold (ssthresh). This variable determines the transition from Slow Start
to Congestion Avoidance. Congestion Avoidance phase is entered if CWN becomes
larger than ssthresh. In the congestion avoidance phase, the CWN is increased linearly
(1 segment) for every round trip time (RTT). This process continues until congestion
occurs and is detected either through timeout or duplicate acknowledgments. Detec-
tion through duplicate acknowledgments will force TCP to invoke the Fast retransmit
& Fast recovery algorithms. The details of these algorithms are explained in the next
section.

Fast retransmit & Fast recovery

Segments can arrive out-of-order at the TCP receiver. When that occurs, the receiving
host cannot deliver these segments to the receiving application, and must therefore
buffer them until the correct sequenced data arrive. According to RFC2581 [3], the

13



Figure 2.6: Slow start

TCP receiver should send an immediate duplicate ACK to inform the sender about the
out-of-order segment received and the sequence number that is expected. This will
cause the sender to receive duplicate acknowledgments (DACK) for previously sent
data. RFC2581 [3] requires the sender to use the Fast retransmit algorithm upon the
reception of 3 DACK. The goal of the Fast retransmit algorithm is to retransmit a lost
segment immediately after 3 DACK rather than waiting for the retransmission time out
(RTO) which could be relatively long in some situations.

The standard [3] specifies that the sender should use the Fast recovery algorithm
instead of Slow Start (see section 2.2.4) if a lost packet is retransmitted due to 3 DACK
rather than RTO. Fast recovery reduces the congestion window to halve and not to 1
segment as Slow Start would. The reason for that is the arrival of 3 DACK indicates
that the network is capable of delivering some segments regardless of congestion, and
therefore does not need to take drastic measurements such as reducing congestion
window to 1 segment.
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2.3 Congestion control issues in TCP

2.3.1 Interpreting loss as congestion

The AIMD algorithm used by TCP considers the loss of packets as a signal of network
congestion. This in turn triggers the congestion control mechanism which leads to a
reduced transmission rate. The fundamental assumption, on which the algorithm is
designed around, causes performance deterioration for TCP when packets are lost due
to other reasons than congestion. In [6] the authors identify 40 distinct error classes
in TCP that are not all related to congestion along a path. Their investigation also
revealed that 1 packet in 1,100 and 1 packet in 32,000 fails the TCP checksum.

Wireless networks (WLan) and cellular systems (3G) are gaining popularity. These
networks suffer from significant losses due to bit errors and handoffs (When a mobile
unit moves from one base station to another) [7]. The bit error rate in wireless networks
can be in the order of≈ 10−6 compared to wired networks which are normally in the
order of≈ 10−12 [8]. The need for better TCP performance in situations where loss is
not due to congestion has long been discussed by the research community and a variety
of solutions has been proposed some off which we will look into in section 2.4.

2.3.2 Fast long-distance networks

Fast long-distance networks are networks that operate at capacities in the range of
622Mbps to 10 Gbps. These networks are been deployed at ISP’s backbone networks
and between research institutions around the globe. At the First International Work-
shop on "Protocols for FastLong-Distance Networks in 2003", TCP’s shortcomings in
these environments were discussed.

Sally Floyd pointed out in her paper [9] that a standard TCP with a 1500-byte pack-
ets and a 100 ms round-trip time, would need an average congestion window of 83,333
segments and a packet drop rate of at most one congestion event every 5,000,000,000
to achieve a steady state throughput of 10 Gbps. Floyd also points out AIMD’s in-
ability to recover quickly from loss triggered event on networks with high Bandwidth
Delay Products (BDP). An experiment conducted at California Institute of Technol-
ogy [10] on the responsiveness of current TCP in various networks confirmed its poor
performance on networks with high BDP. Their results show that it took TCP between
15min to 1h 30 min to recover from loss on a 10 Gbit/s link with a RTT of 120ms and
a MSS of 8,960 bytes or 1,460 bytes.

Several solutions have been proposed to address these issues. They vary from ex-
tending the current TCP implementation, tuning the TCP parameters at the sending
host and totally creating a new transport protocol. We will not describe in details these
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different approaches, but some of the promising high-speed transport protocols will be
mentioned in section 2.4.

2.4 TCP implementation that address the problem

2.4.1 TCP Vegas

TCP Vegas [11] was the first TCP implementation to branch from the traditional con-
gestion control mechanism implemented in the widely used TCP Reno. Instead of
relying on packet loss as an indication of network congestion, Vegas deploys a more
sophisticated bandwidth estimation scheme to predict potential congestion on the net-
work. It calculates the difference between the expected rate and the actual rate to
estimate the available bandwidth.

TCP Vegas aim is to detect congestion that occurs between the source and the des-
tination before packet loss happen and lower its transmission rate linearly (rather than
multiplicatively as AIMD does) when loss is detected. The algorithm used by Vegas is
as follows:

1. Define a base round trip time (baseRTT). This is determined by the minimum of
all measured RTT during a connection.

2. Calculate the expected transmission rate (expectedRate) as:

expectedRate= congestion Window / baseRTT

Wherecongestion Windowis the amount of data sent but not yet acknowledged
for.

3. Calculate the difference (diff ) betweenexpectedRateandactualRate, whereac-
tualRate= congestion Window / RTTand RTT is the actual round trip time. In
other words:

diff = congestion Window / RTT.

4. Define the thresholdsα andβ, whereα indicates too little data andβ indicates
too much data. (Currentlyα = 1andβ = 3

5. If diff < α, thencongestion Window = congestion Window + 1.

6. If diff > β, thencongestion Window = congestion Window - 1.

7. If α < diff > β, then congestion Window is unchanged.
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2.4.2 TCP Westwood

One of the new comers in to the arena of congestion control algorithms is TCP West-
wood (TCPW). The idea behind TCPW is to perform an end-to-end estimate of the
bandwidth available (BWE) along a TCP connection by measuring the rate of return-
ing acknowledgments [12]. The algorithm behaves just like TCP Reno in slow start
and congestion avoidance phase, but reacts differently to recover from lost. If timeout
triggers loss the algorithm sets the values of ssthresh and CWN as follows[12].

• ssthresh = (BWE * RTTmin) / seg_size. In the event that ssthresh is less than 2,
then ssthresh is set to 2.

• cwin = 1

On the other hand if duplicate ACKS are the cause of the loss, the algorithm be-
haves as follows [12].

• ssthresh = (BWE* RTTmin) / seg_size

• if CWN is larger than ssthresh which is an indication congestion avoidance
phase, then set CWN = ssthresh.

In [13], they show TCP Westwood to perform well not only in wired networks but
also in many wireless scenarios.

2.4.3 ECN & RED

Explicit Congestion Notification (ECN) and Random Early Detection (RED) are ef-
forts to make the intermediate routers get involved in the managing of congestion
control. ECN which is specified in RFC 2481 [14] takes advantage of fields in the
IP headers so that router can mark a packet with the Congestion Experienced (CE) bit
to inform the sender of the situation. The aim is to make TCP ECN capable so that it
would reduce its transmission rate.

Active Queue Management is a scheme for routers to detect congestion before their
queues overflows by deploying the RED algorithm. RED which was first presented in
[15] basically monitors the average queue size for the output and drops packets based
on a probabilistic calculations. It sets some thresholds for when to start dropping
packets and when to mark them. End nodes as we explained in the previous section
can benefit from this by getting an explicit notification about potential congestion build
up along the path.
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2.4.4 SACK

Selective Acknowledgment Options (SACK) described in RFC 2018 [16] addresses
the problem of poor performance when multiple packets are lost from one window of
data. TCP has the option of accumulation acknowledgments which means that rather
than acknowledging every received packet, the receiver side of TCP can accumulate
several packets and acknowledge them at one go. The drawback with this is that in
the event of a packet loss, the sender has to retransmit the lost packet and all of the
subsequent packets that were not acknowledged. For that reason SACK was proposes
as a standard option to be used by the sender and the receiver.

The receiver side of TCP can take advantage of the SACK options to inform the
sender of the missing sequence number. The sender, receiving a SACK option can
then send the missing packet only and no other packets need to be retransmitted. Less
retransmission mean better throughput and in that sense, SACK improves TCP perfor-
mance.

2.4.5 Protocols for Fast long-distance networks

Traditional TCP (TCP-Reno/New Reno) with AIMD congestion control algorithm is
showing signs of age and poor performance on high speed gigabits networks in [9, 10].
The two most promising algorithms to deal with the issue that are proposed today
are HighSpeed TCP and FAST TCP. We explain these new protocols n the coming
sections.

HighSpeed TCP

Sally Floyd proposed HighSpeed TCP (HS-TCP) [17, 18] to improve the performance
of standard TCP in fast-long delay networks. HS-TCP modifies the congestion control
mechanism so that the congestion window parameter is set based on the values in table
2.1: HS-TCP response will depend on the size of congestion window (cwnd) compared

window parameter value
Low_Window 31
High_Window 83000

High_P 0.0000001

Table 2.1: HighSpeed TCP parameters

to the parameter Low_Window, thus:

• cwnd≤ Low_Window, then HS-TCP use the same response function as standard
TCP.
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• cwnd > Low_Window, then HS-TCP uses the HighSpeed response function.

When cwnd is large (greater than 38 packets), the modification uses table 2.1 to in-
dicate by how much the congestion window should be increased when an ACK is
received, and it releases less network bandwidth than 1/2 cwnd on packet loss [19].

FAST TCP

Fast TCP is a descendant of TCP Vegas. Unlike Highspeed TCP, FAST TCP is a
delay-based congestion control algorithm which uses queuing delay as a measure of
congestion to adjust its window [20]. The protocol consists of four components, each
one performing a separate task but collaborating together as one algorithm. The four
components are:

• Estimation

• Window Control

• Data Control

• Burstiness Control

The estimation component keeps track of arriving acknowledgments (ACK) for
sent data and calculates the RTT. If the received ACK is not a duplicate one, theesti-
mation component calculates the minimum RTT, an exponentially smoothed average
RTT and passes this information to thewindow control component. Loss detected
either through a timeout or a duplicate ACK causes theestimationcomponent to pass
the information to thedata control component.

Decision regarding how many packet to transmit is controlled by theWindow con-
trol component. The algorithm used by FAST to update its window under normal
conditions is [20]:

w = min
{
2w, (1− γ)w + γ

[
baseRTT

RTT
w + α

]}
Where RTT is the current average RTT, baseRTT is the minimum RTT noticed so far
andγ is a number between 0 and 1.α is parameter used by FAST to measure fairness
and the number of packets each flow buffered in the network.

Data control . Data control component determines which packets to transmit next.
It chooses from the following categories:

• New packets (The next packet to send is totally new)

• Retransmission of a lost packet
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• Packets transmitted but not yet acknowledged.

The component keeps sending new packets when old ones are acknowledged and
there is no indication of loss. In the event that loss is detected, the component has the
alternative of choosing to send one of the categories mentioned earlier.

Burstiness control determines when to transmit the packets. The burstiness con-
trol component smooths out transmission of packets to track the available bandwidth.
Networks with large BDP can in periods experience burstiness because of the large
amount of data in flight. For example, a single acknowledgment can acknowledge sev-
eral thousand packets creating a large burst. The operating system at the sender side
could be occupied with other matters, thus accumulating packets at the output queue
which can lead to transmitting in a large burst when CPU becomes available. bursty
data increases the likelihood of massive data loss as router queues might not cope with
such burtiness.
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Chapter 3

Related work

The first attempt to use a bandwidth estimation technique to improve the congestion
control in TCP can be traced back to TCP Vegas. Vegas estimation was based on mea-
suring bandwidth from the number of sent packets see section 2.4.1 for more informa-
tion on Vegas. The author of [21] proposed using the Packet Pair method explained
in section 4.3.2 as a way of initializing slow start threshold (ssthresh) in TCP. Allman
and Paxson [22] used a method known as Packet Bunch Mode (PBM) developed by
Paxson in 1997. Their goal was to estimate available bandwidth with the PBM tech-
nique to set ssthresh correctly, such that the bandwidth available to a given connection
could be fully utilized but never exceeded.

Enable (Enabling network-aware applications) [23] is an architecture which aims
to provide information about network parameters to a number of hosts. The Enable
service consists of three components. The Enable Server which keeps track of network
parameters between itself and other hosts, a protocol for clients to communicate with
the server and an API that makes querying the Enable Servers easier for the developers.
The Network Weather Service (NWS) [24] is a distributed system that periodically
monitors and dynamically forecasts the performance various network resources can
deliver over a given time interval. The system has among other things sensors for
measuring end-to-end TCP/IP performance such as bandwidth and latency.

The work that is closely related to ours is [25], where three different bandwidth
estimation tools are evaluated and a method to infer TCP parameters are proposed.
A modified version of TCP-SACK that includes the bandwidth estimation tool Initial
Gap Increasing (IGI ) [26] is used to set the ssthresh and congestion window (cwn) in
TCP. We use a similar approach in terms of using a bandwidth estimation tool in our
casepathloadsee section 4.4.6 for more information. Our work differs from theirs in
the sense that we are interested in the long term behavior of a path and possible ways
of setting ssthresh/cwn based on those measurements.
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Chapter 4

Methodology

This chapter describes the test methodology for this thesis and the actual experiments
carried out. It further explains the type of tools used and the test bed at which the ex-
periments were conducted. A taxonomy of measurement methods and different band-
width estimation techniques are also covered in this section.

Our methodology consisted of performing three types of experiments at different
time periods. The goal of the first type of experiment which we will refer to as Type
1 was to establish the existence of user preferences. The aim was to see if users usu-
ally connected to certain hosts each day in such way that a long term relationship is
established between the user’s machine and the preferred host.

The second type (referred to as Type 2), looks at the stability of the path taken by
a packet. The fundamental idea behind a packet switched network is the possibility
for a packet to take the best route to the destination. Routers along a path decide what
constitutes to be the best route with the help of some routing protocol. Two packets
originating from the same source, can in theory take different paths. Path asymmetry
can also exist between two host. What this means is that the route from:

Source⇒ destination 6= Destination⇒ Source

It is therefore interesting for us to gain the necessary knowledge from our chosen path
as it would play a crucial role in our final and third experiment.

The third type of (referred to as Type 3), measures the available bandwidth between
two chosen hosts to see the long time trends of bandwidth fluctuations caused by sup-
ply and demand of bandwidth recourses. Our aim with this measurement is to identify
patterns which could indicate periods of congestion. Before we delve into detailed
description of tools, equipment and setups used in the three experiments we would
like to clarify some concepts regarding measurement methods, bandwidth metrics and
techniques for estimating bandwidth.
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4.1 Measurement methods

Measurement methods can be categorized to two types namely active and passive
measurements. Depending on the metric of interest, active, passive or both can be
deployed.

4.1.1 Passive measurements

Passive measurements means capturing packets transmitted by applications through a
packet sniffing tool. Passive monitoring can be done on-line, but often one is interested
in capturing the traffic and storing it for later analysis. Our first experiment is catego-
rized as a passive one. We capture all the packets sent by a number of machines we
chose to monitor. More on Type 1 experiment is described in section 4.5.1. Popular
passive monitoring tools are tcpdump, ethereal and Cisco NetFlow. We use tcpdump
(see section 4.4.2 for more information) in this thesis.

4.1.2 Active measurements

Active measurements inject artificial packets into the network. These are usually small
amount of probes sent from a source to a destination to calculate some metric. The
probes are meant to imitate traffic generated by the metric of interest so that realistic
value can be calculated. The idea behind this method is to deploy a well defined sample
to reach conclusions about the overall behavior of the network. In our quest to estimate
the available bandwidth, we use pathrate and pathload described in section 4.4.5 and
4.4.6 respectively. Both tools are categorized as been active measurement tools as they
send probes into the network to collect their data.

4.2 Bandwidth measurements

Two metrics that are important when referring to bandwidth are capacity and available
bandwidth. Capacity is a metric that is associated with a link bandwidth. It is a measure
of the maximum throughput the link can provide to an application when there is no
competing traffic [27]. Bear in mind that the capacity of a link is a fixed parameter
that does not change and does not decrease when the amount of traffic passing through
increases see figure 4.1 for an overview of bandwidth metrics. The bandwidth capacity
of a path is defined as:

C≡mini=1....H Ci

Available bandwidth on the other hand is measure of the unused/utilized bandwidth
at a particular time see figure 4.1 for details.
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Figure 4.1: Overview of bandwidth metrics

4.3 The methods used to estimate bandwidth

Bandwidth is a commodity that is playing a crucial role in the networking world. Inter-
net Service Providers (ISP) offers its customers a bandwidth metric to fulfill a Service
Level Agreement (SLA), certain applications such as adaptive streaming require mea-
surement of available bandwidth and congestion control mechanism need a method
for bandwidth estimation (BE). It is no surprise then, that a method to estimate band-
width has long been the interest of research community. A comprehensive and detailed
description of the different bandwidth estimating techniques is covered in [28]. The
article focuses on four major techniques (see following sections) used by the majority
of BE tools todays.

4.3.1 Variable packet size (VPS)

VPS probing method was first presented in [29] and is considered among the earliest
methods of trying to characterize the bandwidth of a link. It behaves much the same
way as traceroute see section 4.4.4 does in the sense that the technique deliberately
starts with a small Time-To-Live value in the IP header so that the packet is dropped
by an intermediate router. The aim of VPS is to exploit the ICMP time-exceeded error
massage returned to a sender when a router drops a packet to calculate the Round Trip
Time. The RTT to each hop consist of:

• serialization delays: the time it takes to transmit the packet on the link which
will depend on the packet size.

• propagation delays: the time it takes for each bit of the packet to traverse the
link.

• queuing delays: processing time at the intermediate routers.

VPS sends several equally sized probing packets along a path and expects one of the
packets together with its ICMP reply does not experience any queuing delays. Thus
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computing the capacity from measured RTT and taking into account the three delays
mentioned above.

4.3.2 Packet Pair technique

The Packet Pair technique was first defined in [30]. The idea is based on sending two
back-to-back packets from source to a destination with a spacing that is very short, and
then calculating the bandwidth capacity at the receiver see figure 4.2. The Packet Pair
algorithm [31] is based on the assumption that a link with a capacityCi and with a
packet size L the transmission delayτi is:

τi = L
Ci

.

If there is no cross traffic in the path, the packet pair will reach the receiver spaced by
the transmission delay in the narrow link such that:

τi ≡ L
C
.

The receiver can then calculate the capacity C from the measured dispersion∆ as:

C = L
∆

.

Figure 4.2: Illustration of the packet pair technique

4.3.3 Trains of Packet Pairs(TOPP)

TOPP, first presented by Melander [32] is a an extension to the Packet Pair technique
in section 4.3.2. TOPP probing mechanism is based on sending many pairs of equally
sized packets with a starting transmission rateomin to a receiver. After the first pairs
of packets are sent, the same amount of packets are sent again increasingomin + ∆o.
This process continues until aomax is reached and the probing ends.
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The receiver timestamps all the received packets and sends it back to the sender.
TOPP is based on the assumption that packets that are separated with time∆S trans-
mitted over a link with service time∆Qb > ∆S, then the packets will be separated by
∆R = ∆Qb. Having a packet of sizeb and time separation of∆R then the available
bandwidth can be calculated as:

avail = b
∆R

.

Figure 4.3: Topp

4.3.4 Self-loading Periodic Streams (SLoPS)

SLoPS [33] is based on the idea that one-way delay of a periodic packet stream can
indicate the available bandwidth along the path. A source Src sends periodic packet
streams to a receiver Rcv, time stamping each sent packet. The receiver on the other
hand checks the time stamp of the arriving packets and calculates the one-eay delay.
SLoPS has the following metrics:

• K is the number of packets a stream consists of.

• L is the size of a packets in bits

• T is the transmission period of the packet

• R is the transmission rate whereR = L/T

• D is delay time of the packet

When the transmission rateR of the packet stream is larger than available band-
width, the one-way delay experiences a temporary increasing trend. The SLoPS algo-
rithm is able to measure an approximate available bandwidth by sending several packet
streams with differentR , this is depicted in figure 4.4.
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Figure 4.4: Self-loading periodic streams courtesy of [34]

4.4 The equipment & software tools used

4.4.1 Equipment

Our testbed consisted of two Gnu/Linux machines. One located at Oslo University
college, department of engineering and the other located at Uninett in Trondheim.
Table 4.1 shows the equipment specification.

Startreck at Oslo Scampi1 at Trondheim
Operating System Debian GNU/Linux Debian GNU/Linux

Version 2.6.8-1 2.4.27
Nr. of CPU 1 3
CPU type Pentium 4 - 1.90GHz XEON - 2.20GHz
Memory 512 MB 2 GB

Table 4.1: Equipment specification

4.4.2 Tcpdump

Tcpdump [35] which is included in most Unix/Linux distributions is a powerful packet
capturing tool that sniffs and gathers network traffic. Written by Van Jacobsen in 80’s,
the tool is text based and can only be accessed through the command line. It has a
filtering capabilities so that one can filter out packets based on protocol, IP address,
network address, port number, TCP flags such as SYN, FIN, and ACK. Tcpdump
was very handy in our pursuit to identify two communicating host. It allowed us to
passively capture traffic from a specific number of hosts to later analyze them off-line.
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4.4.3 Tcpslice

Tcpslice is a tool that can break down a large packet trace file captured by tcpdump see
section 4.4.2 into smaller files. It also has a built in function to merge several tcpdump
files into one. There is time option which one can specify to break the file depending
on a start time and an end time. We found the tool to be helpful since most of our
traces spanned over several days and needed to be sliced. The tool is available for
most Unix/Linux distributions but can also be downloaded from [36]

4.4.4 Traceroute

Traceroute [37] is a tool that is included in most operating systems. Its primary func-
tion is to trace the route a packet would take between the source computer and a spec-
ified destination on the Internet. It accomplishes this by sending UDP packets with
a small Time-To-Live (TTL) value (initialized to one) and then listens for an ICMP
"Time exceeded" message generated by intermediate routers. Every time Traceroute
receives "Time exceeded" message, it will resend the packet increasing the TTL value
by one.

Traceroute determines when the packet has reached the destination host by using a
port number that the targeted host normally do not use thus when an ICMP message
"port unreachable" is received, it confirms the end of the trace. Three probes are sent
at each TTL and the results are displayed at the end of the probe. If a response is
not received within 5 seconds, a timeout interval indicated by "*" character is printed
for that probe. We this tool to identify the route between the machine at our school
campus Oslo and another machine located at Uninett in Trondheim.

4.4.5 Pathrate

Pathrate is an end-to-end capacity estimation tool developed by [38]. It uses packet-
pairs and packet-trains method described in 4.3.2. The tool can be run as normal user
and does not require any privileged accounts, though access to both the sender and
the receiver is required. The tool served our purpose well in estimating the capacity
between the two test machines.

4.4.6 Pathload

Pathload [33] is a tool for estimating the available bandwidth of an end-to-end path. It
uses the SLoPS method described in section 4.3.4. Pathload consists of two processes,
one running at the sender while the other is running at the receiver. The process at the
sender sends periodic streams of UDP packets to the receiver at a rate higher than the
available bandwidth in the path. It monitors variations in one way delays of probing
packets and deduces available bandwidth based the on the behavior of these delays.
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4.5 Experimental Setup

4.5.1 Examining network traffic patterns of users

The setup for this experiment is depicted in figure 4.5 and as you will notice the IP
addresses are represented with letters. This is due to the fact that data protection laws
prohibit us from exposing the real IP addresses or any part of it that could identify the
user. The first three small letters represent the network address while the last capital
letter stands for the host number.

We begun with selecting 10 hosts that we considered to be eligible for monitoring.
Our selection was mainly based on the hosts been active (generating network traffic)
on a daily bases. The fulfillment of this criteria was established prior to our actual
experiment through a test carried out by a fellow student who used the network traffic
probe ntop [39] to visualize network characteristics. To capture traffic from these
host we used the popular packet capturing tool tcpdump see section 4.4.2 for more
information on the tool. The 10 hosts were connected to a switched network which
created a slight problem for us in terms of tcpdump not been able to capture packets
from all of the hosts. We solved this by asking our network administrator to divert the
network traffic to a Switch Port ANalizer (SPAN).

Since our goal with these experiments was to identify the long term relationship
between two hosts, we filtered out all other traffic except UDP and TCP through the use
of BPF (Berkeley Packet Filter) facility provided by tcpdump. We also concentrated
on traffic to other destinations than our Local Area Network (LAN) as this was more
in line with our research. The experiment run for a period of 1 week. We would have

Figure 4.5: Setup 1
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liked to run the experiment for a longer period but unfortunately could not because
of the SPAN port been tied to other experiments conducted by fellow students. The
results obtained from the experiment was written to separate file for each host and later
analyzed. The outcome of this experiment will be described in more details in section
5.1.

4.5.2 Is the route taken by the packet stable ?

The primary function of a router is to transport packets across an internetwork and de-
termine the best path for that packet. Depending on the routing protocol used, the best
path can be determined either through hop counts or other metrics such us bandwidth
and latency. Change in these metrics will lead to the router selecting an alternative
route for a packet. There are lots of factors which can influence these metrics such as
congestion and link outage. The route taken by a packet might therefore vary if the
network conditions change. In this experiment, we are interested in finding out the
stability of our selected path since this has a significant role in our next experiment
namely estimating the available bandwidth.

Figure 4.6 shows our setup for this experiment where the two hosts involved are
Startreck and Scampi1 respectively. Startreck is located at our school campus in Oslo
Norway while Scampi1 is at located Uninett’s site in Trondheim Norway. There are
approximately 5 routers between the two hosts and the link speeds vary between 100
Mbits/s and up to 2.5 Gbits/s. The tool we selected for this experiment is traceroute
see section 4.4.4 for more information. We run the experiment for period of 1 week at
a 3 minutes interval. This time interval is adequate for our purpose compared to the
intervals used by other monitoring sites such as TRIUMF [40].

Figure 4.6: Setup 2

4.5.3 The bandwidth estimating process

In this part of the experiments, we were interested in finding out about the bandwidth
capacity and available bandwidth of the path between Startreck and scampi1 and for
that purpose we used pathrate and pathload. Various tools exist today that can perform
the same type of measurements as pathrate and pathload. We chose these two tools
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in particular because of a test conducted by [41] where it was confirmed that both of
them gave a good estimate of the capacity and available bandwidth.

To estimate the capacity, we run first pathrate every 1/2 hour in 15 times. The
capacity of a link/path is a fixed parameter and does not change with the load, therefore
we found it unnecessary to conduct more than 15 measurements. Having estimated the
capacity, our interest know leaned toward estimating the available bandwidth. For that
we run pathload for a period of 1 week first and another week at a later stage, all
together 14 days. Pathload was run every 15 min for 24 hours.

Figure 4.7: Setup 3
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Chapter 5

Results analysis

5.1 Results from Type 1 measurements

In table 5.1, we have the results obtained from Type 1 experiment. It clearly shows
that 4 of the hosts had contacted at least 1 host every day of the week. Of course we
acknowledge hat data collected in one week, cannot represent the whole picture. We
cannot assume that these hosts will continue to have contact with those host in the
future either. What we can note though is that the results are promising and further
investigation based on a longer data collection period is needed.

Source Average# of unique hosts Unique hosts contacted Unique hosts contacted
connected to per day more than once in a week every day (1 week)

x.y.z.A 36 5 1
x.y.z.B 40 7 0
x.y.z.C 25 3 0
x.y.z.D 46 6 1
x.y.z.E 36 6 0
x.y.z.F 120 15 3
x.y.z.G 32 4 0
x.y.z.H 30 4 0
x.y.z.I 102 11 1
x.y.z.J 42 7 0

Table 5.1: Results of host monitoring
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5.2 Results from Type 2 measurements

The route taken by packets sent from StarTreck⇐⇒ scampi1 is shown in table 5.2 and
5.3. After analyzing the output generated by traceroute during the measuring period
which lasted for 1 week, we did not find any route changes. We can also see from
the results that there are no path asymmetry. The path from source to destination is
the same as the way back. We can then conclude that the path between Startreck and
scampi1 is fairly stable and therefore we could proceed with the bandwidth estimation
process.

ismail@StarTreck:$ traceroute scampi1.uninett.no
traceroute to scampi1.uninett.no (158.38.0.233), 30 hops max 38 byte packets
1 cadeler30-gw.uninett.no (128.39.89.1) 0.968 ms 0.676 ms 0.615 ms
2 pil52-gw.uninett.no (158.36.84.21) 0.839 ms 0.710 ms 0.741 ms
3 stolav-gw.uninett.no (128.39.0.73) 0.551 ms 0.555 ms 0.566 ms
4 oslo-gw1.uninett.no (128.39.46.249) 0.723 ms 0.691 ms 0.616 ms
5 trd-gw.uninett.no (128.39.46.2) 8.379 ms 8.409 ms 8.311 ms
6 scampi1.uninett.no (158.38.0.233) 8.543 ms 8.340 ms 8.340 ms

Table 5.2: Output from traceroute: StarTreck=⇒ scampi1

ismailah@scampi1:$ traceroute StarTreck.iu.hio.no
traceroute to StarTreck.iu.hio.no (128.39.89.251), 30 hops max, 38 byte packets
1 trd-gw (158.38.0.226) 0.180 ms 0.131 ms 0.090 ms
2 oslo-gw1 (128.39.46.1) 7.823 ms 7.764 ms 7.790 ms
3 stolav-gw (128.39.46.250) 7.890 ms 7.834 ms 7.854 ms
4 pil52-gw (128.39.0.74) 8.117 ms 8.113 ms 8.090 ms
5 cadeler30-gw (158.36.84.22) 8.710 ms 8.596 ms 9.635 ms
6 startreck.iu.hio.no (128.39.89.251) 8.657 ms 8.279 ms 8.879 ms

Table 5.3: Output from traceroute: scampi1=⇒ StarTreck
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5.3 Results from Type 3 measurements

5.3.1 Analyzing the results of pathrate

There are several links along the path between Startreck and scampi1 with different
capacity ranging from 100Mbps to 2.5Gbps see figure 4.7. This information is widely
available at Uninett’s (The ISP that owns the path) home page. The capacity of a
path will always be dictated by the link with the lowest capacity and therefore we
were interested in seeing how pathrate would estimate the capacity of our chosen path.
Results from pathrate states that our path has a capacity of approximately 86 Mbps see
table 5.4 below. We know in reality that our path has a lowest capacity of 100 Mbps,
so the estimates from pathrate is close and will suffice for us now.

Nr. Final capacity estimate
1 86 Mbps to 86 Mbps
2 86 Mbps to 87 Mbps
3 84 Mbps to 86 Mbps
4 86 Mbps to 86 Mbps
5 86 Mbps to 87 Mbps
6 86 Mbps to 86 Mbps
7 86 Mbps to 87 Mbps
8 86 Mbps to 86 Mbps
9 85 Mbps to 86 Mbps
10 86 Mbps to 86 Mbps
11 86 Mbps to 87 Mbps
12 86 Mbps to 86 Mbps
13 86 Mbps to 86 Mbps
14 86 Mbps to 87 Mbps
15 86 Mbps to 86 Mbps

Table 5.4: Output from pathrate
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5.3.2 Analyzing the results of pathload

Initial observation (Raw data)

To get an overview of what the data looked like, we plotted our observation against
time. Our aim with this method was to see if important features of the time series such
us trend, seasonality and cycles could be seen. Our initial intuitive deduction from the
figures 5.1 and 5.2 is that the available bandwidth fluctuates dramatically at some time
of the day. We also noticed that these fluctuations had a cyclic pattern which usually
occurred in the middle of the day. Measurements start at 02:40 am and are repeated
every 24 hours.

Figure 5.1: Measurement from pathload (first week)

Figure 5.2: Measurement from pathload (second week)
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Frequency distribution

In table 5.5, the frequency distribution of the measurements taken by pathload for 2
weeks are shown. We can see from these tables and the figure 5.3 that almost 90% of
the time the available bandwidth is in the range og 60 Mbits/s - 80 Mbits/s. This is
close to the paths available bandwidth capacity measured by pathrate in section 5.3.1.
What this tells us is that the path from Startreck to Scampi1 is only congested 10% of
the time.

Week 1
Range in Mbits/sec Occurrence Percentage %

10.1 - 20.0 0 0.0%
20.1 - 30.0 8 1.18%
30.1 - 40.0 12 1.77%
40.1 - 50.0 17 2.50%
50.1 - 60.0 43 6.33%
60.1 - 70.0 82 12.08%
70.1 - 80.0 517 76.14%

Total 679

Week 2
Range in Mbits/sec Occurrence Percentage %

10.1 - 20.0 5 0.74%
20.1 - 30.0 4 0.59%
30.1 - 40.0 10 1.47%
40.1 - 50.0 26 3.83%
50.1 - 60.0 48 7.07%
60.1 - 70.0 93 13.70%
70.1 - 80.0 493 72.61%

Total 679

Table 5.5:

Figure 5.3: Illustration of the frequency distribution
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Bandwidth predictor

In this section we will estimate a value to predict the available bandwidth. Since we
have measured the available bandwidth at equally spaced interval ( every 15 minutes
per day), we take the simple approach of calculating the arithmetic mean of all the
measurements taken at an interval (for example 02:40 AM on every day of the week).

The Auto Regressive Integrated Moving Average (ARIMA) model developed by
Box and Jenkins would have been more appropriate in analyzing our time series. Due
to time shortage, we were unable to apply this powerful statistical tool and therefore
settled for the arithmetic mean and standard deviation as means of predicting our de-
sired variable. Basically our simple formula for predicting the available bandwidth is
given as:

available_bandwidth(t) =µ(t)− σ(t). ,

Where the arithmetic meanµ and the standard deviationσ of N observations are de-
fined as:

µ =
∑

x

N
σ =

√∑
(x−µ)2

N
.

What we do is take the arithmetic mean and subtract the standard deviation from it
so that we have a fairly good estimate of the available bandwidth at timet.

Time µ σ Predicted bandwidth =µ− σ
02:40 75.55 1.13 75.55−1.13
02:55 73.37 1.11 73.37−1.11
03:10 75.62 0.47 75.62−0.47
03:25 75.72 1.28 75.72−1.28
03:40 75.89 0.46 75.89−0.46

. . . .

. . . .

. . . .

. . . .

. . . .
02:25 75.75 0.50 75.40−0.50

Table 5.6: predicted bandwidth

37



Figure 5.4: average available bandwidth and standard deviation as error bars
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Chapter 6

Proposals

This chapter explores how the results obtained in the previous chapters can be har-
nessed and utilized. Finding out about a path characteristics is easy. One can use a
tool like the ones deployed in this thesis and get pretty good estimates of the desired
metrics. The harder part is to use the results in a way that is beneficial. The natural
question to ask is where can our results be useful? Several candidates are listed below:

• Daily backups which involves backing up a large quantity of data between two
machines located at separate locations.

• A large corporate that has offices at different locations that exchange
huge amount of data periodically.

• Collaborating research institutions that need large bulk data transfer.

• Government agencies

• Educational institutions

The list can go on. The point is that as long as two machines have a constant need to
exchange data periodically, knowledge about the behavior of the path between them is
essential.

TCP is the primary component that decides how much traffic a sender can inject into
the network, it is then a natural to investigate how our findings can help TCP. Results
obtained from the bandwidth estimation experiments showed that 80%- 90% of the
time the path between Startreck and scampi1 was not utilized.
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6.1 Proposed solution

One of the main objectives of this thesis was to find out ways to estimate available
bandwidth and explore its helpfulness to TCP. The challenge was how the information
gathered by our bandwidth estimation tool could be passed to TCP. Changing the TCP
code and tuning the operating systems kernel were solutions that crossed our minds.
The possibility of that approach been beyond the scope of this thesis was also looked
into. Fortunately we did not need to reinvent the wheel and found much what we
needed has already been provided by others. In the next sections we present three such
solution when combined together will be suitable and appropriate for our purpose.

6.1.1 The Web100 kernel

The Web100 project [42] was created to produce a complete host-software environ-
ment that would run common TCP applications at close to the available bandwidth.
The aim of Web100 was to develop software that interacts with the operating sys-
tem (As of date, only Linux is supported) to automatically optimize performance for
all TCP transfers by implementing a set of instruments in the TCP/IP stack. The TCP
Kernel Instrument Set (TCP-KIS) is the the document which defines these instruments.
TCP-KIS allows a user to view many of the variables that make up a TCP connection
such as current congestion window size, ssthresh and the number of retransmits and
tune them accordingly. The Web100 software is composed of two components:

• A patch to the Linux kernel, which is responsible for collecting and exposing the
instruments.

• A shared library with a set of utilities which allows the easy reading and manip-
ulation of these instruments

6.1.2 Network Tool Analysis Framework (NTAF)

NTAF [43] developed by The Data Intensive Distributed Computing Research Group
(DIDC) at Lawrence Berkeley National Laboratory is a framework for running network
test tools and storing the results in a relational database for later retrieval. The basic
function performed by the NTAF is to run tools at regular intervals and send their
results to a central archive system for later analysis or for use by other programs such
as WAD see next section 6.1.3 for description. Tools such as pathload, pathrate and
ping can be configured to run periodically.

NTAF original goal was to evaluate various bandwidth and capacity estimation tools,
but was later extended to testing new network protocols. When NTAF is used with
Web100 modified Linux kernel, TCP parameters such as congestion window, number
of congestion events and slow-start threshold can be monitored and recorded.
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6.1.3 Work Around Daemon (WAD)

The Work Around Daemon (WAD) developed by Dunigan [44] uses an extended ver-
sion of the Web100 modified kernel. It allows end users to tune certain TCP parame-
ters. TCP’s Additive Increase and Multiplicative Decrease algorithm can also be tuned
through this daemon. WAD uses a configuration file that specifies what flows (source,
source port, destination, destination port) are eligible for tuning. The configuration file
also indicates if static values found in a table are to be used or if dynamic tuning from
the NTAF is needed.

When a new connection event is triggered by the kernel, the WAD daemon checks
the configuration file to see if the connections flow needs to be tuned. WAD provides
tuning for the send and receive buffer sizes and AIMD values. These values are re-
trieved from the NTAF database.

6.2 Limitations

6.2.1 Operating system (OS) related

The solutions presented so far in this chapter are operating system dependent. The
need to tune and modify the kernel is an essential part of the work around mentioned
above. Most of the proposals apply to the Linux OS, so Microsft Windows is out of
the question. We have not looked into whether such a solution exists for Microsofts
OS and therefore would have to be dealt with in future work.

6.2.2 Access to end-2-end hosts

Some of the tools deployed in this thesis such as pathrate and pathload require access
to both ends of the connection. The NTAF framework described in this chapter would
also require access to end nodes. This limits the scale at where the solution can be
applied to. Nevertheless, the list of candidates we presented at the beginning of the
chapter is suitable environment. In such environments, both end of the connection are
usually owned by a single entity or organization.

41



Chapter 7

Conclusions and Discussion

TCP, a robust and reliable transport protocol has been in use for the last 2 decades. The
protocol was not originally designed for the sort of environment its operating on today.
When TCP was first created, the network was operating at 9.6 Kbps, while today we
have 10 Gbps and Wireless networks. Over the years, researchers have solved TCP
shortcomings in an ad hoc manner. This has created many different flavors of TCP
(Tahoe, Reno, New Reno, Vegas, SACK, Westwood, FAST and HighSpeed) some of
which we have described in this thesis. Having so many varieties of TCP implemen-
tation only substantiates the problems magnitude and the need to further research on
TCP to find an optimum solution.

In this thesis we highlighted common features of TCP, outlined some issues with
the congestion control mechanism and conducted experiments to measure user prefer-
ence, path stability and available bandwidth estimation. The results we obtained from
the bandwidth estimation tools are promising in terms of understanding path charac-
teristics. Our findings show that the path chosen for the experiment was congestion
free 80% - 90% of the time.

A transport protocol such as TCP, would greatly benefit from this findings if ad-
justed properly so that it fully utilizes the paths capacity. Therefore, in chapter 6 we
presented some proposals that could help the AIMD algorithm in TCP so that it has
knowledge of path characteristics collected through bandwidth estimation tools. The
proposals do not change the TCP standard in any way, but merely presents an alterna-
tive implementation.
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7.1 Future work

The results obtained in these experiments appear to be promising in terms of applying it
to congestion control. It should be noted though that the network we studied consisted
of only one path and further study on other paths is necessary. we would also like to
verify our proposal either through simulation or an actual implementation.

The research community is heavily involved in developing bandwidth estimation
tools and several of these tools exist today. In our experiments, measurement tools
played a crucial role and one area we would like to investigate more in the future is
the accuracy of the bandwidth estimation tools deployed in this thesis. Due to time
constrains we were unable to compare them with other similar tools.

Deploying more statistics on our finding is also needed. We have looked into The
Box-Jenkins ARIMA model and found it suitable for analyzing the time series pre-
sented in this thesis and therefore would like to investigate its application.
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Appendix A

Time Mon Tue Wed Thu Fri Sat Sun
02:40 76,00 76,30 76,60 75,40 75,60 75,60 75,40

76,50 73,80 75,40 75,40 75,80 75,90 75,60
75,80 75,40 75,40 75,20 75,40 75,40 75,40
75,40 76,30 75,60 76,50 78,00 75,40 75,40

03:40 75,60 76,00 76,50 75,60 75,40 76,30 75,20
75,60 76,70 75,40 76,30 75,60 72,80 75,40
75,40 76,60 76,60 74,80 75,90 76,40 76,30
75,40 75,40 75,40 75,40 72,60 76,50 75,00

04:40 75,40 75,40 76,60 76,00 75,80 72,90 76,40
75,60 73,10 76,40 76,60 75,40 75,40 75,40
75,40 75,40 75,40 76,50 76,50 75,40 76,60
75,40 75,80 76,60 75,40 75,80 75,40 76,50

05:40 75,40 75,40 75,40 75,40 76,50 76,60 75,40
75,40 75,40 76,50 75,40 75,00 75,40 75,40
75,40 75,40 75,40 75,40 75,40 75,40 75,40
65,50 75,60 75,40 73,60 75,40 76,10 75,40

06:40 75,80 75,40 76,60 75,40 76,50 75,20 75,40
76,60 76,60 75,40 76,00 76,50 75,80 75,40
76,50 76,50 75,40 75,40 76,50 75,40 75,40
76,50 76,50 76,50 73,60 64,80 76,50 75,60

07:40 76,30 75,40 75,40 74,90 75,20 75,40 75,60
76,10 75,40 76,30 75,40 75,00 75,40 76,60
75,40 75,40 75,80 76,30 64,80 74,70 75,40
75,40 75,90 72,80 74,40 73,40 76,50 76,30

Time Mon Tue Wed Thu Fri Sat Sun
08:40 75,80 75,20 75,40 74,10 70,40 75,40 75,40

76,50 76,60 76,60 70,50 68,20 75,30 76,60
70,40 71,80 74,40 75,20 63,40 75,40 75,40
64,50 71,00 75,60 72,60 63,60 75,40 76,50

09:40 73,00 71,20 72,80 69,80 59,00 75,40 75,00
76,50 70,30 76,60 61,20 56,80 75,00 76,50
69,50 52,40 71,20 76,30 53,40 76,20 76,20
71,00 70,00 72,80 57,20 31,24 75,40 76,10

10:40 75,60 69,20 71,50 56,60 31,61 76,60 76,50
67,20 71,30 46,60 58,40 41,40 76,60 76,60
69,10 66,10 76,50 28,22 32,00 75,20 72,80
20,83 67,40 54,60 71,20 33,50 75,40 75,40

11:40 60,70 71,40 70,50 75,20 58,90 75,60 74,20
65,60 54,80 73,00 54,00 47,30 75,60 76,10
54,80 41,80 75,40 60,90 43,80 76,60 74,60
65,60 54,20 70,90 53,40 24,75 76,00 75,40

12:40 63,30 47,20 72,80 55,60 26,24 75,60 75,90
68,80 22,82 72,50 63,10 30,87 75,40 74,80
36,80 62,10 59,40 60,80 40,00 75,20 74,70
56,80 36,80 66,20 55,70 31,61 76,40 75,40

13:40 70,40 65,10 67,40 60,80 54,40 74,20 75,40
70,40 69,90 66,70 65,50 29,48 75,60 75,20
66,80 67,10 69,60 58,80 45,50 73,90 76,60

14:25 37,80 64,90 62,50 64,80 43,60 75,80 75,00

Table A.1: Pathload available bandwidth measurements in week 1, from 02:40 am
until 14:25 pm
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Time Mon Tue Wed Thu Fri Sat Sun
14:40 68,10 68,20 52,30 70,20 45,30 72,80 75,40

64,80 60,40 62,40 58,50 57,70 46,50 75,40
67,40 45,10 67,30 67,60 52,80 75,40 74,60
65,50 59,20 67,60 60,80 39,70 75,40 75,20

15:40 72,30 67,60 61,80 69,20 52,90 72,60 75,40
59,40 56,60 72,60 63,80 50,40 63,20 75,40
74,40 66,40 74,60 60,80 41,60 64,60 71,90
59,40 41,00 46,20 29,48 33,90 63,80 75,60

16:40 73,40 72,10 69,20 75,60 45,60 69,10 75,40
73,50 73,60 64,60 73,90 50,00 76,00 75,40
67,60 75,50 67,20 51,30 61,40 76,10 75,40
73,20 76,40 74,60 52,20 56,90 75,40 76,50

17:40 69,60 75,60 73,70 63,70 59,80 73,00 75,40
64,30 75,60 75,40 67,70 62,20 76,50 75,40
71,40 72,10 75,80 56,20 51,20 75,00 75,50
75,60 55,80 73,60 70,60 54,60 75,80 75,60

18:40 60,90 66,20 75,40 75,20 61,80 75,20 76,10
67,20 23,22 75,40 74,80 60,60 74,00 54,60
70,60 71,40 73,90 75,40 54,80 76,20 75,40
52,60 70,50 74,80 75,10 58,00 75,40 76,50

19:40 67,30 75,00 75,80 75,40 55,90 66,00 75,40
64,80 71,40 75,20 75,20 60,70 75,60 76,30
68,80 76,60 76,40 75,40 61,90 75,40 76,50
71,60 75,80 76,50 75,40 75,40 76,50 75,40

Time Mon Tue Wed Thu Fri Sat Sun
20:40 70,80 75,60 76,60 75,40 75,60 75,40 75,40

75,60 75,40 75,40 69,20 74,40 75,40 76,50
76,50 76,00 76,50 76,10 75,40 75,40 76,50
75,40 75,60 75,40 75,40 75,60 76,20 75,40

21:40 75,40 75,40 76,60 75,40 76,50 75,80 64,60
75,40 75,40 75,40 76,30 75,40 75,80 75,40
75,60 76,60 75,40 76,20 75,60 76,30 76,60
75,80 75,40 75,40 75,40 49,80 76,10 76,20

22:40 74,40 75,40 75,40 76,10 75,40 75,40 76,00
75,40 75,40 76,00 75,40 75,80 76,40 75,40
75,40 75,40 73,00 75,20 75,40 75,40 76,50
74,60 75,80 72,80 75,40 75,40 75,40 76,20

23:40 74,50 76,00 74,80 76,30 76,50 76,30 72,80
75,40 75,40 76,50 74,00 75,40 75,80 75,40
75,60 75,40 75,40 75,40 75,60 75,80 75,40
74,50 76,60 76,00 75,40 75,80 75,40 75,40

00:40 72,30 75,40 75,40 76,00 75,60 75,60 75,20
75,40 76,30 76,60 75,40 76,00 75,40 76,30
75,40 75,00 75,40 75,60 75,40 75,40 74,60
75,40 75,60 76,70 75,40 75,60 76,50 76,40

01:40 76,50 75,40 75,60 74,90 75,40 76,20 75,40
76,10 76,60 75,40 75,40 75,40 76,50 75,20
75,40 75,40 76,30 75,40 76,50 75,60 76,50

02:25 75,80 75,40 76,40 76,40 75,40 75,60 73,90

Table A.2: Pathload available bandwidth measurements in week 1,from 14:40 pm until
02:25 am

Time Mon Tue Wed Thu Fri Sat Sun
02:40 76,60 75,00 74,60 72,80 76,60 76,60 76,10

76,50 75,40 73,00 75,40 76,60 75,20 75,40
76,50 75,20 75,40 76,50 75,40 75,40 75,40
76,50 75,40 75,40 72,70 75,40 76,30 76,50

03:40 76,50 76,60 75,40 75,40 75,90 76,40 75,10
76,30 75,60 75,60 76,50 76,90 75,40 75,40
76,30 76,30 76,60 75,40 75,40 75,40 76,30
75,20 75,80 76,50 75,40 75,40 75,40 75,60

04:40 76,10 71,80 71,20 72,60 75,40 75,40 75,40
75,20 75,40 76,60 75,40 76,60 75,40 75,40
75,40 75,60 75,60 75,40 76,10 75,60 75,60
75,60 76,50 76,30 75,40 76,50 72,60 75,40

05:40 76,60 76,30 76,60 76,30 75,40 76,60 75,40
76,60 75,40 75,40 76,50 75,40 76,30 75,40
76,50 75,40 75,20 76,30 76,50 76,30 76,50
75,60 75,40 75,40 74,80 75,40 75,90 76,30

06:40 75,40 76,30 75,40 75,20 76,50 74,80 75,60
75,40 76,50 75,40 75,40 76,50 76,00 76,60
75,80 76,50 76,50 75,40 75,60 75,60 75,40
76,60 75,60 75,40 75,40 75,40 76,30 75,40

07:40 75,40 65,90 76,30 75,20 75,40 76,30 75,40
75,90 75,20 75,00 75,40 75,40 75,70 75,40
75,00 73,20 74,80 74,20 76,50 74,80 76,40
74,80 75,40 72,80 75,50 76,60 76,30 75,40

Time Mon Tue Wed Thu Fri Sat Sun
08:40 71,40 69,80 67,80 73,70 37,90 75,40 76,20

69,80 51,40 68,40 75,20 75,00 76,60 75,60
70,40 74,60 62,10 72,00 74,40 75,20 76,30
72,10 68,00 63,40 74,60 69,30 73,10 75,40

09:40 65,00 70,70 67,80 75,00 57,80 75,40 75,40
48,50 72,50 60,20 71,80 66,90 76,50 76,30
42,30 72,20 61,60 73,20 69,80 75,40 75,40
44,00 67,20 65,60 55,40 51,60 76,00 76,60

10:40 40,90 63,40 39,40 66,10 50,40 74,40 75,20
52,00 63,40 61,90 71,90 63,40 76,60 75,40
58,60 63,70 56,40 61,40 66,20 76,20 76,50
19,01 66,00 30,87 72,60 64,80 75,60 76,10

11:40 45,90 58,80 56,10 70,10 69,50 75,40 76,60
58,70 30,87 64,40 64,40 70,20 75,40 75,60
51,40 38,20 55,70 63,20 66,20 76,60 76,50
58,80 56,40 70,40 70,60 65,90 74,20 75,40

12:40 41,70 63,90 60,60 63,60 61,10 75,20 76,00
63,00 46,80 61,20 69,50 44,80 76,10 76,50
54,60 64,00 59,80 65,60 59,80 67,60 76,60
62,40 62,90 59,00 63,60 65,80 58,30 76,60

13:40 55,00 48,40 64,40 69,40 49,40 72,40 76,50
57,80 61,40 56,40 41,00 65,60 74,00 75,40
65,50 55,70 44,00 34,20 68,40 76,40 75,60

14:25 10,29 67,70 69,60 53,00 62,90 75,20 75,20

Table A.3: Pathload available bandwidth measurements in week 2, from 02:40 am
until 14:25 pm
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Time Mon Tue Wed Thu Fri Sat Sun
14:40 21,16 47,40 48,60 57,00 44,00 69,40 76,50

46,00 52,00 56,80 29,48 43,40 63,20 75,60
63,00 40,90 68,40 55,10 46,00 50,50 72,60
70,00 61,60 39,80 61,40 53,30 64,60 76,10

15:40 24,52 70,40 68,80 62,10 48,20 75,20 75,40
63,00 50,50 71,80 49,30 36,40 75,40 76,20
53,00 66,20 28,22 54,80 47,10 45,80 78,00
34,60 71,60 10,33 49,50 64,80 66,00 76,50

16:40 71,00 55,40 12,20 51,20 31,61 75,50 75,40
73,40 49,80 74,40 64,70 52,50 76,60 75,60
67,70 70,20 76,20 48,20 75,20 75,60 75,20
71,40 58,60 72,80 60,40 74,20 75,40 75,40

17:40 71,90 61,00 70,20 64,00 66,80 75,40 76,50
73,60 60,00 73,30 14,03 74,60 76,60 75,60
62,20 75,60 72,40 64,50 71,60 76,40 76,60
72,00 66,80 74,20 65,20 75,40 75,40 76,50

18:40 71,00 70,20 73,70 59,40 71,00 75,00 76,20
70,20 69,50 67,60 65,00 72,50 76,10 75,40
74,60 69,20 75,60 69,00 72,90 76,30 56,80
75,40 70,80 73,90 59,60 75,40 75,40 67,40

19:40 73,90 67,20 75,00 74,00 76,00 76,60 57,00
75,20 73,30 72,80 68,60 75,60 75,40 76,20
73,30 70,20 75,40 72,50 75,60 75,40 76,10
71,60 69,60 75,60 75,00 75,20 76,50 75,20

Time Mon Tue Wed Thu Fri Sat Sun
20:40 75,40 74,60 75,40 72,00 75,40 75,20 75,40

71,00 73,80 75,80 75,40 76,30 76,50 76,60
76,10 66,00 75,40 56,40 75,40 59,80 76,50
73,40 72,80 75,60 73,90 76,50 75,80 76,40

21:40 75,80 75,20 75,80 75,40 75,80 76,60 75,80
75,00 74,60 72,80 74,60 75,40 75,40 76,10
74,80 74,90 75,20 75,70 75,80 75,40 75,40
74,80 74,60 75,40 69,80 75,60 75,40 75,40

22:40 72,80 69,80 75,20 75,20 75,00 76,50 76,50
75,40 75,40 72,80 75,60 76,40 75,40 75,40
72,80 75,40 75,40 73,60 76,60 75,40 76,30
76,10 75,40 75,60 75,40 76,60 76,30 75,40

23:40 75,20 75,40 75,40 74,80 75,20 76,30 76,30
75,40 76,60 76,50 59,40 75,00 76,60 75,40
75,40 75,20 72,80 74,80 75,40 76,60 75,40
76,50 76,60 72,80 76,60 74,80 75,60 75,80

00:40 75,40 75,40 75,60 75,40 75,40 75,40 76,50
76,10 75,40 51,00 71,60 75,60 75,40 75,40
75,60 54,20 75,20 74,20 75,40 75,60 75,40
76,00 75,40 76,10 75,40 64,20 75,40 75,90

01:40 75,40 75,80 75,40 75,40 75,60 76,30 75,40
75,60 75,60 75,60 75,20 75,40 75,60 75,00
75,40 75,40 74,90 75,40 75,40 76,50 75,40

02:25 75,40 76,40 75,40 75,00 75,40 75,90 75,60

Table A.4: Pathload available bandwidth measurements in week 2, from 14:40 pm
until 02:25 am
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Appendix B

Abbreviations

AIMD - Additive Increase Multiple Decrease
API - Application Programming Interface
ARIMA - Auto Regressive Integrated Moving Average
ARPANET - Advanced Research Project Agency Network
BDP - Bandwidth Delay Products
ECN - Explicit Congestion Notification
FDDI - Fiber Distributed Data Interface
FTP - File Transfer Protocol
HTTP - Hypertext Transfer Protocol
ICMP - Internet Control Message Protocol
IP - Internet Protocol
ISO - International Standards Organization
ISP - Internet Service Provider
LAN - Local Area Network
MSS - Maximum Segment Size
NTAF - Network Tool Analysis Framework
NWS - Network Weather Service
OSI - Open Systems Interconnection
PPP - Point-to-Point Protocol
RED - Random Early Detection
RFC - Request For Comment
RTO - Retransmission Time Out
RTT - Round Trip Time
SACK - Selective Acknowledgment
SLIP - Serial Line Interface Protocol
SLoPS - Self-loading Periodic Streams
SMTP - Simple Mail Transfer Protocol
SPAN - Switch Port ANalyzer
TCP - Transmission Control Protocol
TOPP - Trains of Packet Pairs
TTL - Time To Live
UDP - User Datagram Protocol
VPS - Variable packet size
WAD - Work Around Daemon
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