Vis enkel innførsel

dc.contributor.authorMao, Yudong
dc.contributor.authorLiu, Shouyu
dc.contributor.authorLiu, Jiying
dc.contributor.authorYu, Mingzhi
dc.contributor.authorLi, Xinwei
dc.contributor.authorKim, Moon Keun
dc.contributor.authorYang, Kaimin
dc.date.accessioned2024-02-06T07:25:04Z
dc.date.available2024-02-06T07:25:04Z
dc.date.created2024-02-05T11:13:41Z
dc.date.issued2024
dc.identifier.issn2075-5309
dc.identifier.urihttps://hdl.handle.net/11250/3115795
dc.description.abstractThe gray model simplifies calculations by ignoring phonon polarization, but sacrifices a certain level of computational accuracy. In effect, the frequency and wavevector of phonons form complex polarization patterns, which means their propagation modes and vibrational directions have different influences. Therefore, based on the phonon dispersion relations in silicon, the lattice Boltzmann method is used to analyze the phonon transport characteristics in nano-silicon films under ultrafast laser excitation. The results show that the total energy density distribution obtained by superimposing acoustic and optical branches exhibits multiple wave-like behaviors. Among them, the acoustic branch has excellent transfer capability, dominating the rate at which the total energy density reaches a steady state distribution, while the optical branch has stronger heat capacity characteristics, with a greater impact on the peak value of the total energy density. When the heat transfer approaches a steady state, the longitudinal optical branch surprisingly contributes up to 52.73%. This indicates that the often-neglected optical phonons should also receive sufficient attention. Additionally, compared to the results of the gray model, it is found that the dispersion model is preferred when more attention is paid to the propagation characteristics during phonon transport.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePhonon Transport Characteristics of Nano-Silicon Thin Films Irradiated by Ultrafast Laser under Dispersion Relationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.3390/buildings14010210
dc.identifier.cristin2243148
dc.source.journalBuildingsen_US
dc.source.volume14en_US
dc.source.issue1en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal