Vis enkel innførsel

dc.contributor.authorDatta, Harish K.
dc.contributor.authorKringen, Marianne K.
dc.contributor.authorTuck, Stephen P.
dc.contributor.authorSalpingidou, Georgia
dc.contributor.authorOlstad, Ole K.
dc.contributor.authorGautvik, Kaare M
dc.contributor.authorCockell, Simon
dc.contributor.authorGautvik, Vigdis Teig
dc.contributor.authorPrediger, Michael
dc.contributor.authorWu, Jun J.
dc.contributor.authorBirch, Mark A.
dc.contributor.authorReppe, Sjur
dc.date.accessioned2022-03-10T10:14:59Z
dc.date.available2022-03-10T10:14:59Z
dc.date.created2022-03-09T15:50:49Z
dc.date.issued2022
dc.identifier.citationInternational Journal of Molecular Sciences. 2022, 23 (2957), .en_US
dc.identifier.issn1661-6596
dc.identifier.urihttps://hdl.handle.net/11250/2984208
dc.description.abstractMechanical loading exerts a profound influence on bone density and architecture, but the exact mechanism is unknown. Our study shows that expression of the neurological transcriptional factor zinc finger of the cerebellum 1 (ZIC1) is markedly increased in trabecular bone biopsies in the lumbar spine compared with the iliac crest, skeletal sites of high and low mechanical stress, respectively. Human trabecular bone transcriptome analyses revealed a strong association between ZIC1 mRNA levels and gene transcripts characteristically associated with osteoblasts, osteocytes and osteoclasts. This supposition is supported by higher ZIC1 expression in iliac bone biopsies from postmenopausal women with osteoporosis compared with age-matched control subjects, as well as strongly significant inverse correlation between ZIC1 mRNA levels and BMI-adjusted bone mineral density (BMD) (Z-score). ZIC1 promoter methylation was decreased in mechanically loaded vertebral bone compared to unloaded normal iliac bone, and its mRNA levels correlated inversely with ZIC1 promoter methylation, thus linking mechanical stress to epigenetic control of gene expression. The findings were corroborated in cultures of rat osteoblast progenitors and osteoblast-like cells. This study demonstrates for the first time how skeletal epigenetic changes that are affected by mechanical forces give rise to marked alteration in bone cell transcriptional activity and translate to human bone pathophysiologyen_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectOsteoporosisen_US
dc.subjectMechanical stressen_US
dc.subjectEpigeneticen_US
dc.titleMechanical-stress-related epigenetic regulation of ZIC1 transcription factor in the etiology of postmenopausal osteoporosisen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.3390/ijms23062957
dc.identifier.cristin2008590
dc.source.journalInternational Journal of Molecular Sciencesen_US
dc.source.volume23en_US
dc.source.issue2957en_US
dc.source.pagenumber18en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal