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Abstract

Sustainable yield from a natural resource fluctuates in response to
both natural conditions and harvesting practices. On the one hand, re-
search and development (R&D) may reduce the fluctuations through more
knowledge of ecosystem functioning. On the other hand, R&D may also
increase the fluctuations if it results in more effi cient harvesting operations
with increased impact on the environment.

We analyze the incentives for innovation in a natural resource based in-
dustry. The direction of technical change can either be towards profitabil-
ity enhancing innovations or environmental hazard reducing innovations.
We then pose the following research questions: Is the market’s ranking
of profitability enhancing and environmental hazard reducing innovation
projects in line with the ranking of the social planner?

In order to investigate our research question, we develop a theoretical
model of innovation in a natural resource based industry, which we also
calibrate to the Norwegian aquaculture industry. Two key results emerge;
first, the government should subsidize the adoption of environmental haz-
ard reducing technology. Second, the private incentive for profitability
enhancing innovation is likely to outperform the private incentives for en-
vironmental hazard reducing innovation. In fact, the optimal R&D subsidy
to to the former type of R&D is negative, while the optimal R&D sub-
sidy to the latter type of R&D is positive and larger the more serious the
environmental hazard.

Keywords: Renewable natural resources, innovation, environmental
policy, aquaculture
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1 Introduction

Utilization of a provisioning ecosystem service by one agent regularly reduce
the availability of the same provisioning service to other agents. Obvious exam-
ples are wild fisheries and fresh water reservoirs. It also holds for less obvious
provisioning ecosystem services such as fish farming in open pens in which the
health condition in one seafarm affects the productivity of all other neighboring
seafarms.
Heavy utilization of provisioning ecosystem services may also reduce the

availability of other ecosystem services such as recreation and biodiversity, cat-
egorized as a cultural and supporting ecosystem services, respectively. Again
fish farming can be used as an example; fish farms utilize natural aquatic envi-
ronments to provide the domesticated fish species with fresh water and oxygen.
However, in many instances the activity reduces biodiversity in the surroundings
and the opportunities for recreation such as hobby fishing.
The producer to producer externality in natural resource harvesting, may

lead to overexploiting if entry is not regulated. Natural resource management
therefore implies some form of regulation restricting the number of economic
actors having the right to harvest the resource. In principle, entry restrictions
can also be used to limit the environmental consequences of harvesting. While
many papers have looked at various ways to restrict entry in natural resource
management, no paper has to our knowledge looked at the interplay between
natural resource management and innovation. We therefore develop a theoret-
ical model of environmental innovations in a natural resource based industry,
which we also calibrate to the Norwegian aquaculture industry.
We divide innovations into profitability enhancing and environmental hazard

reducing innovations. Profitability enhancing innovations enables more effi cient
harvesting of the resource or improves the value of the harvest. Environmen-
tal hazard reducing innovations, on the other hand, reduces both the negative
producer to producer externality and the environmental externality of harvest-
ing. Thus, there is a positive externality in adoption of environmental hazard
reducing innovations.
Our overarching research question is whether the market’s ranking of private

innovation projects is in line with the ranking of the social planner. In order
to answer this question, we also inquire into closely related issues such as; what
drives R&D investments and new technology adoption in natural resource based
industries? How can the government obtain the first best levels of profitability
enhancing and environmental hazard reducing innovation and adoption?
Our main result suggests that environmental hazard reducing innovations

should be prioritized: The government should give an adoption subsidy to en-
vironmental innovations, and in addition, the government should also offer a
directed R&D subsidy in case the environmental externalities of harvesting are
large. As far as we know these results are new to the literature.
The adoption subsidy should be given since the private incentive to adopt an

environmental hazard reducing innovation drops in the number of other users
having adopted the innovation, while this is not the case for profitability en-
hancing innovations. Moreover, the R&D subsidy might be necessary since the
innovator cannot capture all the benefits to society of an environmental innova-
tion even if entry to the natural resource is regulated.
Theoretical environmental economics has for a long time been concerned
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with innovation in pollution abatement technology. Earlier contributions, such
as Downing and White (1986), compare different environmental policy instru-
ments with respect to how they affect environmental R&D. However, traditional
environmental policy instruments, such as emission taxes, are rarely used in nat-
ural resource management. The earlier literature assumed that polluting firms
could innovate, and did not include patents and licensing of innovations. How-
ever, according to Requate (2005) most pollution abatement innovations happen
outside the polluting industry. Therefore, Laffont and Tirole (1996), Requate
(2005) and Fischer and Newell (2008) separate the innovator from the polluting
sector, as we also do in our model of innovation in a natural resource based
industry.
In the environmental economics literature this gives rise to a potential com-

mitment problem; when setting environmental policy, the government might try
to influence the license fee set by the innovator for the new technology. In par-
ticular, the government would like the license fee to be low in order to increase
adoption of the new technology. However, because this may hamper the profit
of the innovator, the incentives to invest in R&D are undermined. Interestingly,
in the case of a natural resource based industry, we find that the effect of not
being able to commit to future policies goes in the opposite direction. When in-
novating for a natural resource based industry, the innovator strategically seeks
to influence the regulator to issue more harvesting licenses. This increases the
incentives to do innovation, and thus, even if appropriabillity is less than 100
percent and there is no public support to R&D, the amount of innovation in a
natural resource based industry may be suffi cient. In fact, the optimal subsidy
to profitability enhancing R&D could turn out to be negative due to this effect.

So far the literature of innovation in natural resource based industries is
mainly empirical. Moreover, innovations in natural resource based industries
have been about reducing harvesting costs, see e.g. Bjørndal and Gordon (2000)
on wild fisheries and Asche, Guttormsen and Nielsen (2013) on fish farming.
However, according to the literature, innovation in natural resource based in-
dustries can also reduce negative environmental externalities, see e.g. Asche,
Roll and Tveterås (2008) for a study on fish farming. Furthermore, Thavonen
(2016) argues that in many instances replacing clear cut forestry with modern
continuous cover forestry could significantly increase the supply of other types
of ecosystem services without hampering the profits of the forestry operation.
Finally, the introduction marine reserves in wild fisheries does not necessarily af-
fect long run fish catches, while safeguarding other important marine ecosystem
services (Dayton et al.,1995). However, as far as we know, no contributions has
yet studied theoretically the incentives for innovations reducing environmental
hazards.
The point of departure for our theoretical model is fish farming. In 2012

fish farming overtook capture fisheries with respect to metric tons produced
(World Bank, 2016). Many countries are involved in fish farming e.g. China,
the US, Canada, Chile, Scotland and Norway, and they all have ambitious plans
to expand production as profitability is very good. However, many types of fish
farming are riddled with environmental problems (see e.g. Edwards, 2015).The
distinction between profitability enhancing and environmental hazard reducing
innovations thus seems particularly suitable for the current research and de-
velopment (R&D) efforts in fish farming (Asche 2017; Greaker et al. 2020).
Inspired by the numerical calibration of innovation in energy markets in Fischer
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and Newell (2008), we also calibrate our theoretical model to Norwegian fish
farming.
Separating knowledge into different types has some resemblance to the di-

rected technical change literature, which lately has been extended into treat-
ing environmental innovations versus innovations in polluting technologies, see
Acemoglu et al. (2012), and more lately Greaker, Heggedahl and Rosendahl
(2017). One of the findings from this literature is that R&D subsidies should
be directed away from technologies that are polluting towards environmental
innovations even when emission taxes perfectly reflect the social cost of pollu-
tion. This result is however based on the existence of inter-temporal knowledge
spill-overs, which we do not include in our model.
The lay out of the rest of the paper is as follows. In Section 2 we introduce

our game theoretical model. Then in Section 3 we solve for the sub game perfect
equilibrium and compare the market outcome with socially optimal outcome. In
Section 4 we calibrate the model to Norwegian data for fish farming. In Section
5 we introduce a best available technology standard for environmental hazard
reducing innovations. Then in Section 6 we discuss the relevance of our model
for other natural resource based industries. Finally, in Section 7 we conclude.

2 The model

2.1 Preliminaries

In many types of fish farming juvenile fish are taken from hatcheries and placed
in open cages in which they are fed until they reach maturity and harvested.
The open cage provides the growing fish with a continuous supply of oxygen
rich water, and does not require the farmer to collect and process waste from
the farm. On the other hand, the open cage also allows for various negative
externalities as already mentioned. Hence. in most countries you need a license
from a regulator to place a fish cage in the commons. Since entry is restricted,
a license owner will on the average earn a supra-normal profit.1

We let n denote the number of identical license owners having the right to
place a fish cage in the commons. Each license has a value (1−ϕ(·))r(·) equal to
the expected supra-normal profit (henceforth; just profit). The function r(·) is
the potential profit from the farm, while the function ϕ(·) should be interpreted
as an environmental hazard rate depending on among others the number of
other license owners in the area.
Both the hazard rate and the potential profit also depends on the available

levels of knowledge. There are two representative innovation firms each spe-
cialized in one type of knowledge; either profitability enhancing knowledge Kt

or environmental hazard reducing knowledge Kb (henceforth; technological and
biological knowledge, respectively). The innovators offer the latest knowledge
Kt (Kb) to the license owners at a price ωt (ωb). The license owners decide
themselves whether they want to utilize the latest knowledge, or whether they
will stay with the established knowledge.

1See for instance Greaker et al. (2017).
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2.2 The effect of new knowledge

We let the potential profit from a license be denoted by the function r(Kt).
We assume r1 > 0, r11 < 0, that is, profit per license increases in the level of
technological knowledge. In fish farming, new technological knowledge could
be higher valued marketing channels, more effi cient feeding and faster growth
variants of the fish specie in question.

At any point in time an unexpected environmental accident may hit a license
owner. The accident could be loss of oxygen in the water due to pollution,
infectious disease spreading, or, in particular for salmon farming; outburst of
sea lice or simply escapes2 . Moreover, environmental hazards may also imply
environmental costs in addition to the loss in profits for the license owners; one
example from fish farming is reduced wild salmon stocks.

We let the environmental hazard rate ϕ(·) ∈ 〈0, 1〉 depend on the number of
licenses n, the stock of biological knowledgeKb and the number of license owners
who has adopted the latest biological knowledge m (m ≤ n). In particular, we
assume that the environmental hazard rate faced by an individual license owner
can be described by:

ϕ(n,m,Kb) =
ρ(n)− m

n λ(Kb)− n−m
n γ(Kb) if adoption of the latest technology

ρ(n)− m
n λ(Kb) if free-riding

(1)
where ρ′, λ′, γ′ > 0, ρ′′ ≥ 0 and λ′′, γ′′ < 0.
By the first term in (1) we incorporate a tragedy of the commons effect

present in virtually all renewable resource industries (both rows). For instance,
closely located farms increases the risk of spreading of infectious diseases and
sea lice, see e.g. Asche et al. (2009).
The tragedy of the commons effect can be reduced by license owners adopting

the latest level of biological knowledge. For instance, in fish farming innovators
are currently doing research along a number of alternative routes to reduce
the sea lice pressure; better treatments of infected salmon, closed pen designs,
develop natural resistance to sea lice by selective breeding etc.3 Any license
owner that adopts the new technology, not only benefits herself, but also all
other license owners e.g. the occurrence of sea lice in the area is reduced. The
positive externality of technology adoption is given by the second term in (1)
(both rows). We assume that the external effect of adoption is larger the higher
the investment in biological knowledge Kb, and larger, the greater fraction of
license owners m/n having adopted the latest level of knowledge.
There may also be a private benefit of knowledge adoption given by the

third term in (1) (only the top row). The private benefit is also increasing in
the investment in biological knowledge Kb, but decreasing, in the fraction of
license owners having adopted the latest level of knowledge. As the general
level of protection increases, the risk of others hampering your operation is
lower, and, consequently, the private benefit of adopting the latest technology
is diminishing.4

2Escapes often happen during treatment of deseases such as sea lice, and hence the prob-
ability of escapes also increases in the density of fish farms.

3See for instance Greaker et al. (2020).
4For instance, if more licence owners have switched to sea lice resistant salmon, you have

less to gain since the sea lice pressure anyhow is reduced.
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Finally, we make two assumptions about (1):

Assumption 1

0 < ρ(n)− m

n
λ(Kb)−

n−m
n

γ(Kb) < 1,∀Kb,n,m and m ≤ n

Assumption 1 implies that the environmental hazard rate cannot be removed
completely.

Assumption 2

arg min
m

{
ρ(n)− m

n
λ(Kb)−

n−m
n

γ(Kb)

}
= n

That is, the environmental hazard rate is minimized with m = n. This
requires λ(Kb)− γ(Kb) > 0,∀Kb. Thus, given that adoption is costless at once
the new technology is developed, it is socially effi cient that all farms adopt.

2.3 Social welfare

Social welfare consists of the expected profits from all the licenses (1−ϕ(·))r(·)n
subtracted the expected environmental costs of the licenses, which are given by
an environmental damage function d(ϕ̄(n,m,Kb)n) where ϕ̄(n,m,Kb) is the
average environmental hazard rate, and d′ > 0, d′′ ≥ 0.
The government sets the number of licenses. Furthermore, the government

supports investment in new knowledge by directed research subsidies denoted by
the rates σt and σb, respectively. The government may also support adoption of
new knowledge by a subsidy st (sb) to the innovator per adopting license owner.
When considering these subsidies, the government takes into account the cost
of developing new knowledge and, potentially also, increased harvesting costs
when using new biological knowledge.

3 Solving the model

The model is solved as a three stage game. In the first stage, the government
set research subsidy rates, and the two innovators invests in the two types of
knowledge. Then the government issues a certain number of licenses and sets
adoption subsidies given the new levels of knowledge. In the last stage, the
innovator set prices ωb and ωt for utilizing the latest levels of knowledge, and
the license owners decide whether to adopt the new knowledge. We solve the
game by backwards induction.

3.1 Adoption of the latest level of biological knowledge

Assume that m − 1 license owners have adopted the latest level of biological
knowledge. It is profitable for the next license owner also to adopt if:

[
ρ(n)− m

n
λ(Kb)−

n−m
n

γ(Kb)

]
r(·)− ωb −

[
ρ(n)− m− 1

n
λ(Kb)

]
r(·) ≥ 0
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⇔

[
λ(Kb)

n
+
γ(Kb)(n−m)

n

]
r(·)− ωb ≥ 0,

that is, the increase in expected profit caused by a decrease in the hazard rate,
must be equal or larger than the price of the new biological knowledge. We
assume that n is large such that λ(Kb)/n ≈ 0. Thus, the maximum price
the innovator can charge is γ(Kb)(n − m)r(·)/n. Note that the this price is
declining in m, and thus, the innovator faces a traditional downward sloping
demand curve. 5

The R&D cost of developing the new biological knowledge is sunk cost,
however, providing the new knowledge to a license owner may still involve a
positive marginal cost per adopting license owner. We set this cost to b ≥ 0.
Thus, the biological knowledge innovator set price ωb maximizing revenues:(

γ(Kb)(n−m)r(·)
n

− b+ sb

)
m

where sb is the adoption subsidy.
By differentiating this expression with respect to m, we can find the revenue

maximizing m:

m0 =
n

2

(
1− b− sb

γ(Kb)r(·)

)
(2)

Hence, without a subsidy sb, at most only half of the license owners will adopt
the latest biological knowledge. The adoption price is ωb = γ(Kb)r(·)/2 + (b−
sb)/2, and the biological innovator will obtain revenue:

n (γ(Kb)r(·)− b+ sb)
2

4γ(Kb)r(·)
(3)

We can now turn to the technological innovator.

3.2 Adoption of the latest level of technological knowledge

Denote the potential profit from a license when utilizing the established technol-
ogy by r̄. A license owner will adopt the latest level of technological knowledge
if:

(1− ρ(n) + λ(Kb)m
0

n + γ(Kb)(n−m0))
n [r(Kt)− r̄]− ωt ≥ 0 when latest level of Kb

(1− ρ(n) + λ(Kb)m
0

n )) [r(Kt)− r̄]− ωt ≥ 0 when established level of Kb

where ωt is the price for utilizing the new knowledge Kt. The technological
innovator has two options: Either she can set a high price, and only those who
has the latest level of biological knowledge will adopt, or she can set a low

5Note also that in order to sell the latest level of biological knowledge, there must be a
private benefit of adoption γ(·) > 0. If γ(Kb) = 0∀Kb, a private market for new biological
knowledge will not work. The government then need to set a mandatory standard. We analyze
this case in Section 5.
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price, and all license owners will adopt.6 With m0 ≤ n license owners having
adopted the latest level of biological knowledge, and comparing the two profit
expressions, we get that it is optimal to let all license owner adopt if:

(1− ρ(n) +
λ(Kb)m

0

n
+
γ(Kb)(n−m0))

n
[r(Kt)− r̄]m0

≤ (1− ρ(n) +
λ(Kb)m

0

n
)) [r(Kt)− r̄]n

Rearranging we obtain:

1− ρ(n) +
m0

n
[λ(Kb)− γ(Kb)] ≥ 0

which must hold by Assumption 1 and 2. Hence, we can conclude that the
innovator will set the low price ωt = (1−ρ(n)+λ(Kb)(m

0/n))) [r(Kt)− r̄], and
that all license owners will adopt the latest level of technological knowledge in
equilibrium. Hence, there is no need for an adoption subsidy to technological
knowledge. In the case in which there is no adoption subsidy to biological
knowledge, we thus have:

Proposition 1 While all license owners will adopt the latest level of technolog-
ical knowledge, only a fraction of the licence owners will adopt the latest level
of biological knowledge.

As we will soon see, the rate of adoption for the latest level of biological
knowledge is not necessarily socially optimal.

3.3 The number of licenses and the adoption subsidy

We start by assuming that the regulator can decide both the number of licenses
n and the number of firms adopting the latest level of biological knowledge m.
With m license owners having adopted the latest level of biological knowledge,
the average accident risk ϕ̄(n,m,Kb) is given by:

(
ρ(n)− λ(Kb)m

n

)
n−m
n

+

(
ρ(n)− λ(Kb)m

n
− γ(Kb)(n−m)

n

)
m

n

= ρ(n)− λ(Kb)m

n
− γ(Kb)(n−m)m

n2

From the assumptions already made about the ρ, λ and γ functions we
have: ϕ̄n > 0, ϕ̄m < 0, ϕ̄K < 0 and ϕ̄nn, ϕ̄KK > 0. We can then write the
maximization problem of the government:

max
n,m

[(1− ϕ̄(n,m,Kb))r(Kt)n− d(ϕ̄(n,m,Kb)n)− bm] (4)

The first-order condition for the optimal number of licenses is given by:

∂W

∂n
= (1− ϕ̄(n,m,Kb))r(Kt)− r(Kt)ϕ̄nn− d′ (ϕ̄(n,m,Kb) + ϕ̄nn) = 0 (5)

6We assume that third degree price discrimination between license owners is not possible.
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Since the welfare function is concave in n, the socially optimal number of
n∗ is given as the solution to (5) The first term (in brackets) are the average
profit earned on a license. The second term r(Kt)ϕnn > 0 is the expected
loss to all producers of increasing n which is not internalized by the individual
license owner when deciding to enter. The third term is marginal environmental
damage. We note that this is affected by (from left to right): i) there are more
licenses which involves a given risk ϕ̄(n,Kb) > 0, and ii) all licenses become
more risky ϕ̄nn > 0.

For the optimal number of license owners adopting the new knowledge we
have:

∂W

∂m
= −r(Kt)ϕ̄mn− d′ϕ̄mn− b = 0

By inserting for ϕ̄mn, we see that the optimal number of adopting firms can
be written:

m∗ = n

(
λ(Kb)

2γ(Kb)
+

1

2
− b

2γ(Kb) (r(Kt) + d′)

)
By Assumption 2 we have λ(Kb) > γ(Kb). For b = 0, it is then straight

forward; the optimal m is a corner solution with m∗ = n. For small additional
costs of more sustainable harvesting practices b, you still get a corner solution.
The condition is:

[λ(Kb)− γ(Kb)] [r(Kt) + d′] ≥ b (6)

that is, the social gain from lower accident risk caused by the last license owner
to switch to the new technology, must be higher than the additional harvesting
cost. Throughout the paper we will assume that this is the case, and hence,
that m∗ = n even if b > 0.7 .

In order to obtain m∗ = n, the government must set the following subsidy:

sb = γ(Kb)r(·) + b (7)

The optimal subsidy can easily be derived from (2) settingm0 = n. Note that
the subsidy is higher than the additional costs of more sustainable harvesting
practices. The government actually has to pay the innovator a premium equal
to the private gain received by the first license owner who adopts the new
technology. Moreover, with sb = γ(Kb)r(·) + b, the innovator will set ωb = 0.
Since the government wants every license owner to adopt the new technology,
the license owners must get the new technology for free.
Whenm = n, we have for the average accident probability ϕ̄ = ρ(n)−λ(Kb).

Moreover, all license owners adopt the latest technological knowledge to the
price (1 − ρ(n) + λ(Kb))r(Kt). Thus, with the adoption subsidy to biological
knowledge, we have full adoption of both biological and technological knowledge
in the first stage of the game.

Proposition 2 In order to obtain the socially optimal rate of adoption, the
government needs to subsidize adoption of new biological knowledge, but not
new technological knowledge.

7The assumption will not affect our main results as long as m∗ > m0, which must hold for
sb = 0.
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The result should not come as a surprise, since there are both positive pro-
ducer to producer and positive environmental externalities when new biological
knowledge is adopted by an additional firm. Still it may be worth emphasiz-
ing that even if the environmental externality can be controlled by the entry
regulation, it provides insuffi cient incentives for adopting environmental hazard
reducing technology.

3.4 Optimal response to new innovations

It is of interest to see how the regulator responds to investments in new knowl-
edge. By differentiating wrt. Kb (5) we obtain:

dn

dKb
=

(r(Kt) + d′) ϕ̄K + d′′ (ϕ̄(n,Kb) + ϕ̄nn) ϕ̄Kn

∂2W/∂n2
> 0

since ∂2W/∂n2 < 0, ϕ̄K < 0 and ϕ̄n, d
′, d′′ ≥ 0.

Further, by differentiating wrt. Kt (5), we also have:

dn

dKt
=
r′ [ϕ̄nn− (1− ϕ̄(n,Kb))]

∂2W/∂n2
> 0

since ∂2W/∂n2 < 0 and ϕ̄1n− (1− ϕ̄(n,m,Ke)) < 0 for the optimal n.

Proposition 3 New biological and/or technological knowledge induces the gov-
ernment to issue more licenses.

The mechanisms are partly different: New biological knowledge both in-
creases the average expected profit of the license owners, and reduces the risk of
environmental hazards, while more technological knowledge only increases the
expected profit of the license owners making the regulator willing to take more
environmental risks. Thus, we also have the following result:

Corollary 4 New technological knowledge will increase the frequency of envi-
ronmental accidents.

The corollary follows directly from Proposition 1; a higher number of li-
censes increases the environmental hazard rate. Note, however, that if the har-
vesting operation do not involve environmental costs d(·), we have ϕ̄nn − (1 −
ϕ̄(n,m,Ke)) = 0 from (5). Thus, with d(·) ≈ 0 more technological knowledge
will not lead to more licenses.

3.5 Privately optimal R&D

We assume that there are two representative innovators setting R&D levels
simultaneously. Inserting the optimal subsidy from (7) into the revenue function
(3), we have that the biological innovator maximizes profits Vb given by:

Vb = γ(Kb)r(Kt)n− (1− σb)Kb

where the first term is the revenue from the adoption subsidy when providing
the license owners with the new biological knowledge, and the second term is
the private cost of R&D taking into account the R&D subsidy rate for biological
knowledge σb.
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The technological innovator maximizes Vt given by:

Vt = (1− ρ(n) + λ(Kb))r(Kt)n− (1− σt)Kt

where the first term is the revenue from sales of new technological knowledge to
the license owners, and σt is the R&D subsidy rate for technological knowledge.
The first order conditions are given by:

∂V

∂Kb
= r(Kt)nγ

′ + γ(Kb)r(Kt)
dn

dKb
+ σb − 1 = 0 (8)

∂V

∂Kt
= n(1− ρ(n) +λ(Kb))r

′+ [1− ρ(n) + λ(Kb)− ρ′n] r(Kt)
dn

dKt
+σt− 1 = 0

(9)
We assume that the profit functions of the representative innovators are

concave, and hence that the optimal Kb and Kt are given as solutions to (8)
and (9). The first term in (8) is the marginal increase in the income from the
adoption subsidy, which is equal to the increase in the private benefit of new
biological knowledge times the number of license owners.
The first term in (9) is the marginal increase in the potential value of all

licenses given the accident risk. Note that both representative innovators act
strategically e.g. they foresee that more knowledge of either type will increase
the number of licenses, and that they will be able to sell their new knowledge
to more license owners (second term in both (8) and (9)). Remember that
the strategic effect for new technological knowledge is only positive as long as
there is a negative environmental externality. This finding is highlighted in the
proposition below:

Proposition 5 The negative external environmental effects of natural resource
harvesting increases the incentives to do profit enhancing innovation through a
positive strategic effect.

3.6 Socially optimal R&D

We have already looked at the optimal number of license owners adopting the
latest level of biological knowledge. Withm∗ = n∗, the average biological hazard
rate ϕ̄(n,m,Kb) is given by ρ(n)−λ(Kb). The optimal levels of new knowledge
is then found from solving:

max
n,Kb,Kt

W = (1− ρ(n) + λ(Kb))r(Kt)n− d((ρ(n)− 2λ(Kb))n)−Kb −Kt

The first order condition for the optimal n is given by (5) (with ϕ̄(n,m,Kb) =
ρ(n)− λ(Kb) and ϕ̄n = ρ′). The solution for n∗ may be different to the extent
that the privately optimal levels of Kb and Kt are different from the socially
optimal levels.
Moreover, we have for Kb and Kt:

∂W

∂Kb
= n(r(Kt) + d′)

(
λ′
)
− 1 = 0 (10)
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∂W

∂Kt
= n(1− ρ(n) + λ(Kb))r

′ − 1 = 0 (11)

The first term in (10) is the marginal gain from new biological knowl-
edge, that is, the revenue and environmental value of a lower biological hazard
rate. This marginal value should be set equal to the marginal cost of R&D
funds(which is equal to unity). Likewise, the first term in (11) is the marginal
gain in expected total revenue from new market knowledge, which also should
be set to unity.
We immediately note that (10) and (11) differs from (8) and (9), thus, in

order to induce the socially optimal levels of R&D the government needs to
set σb, σt 6= 0. Using (10) and (11) together with (8) and (9), we have for the
optimal R&D subsidy in the biological knowledge case:

σb = nλ′d′ + nr(Kt)
(
λ′ − γ′

)
− γ(Kb)r(Kt)

dn

dKb
(12)

Remember that the adoption subsidy to the biological innovator depends
only on the private benefit of biological R&D e.g. γ(Kb)r(Kt). However, a lower
accident probability also decreases the expected environmental costs. The first
term in (12) expresses this positive external value of new biological knowledge.
Moreover, again since the adoption subsidy only reflects the private benefit

of biological R&D, incentives for biological R&D may be too small if the increase
in the public benefit from adoption of new biological R&D is much larger than
the increase in the private benefit from adoption of new biological R&D e.g.
λ′ − γ′ >> 0. This is off course hard to have a general opinion on, and we may
well have that the second term in (12) is close to zero.
Finally, the third term in (12) is the strategic effect of new biological knowl-

edge. Note that this effect reduces the need for R&D subsidies, but only if the
private benefit of environmental hazard reducing innovations γ(·) is significant.

For the optimal R&D subsidy in the technological knowledge case we have:

σt = − [1− ρ(n) + λ(Kb)− ρ′n] r(Kt)
dn

dKt
< 0 (13)

Due to the adoption subsidy sb, all license owners adopt the latest level
of biological knowledge. The technological innovator can thus appropriate all
profit gains from the new technological knowledge. The strategic effect then
makes the incentives for technological innovation excessive e.g. we have σt < 0.
In the following proposition we try to summarize our findings:

Proposition 6 With a subsidy to adoption of the latest biological knowledge
such that all license owners adopt, the optimal R&D subsidy to technological
R&D is negative, while the optimal R&D subsidy to biological R&D may be
positive if the environmental externality is large and/or if the private benefit of
environmental hazard reducing innovations γ(·) is likely to be small.

Our results indicates that R&D subsidies should be directed towards biologi-
cal knowledge creation. Our numerical simulations below also show that private
biological R&D may fall far short of the socially optimal levels of such R&D.
Moreover, we may off course have a situation in which the government does

not subsidize adoption of new biological R&D. In the Appendix we solve the
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model for this case as well. The result for the R&D subsidy does not differ very
much from the results in this section: We find that R&D subsidies should be
directed towards biological knowledge creation both when such innovation has
the properties of a public good, that is λ(·) is large compared to γ(·), and/or
when the environmental externality is large.

4 An application to the Norwegian fish farming
industry

Fish farming in Norway is focused on salmon and sea trout which are bred in
open pens in protected coastal areas like the Norwegian fjords and archipelagos.
The coastal landscape provides Norway with a comparative advantage in fish
farming, and Norway is by far the worlds largest producer of salmon and sea
trout. The profit per license is currently very high, and the government recently
conducted two auctions for new licenses; one in 2018 and one in 2020. The price
of a license increased by 13% from 2018 to 2020, while the loss rate measured by
the Norwegian Fishery Directorate stayed constant at 21% even if the number
of licenses increased.8

Every second year since 2001 the NIFU Step group has collected R&D data
on fish farming from universities, research institutes and private businesses. The
R&D data is grouped under the following categories:production effectiveness,
feeding, breeding and genetics, technical equipment, slaughtering and distribu-
tion, market development, environmental and cultural effects, and health and
deceases. We have grouped the six first categories under "technical R&D", and
the two last under "biological R&D". For the latest year of reporting; 2017,
we have that € 71 million was spent on biological R&D and € 197 million was
spent on technical R&D.
We use these figures to calibrate our model in order to illustrate the poten-

tial scale of misallocation of R&D investments. In the Appendix we explain
how we use the data to calibrate our model. In short, we use simple square
root formulas for the functions r(Kt), λ(Kb) and γ(Kb), while for the effect
on the hazard rate ϕ(·) of more licenses ρ(n) we use a simple quadratic form.
Moreover, for the environmental damage function we use the simple linear form
δ ∗ n ∗ ϕ. The parameter δ is calibrated by assuming that the observed num-
ber of licenses is socially optimal. We also assume that the observed levels of
R&D is privately optimal given equal subsidy rates between environmental and
technological R&D. Finally, we assume that a certain share of the changes we
observe from 2018 to 2020 is due to random shocks. All the parameters can
then be calibrated.
Remember that the value of a license increased by 13% from 2018 to 2020.

We only ascribe 10% of this increase in value to technological R&D in 2017. The
value of a license is very sensitive to the market price of salmon which historically
has fluctuated a lot.9 Furthermore, as mentioned the loss rate stayed constant
from 2018 to 2020 even if the number of licenses increased. In Figure 1 we
present results for the case in which the biological R&D in 2017 can explain

8The loss rate is the average loss in biomass from the pens over all the licenses.
9Assuming that technological R&D is more potent e.g. gives rise to a higher share of the

change in value of a license, yields the absurd result that private technological R&D is taxed
- remember that the observed levels of R&D should be privatly optimal.
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50% of the reduction in the loss rate that needs to have taken place from 2018
to 2020:

Figure 1 "Optimal levels of R&D with full adoption"

Figure 1 to be placed here

On the x-axis we have the marginal environmental costs of accidents e.g.
the parameter δ. The start value is calibrated from the first order condition for
the optimal number of licenses, however, there are reasons to believe that the
Norwegian government has put a too low value on the environmental costs e.g.
wild salmon stocks have been drastically reduced because of fish farming.10 On
the y-axis we have million € in R&D spending. Then there are four graphs; the
solid lines depict the optimal levels of R&D for different levels of the environ-
mental costs, while the stippled lines depict the private levels of R&D e.g. the
outcome of profit maximization by the representative innovators. Our model
simulation yields stark results ; there is too much technological R&D and way
too little biological R&D, that is, the grey stippled line is placed above the solid
grey line, while the solid black line is far above the stippled black line.
As mentioned in the former section, we have also solved the model for the

case without an adoption subsidy. We can use the same data to calibrate the
model for this case as well. However, since we assume that the levels of R&D we
observe are privately optimal, the values of some of the parameters will come out
of the calibration differently. Below we present results for the case in which 70%
of the reduction in the loss rate from an increase in the number of licenses from
2018 to 2020 is due to biological R&D in 2017, while only 15% of the increase in
value from a license from 2018 to 2020 can be explained by technological R&D
in 2017.11

Figure 2 "Optimal levels of R&D with no adoption subsidy to biological
R&D"

Figure 2 to be placed here

Like in Figure 1, on the x-axis, we have the marginal environmental costs of
accidents e.g. the parameter δ., and on the y-axis we have million € in R&D
spending. Again, there are four graphs; the solid lines depict the optimal levels
of R&D for different levels of the environmental costs, while the stippled lines
depict the private levels of R&D e.g. the outcome of profit maximization by
the representative innovators. Comparing Figure 2 to Figure 1, we note that
we obtain the same results as in Figure 1; there is too much technological R&D
and way too little biological R&D, that is, the grey stippled line is placed above
the solid grey line, while the solid black line is far above the stippled black line.

10See for instance: https://www.vitenskapsradet.no/Nyheter/Nyhetsartikkel/ArticleId/4559/Status-
of-wild-Atlantic-salmon-in-Norway-2018

11This yields an R&D subsidy rate of 0.5, and a value of γ(·) of about half the value on
λ(·).
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Finally, we have checked the robustness of our results. We assume that an
optimal adoption subsidy is in place, but we vary the extent to which biological
R&D in 2017 has caused the change in the loss rate from an increase in the
number of licenses from 2018 to 2020.

Figure 3 "Sensitivity to the effectiveness of biological R&D"

Figure 3 to be placed here

The legend on the axis is the same as above. Then there are three solid
lines each showing the optimal level of biological R&D for different values of the
effectiveness of biological R&D. Note that we vary the effectiveness of biological
R&D by adjusting the extent to which changes in the loss rate is caused by a
random shock and not the biological R&D we observe. For instance, the lower
solid line shows a case in which random shocks cause 80% of the changes in the
loss rate. Since biological R&D then is correspondingly less effective, optimal
investment levels are lower. Still we observe that investment levels are too low
if the level of environmental damage is increased.12

5 Mandated biological technology adoption

Since subsidizing adoption of new biological knowledge may be costly, govern-
ments may prefer just to mandate the new technology avoiding any expendi-
tures on an adoption subsidy. With mandated biological technology adoption
the government requires all license owners to use the latest technology for envi-
ronmental accident prevention. Thus, we have full adoption of both biological
and technological knowledge in the last stage of the game. In the second stage
of the game the government set the number of licenses as before. There is no
qualitative changes to this stage of the game.
In the first stage of the game the innovators set their levels of R&D. For the

technological innovator the situation is the same as with an adoption subsidy;
all license owners adopt the new biological knowledge. Hence, the technological
innovator can appropriate all profit gains from the new technological knowledge.
The strategic effect then makes the incentives for technological innovation ex-
cessive, see (13).
With mandated technology adoption, it is hard to know what price ωb the

biological innovator can charge for new biological knowledge. Therefore, we
simply assume that the biological innovator receives a share θ ∈ [0, 1] of the
increase in total industry profit.13 Let total profits before R&D be given by Π0.
The biological innovator then maximizes:

Vb = θ
[
(1− ρ(n) + λ(Kb))r(Kt)n−Π0

]
− nb− (1− σb)Kb

where nb is the cost of providing the new technology to all license owners.
The first order condition writes:

12Note that is is not possible to increase the randomenss of the observed loss rate any further
without coming into conflict with the assumption: λ(Kb)− γ(Kb) > 0, ∀Kb.
13See e.g. Fischer and Newell (2008) for this way of modelling the income of the innovator.
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∂Vb
∂Kb

= θλ′r(Kt)n+θ [1− ρ(n) + λ(Kb)− ρ′n] r(Kt)
dn

dKb
− b dn

dKb
− (1−σb) = 0

The socially optimal level of R&D is given by (10), and thus, we have for
the optimal subsidy to environmental hazard reducing innovation:

σb = λ′(1−θ)r(Kt)n+λ′d′n− [θ (1− ρ(n) + λ(Kb)− ρ′n) r(Kt)− b]
dn

dKb
(14)

Despite the mandate, which ensures full adoption, the incentives for biolog-
ical innovation may be inadequate. First, since θ < 1, the biological innovator
does not appropriate all gains in the license owners profit from an increase in
Kb (first term in 14) Second, the expected environmental costs are reduced for
which the innovator does not get paid (second term in 14). On the other hand,
the strategic effect reduces the need for R&D subsidies (third term in 14). Note
that since adoption is not subsidized, the strategic effect is weakened by the
cost of the new technology b.

Proposition 7 With a mandate ensuring full adoption of new biological knowl-
edge, we have σt < 0, and σb > 0 if:

λ′(1− θ)r(Kt) + λ′d′n > [θ (1− ρ(n) + λ(Kb)− ρ′n) r(Kt)− b]
dn

dKb

Thus, if the strategic effect is weak e.g. dn/dKb close to zero and/or b is large
or if the environmental costs of accidents are high, a technology mandate seems
to provide an argument in favor of directing R&D subsidies towards biological
knowledge creation. This holds even if appropriabillity is perfect e.g. θ = 1.

6 The relevance of our model for other natural
resource based industries

Salmon farming in open pens is one example of a natural resource based industry.
The question is whether our results carry over to other natural resource based
industries. Shrimp farming may be another example. According to Barbier and
Fox (2004) shrimp farming also involves both a negative producer to producer
externality and a negative environmental externality; in the form of diseases and
loss of mangrove forest, respectively. Moreover, according to Barbier and Fox
(2004) there exist farming technologies making it possible to reduce the negative
externalities, however, in many cases their costs are prohibitive for small scale
shrimp farmers.
The model may also provide insights for capture fisheries. A reoccurring

problem in capture fisheries is bycatch of juvenile fish and other non-targeted
species, see e.g. WWF (2009). With point of departure in the North Sea Trawl
fishery, Catchpole et al. (2007) study the effects of different gear types on by-
catch and on the sustainability of targeted fish stocks, and find that innovations
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in fishing gear can improve sustainability. If governments rely on markets to
allocate R&D funds, and support all R&D projects by the same rate, develop-
ment of more sustainable fishing gear may be cash strapped. This is especially
so as the private value of more sustainable fishing gear γ(·) is likely to be small
compared to the public value of more sustainable fishing gear λ(·).
The modern method of conducting forestry, so called clear cut forestry, also

has its environmental problems e.g. reduced biodiversity, increased water run off
and soil damage, release of forest carbon and loss in amenity value. Moreover,
clear cut forestry implies that the forest is even aged making it more susceptible
to diseases which entails a potential producer to producer externality. Tahvo-
nen and Rämö (2016) analyses continuous cover forestry as an alternative to
clear cut forestry, and find that many of the externalities connected with clear
cut forestry might be reduced, while not hurting profitability significantly. On
the other hand, few private forest owners seems to be interested in converting
their operations to continuous cover forestry. We can only speculate to what
extent this is caused by lack of R&D funds going into developing continuos cover
forestry schemes and equipment.

7 Discussion and conclusion

We have analyzed innovation policy in the context of a natural resource with
special focus on fish farming. One novelty of the paper is that we divide inno-
vations into profit enhancing and environmental hazard reducing innovations.
Given that innovation can take two directions, we have posed the following
research question: Is the market’s ranking of profit enhancing and environmen-
tal hazard reducing innovation projects in line with the ranking of the social
planner?
We analyze the research questions within a theoretical model of innovation

and by calibrating the model to the Norwegian salmon farming industry. Our
main result suggests that environmental hazard reducing innovations should be
prioritized: The government should give an adoption subsidy to environmental
innovations, and in addition, the government should also offer a directed R&D
subsidy in case the environmental externalities of harvesting are large. As far
as we know these results are new to the literature.
The paper also includes additional theoretical results; for instance, when in-

novating for a natural resource based industry, there is a strategic effect which
increases the incentives to do innovation. Thus, even if appropriabillity is less
than 100 percent, the amount of innovation in a natural resource based in-
dustry may be suffi cient even without public support. In fact, the Norwegian
government has on two occasions promised additional licenses as a reward to
innovation. In 2013 a number of new licenses were promised to those who came
up with a method of reducing the environmental impact of a fish farm, indi-
cating that dn/dKb > 0. In 2017 more new licenses were to be given away in
order to test of all kinds of innovations in fish farm technology indicating both
dn/dKb > 0 and dn/dKt > 0.
In order to derive our results we have been forced to simplify our model in

several ways. First, we assume that all license owners are identical. This is very
much the case for the single salmon farm as they use standardized technology
and the same breed of salmon. On the other hand, the natural conditions in one
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area may differ from another area. We thus like to think of our model as an "area
model", and not a "country model". Moreover, there will of course be differences
in the size of the firms owning the salmon farms. If one firm owns many firms
in an area, the firm may internalize the tragedy of the commons effects. In
particular, this may lead to higher adoption of new biological knowledge than
in our model, and less need for an adoption subsidy to new biological knowledge.
Still, the results regarding the incentives to do the two types of R&D are likely
to hold. That is, with a dominating firm owning the majority of licenses in an
area, the situation is more like the case in Section 5 with a mandatory standard
and a low appropriabillity parameter θ.

Second, we have introduced a strict boundary between profitability enhanc-
ing and environmental hazard reducing innovations. There may of course be
innovations that both reduce environmental hazards and improve profitability
directly through r(·). The incentive for adoption of such innovations will, as
far as we can see, tend to be the same as the incentive for adoption of pure
profitability enhancing innovations. However, as the adoption of such innova-
tions entails a positive external effect, the optimal R&D subsidy to profitability
enhancing innovations may no longer be negative. Still, in our opinion, the mis-
allocation of R&D funds will be more serious when innovations only are likely
to reduce environmental hazards and the private benefit of adoption is small.
Regulators cannot know a priori to what extent ideas for such innovations ex-
ist, but they can commit to support such innovations more than profitability
enhancing innovations. As far as we know, this is not happening in Norway
today.
Third, our model includes no population dynamics of the biological resource.

Our interpretation of the model is that the bioeconomic system is in a steady
state situation in which both the level of harvesting, the harvesting effort and
the population size is optimal. Innovations will change the optimal solution,
and this will trigger a transition period in which we move from one optimal
solution to another optimal solution changing the harvest level, the harvesting
gear and possibly the steady state stock of the biological resource. We do not
model the transition, but in our opinion, including transition dynamics would
not change the main result of the paper. The transition period could of course
give rise to transition costs, but it should be possible to include those in the
cost of biological knowledge adoption b or implicitly in the function r(·).
Finally, we assume that innovation is carried out in separate firms, and we do

not model innovation by the license owners. As mentioned in the introduction,
this is in line with much of the later literature on environmental innovation. If
innovation happens in the firms that own licenses, the crucial question is whether
a firm that innovates will patent its idea, and start to sell the new knowledge to
other license operators. If yes, our model should still be a reasonable description
of actual matters. If not, we conjecture that the incentives to environmental
hazard reducing innovations is even smaller as the profit maximizing level of
adoption of new biological knowledge is unlikely to be only one firm.
Summing up, we conclude that for natural resource based industries the

private incentive for profitability enhancing innovation is likely to outperform
the private incentives for environmental hazard reducing innovation. Govern-
ments should consider responding to this by prioritizing environmental hazard
reducing innovation in public R&D spending.
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Appendix

A The case with no adoption subsidy

In order to simplify the analysis we set b = 0. Without an adoption subsidy,
the regulator takes into account that the adoption rate for new environmental
knowledge will be m0 = n/2, see (2). The average accident risk ϕ̄(n,m,Kb) is
thus given by:

1

2

[
ρ(n)−

λ(Kb)
n
2

n
−
γ(Kb)(n− n

2 )

n

]
+

1

2

[
ρ(n)−

λ(Kb)
n
2

n

]
= ρ(n)− λ(Kb)

2
− γ(Kb)

4

As before, the regulator maximizes welfare W with respect to the number
of licenses n. This leads again to the equation (5), but since m = n/2, the
optimal number of licenses will be different from the case whenm = n. Inserting
b = sb = 0 into (3), we have that the biological innovator maximizes profits Vb
given by:

Vb =
γ(Kb)r(Kt)n

4
− (1− σb)Kb

where the first term is the revenue from sales of new biological knowledge to
the license owners, and the second term is the private cost of R&D taking into
account the R&D subsidy rate for biological knowledge σb.
Since not all license owners adopt the new biological knowledge, the techno-

logical innovator can only charge ωt = 1 − ρ(n) + λ(Kb)/2. The technological
innovator thus maximizes Vt given by:

Vt = (1− ρ(n) +
λ(Kb)

2
)r(Kt)n− (1− σt)Kt

where the first term is the revenue from sales of new technological knowledge,
and σt is the R&D subsidy rate for technological knowledge. The first order
conditions are given by:

∂V

∂Kb
=
r(Kt)n

4
γ′ +

γ(Kb)r(Kt)

4

dn

dKb
+ σb − 1 = 0 (15)

∂V

∂Kt
= n(1−ρ(n) +

λ(Kb)

2
)r′+ (1−ρ(n) +

λ(Kb)

2
−ρ′n)r(Kt)

dn

dKt
+σt−1 = 0

(16)
The interpretation of these equations is the same as for (8) and (9). In first

best, the regulator sets n, Kb and Kt knowing that m = n/2, to maximize:

W =

[
1− ρ(n) +

λ(Kb)

2
+
γ(Kb)

4

]
r(Kt)n−d

([
ρ(n)− λ(Kb)

2
− γ(Kb)

4

]
n

)
−Kb−Kt

where the first order condition for the optimal n is essentially the same as before,
although the solution for the optimal n will differ due to a lower adoption rate.
Moreover, we have for Kb and Kt:
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n(r(Kt) + d′)

(
λ′

2
+
γ′

4

)
− 1 = 0 (17)

n(1− ρ(n) +
λ(Kb)

2
+
γ(Kb)

4
)r′ − 1 = 0 (18)

The interpretation of these equations is the same as for (10) and (11). Using
(17) and (18) together with (15) and (16), we have for the optimal R&D subsidy
in the biological knowledge case:

σwb = nr(Kt)
λ′

2
+ n

(
λ′

2
+
γ′

4

)
d′ − γ(Kb)r(Kt)

4

dn

dKb
(19)

where the superscript w denotes without adoption subsidies.
The biological innovator is only able to charge for the private benefit of her

R&D, however, for every license owner that adopts the new technology, all other
license owners experience a lower accident probability. The first term in (19)
expresses this external value of new biological knowledge.
A generally lower accident probability also decreases the expected environ-

mental costs. Moreover, for the individual license owner, adoption of the latest
biological knowledge reduces the accident probability more than if she just free
rode on the others adoption. This is good both for the license owner and for the
environment. However, the license owner does not factor in the environmental
effect, and consequently the innovator does not get paid for this. The second
term in (19) expresses this external value of new biological knowledge, which is
larger the higher is the environmental costs of the harvesting operation. Thus,
a high d′ will tend to make σwb positive.
Finally, the third term in (19) is the strategic effect of new biological knowl-

edge. Note that this effect reduces the need for R&D subsidies.
For the optimal R&D subsidy in the technological knowledge case without

subsidies to adoption of new biological knowledge we have:

σwt =
γ(Kb)n

4
r′ − (1− ρ(n) +

λ(Kb)

2
− ρ′n)r(Kt)

dn

dKt
(20)

Again, we see by the second term in (20), that the strategic effect reduces the
need for subsidies. The subsidy to technological knowledge may still be positive
if the first term in (20) is large. A license owner that has adopted the latest
biological knowledge, has a higher benefit from new technological knowledge.
The technological innovator cannot charge for that without loosing half of the
market, and hence, the incentives for doing technological R&D may be too small.
Note that in both (19) and (20) the term γ(Kb) plays a key role. A low γ(Kb)

implies that it is more tempting to free ride on other license owners’adoption of
new technological knowledge. Further, a low γ(Kb) also implies that the extra
benefit an adopter of new biological knowledge gains from adopting the latest
technological knowledge is small, which ceteris paribus, reduces the need for
subsidizing new technological knowledge.

B The numerical model

Below we summarize that data presented in the main text:
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Table 1 "Norwegian fish-farming"

ϕ n Kb Kt (1− ϕ)r(Kt)
2018 0.21 1113 0 0 15
2020 0.21 1162 71 197 17
We calibrate the model for two cases; with full adoption and with partial

adoption, that is, with no adoption subsidy.

B.1 With full adoption

When calibrating the model we normalize the levels of R&D before 2017 to zero,
and we assume that levels of R&D in 2017 took effect in 2020. Moreover, we
assume that levels of R&D only explains a part of the changes we observe in
the variables. For the increase in expected profit from a license we therefore set
∆(1 − ϕ)r(Kt) = (1 − ϕ)α

√
Kt + ξ∆(1 − ϕ)r(Kt). The parameter α can then

easily be calibrated from:

α =
(1− ξ)∆(1− ϕ)r(Kt)

(1− ϕ)
√
Kt

where ξ is the fraction of the increase in profits explained by exogenous shocks.
For the average hazard rate we have:

ϕ =
n2

n̄
− m

n
λ̄
√
Kb −

(n−m)m

n2
γ̄
√
Kb

where n̄, λ̄ and γ̄ are parameters to be calibrated. First, since we have normal-
ized Kb before 2017 to zero, n̄ can then easily be calibrated from:

n̄ =
(n2018)2

ϕ2018

where the subscripts refer to the year of measure.
Then we assumem = n in 2020, and the last term in the hazard rate equation

disappears. Furthermore, as above we assume that the change in the hazard
rate caused by the change in N only partly can be explained by the level of
biological R&D. We may then calibrate λ̄ from:

λ̄ =
(1− ζ)

(
(n2020)2

n̄ − ϕ2020

)
√
Kb

where ζ is the fraction of the change in hazard rate explained by exogenous
shocks.

Moreover, for the environmental damage function we use δ ∗ n ∗ ϕ. The
parameter δ is calibrated from the first order condition for the optimal number
of licenses. We use 2018 as our point of departure:

δ =
r(Kt)(
ϕ+ 2n2

n̄

) − r(Kt)

Finally, the levels of R&D should be privately optimal. This implies that
the following must hold for technological innovation:
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∂V

∂Kt
= n(1− ϕ)

α

2
√

∆K1
t

+

[
1− ϕ− 2n2

n̄

]
r(Kt)

dn

dKt
+ σt − 1 = 0

From this we can calibrate σt:

σt = 1− n(1− ϕ)
α

2
√

∆K1
t

−
[
1− ϕ− 2n2

n̄

]
r(Kt)

dn

dKt

where

dn

dKt
=

α
[

2n2

n̄ − (1− ϕ)
]
n̄

−12n(r(Kt) + δ)
√

∆K1
t

> 0

For biological innovation we must have:

∂V

∂Kb
= r(Kt)n

γ̄

2
√
Kb

+ γ̄
√
Kbr(Kt)

dn

dKb
+ σb − 1 = 0

We set σt = σb. From this we can calibrate γ̄:

γ̄ =
1− σt

r(Kt)n

2
√
Kb

+
√
Kbr(Kt)

dn
dKb

where

dn

dKb
=

λ̄n̄

12n
√
Kb

> 0

B.2 With partial adoption

The calibration of the parameters α, n̄ and δ is the same. Then, we set m = n/2
in 2020 and γ̄ = µλ̄. The average hazard rate is then given:

ϕ =
n2

n̄
− (2 + µ)λ̄

4

√
Kb

Furthermore, as above we assume that the change in the hazard rate caused
by the change in n only partly can be explained by the level of biological R&D.
We may then calibrate λ̄ from:

λ̄ =
4(1− ζ)

(
(n2020)2

n̄ − ϕ2020

)
(2 + µ)

√
Kb

where ζ is the fraction of the change in hazard rate explained by exogenous
shocks. However, we still do not know µ.
As assumed above, the levels of R&D should be privately optimal. This

implies that the following must hold for technological innovation:

∂V

∂Kt
=
αn(1− ϕ)

4
√

∆K1
t

+

[
1− ϕ− 2n2

n̄

]
r(Kt)

dn

dKt
+ σt − 1 = 0

From this we can calibrate σt:
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σt = 1− αn(1− ϕ)

4
√

∆K1
t

−
[
1− ϕ− 2n2

n̄

]
r(Kt)

dn

dKt

where, as above, we have:

dn

dKt
=

α
[

2n2

n̄ − (1− ϕ)
]
n̄

−12n(r(Kt) + δ)
√

∆K1
t

We set σt = σb. For biological innovation we must have:

∂V

∂Kb
=
nµλ̄r(Kt)

8
√
Kb

+
µλ̄
√
Kbr(Kt)

4

dn

dKb
+ σb − 1 = 0

where

dn

dKb
=

(2 + µ)λ̄n̄

48n
√
Kb

We use this to calibrate µ.
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Figures “R&D in natural resource based industries: Governments 
should prioritize innovation which reduces environmental hazards” 
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