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A B S T R A C T   

The integrated energy system is widely acknowledged as an effective method for advancing the adoption of 
renewable energy sources and reducing carbon emissions. To address economic issues caused by the inconsis-
tency between traditional single-stage planning capacities of the park-level integrated energy system (PIES), the 
long-term planning model is proposed, which consists of multi-stage divisions and incorporates the ladder-type 
carbon trading mechanism. The model utilizes the long-term, multi-stage planning approach to determine the 
optimal installed capacity of equipment. Meanwhile, the ladder-type carbon trading mechanism is conducted 
considering the relationship between actual carbon emissions, carbon emission quotas, and carbon trading cost. 
The study assesses the impact of carbon trading mechanisms and various planning stage divisions on the eco-
nomic feasibility of the PIES and its ability to reduce carbon emissions. The results indicate that compared to 
fixed carbon price trading strategies, the implementation of ladder-type carbon trading increases costs by 0.15 
%–0.18 %, but reduces carbon emissions by 0.36 %–0.6 %; as the number of planning stages increases, carbon 
emissions significantly decrease, and lifecycle costs also significantly decrease. Compared to traditional single- 
stage planning, carbon emissions decrease by 14.6 % and lifecycle costs decrease by 15.17 % at number of 
planning stage K = 15; when the baseline price is set at 0.5 yuan/kg and the price growth rate is 0.5, the optimal 
values of carbon emissions and carbon trading cost are achieved. In conclusion, this study serves as references for 
the strategic implementations of PIES, emphasizing the importance of economic efficiency and low-carbon 
practices in line with the system’s long-term development and sustainability objectives.   

1. Introduction 

The integrated energy system (IES) aims to integrate and utilize 
multiple energy resources within a specific region to improve energy 
utilization efficiency, transform conventional energy consumption pat-
terns, promote the integration of renewable energy sources, achieve 
multi-system coordination and optimization, and reduce pollution 
emissions [1,2]. Park-level integrated energy system (PIES) is a specific 
application of IES, which is rapidly developing in various types of in-
dustrial parks across different regions. The construction of clean and 
low-carbon PIES is becoming a crucial support for facilitating the tran-
sition of industries toward low-carbon and sustainable development. 

The IES, as a novel integrated energy system capable of meeting 
diverse energy demands and promoting sustainable energy develop-
ment, is becoming a prominent research focus in the field of energy 
engineering. Numerous domestic and international scholars conducted 
extensive research from various angles and directions. They achieved 
innovative research outcomes in areas such as model construction, al-
gorithm optimization, capacity configuration optimization and opera-
tion. Resulting in numerous targeted recommendations for the optimal 
economic dispatch of the IES [3,4]. Currently, the modeling research on 
IES is reaching a relatively mature stage. Based on the different functions 
performed within the IES, it can be categorized into four modules: en-
ergy providers, producers, converters, and consumers [5]. Using the 
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Energy Hub modeling approach, the IES energy network equations are 
constructed in matrix form, utilizing the Energy Hub structure as a 
foundation. This enables the transformation of IES’s topological struc-
ture and energy conversion characteristics into matrix representation [6, 
7]. Furthermore, a standardized matrix modeling method is proposed, 
which employs the energy flow between energy equipment as the state 
variable. This approach facilitates the construction of different 
source-load equations, considering the unique characteristics of various 
energy flows, including gas, heat, cold, and electricity. This approach 
allows for achieving both modeling accuracy and improved computation 
efficiency [8]. The research on algorithm optimization encompasses 
every stage of IES planning. Intelligent optimization algorithms can 
effectively enhance computational efficiency. By enhancing the 
two-steps k-means algorithm, it is possible to achieve effective clus-
tering, partitioning, and integration of distributed energy resources [9], 
thereby promoting the wider application of distributed energy resources 
in IES. Furthermore, the development of multi-objective evolutionary 
algorithms and modeling methods enables the simulation of annual 
processes with an hourly time step [10], thus simplifying the compu-
tational process and achieving the desired outcomes. IES can achieve the 
coupling of multiple energy sources, including electricity, gas, and heat. 
The complex and diverse nature of energy types and conversion equip-
ment further compounds the challenges of capacity allocation. There-
fore, the optimization and efficient operation of capacity allocation play 
a crucial role in maximizing the economic benefits of IES [11]. In order 
to satisfy the diverse energy requirements of users, it is essential to 
minimize both system investment and energy cost. Moreover, the 
planning and design of IES evolved from a singular emphasis on opti-
mizing economic performance [12], to now equally considering both 
energy efficiency and economic feasibility [13]. Moreover, there is now 
a growing trend towards a comprehensive approach that incorporates 
multiple objectives such as economic viability, energy efficiency, and 
low carbon emissions [14]. This progression contributed to a deepening 
of the research in the field of IES. Guo et al. [15] examined the config-
uration and optimization of a distributed energy system which focused 
on investigating multiple combinations of energy storage and consid-
ering both the upper-level equipment configuration and the lower-level 
energy storage operating parameters. To achieve this, a two-level co-
ordinated optimization approach was employed. Gu et al. [16] devel-
oped a two-level decentralized model for low-carbon optimization and 
scheduling. Carbon emissions effectively reduced through the calcula-
tion of this model while also minimizing the economic operational cost 
of the park ecosystem. These studies utilized a generic two-stage mul-
ti-objective planning model and its corresponding solution methods, 
providing valuable insights for the installed capacity optimization and 
operation of IES [17]. Overall, the current research on IES spans mul-
tiple areas, including model construction, algorithm optimization, 
installed capacity optimization and operation [18]. These studies ach-
ieved a rational allocation of resources and energy, leading to improved 
computational efficiency and offering important references for further 
optimization research on IES [19]. 

The demand for electricity, heating, and cooling load in industrial 
parks increases as more park users settle in and business profitability 
grows. This often results in a situation where the equipment capacity of 
IES is unable to meet the actual load after its implementation. Therefore, 
it becomes necessary to expand and modify IES according to the specific 
circumstances [20]. Several scholars have recognized this issue and in-
tegrated the concept of medium and long-term planning into the design 
and implementation of IES [21]. They employed long-term and 
multi-stage planning techniques to design IES. The accuracy and effec-
tiveness of this model were validated by simulation calculations. Lin 
et al. [22] proposed a quantitative index for measuring the comple-
mentarity of multiple energy sources and applied this index to the 
long-term planning process of IES. They summarized the relationship 
between complementarity and economic viability. Additionally, Taheri 
et al. [23] developed an optimization framework using deep learning 

algorithms and devised a stepwise algorithm for predicting the opera-
tional planning of local energy systems in the medium to long term. Lei 
et al. [24] proposed a method for determining fluctuation boundaries to 
analyze and address energy price uncertainty. Through a practical case 
study, they validated how the sequence of energy hub construction af-
fects the data results of the planning stage. In conclusion, long-term 
planning theory studied and applied in IES, demonstrating the neces-
sity of such theory [25]. 

With the establishment of the carbon trading market, some scholars 
started exploring the IES planning models in the current low-carbon 
market. Broadly speaking, these explorations can be divided into two 
aspects. The first aspect focuses on enhancing the system’s carbon 
reduction capacity by implementing Carbon Capture, Utilization and 
Storage (CCUS) [26,27]. The second aspect studied the carbon gener-
ated by IES and carbon trading. Based on the carbon trading mechanism, 
electricity pricing model, and natural gas pricing model, the carbon 
trading cost (CTC) is comprehensively calculated considering these 
mechanisms [28]. For the IES optimization scheduling model consid-
ering carbon trading, the carbon emission reduction goals of the system 
are constrained by the CTC [29]. 

As demonstrated in Table 1, this study conducted a comparative 
analysis of previous studies and the present study on IES, with a 
particular emphasis on energy flow coupling, optimization objectives, 
and carbon trading. Most of these studies limited their planning horizon 
to one year [30], neglecting the volatility effects caused by changes in 
load, weather, and policies. As a result, they fail to adequately demon-
strate the long-term effects of energy system planning. Furthermore, 
during the equipment modeling process, they did not consider the issue 
of equipment lifespan and the subsequent decline in energy supply 
quality during later stages of operation. This lack of consideration re-
sults in a disconnect between the planning stages and actual operations, 
limiting the ability to ensure the optimality of the planning solutions 
[31]. In addition, current research primarily focuses on discussing the 
optimization of IES planning from an economic perspective, failing to 
incorporate a thorough examination of the comprehensive impacts of 
carbon trading, carbon emissions reduction, and other pertinent factors 
on the long-term planning and operation of IES. Many of these studies 
treated carbon trading prices as fixed values, meaning they do not 
change with variations in carbon emissions. There is a limited amount of 
research analysis on the mechanism of the ladder-type carbon trading 
(LCT) system, and insufficient attention is given to the urgent issue of 
reducing carbon emissions in current energy planning. Additionally, it 
does not take into account the optimized operation of IES under 
long-term carbon reduction constraints [32]. 

Based on the above review and the issues identified in previous 
studies, this study develops a long-term planning model that includes 
multi-stage partitioning and tiered carbon trading to address the eco-
nomic and security issues caused by mismatched traditional single-stage 
planning capabilities. The model considers how different stage divisions 
can affect the outcomes of the planning process. It takes into account the 
LCT mechanism and is optimized by minimizing the life cycle cost, 
serving as the objective function. The study also discusses the influence 
of factors such as the benchmark price and price growth rates on carbon 
emissions in the LCT mechanism. Furthermore, a comprehensive PIES 
optimization solution framework (see Fig. 1) is established based on the 
relationship between the PIES mathematical model, multi-stage plan-
ning model, LCT mechanism model, objective functions, and constraints. 

2. Method 

2.1. Mathematical model of PIES 

Fig. 2 illustrates the structure of the PIES. The external input energy 
sources include electricity from the grid and natural gas. PIES efficiently 
meets the demand for heating, cooling, and electricity load of users. The 
electrical load demand is met by the external grid, photovoltaic (PV), the 
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combined heat and power (CHP). The cooling load demand is met 
through the utilization of the air-source heat pump (HP), electric chiller 
(EC), absorption chiller (AC). The heating load demand is met by uti-
lizing CHP, gas-fired boiler (GB), and HP. To optimize the economically 
efficient utilization of regional renewable energy, the energy storage 
(ES) is configured to manage the inherent uncertainty that arises from 
the output of renewable energy sources. 

2.1.1. Photovoltaic model 
The photovoltaic utilizes solar cell materials to convert sunlight into 

electrical energy, which generates a current. The output power of the 
system is affected by solar radiation and temperature [33]. 

Ppv(t)=Pepvηpv(t)
G(t)
Gref

[1+KT
(
T(t) − Tref

)
(1)  

where Pepv is the rated power of the PV module, Ppv(t) is the electricity 
output of the PV at time t, ηpv is the performance decay coefficient of the 
PV module, Gref is the solar radiation at standard conditions, G(t) is the 
actual solar radiation, T(t) is the actual operating temperature, KT is the 
temperature coefficient, and Tref is the environmental temperature. 

T(t)=Ta(t) + σG(t) (2)  

where Ta(t) is the actual ambient temperature of PV; σ is the radiative 

Table 1 
Comparative analysis of previous studies and the present study on IES.  

Reference Energy flow coupling Optimization objectives Carbon trading 

Electricity Heat Cold Gas Economy Low-carbon Long-term plan Fixed carbon price Ladder-type carbon pricing 

[11] ✓ ✓  ✓ ✓ ✓   ✓ 
[12] ✓ ✓ ✓  ✓     
[13] ✓ ✓ ✓  ✓     
[16] ✓ ✓  ✓ ✓ ✓  ✓  
[18] ✓   ✓ ✓     
[22] ✓ ✓ ✓  ✓  ✓   
[23] ✓ ✓     ✓   
[24] ✓ ✓  ✓ ✓ ✓    
[28] ✓   ✓ ✓ ✓  ✓  
[29] ✓ ✓   ✓ ✓  ✓  
This study ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓  

Fig. 1. Optimization solution framework for PIES.  

K. Li et al.                                                                                                                                                                                                                                        



Results in Engineering 22 (2024) 102107

4

temperature coefficient. 

2.1.2. Combined heat and power model 
CHP consist of Gas Turbine (GT) and waste heat recovery system. 

The GT utilizes natural gas as fuel to generate both electricity and heat, 
achieving cascading utilization of energy [32]. 

PGT(t) = ληGT VGT Ll (3)  

where PGT(t) is the electrical power output of the GT; λ is the unit con-
version coefficient; ηGT is the electrical efficiency of the GT; Ll is the 
lower heating value of natural gas, and VGT is the natural gas con-
sumption of the GT. 

HGT(t)= μreηrePGT (4)  

where HGT(t) is the heat power output; μre is the heating-electric ratio of 
the unit; ηre is the heating conversion efficiency of the waste heat re-
covery system. 

2.1.3. Absorption chiller model 
AC utilizes heating energy as the driving energy source to achieve the 

purpose of refrigeration [34]. 

CAC(t) =HACCOPAC (5)  

where CAC(t) is the cooling power of AC; HAC is the input heating power; 
COPAC is the coefficient of performance for refrigeration. 

2.1.4. Gas-fired boiler model 
GB provides heat by burning natural gas and is mainly used as a 

supplementary heat source to supplement the heating load gap of users 
[35]. 

HGB(t) =BGB(t)ηGB (6)  

where HGB(t) is the heating power of GB; BGB(t) is the energy generated 
by burning natural gas; ηGB is the heating efficiency of GB. 

2.1.5. Air-source heat pump model 
Air-source heat pump (HP) utilizes high-grade energy to transfer 

heat from a low-grade heat source, which is the ambient air, to a high- 
grade heat source. They provide cooling capabilities in the summer 

and heating capabilities in the winter [36]. 

CC
HP(t) =COPHP,CPHP(t) (7)  

HH
HP(t)=COPHP,HPHP(t) (8)  

where CC
HP(t) is the cooling power for the HP, PHP(t) is the electrical 

power consumption, HH
HP(t) is the heating power, COPHP,C is the coef-

ficient of performance for cooling, and COPHP,H is the coefficient of 
performance for heating. 

2.1.6. Electric chiller model 
EC generates cooling energy by consuming electrical energy [37]. 

CEC(t)=COPECPEC(t) (9)  

where CEC(t) is the cooling power of the EC, PEC(t) is the power con-
sumption of the EC, and COPEC is the coefficient of performance of the 
EC. 

2.1.7. Energy storage model 
ES systems are integral components of a PIES, as they enhance the 

system’s regulatory capacity and play a crucial role in ensuring safe, 
stable, and cost-effective system operation [38]. This research primarily 
focuses on three types of energy storage equipment: heating energy 
storage (HES), and cooling energy storage (CES) and electrical energy 
storage (EES). 

The mathematical model formula for energy storage equipment s is 
as follows: 

EES(t)= (1 − r)EES(t − 1) + ηch
ESPch

ES(t)Δt − Pds
ES(t)Δt

/
ηds

ES (10)  

where EES(t) is the energy stored in the ES. Pch
ES(t) and Pds

ES(t) are the 
charging and discharging power, respectively. ηch

ES and ηds
ES are the 

charging and discharging efficiencies, respectively. Δt is the time in-
terval, and for this study, it is set to 1 h r is the energy loss coefficient, 
which is 0.01 for EES, 0.02 for HES, and 0.02 for CES, respectively. 

Fig. 2. Structure of the PIES.  
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2.2. Modeling of ladder-type carbon trading with long-term, multi-stage 
planning 

2.2.1. Long-term, multi-stage planning model 
The multi-stage planning diagram for the PIES is established based 

on the traditional multi-stage approach as shown in Fig. 3, considering 
the growth demands of industrial parks loads and carbon emission 
reduction targets. The planning cycle for the PIES under construction is 
assumed to be Y years, divided into K stages. Equipment replacement is 
scheduled based on the lifespan of each equipment, with dashed boxes 
representing newly installed equipment and solid boxes representing 
already installed equipment in the diagram. Investments are made at the 
start of each stage to address load growth, and optimal allocation of 
equipment installed capacity is conducted for each stage. The planning 
stage of the previous stage serves as the basis for subsequent stages [39]. 

In this study, N refers to the number of equipment types. The variable 
n represents equipment type, where n∈{PV, CHP, AC, GB, HP, EC, ES}, 
Moreover, a multi-stage sequence, denoted as S, is defined as follows: 

S= [S1, S2,…, Sα,…, SK ] (11)  

where Sα represents the state of the α, α = 1, 2, …, K. 
Corresponding to the stage SK, the equipment installed capacity 

allocation matrix is denoted as BK. 

BK =
[
BK

n

]

1×N (12)  

where BK is the installed capacity allocated for equipment type n in stage 
SK. 

The cumulative installed capacity allocation matrix for various types 
of equipment at stage SK is represented by WK. 

WK =
[
WK

n

]

1×N (13)  

where WK
n represents the cumulative installed capacity of equipment 

type n at stage SK. 

2.2.2. Model of ladder-type carbon trading mechanism 
In the carbon trading market, the tradeable assets are carbon emis-

sion rights or quotas. By setting a maximum limit on carbon emissions 
and allocating carbon emission quotas (CEQ), legitimate carbon emis-
sion rights are established, and their buying and selling are allowed to 
achieve effective control of carbon emissions [40]. In China’s current 
system, carbon emission allowances are distributed at no cost and 
allocated using the baseline approach [41]. Within the framework of 
carbon trading, if a company’s actual carbon emissions are lower than 
the government-allocated quota, the company has the option to trade 
the surplus carbon quota [42]. In contrast, should the company surpass 
the allocated quota, it has the option to acquire the excess through the 
carbon trading market. This study presents a LCT model for carbon 
trading, which is built upon three crucial elements: actual carbon 
emissions, CEQ, and CTC.  

(1) Model for calculating uncompensated CEQ 

The primary contributors to carbon emissions in the IES are the 
purchase of electricity from the external power grid, the operation of 
CHP, and GB combustion. This study assumes that all the electricity 
purchased by the IES from the higher-level power grid is generated 
exclusively through heating power generation. The baseline method is 
employed to establish the uncompensated CEQ for the system [43]. 

Eq =EP + ECHP + EGB (14)  

EP = βe

∑8760

t=1
Pele(t)Δt (15)  

ECHP = βh

∑8760

t=1
QGT(t)Δt + φe,h

∑8760

t=1
PGT(t)Δt (16) 

Fig. 3. Diagram of long-term, multi-stage planning method.  
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EGB = βh

∑8760

t=1
QGB(t)Δt (17)  

where Eq is the uncompensated CEQ; ECHP is the uncompensated CEQ for 
CHP; EP is the uncompensated CEQ for externally purchased electricity; 
EGB is the uncompensated CEQ for GB. βe represents the uncompensated 
CEQ per unit of electricity; Pele (t) is the externally purchased electric 
power at time t; βh is the free carbon emission quota per unit of heat; φe,h 

is the conversion coefficient from the electricity generated by the CHP to 
the heat generated by it.  

(2) Calculation model for actual carbon emissions 

To determine the actual carbon emissions resulting from the external 
grid purchased electricity, CHP operation, and GB combustion, a 
calculation is performed. 

Ea =EP,a + ECHP,a + EGB,a (18)  

where Ea is the actual carbon emissions; ECHP,a is the actual carbon 
emissions from CHP; EP,a is the actual carbon emissions from purchased 
electricity; EGB,a is the actual carbon emissions from GB. The calculation 
methods of EP,a, ECHP,a, and EGB,a are essentially the same as the formula 
for calculating carbon emissions quotas, with the difference lying in the 
values of actual carbon emissions per unit of electricity βea, and per unit 
of heat βha.  

(3) Model of the LCT mechanism 

The study develops a LCT mechanism, which is based on the corre-
lation between actual carbon emissions and free CEQ. Compared to 
traditional carbon trading mechanisms, the LCT mechanism can further 
limit carbon emissions. The difference between actual carbon emissions 
and free CEQ is divided into multiple trading intervals [44], each in-
terval corresponds to a distinct carbon trading prices, as shown in Fig. 4. 
When the actual carbon emissions of an industrial park exceed the value 
of uncompensated CEQ, they must purchase excess quotas from the 
carbon trading market according to the LCT mechanism. The more CEQ 
needs to be purchased, the higher the purchase price. 

The LCT model is structured as follows: 

EPIES,t =Ea − Eq (19)  

cco2
y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γEPIES,t EPIES,t ≤ l

γ(1 + β)
(
EPIES,t − l

)
+ λl l ≤ EPIES,t ≤ 2l

γ(1 + 2β)
(
EPIES,t − 2l

)
+ γ(2 + β)l 2l ≤ EPIES,t ≤ 3l

γ(1 + 3β)
(
EPIES,t − 3l

)
+ γ(3 + 3β)l 3l ≤ EPIES,t ≤ 4l

γ(1 + 4β)
(
EPIES,t − 4l

)
+ γ(4 + 6β)l 4l ≤ EPIES,t

(20)  

where cco2
y is the cost of carbon trading; EPIES,t is the difference between 

actual carbon emissions and CEQ; γ is the carbon trading benchmark 
price; l is the length of each emission interval; β is the rate of price 
growth. 

2.3. Optimization model of PIES 

2.3.1. Objective functions 
The objective function aims to minimize the total regional invest-

ment cost cinv
α , equipment residual value cval

α , operating cost cop
y , main-

tenance cost cma
y , and carbon trading cost cco2

y throughout the life cycle of 
the PIES. 

ctotal =
∑

α

cinv
α

(1 + φ)yα − 1 −
∑

α

cval
α

(1 + φ)Y − 1 +
∑

y

cop
y

(1 + φ)y− 1 +
∑

y

cma
y

(1 + φ)y− 1

+
∑

y

cco2
y

(1 + φ)y− 1

(21)  

where y represents the year within the planning period; φ represents the 
discount rate.  

(1) Investment cost model 

Investment cost in phase α mainly refers to the equipment invest-
ment cost, which is determined by the unit capacity investment cost and 
the rated installed capacity. 

cinv
α =

(
∑N

n=1
Sn

αMn

)

(22)  

where Sn
α is the rated installed capacity of the equipment, and Mn is the 

unit capacity investment cost.  

(2) Equipment residual value model 

The study considers the salvage value of equipment that not yet 
reached its retirement life at the end of the planning period. 

cval
α =

∑N

n=1

(

1 −
(Y + 1 − yα)(1 − Xn)

Yn

)

Sn
αMn (23)  

where Xn represents the net salvage value rate of the nth equipment.  

(3) Operating cost model 

The research mainly considers the cost of purchasing electricity from 
the external power grid, selling electricity, and purchasing gas from the 
higher-level gas network for PIES, which are determined by the actual 
consumption during system operation. 

cop
y =

∑8760

t=1

(
cele(t)Pele(t) + cc(t)Pele,c(t)+ cgas(t)Vgas(t)

)
(24)  

where cele(t) is the purchase price of electricity; Pele(t) is the purchased 
quantity of electricity; cc(t) is the selling price of electricity; Pele,c(t) is the 
quantity of electricity sold; cgas(t) is the price of gas and Vgas(t) is the 
quantity of gas purchased.  

(4) Maintenance cost model 

The research mainly considers the maintenance cost of PV, energy 
conversion equipment, and energy storage equipment in PIES, which are 
determined by the actual output power during the operation of these 
various types of equipment. 

Fig. 4. Diagram of LCT mechanism.  
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cma
y =

∑8760

t=1

∑N

n=1

(
cma,n(t)Peq,n(t)

)
(25)  

where cma,n(t) is the unit maintenance cost of the equipment, and Peq,n(t)
is the output power of the equipment. 

2.3.2. Constraints 
Based on the above objective functions, the study considers various 

constraints, including system energy balance constraint, operational 
constraints of equipment, and constraints related to ES [45].  

(1) System energy balance constraint 

The system operation needs to fulfill constraints related to electric 
power, heating, and cooling balance aspects [46]. 

Electric power balance: 

Ppv(t) +PGT(t) + Pele(t) + Pds
EES(t) = Puse(t) + PHP(t) + Pch

EES(t) + Pele,c(t)
(26) 

Heating power balance: 

HGB(t) +HH
HP(t) + HGT(t) + Hds

HES(t) = HH
use(t) + Hch

HES(t) + HAC(t) (27) 

Cooling power balance: 

CAC(t) +CEC(t) + CC
HP(t) + Cds

CES(t) = CC
use(t) + Cch

CES(t) (28)  

where HH
use(t), CC

use(t) and Puse(t), represent the heating load, the cooling 
load, and the electrical load at time t, respectively.  

(2) Operational constraints of equipment 

Long-term, multi-stage planning for equipment operation requires 
considering the constraints imposed by the cumulative investment ca-
pacity at each stage on its operational state [47]. 

0≤Pi(t) ≤ Pmax
i,y (t) ≤

∑
WK

Pi
(29)  

∑
WK

Pi
=P1

i + P2
i + … + PK

i (30)  

0≤Hj(t) ≤ Hmax
j,y (t) ≤

∑
WK

Hj
(31)  

∑
WK

Hj
=H1

j + H2
j + … + HK

j (32)  

0≤Cb(t) ≤ Cmax
b,y (t) ≤

∑
WK

Cb
(33)  

∑
WK

Cb
=C1

b + C2
b + … + CK

b (34)  

y ∈ K  

where Pmax
i,y , Hmax

j,y , and Cmax
b,y represent the upper limits of the rated ca-

pacity for power generation equipment, heating equipment, and cooling 
equipment, respectively. WK

Pi
, WK

Hj
, and WK

Cb 
represent the cumulative 

capacity of power generation equipment, heating equipment, and 
cooling equipment in planning stage SK. The variable y ∈ K denotes that 
the year y belongs to the stage SK.  

(3) Constraints related to ES 

The capacity storage state of ES should meet the upper and lower 
limit requirements [48]. 

δmin
ES SES ≤EES(t) ≤ δmax

ES SES (35) 

The energy storage state of ES is equal at the beginning and the end 
of a day. 

EES(0)=EES(T) (36) 

The capacity storage state of ES should satisfy the following 
constraints. 
⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ Pds
ES(t) ≤ Uds

ES(t)P
ds,max
ES

0 ≤ Pch
ES(t) ≤ Uch

ES(t)P
ch,max
ES

Uds
ES(t) + Uch

ES(t) ≤ 1
(37)  

where EES(0) and EES(T) are the capacity stored in the ES at the begin-
ning and end of the time, respectively. Uch

ES(t) and Uds
ES(t) are binary 

variables indicating the charging and discharging status. Pch,max
ES (t) and 

Pds,max
ES are the maximum charging and discharging power, respectively. 

SES is the installed capacity of the ES. δmin
ES and δmax

ES are the minimum and 
maximum ranges of the storage state, respectively. 

2.4. Model solving methods 

The study employed the YALMIP toolbox in the MATLAB environ-
ment to call the CPLEX solver for simulating and planning. The simu-
lation and planning consider long-term considerations and involve 
multi-stage planning, as per the LCT model. The problem is trans-
formed into standard form using linear programming algorithms and 
solved using the CPLEX solver to obtain the optimal solution [49]. The 
computational hardware environment employs an Intel(R) Core (TM) 
i5-12600KF CPU running at 3.70 GHz and is equipped with 32.0 GB of 
RAM. The specific optimization process is depicted in Fig. 5. 

Fig. 5. Diagram of model solving process.  
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3. Case descriptions 

3.1. Parameter settings  

(1) Industrial Park loads and energy parameters 

The study focuses on a planned industrial park, where three typical 
days representing summer, winter, and transitional seasons are selected 
annually [50]. The solar radiation data are obtained from Chinese 
Standard Weather Data (CSWD) [51], and the solar radiation data for 
these three typical days can be seen in Fig. 6. Since solar radiation is 
minimally affected by climate change, it is assumed to remain constant 
throughout the entire planning period. The planning period covers a 
span of 15 years, with equipment investment divided into a maximum of 
15 stages. The initial yearly load demand for the selected typical days is 
illustrated in Fig. 7. Moreover, taking into account the anticipated in-
crease in load due to the addition of new users and the improvement of 
enterprise efficiency, the projected demands for electricity, heating, and 
cooling within the park are expected to experience an average annual 
growth rate of 2.0 % over the planning period. 

The planned area is connected to the external power grid and 
external gas network, with the electricity price being determined on the 
basis of the annual electricity price provided by the grid operator. A 
time-of-use electricity pricing model, as illustrated in Fig. 8, is utilized. 
The purchase price for natural gas is set at 3.3 CNY/Nm3.  

(2) Equipment parameters 

Table 2 provides the investment cost, operating and maintenance 
cost, and service life parameters of PV and energy conversion equipment 
within the industrial park [52]. The technical and economic parameters 
of ES are shown in Table 3 [53]. The technical and economic parameters 
of energy equipment can be found in Table 4 [54,55]. 

3.2. Case settings 

In this study, a long-term, multi-stage planning model is developed 
using the LCT mechanism. Three primary scenarios are developed for 
simulation calculations to investigate and analyze the effects of carbon 
trading form, number of planning stages, and variations in LCT pa-
rameters on regional comprehensive energy system planning. These 
scenarios are shown in Table 5. 

The first category of scenarios examines the impact of different forms 
of carbon trading on the planning process. Specifically, we compare the 
influences of two distinct types of carbon trading: fixed carbon prices 

and LCT. These scenarios are denoted as case 1 to case 4. 
The second category of scenarios investigates the impact of the 

number of planning stages. These scenarios, designated as case 5 
through case 8, all utilize the LCT mechanism. The primary distinction 
among them is the varying number of planning stages. Specifically, in 
case 5, there is one planning stage (K = 1). In case 6, there are three 
planning stages (K = 3). In case 7, there are five planning stages (K = 5). 
Lastly, in case 8, there are fifteen planning stages (K = 15). 

The third category of scenarios investigates the impact of varying 
parameters in the LCT mechanism. Specifically, we examine the effects 
of variations in the benchmark price γand the price growth rate βon the 
operation of the system. In case 9, we focus on evaluating the influence 
of variations in the benchmark price. To accomplish this, we set the 
baseline price to a range of 0.1–0.5 CNY/kg, with a step size of 0.05 
CNY/kg, and used the simulation calculation framework established in 
case 4. On the other hand, case 10 analyzes the effects of adjustments in 
the price growth rate. The range of variation for the price growth rate 
was set from 0.1 to 0.5 %, with a step size of 0.05 %. The simulation 
calculations are conducted by modifying the price growth rate within 
the framework outlined in case 4. 

4. Results 

4.1. Analysis of the impact of carbon trading form 

Considering the eight typical cases of scenario one and scenario two, 
namely case 1 to case 8, the PIES is optimized and configured. The 
planning cost, equipment installed capacity, and carbon emissions of the 
8 cases are obtained over a span of 15 years. 

Table 6 presents the cost comparison of four cases, namely case 1 to 
case 4. According to Tables 6 and it is evident that the cases imple-
menting the LCT mechanism experience an increase in life cycle cost. 
Further analysis reveals that case 2 demonstrates a 0.18 % increase in 
comparison to case 1, while case 4 displays a 0.15 % increase relative to 
case 3. Nevertheless, it is important to highlight that the cost of carbon 
trading experiences a significant decrease. Case 2 demonstrates an 
11.14 % decrease compared to case 1, and case 4 exhibits an 8.57 % 
decrease compared to case 3. 

Fig. 9 illustrates the optimal allocation of equipment installed ca-
pacity for the four cases (case 1 to case 4). It is evident from the figure 
that cases EC and GB, which implement the LCT mechanism, have lower 
installed capacity, whereas cases GT and HES increase installed capac-
ity. More specifically, in case 2, the installed capacity of GB decreases by 
584.68 kW compared to case 1, while in case 4, it decreases by 245.01 
kW compared to case 3. In contrast, in case 2, the installed capacity of 
GT increases by 225.62 kW compared to case 1, and in case 4, it in-
creases by 60.44 kW compared to case 3. GT, being the core equipment 
for energy cascade utilization, has the capability to provide both elec-
tricity and heat, thus reducing the high carbon emissions associated with 
purchasing external electricity and mitigating the use of high carbon 
emission equipment like GB. Therefore, the LCT mechanism is more 
effective in responding to carbon emission constraints, as it effectively 
reduces the usage of high carbon emission equipment and minimizes 
carbon dioxide emissions during system operation. 

Fig. 10 shows the cumulative carbon emissions for the four cases, 
case 1 to case 4. Upon observing Fig. 9, it becomes apparent that carbon 
emissions experience a notable decrease across all the cases. Specif-
ically, case 2 has a carbon emission decrease of 0.36 % compared to case 
1, while case 4 displays a carbon emission decrease of 0.6 % compared to 
case 3. This is due to the implementation of the LCT mechanism in both 
case 4 and case 2. The ladder-type carbon pricing results in higher 
carbon trading prices within the high-carbon-emission range as opposed 
to the fixed carbon price trading. Consequently, the proportion of CTC 
increases, leading to a natural reduction in the construction and utili-
zation of high-carbon-emission equipment. 

Fig. 6. Hourly solar radiation intensity.  
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4.2. Analysis of the impact of number of planning stages 

Considering the four typical configurations (case 5~case 8) in sce-
nario 2, the PIES was optimized to obtain the equipment installed 

capacity results for each stage of the four cases in scenario 2, as well as 
the corresponding life cycle cost. From the table outlining the different 
case configurations in Tables 5 and it is evident that all four cases (case 
5~case 8) utilized the LCT mechanism, with the only difference being 
the quantity during the planning stage. 

Table 7 presents a comparison of the planning cost for cases 5 to 8. It 
is evident from the table that the investment cost of the four cases 
accounted for approximately 37 %–45 % of the life cycle cost. On the 
other hand, the operating cost constituted around 58 % of the life cycle 
cost. In comparison, the equipment’s residual value, maintenance cost, 
and CTC made up a relatively smaller proportion. As the number of 
planning stages increased, the operating and maintenance cost of the 
equipment consistently decreased. Specifically, in case 8, there is a 
15.35 % decrease in maintenance cost compared to case 5, amounting to 
3,997,507.36 CNY. Furthermore, the residual value of the equipment 
consistently increases, resulting in a declining trend in total system cost. 
The more planning stages there were, the lower the overall system cost 
become. In case 8, there is a 15.17 % decrease in life cycle cost compared 
to case 5, which equates to a reduction of 52,934,142.8 CNY. This can be 
attributed to the fact that case 5 has the fewest number of planning 
stages, with a value of K = 1. Conversely, the other cases follow a multi- 
stage planning model, with case 8 having the highest number of plan-
ning stages at K = 15. Fewer planning stages in a case leads to increase 
investment and maintenance cost. This is because the equipment is 
constructed in the initial year based on the projected load demand for 
the final year. Additionally, the extended usage period and lack of 
equipment updates result in a lower equipment recovery value and re-
sidual value. In contrast, the multi-stage planning models allow for a 
more reasonable investment in equipment based on the load demand for 
each stage, resulting in higher recoverable value and an increase in re-
sidual value over time. 

Fig. 11 depicts the installed capacity at different planning stages for 
case 6 and case 7. By the end of the planning period, it is evident that 
case 7 has higher total installed capacity for PV, CHP, EC, HP, and EES 
compared to case 6. The total installed capacity for AC is similar in both 
cases. However, case 7 has lower installed capacity for GB and HES 
compared to case 6. Remarkably, the largest disparity in installed 

Fig. 7. Typical daily load. (a) Typical day in summer, (b) typical day in winter, (c) typical day in transitional season.  

Fig. 8. The energy prices.  

Table 2 
Technical and economic parameters of energy equipment.  

Type Efficiency Initial cost 
(CNY/kW) 

Maintenance cost 
(CNY/kWh) 

Equipment 
life (a) 

PV – 10000 0.03 20 
CHP power 

generation:0.43 
heating 
conversion:0.8 

9000 0.08 20 

AC 1.3 1300 0.01 20 
EC 3 900 0.02 20 
GB 0.95 800 0.01 20 
HP cooling:4 

heating:3 
3200 0.02 20  

Table 3 
Technical and economic parameters of ES.  

Type State 
range 

Charging and 
discharging 
efficiency 

Initial 
cost 
(CNY/ 
kW) 

Maintenance 
cost (CNY/ 
kWh) 

Equipment 
life (a) 

EES 0.1–0.9 0.95/0.95 1100 0.05 10 
HES 0.1–0.9 0.95/0.95 500 0.03 20 
CES 0.1–0.9 0.95/0.95 500 0.03 20  

Table 4 
Additional calculated parameters related to each equipment.  

Parameters Value Parameters Value 

Gref 1000 W/m2 Ll 34920 kJ/Nm3 

KT − 0.35 %/◦C μre 1.125 
Tref 25 ◦C φ 0.07 
σ 0.0256 Xn 7 % 
λ 1

3600 
kWh/kJ 

βe 0.728 t/MWh 

φe,h 6 MJ/kWh βh 0.367 t/MWh 
βea 1.08 t/MWh βha 0.327 t/MWh  
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capacity is observed in PV, with case 7 exhibiting an increase of 743.79 
kW compared to case 6. Despite case 7 having higher total installed 
capacity for most equipment in comparison to case 6, its life cycle cost is 
lower by 0.74 %. This reduction can be attributed to the effectiveness of 
a multi-stage planning method in responding to the changing load de-
mands over the years. This approach minimizes the risk of investing 
prematurely in redundant equipment by strategically planning and 
gradually increasing equipment installation. As a result, both the cost of 
equipment investment and maintenance are effectively reduced. 
Furthermore, at the conclusion of the planning period, it is evident that 
case 7 has a higher remaining useful life for its equipment compared to 
case 6, leading to a commendable 24 % increase in equipment residual 
value. Therefore, the multi-stage planning method proves highly effec-
tive in optimizing the overall economic viability of the PIES. 

We conducted an analysis on the impact of multi-stage divisions, 
specifically under the LCT mechanism, on low-carbon performance. 
Fig. 12 illustrates the carbon emissions for different cases during the 

planning period from case 5 to case 8. It is evident that with an 
increasing number of stages, there is a continuous decrease in carbon 
emissions. When comparing case 5, which represents the traditional 
single-stage division, with case 8, divided into 15 stages, it is evident 
that the carbon emissions in case 8 decrease by 49425384.14 kg, or 14.6 
%. Furthermore, the overall economic analysis of the system mentioned 
earlier reveals a consistent decrease in the life cycle cost as the number 
of stages increases. Therefore, a comprehensive analysis of the eight 
typical cases leads to the conclusion that the long-term, multi-stage LCT 
model proposed in this study positively impacts the reduction of carbon 
emissions, promotion of new energy consumption, and lowering of the 
overall life cycle cost of the system. 

Table 5 
Settings of different scenarios.  

Cases Different forms of carbon trading Planning stage K Parameters of ladder-type carbon trading 

Fixed carbon prices Ladder-type carbon trading 1 3 5 15 Benchmark price Price growth rate 

Scenarios one case 1 ✓  ✓      
case 2  ✓ ✓      
case 3 ✓   ✓     
case 4  ✓  ✓     

Scenarios two case 5  ✓ ✓      
case 6  ✓  ✓     
case 7  ✓   ✓    
case 8  ✓    ✓   

Scenarios three case 9  ✓  ✓   ✓  
case 10  ✓  ✓    ✓  

Table 6 
Comparison of the planning cost for cases 1 to 4.  

Case Life cycle cost/⨉106 

CNY 
Investment cost/⨉106 

CNY 
Equipment residual value/ 
⨉106 CNY 

Operating cost/⨉106 

CNY 
Maintenance cost/⨉106 

CNY 
Carbon trading cost/ 
⨉106 CNY 

case 
1 

348.36 132.12 14.15 201.53 25.62 3.23 

case 
2 

349.00 130.85 14.36 203.60 26.04 2.87 

case 
3 

307.76 117.13 14.07 179.57 22.59 2.54 

case 
4 

308.21 117.00 14.27 180.31 22.84 2.33  

Fig. 9. Optimal equipment installed capacity allocation of cases 1 to 4.  
Fig. 10. Accumulated carbon emissions of cases 1 to 4.  
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4.3. Sensitivity assessment of the parameters in the carbon trading system 

4.3.1. Impact of benchmark price on carbon trading 
By modifying the benchmark price in accordance with case 4, the 

varying effects of this modification on carbon emissions and CTC can be 
analyzed. 

Fig. 13 illustrates the impact of different benchmark prices on the 
configuration of equipment’s installed capacity. The analysis reveals a 
clear trend: as the benchmark price rises, the total installed capacity of 
GT, AC, and GB experiences a continuous rise, while the total installed 
capacity of PV, EC, HP, EES, and HES consistently declines. Remarkably, 
AC experiences the most significant increase in total installed capacity, 
with a maximum rise of 61 %. Conversely, EES exhibits the largest 
decline, with a maximum decrease of 67 %. These findings indicate that 
an increase in the benchmark price has a greater influence on the 

system’s operations, particularly regarding carbon emissions. Conse-
quently, the system reduces investments in electrical equipment to 
mitigate high carbon emissions associated with electricity consumption. 
Conversely, the construction of GT, which can provide both electrical 
and heating energy simultaneously, and the development of high- 
efficiency GB are emphasized. This strategic shift aims to effectively 
mitigate the system’s carbon emissions by meeting the heating load 
demand of users and providing a heat source for AC usage. 

Fig. 14 illustrates the variations in carbon emissions and CTC at 
different benchmark prices. As the benchmark price increases, the 
overall trend of carbon emissions initially increases, then stabilizes, and 
finally decreases. Similarly, the overall trend of CTC initially decreases, 
then increases, and finally decreases again. At a benchmark price of 0.2 
CNY/kg, the carbon emissions reach their maximum value. At a 

Table 7 
Comparison of the planning cost for cases 5 to 8.  

Case Life cycle cost/106 

CNY 
Investment cost/106 

CNY 
Equipment residual value/106 

CNY 
Operating cost/106 

CNY 
Maintenance cost/106 

CNY 
Carbon trading cost/106 

CNY 

case 5 349.00 130.85 14.36 203.60 26.04 2.87 
case 6 308.21 117.00 14.27 180.31 22.84 2.33 
case 7 305.93 121.05 17.72 177.36 22.79 2.45 
case 8 296.07 133.13 35.54 174.62 22.04 2.31  

Fig. 11. Comparison of installed capacity in different planning stages between case 6 and case 7. (a) Installed capacity at different planning stages in case 6, (b) 
Installed capacity at different planning stages in case 7. 

Fig. 12. Accumulated carbon emissions of cases 5 to 8.  Fig. 13. Equipment installed capacity under different benchmark price of 
carbon trading for case 4. 
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benchmark price of 0.35 CNY/kg, the CTC reach their maximum value. 
At a benchmark price of 0.5 CNY/kg, both the carbon emissions and CTC 
reach their minimum values. This primarily involves a trade-off in the 
system optimization process between the cost of purchasing external 
electricity and the life cycle cost of electricity generation from the PIES. 
When the benchmark price is low, the system places less emphasis on 
carbon emissions and prioritizes economic considerations, resulting in a 
lower cost of purchasing electricity. Consequently, the system relies 
more on external electricity procurement. However, this trend results in 
additional CTC, leading to a gradual increase in carbon emissions and 
subsequent carbon trading expenses. As the benchmark price for carbon 
trading increases, there is a corresponding rise in the proportion of CTC. 
Consequently, the overall cost of electricity generation within the sys-
tem becomes lower than the cost of purchasing electricity. Conse-
quently, the system starts reducing its dependence on external electricity 
procurement. The economic benefits derived from purchasing external 
energy are insufficient to offset the high CTC. In response, PIES adjusts 
its energy consumption pattern by increasing the proportion of clean 
energy usage and reducing reliance on external energy. This effectively 
reduces carbon emissions and lowers CTC. 

4.3.2. Impact of price growth rate on carbon trading 
This study explores the effects of different rates of price growth on 

carbon emissions and the cost associated with carbon trading, using case 
4 as a basis for analysis. 

Fig. 15 presents the configuration of installed capacity for different 
equipment under varying rates of price growth. The findings reveal that 
as the rate of price growth increases, the total installed capacity of GT 
and HP also increases. In contrast, the total installed capacity of GB and 
EES shows a downward trend. Additionally, the total installed capacity 
of PV and EC remains relatively stable. 

Fig. 16 illustrates the fluctuation in carbon emissions and CTC across 
different rates of price growth. It is evident that as the rate of price 
growth increases, there is an initial decrease in carbon emissions, fol-
lowed by an increase, and then another decrease. Likewise, the trend in 
CTC follows a similar pattern of initially decreasing, followed by an 
increase, and then another decrease. When the growth rate is 0.1, both 
carbon emissions and CTC reach their maximum values. Conversely, at a 
growth rate of 0.5, both carbon emissions and CTC reach their minimum 
values. Notably, at price growth rates of 0.25 and 0.4, both carbon 
emissions and CTC exhibit inflection points. When the price growth rate 
is low, the total system generation cost surpasses the cost of procuring 
electricity from external sources. To achieve the most economically 
efficient outcome, the system chooses to purchase electricity externally, 
which results in higher carbon emissions and CTC. However, as the price 
growth rate increases, the cost of carbon trading also rises. This results in 

a higher proportion of CTC in the overall cost structure. Consequently, 
the system becomes more sensitive to carbon emissions, eventually 
leading to a scenario where the total cost of electricity generation by the 
system becomes lower than the cost of purchasing electricity from 
external sources. To maximize economic efficiency, the system starts 
reducing its reliance on external electricity purchases, leading to a 
decrease in carbon emissions and a reduction in CTC. As the growth rate 
continues to increase, there is a decrease in external electricity pur-
chases. To meet user demand for power, the use of GT equipment leads 
to an increase in carbon emissions. Moreover, as the growth rate exceeds 
0.4, the system faces stronger constraints on carbon emissions. There-
fore, the proportion of CTC continues to increase steadily. Consequently, 
the system implements restrictions on the use of high-carbon emitting 
equipment, resulting in decreases in both carbon emissions and CTC. 

5. Discussion 

This study examines the adoption of the LCT mechanism and a fixed 
carbon price trading mechanism. The findings reveal that under the LCT 
mechanism, there is an increase in CTC as carbon emissions also in-
crease. This leads to a higher proportion of CTC. This subsequently 
prompts a reduction in the utilization of high-carbon emitting equip-
ment. The installed capacity of EC and GB devices decreases, while that 

Fig. 14. Changes in carbon emissions and CTC under different benchmark price 
for case 4. 

Fig. 15. Equipment installation capacity allocation under various rates of price 
growth of carbon trading for case 4. 

Fig. 16. Changes in carbon emissions and CTC under various rates of price 
growth for case 4. 
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of GT and PV devices increases. Consequently, carbon emissions show a 
declining trend. Therefore, the implementation of the LCT mechanism 
positively contributes to carbon reduction efforts and effectively en-
hances the low-carbon nature of the PIES. 

The findings indicate a consistent decline in carbon emissions, life 
cycle cost, operating cost, and maintenance cost with an increase in the 
number of planning stages. Furthermore, the residual value of the 
equipment shows a continual increase. The total installed capacity of 
PV, which emits zero carbon, and GT, which allows for cascaded energy 
utilization, also increases. Furthermore, there is a continuous increase in 
the installed capacity of EES, facilitating peak shaving and valley filling. 
As a result, adopting a multi-stage planning model has the potential to 
enhance the overall economic viability of PIES and contribute to a sus-
tained reduction in carbon emissions. Therefore, the model proposed in 
this study can effectively reduce carbon CO2 emissions and improve 
economic sustainability. 

The study implements CES as the cooling energy storage device, but 
it is not utilized during system operation. Our analysis reveals the rea-
sons for this. Firstly, we use AC, HP, and EC equipment to meet the 
cooling load requirements, with the HP device running continuously 
throughout the day. Secondly, utilizing peak and off-peak electricity 
rates for cooling energy storage and discharge incurs higher economic 
costs and lower energy utilization efficiency compared to direct energy 
storage. Therefore, to reduce operational costs, improve energy utili-
zation efficiency, and minimize carbon emissions, the system chooses to 
forego the use of CES and instead implements EES for cold energy 
management. 

The planning method and research model obtained in this study can 
provide inspiration and guidance for PIES planners, but there are still 
some shortcomings. The study fails to adequately consider the fluctu-
ating effects of economic factors. Firstly, it overlooks the impact of en-
ergy price fluctuations, including electricity and gas prices. In reality, 
the determination of energy prices requires consideration of various 
factors [56]. Given the changing international environment and ad-
vancements in clean energy generation and natural gas extraction 
technologies, electricity and gas prices are not constant. These fluctua-
tions in energy prices can also have an impact on the carbon trading 
market. Secondly, the study neglects the influence of inflation rates on 
the cost of equipment replacement in industrial parks. Therefore, it is 
imperative to allocate due consideration to the dynamic impact of 
economic factors when strategizing for PIES. This is essential to guar-
antee a thorough and precise analysis. 

The study fails to assess the impact of uncertainties and the level of 
uncertainty on the long-term planning of PIES [57]. For example, 
climate change and weather fluctuations can cause variations in PV 
output, thus affecting the output of PV energy generation units. Addi-
tionally, the intermittent and unpredictable nature of renewable energy 
sources can also affect the installed capacity of the energy system, 
leading to a range of operational outcomes [58]. Furthermore, the study 
only considers a 2.0 % annual average growth rate for electrical, heat-
ing, and cooling loads during the planned period. However, the actual 
load variations within the industrial parks are far more complex, as the 
study fails to consider the significant increase in loads resulting from the 
influx of large industrial users. 

Hydrogen plays a crucial role in modern energy systems. Hydrogen- 
powered vehicles, especially in the public transportation sector, are 
being widely adopted [59,60]. Looking towards the future, there is 
considerable potential for further research and application of hydrogen 
energy in industrial parks. Additionally, the use of electric vehicles led 
to an increase in the electrical load of the PIES [61]. It is worth noting 
that some industrial parks are achieving full coverage of charging sta-
tions. Consequently, it is crucial to consider the resulting load variations 
from the widespread use of hydrogen energy and electric vehicles in 
future research. This would help in exploring new optimization strate-
gies for the configuration of PIES. 

Under dual carbon targets, CCUS technology is attracting attention 

from scholars for research [62]. CCUS technology allows for the capture 
and purification of carbon dioxide emitted during the production pro-
cess, followed by its integration into new production processes for 
recycling or storage. Currently, CCUS technology is primarily applied in 
industries with significant emission reduction challenges, such as steel 
plants, cement plants, and chemical industries, with the goal of 
achieving zero carbon emissions. It is primarily utilized in industrial 
demonstration projects [63]. Therefore, integrating CCUS technology in 
research on optimizing PIES can effectively reduce CO2 emissions and 
enhance the system’s low-carbon characteristics [64]. For instance, the 
implementation of carbon capture technology in a combined heat and 
power plant not only enhances its flexibility, but also improves its 
low-carbon nature and economic efficiency [65]. In the scenario of wind 
power grid integration, wind power generation can be used to provide 
electricity for carbon capture devices, enabling improved integration of 
renewable energy into the system, reducing wind curtailment rates, and 
achieving low-carbon operation [66]. In addition, CCUS technology can 
be utilized to react captured carbon dioxide with natural gas, resulting in 
the production of hydrogen. This method offers a low carbon emissions 
profile during production and can effectively meet the energy demands 
of industries and buildings without generating additional carbon emis-
sions during usage. Therefore, it is crucial to actively develop this 
methodology to fulfill the energy needs of various sectors. Furthermore, 
exploring how to incorporate the dual carbon targets into design by 
setting planning deadlines holds practical significance. As a result, 
further research is required to delve deeper into these issues. 

6. Conclusion 

This study presents a comprehensive long-term planning model for 
an industrial park. The model considers multi-stage variations and in-
corporates the LCT mechanism. The study thoroughly examines the in-
fluence of long-term planning theory on the operation of PIES. In 
contrast to previous studies that usually have a one-year planning ho-
rizon, this research extends the planning period to 15 years. Moreover, 
this study comprehensively examines the effects of load variations on 
system stability and the influence of equipment lifespan on operational 
efficiency. This allows for an in-depth analysis of the long-term opera-
tion of PIES. In contrast to previous studies that primarily focus on 
optimizing PIES from an economic perspective, this study introduces a 
LCT mechanism. By considering the cost associated with carbon trading, 
this mechanism imposes constraints on carbon emissions, ultimately 
facilitating optimized operations of PIES that align with long-term car-
bon reduction objectives. The study further investigates three distinct 
scenarios, exploring and analyzing the impacts of carbon trading 
mechanisms, the number of planning stages, and variations in LCT pa-
rameters on the planning of regional comprehensive energy systems. 
The key findings are summarized as follows.  

(1) Compared to trading strategies with fixed carbon prices, the 
implementation of LCT increases costs by 0.15–0.18 %, but re-
duces carbon emissions by 0.36–0.6 %. The use of LCT mecha-
nisms effectively limits carbon emissions from PIES, despite the 
increase in costs. Moreover, the implementation of the LCT 
mechanism results in an increase in installed capacity of clean 
energy devices. This signifies a positive impact on the integration 
of new energy sources and the promotion of renewable energy in 
the energy mix.  

(2) The division of planning stages can effectively avoid equipment 
redundancy and reduce the operation and maintenance costs of 
equipment. As the number of planning stages increases, carbon 
emissions significantly decrease, and lifecycle costs also decrease 
significantly. Compared to traditional single-stage planning, 
when the number of planning stages K = 15, carbon emissions 
decreased by 14.6 %, and lifecycle costs decreased by 15.17 %. 
Therefore, in the long-term planning of PIES, dividing the 
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planning stages reasonably can effectively reduce carbon emis-
sions while lowering the overall costs involved.  

(3) Both the carbon emissions and CTC of the system are highly 
responsive to variations in the benchmark price and price growth 
rate. An increase in the benchmark price and price growth rate 
leads to greater volatility in the trends of system carbon emissions 
and CTC. The optimal values for carbon emissions and CTC are 
achieved when the benchmark price is set at 0.5 CNY/kg and the 
price growth rate is 0.5. It is, therefore, crucial to appropriately 
determine the benchmark price and price growth rate to achieve 
low-carbon operation and economic benefits for PIES. 

In conclusion, this study can provide valuable reference for the long- 
term planning of low-carbon PIES. However, the considerations 
regarding energy price fluctuations, load growth rates, and other factors 
are not comprehensive enough, and further in-depth research is needed 
in the future. In addition, the development of technologies such as 
hydrogen energy, electric vehicles, CCUS, etc., poses new challenges for 
PIES, which will be an important direction for future research. 
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Nomenclature  

Abbreviation 
AC absorption chiller 
CE carbon emissions 
CEQ carbon emission quotas 
CES cooling energy storage 
CHP combined heat and power 
CTC carbon trading cost 
HES heating energy storage 
EC electric chiller 
ES energy storage 
EES/ / electrical energy storage 
GB gas-fired boiler 
GT gas turbine 
HP air-source heat pump 
LCT ladder-type carbon trading 
PV photovoltaic 
Symbols 
BK the capacity allocated in stage SK 

BGB(t) energy generated by burning natural gas, kW 
C cooling power, kW 
COP unit coefficient of performance 
E actual carbon emissions or uncompensated carbon emission quota, kg 
G(t) actual solar radiation, W/m2 

Gref solar radiation at standard conditions, W/m2 

i, j, b power generation equipment, heating equipment, cooling equipment 
KT temperature coefficient, %/◦C 
l interval length of carbon emissions, kg 
Ll lower heating value of natural gas, kJ/Nm3 

P electrical power, kW 
Q heating power, kW 
r energy loss coefficient 

(continued on next column)  

(continued ) 

SES installed capacity of ES, kW 
T temperature, ◦C 
V natural gas consumption, Nm3/h 
WK the cumulative allocated capacity at stage SK 

y the year within the planning period 
Y planning cycle 
Greek symbols 
α stage 
β price growth rate 
βe uncompensated carbon emission quotas per unit of electricity, kg/kWh 
βea values of actual carbon emissions per unit of electricity, kg/kWh 
βh free carbon emission quota per unit of heat, kg/kWh 
βha values of actual carbon emissions per unit of heat, kg/kWh 
γ benchmark price, CNY/kg 
η efficiency 
λ unit conversion coefficient, kWh/kJ 
μre heating -electric ratio of the unit 
σ radiative temperature coefficient 
φ discount rate 
φe,h conversion coefficient from the electricity generated by the CHP to the 

heat generated, kJ/kW 
Subscripts/superscript 
c cost 
cha/ds charging and discharging 
C cooling 
gas natural gas 
K overall planning stage 
max/ 

min 
maximum/minimum 

n equipment types 
N number of equipment types 
H heating   

Data availability 

Data will be made available on request. 
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