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Cyclists as Intelligent Carriers of Space-Time Environmental
Information: Crowd-Sourced Sensor Data for Local Air Quality
Measurement and Mobility Analysis in the Netherlands
Karima Kourtit a, Peter Nijkamp a, John Osth b, and Umut Turk c

aOpen University, Heerlen, The Netherlands; bOslo Metropolitan University, Oslo, Norway; cAbdullah Gul
University, Kayseri, Turkey

ABSTRACT
In recent years, slow travel modes (walking, cycling) have gained
much interest in the context of urban air quality management.
This article presents the findings from a novel air quality
measurement experiment in the Netherlands, by regarding
cyclists as carriers and transmitters of real-world information on
fine-grained air quality conditions. Using individual sensors on
bicycles—connected to a GPS positioning system—online local
pollution information originating from cyclists’ detailed spatial
mobility patterns is obtained. Such air quality surface maps and
cyclists’ mobility maps are then used to identify whether there
are significant differences between the actual route choice and
the cyclists’ shortest route choice, so as to identify the
implications of poor air quality conditions for their mobility
choices. Thus, the article seeks to present both a detailed
pollution surface map and the complex space-time mobility
patterns of cyclists in a region, on the basis of online quantitative
data—at any point in time and space—from bicycle users in a
given locality. In addition, the article estimates their response—in
terms of route choice—to detailed air-quality information
through the use of a novel geoscience-inspired analysis of space-
time “big data.” The empirical test of our quantitative modeling
approach was carried out for the Greater Utrecht area in the
Netherlands. Our findings confirm that spatial concentration of air
pollutants have great consequences for bike users’ route choice
patterns, especially in the case of non-commuting trips. We also
find that cyclists make longer trips on weekends and in the
evenings, especially towards parks and natural amenities.
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Introduction

The assessment of environmental decay has already a long-standing and respectable
history (see, e.g., Weyant et al., 1996; Nordhaus and Boyer, 2000). Over the past
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decades, a wide range of integrated assessment indicators and models for environmental
quality management has been developed and applied (for an overview, see, e.g., Graves,
2014: Kalimeris et al., 2019; Wang et al., 2017). Such quantitative tools have become
important vehicles for understanding the complexity of both the local and the global
ecosystem and for creating a broad evidence-based awareness of the severity of environ-
mental issues ranging from local air quality to worldwide climate change. Meanwhile, an
extensive literature on a meso scale of analysis, in particular the regional scale, has devel-
oped (see, e.g., Shaw et al., 2009; Batabayal and Nijkamp, 2019; Bowden et al., 2019;
Batabayal and Folmer, 2020). Notwithstanding the promising focus on policy-oriented
geographical entities like regions or cities, the spatial interconnectedness and data com-
patibility at different geographical scale levels is, in general, rather weak. Consequently, in
recent studies a more localized, in particular urban, focus on individual human responses
to environmental concerns is increasingly observed (see, e.g., Iturriza et al., 2020; Labaka
et al., 2019), because cities and their residents may be conceived of as critical institutional
actors in environmental management and policy, as is also put forward in the UN Sus-
tainable Development Goals (SDGs) and the related New Urban Agenda.

It is also increasingly recognized, however, that taking an urban or local scale of analy-
sis prompts two important but cumbersome research issues, viz. collecting reliable
environmental/climatological data at a granular spatial scale and tracing the residents’
mobility responses to local environmental and climate assessment information. These
research lacunae and challenges form the background of the present study on the
measurement of—and individual responses to—air quality differences in urban areas,
using individual space-time crowd-sourced “big” data collected from individual
sensors mapping out the residents’ spatial behavior.

At the outset it should be noted that cities—or metropolitan areas—are extremely
complex spatial entities, with a multiplicity of diverse actors and spatial interactions, a
pluriform urban-economic structure, a heterogeneous morphological constellation,
and an interconnected array of various types of infrastructure and mobility patterns.
Recent studies by Martinez (2018) and Lai (2020), for example, provide informed and
sophisticated modeling experiments on the great complexity of sustainable urban
systems. But what is missing in most of these advanced micro- and meso-based modeling
studies is an operational analysis of the way air quality in urban areas is measured with a
refined granularity, and of the extent to which detailed information on local air quality
may lead to refined urban air quality maps and to possible implications for individual
spatial mobility decisions which have an impact on urban liveability.

In this study, we use online data on various air quality components which are collected
through GPS-connected small sensors that are voluntarily installed by users on their
bicycles (called snifferbikes). The resulting information allows us to map out the
complex space-time mobility patterns of hundreds of bicycle users in a given area (in
this case, Utrecht in the Netherlands). Apart from the added value of access to—and
use of—such geographically detailed information on air quality, it is also a challenging
research question whether the route choice decisions of bicycle users are influenced by
online detailed air quality information in a given locality. In our specific application
case, the air quality sensor on the bike—attached to the bicycle and activated by the
user—begins to function as soon as the cyclist starts to move. Then, both the air
quality data and the geographical position of the bike are stored online on a central
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platform where the geo-location and measurement values are recorded on 10-second
intervals. Consequently, we also know precisely when and where a cyclist is exposed
to what type of air pollution and potential health risk. By using the air quality obser-
vations of many cyclists, we can then interpolate a surface model of pollution in the
area concerned, using a kernel density approach.

In light of this background information, the present paper aims to provide a detailed
pollution surface map and the complex space-time mobility patterns of all participating
cyclists on the basis of online quantitative data at any point in time and space collected by
bicycle users in a given locality, as well as to estimate their response—in terms of route
choice—to detailed air quality information through the use of a novel geoscience-
inspired analysis of space-time big data. Thus, our approach is an example of volunteered
geographical information (VGI).

The article is organized as follows. After this introductory section, the next
section describes the analytical and policy scope of this article, in which online
information on both air quality components and individual spatial mobility is col-
lected through the use of what is called the “snifferbike” system. Next, we provide
a more detailed description of the resulting space-time database and the bikers’
fine-grained spatial mobility maps of bike users. Then we offer an extensive presen-
tation of the empirical geoscience-based results, followed by a statistical-econometric
and geoscience analysis of the individual data. The final section makes some retro-
spective and prospective observations.

Urban Air Quality Measurement Through Slow Motion

Since the 1970s, air quality in cities has been a source of analytical and policy concern
in many countries in response to the global awareness of environmental decay (Taylor
and Buttel, 1992; Brusseau, 2019). In particular, in recent decades, we have witnessed
the rise and popularity of new spatially disaggregated concepts such as “sustainable
cities,” “zero-emission cities,” “15-minute cities” (Moreno et al., 2021), “smart
cities,” or “climate-neutral cities” (Martins et al., 2010; Sperling et al., 2011; Caragliu
et al., 2011; He et al., 2020; Stratigea, 2012; Kourtit et al., 2012; Chatterton, 2013;
Yigitcanlar et al., 2019). The measurement of the contribution of local air quality
(ranging from CO₂ to small particles) to both environmental conditions and the
various aspects of human health appears to be fraught with many practical and
data-analytical issues. Clearly, most countries, regions, and cities have developed
and implemented advanced air quality measurement tools (often based on fixed
sensors), but in most cases these are not sufficiently fine-meshed to measure air
quality at the sub-local (e.g., neighborhood or street) level. It is noteworthy that live-
ability in city areas (in relation to density and proximity) has very recently turned into
a major policy issue since the dramatic emergence of the COVID-19 pandemic, as
urban human health outcomes and the environmental quality of life in cities have
turned out to be strongly correlated (Baldasano, 2020; Kerimray et al., 2020; Connolly
et al., 2020; Jia et al., 2020; Lu et al., 2020; Nichol et al., 2020; Wade, 2020). Conse-
quently, from both an environmental quality and human health perspective, there is a
clear need for a fine granularity in the measurement of quality-of-life information at a
detailed urban scale.
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It should also be noted that we currently observe—as a consequence of the COVID
pandemic—a rapid rise in the popularity of environmentally-benign modes of urban
transport, in particular bicycles. Several cities (e.g., Milan, Brussels, Paris) are now devel-
oping plans to ban motorized transport to a large extent from inner city areas, following
the Dutch and Danish practice of allocating the scarce urban public space giving priority
to cyclists or pedestrians. Of course, such a “slow motion” strategy favors urban environ-
mental quality, but meanwhile it is also recognized that more exposure to fresh air and
bicycle users’ and pedestrians “open air” mobility behavior enhances their awareness of
the inferior quality of the air around them. This has prompted a new environmental and
mobility strategy in the Netherlands, namely: to use cyclists as “messengers” of air quality
information. The general scope of this novel strategy will now be articulated.

In recent years, urban livability or quality of life in cities has become an important
research domain in sociology, social psychology, environmental science, urban plan-
ning, and urban economics (for reviews and applications, see, among others,
Cummins, 1997; Camagni et al., 1998; Rapley, 2003; van Kamp et al., 2003; Mulligan
et al., 2004; Florida, 2005; Chen and Davey, 2009; Clifton et al., 2008; Das, 2008;
Dunning et al., 2008; Grasso and Canova, 2008; Marans and Stimson, 2011; Zenker
et al., 2013; Teke-Lloyd et al., 2021). A main strand of urban livability research is
related to emerging new fields, like the geography or sociology of happiness, urban
well-being, or urban appreciation, and has developed a range of new statistical
methods for measuring the residents’ contentment with their city or daily living
environment (see, e.g., Frey and Stutzer, 2002; Ballas and Dorling, 2013; Charron
et al., 2014; Wiek et al., 2013). In an interesting quantitative study, Ala-Mantila et al.
(2018) have connected urban (subjective) well-being not only with density, perceived
environmental quality indicators, social equity, education, social capital, and general
moderator values (such as health conditions), but also with travel and mobility
options, with particular reference to public transport access and ease for pedestrians.
Pedestrian zones appear to play a potentially important role for urban well-being.
Apparently, “slow motion” possibilities are likely to provide a positive contribution
to urban livability. This finding is supported by several studies in urban planning
which advocate the “walkability” or “bikeability” of inner cities (see, inter alia,
Gordon and Richardson, 1998; Johansson et al., 2017; Lindsay et al., 2011; Leinberger,
2007; Pucher et al., 1999; Rietveld, 2001; Robinson et al., 2018; Tolley, 1997; Yun et al.,
2019). In the meantime, the choice between “going green” or “going fast” (see also
Batabyal and Nijkamp, 2013) is an increasingly important dilemma in urban mobility,
as is also witnessed in the current “15-minute city” discussion (Moreno et al., 2021).

The popularity of bikes (including, more recently, also e-bikes) in urban mobility
decisions is reflecting the environment-friendly image of this transport mode. Clearly,
for a refined quantitative measurement of air quality in cities based on online space-
time information, the use of bicycles is an attractive option. Thus, bicycles may generate
a “double dividend,” by both favoring and measuring air quality as a climate-neutral
mobility vehicle, and as a fine-grained measurement vehicle for local air quality and
healthy livability conditions. They have been used in the past years in various appli-
cations in several cities for measuring air quality, but in our analysis, we will focus on
the potential of mobile sensors for investigating route and destination choices in relation
to localized air quality information.
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The recently introduced snifferbike program in the Netherlands serves as an incen-
tive to encourage bicycle use from the perspective of obtaining online and spatially
disaggregated information on air quality in urban areas and surroundings. It is based
on the voluntary participation of bicycle users in an air quality measurement
program, on the basis of a small, individualized sensor that is attached to the
bicycle, but it can easily be removed by the user or installed on another bicycle.
This device that we call the Bicycle Environment Estimation Probe (BEEP) is a
multi-meter device that—when being activated by the user—records not only time
and geo-location, but also specifically various constituents of air quality (including
Nitric oxide [NO] and volumes of particulate matter in sizes PM10, PM2.5 and
PM1), as well as temperature and other meteorological conditions such as humidity
(see for details Civity and Sodaq, 2018, and Wesseling et al., 2021). It is an open-
source equipment which aims to benefit society as a whole. Thus, the bicycle is
used as a measurement instrument for various air quality components and is able
to capture and record fine-grained data that can be used to depict a spatio-temporal
pattern of various air quality indicators. Since there are hundreds of voluntary
participants, the resulting data from their bicycles are crowd-generated, collected,
and centrally stored, and then—upon request—made freely accessible for further
scientific research. More information about the snifferbike initiative can be found
on the Civity webpage.1 This original approach will be further elaborated in the
next section.

A New Geoscience Approach to Bicycle Use and Air Quality Analysis

In a noteworthy study, Orfeuil and Salomon (1993) highlighted the spatial and intercon-
nected patterns of Europeans’ daily mobility (“a billion trips a day”). Walking and biking
make up an important share of the daily activity pattern of “people on the move.” In
recent years, the widespread introduction and adoption of digital technology (through
mobile devices and apps supported by GPS and GSM technology) have offered unique
opportunities for mapping out the complexity of people’s daily mobility decisions
(Hedman et al., 2021; Toger et al., 2021; Dahlberg et al., 2020). The modern city has
become a “data factory” (see Batty, 2013; Komninos, 2016). The application of citizen-
oriented sensor systems for measuring air quality fits in this trend (see, e.g., Schade
et al., 2019; Wesseling et al., 2019). Recent studies on digital crowd-sourced data on
cyclists’ mobility patterns can be found in, among others, Bian et al. (2021), Boss et al.
(2018), Navarro et al. (2013), Oliveira and Afonso (2015), Sterk (2020), and Zhang
and Mi (2018).

The use of mobile or portable digital sensors as a voluntary tool for measuring
online air quality indicators in a local environment is a logical follow-up of the
trend outlined above. This has led to the development of the above mentioned sniffer-
bike system in the Netherlands as of 2018. A snifferbike is a regular bike to which a
particular sensor (BEEP) is attached that, when it is put in use, is able to measure
several air quality components at any point in space and time, once in every 10
seconds. Each BEEP has its own unique ID. Crowd-sourced snifferbike data (anon-
ymized) can be used—as will be shown in our article—to create fine-grained air
quality maps and (individual or group) mobility maps. This is a nice example of
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citizen science: users of snifferbikes are voluntarily collecting and sharing cycling data
with researchers. In addition, the collected air quality data can be represented in a
fine-grained environmental surface map, or integrated in statistical models. As
soon as the BEEP device is activated by the cyclist, it starts to send out the relevant
geo-coded data to the central Platform, so that it is possible to locate all segments of a
snifferbike’s journey, from origin to destination. Informed consent was obtained from
all snifferbike participants. A detailed description of the technicalities of the Snifferbike
Project can be found in Wesseling et al. (2021).

It is also possible to estimate what is called the counterfactual route for each
observed origin-destination trip, with the aim of identifying the shortest route
between the origin and destination of all observed trips. For each observed trip,
the activated BEEP device registers the local air pollution levels concerned and the
geo-location with a high degree of repetition (every 10 seconds), so that any new
snifferbike observation is recorded at a high spatial frequency. By measuring air pol-
lutants at each point in space over the entire trip trajectory, a trip-sum exposure to
pollutant values can be calculated. As indicated by Castell et al. (2017), low-cost
sensors are subject to robustness issues in measurement quality. In this article, com-
bining all geo-coded observations from all local snifferbikes, we can create not only
extraordinarily precise air quality maps in urban areas, but also very detailed cycle
mobility patterns, which is often not possible with fixed low-cost sensors. In practice,
this analysis can be pursued by downloading all roads and cycle paths available to
cyclists in the relevant area and using a GIS network analysis approach, so as to
identify the shortest route between any origin and destination of any bicycle trip
undertaken in the GIS-network. We may then confront the observed route choice
with the hypothesized shortest route choice. The statistical divergence between the
observed and counterfactual route choice of cyclists may be caused by the poor con-
venience and amenity of the shortest route, due, for instance, to noise nuisance or
noxious traffic fumes along a busy road, perceived or observed low environmental
air quality, lack of urban green, perceived low safety, etc. Thus, this difference
between the actual and the shortest distance may be conceived of as a shadow
price of environmentally less appreciated routes by bicycle users. Whether or not
this difference plays a critical role in the route choice of cyclists can be tested empiri-
cally, since the BEEP device provides very detailed surface data on a range of geo-
coded environmental quality indicators which can be retrieved by the users from
online geo-coded data-repositories.

Using bicycles as mobile measurement stations for air quality has great advantages
compared with stationary or fixed measurement stations, because: (1) the measure-
ment level is at human exposure level (and not at a higher level with fixed sensors,
e.g. on buildings); (2) bicycles have a fine-grained mobility pattern and hence cover
the whole urban space; (3) it is a good example of digital voluntary citizen empower-
ment, which creates greater environmental awareness. This novel approach may be
seen as a good example of smart city policy (see, e.g., Komninos, 2020; Kourtit,
2020). Using the Snifferbike Project data, Wesseling et al. (2021) estimated the
average exposure of cyclists to air pollutants in Utrecht, the Netherlands. They find
that the exposure is high in cycling routes close to major roads and low in routes
with less traffic. Our study differs from Wesseling et al. (2021) in that we complement
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our analysis with detailed land-use information and by creating counterfactual routes
between observed origins and destinations.

In our analytical experiment, which aims to serve the two above-mentioned purposes
of collecting fine-grained air quality information and producing geo-coded spatial mobi-
lity maps, a spatial kernel density function in a GIS software environment is applied to
interpolate the degrees of individual exposure between the observation points. This
kernel density function is modeled to estimate interpolated values for each square
meter in the relevant area, so that in the end we have information on all coordinate
points of each part of the snifferbike’s trajectory. This application of crowd-sourced infor-
mation leads to an enormous big data collection on air quality and mobility, which calls
for further statistical-econometric analysis.

Before we present the detailed outcomes of our quantitative analyses in the next
section, it is necessary to make a few observations on the data treatment. We use
data from the Greater Utrecht area in the Netherlands, which is partly a high-
density area and partly a green area. Consequently, the trip patterns do not necess-
arily mirror stable daily commuting decisions; the area as a whole is well-known as
a recreation area and also—certainly during the weekends—as an Eldorado for
bicycle users. Thus, a typical single stable origin-destination trip pattern is not
likely to be found.

From the enormous volume of big data, we had to be selective about which data to
include. This led to the following data-cleaning decisions:

. Information with incomplete data (e.g. missing geo-location, missing origin or desti-
nation, obviously wrong information, etc.) was eliminated.

. Information caused by wrong treatment of the BEEP device (e.g., by forgetting to
deactivate the BEEP during a stop, or to reactivate it after a stop) was also eliminated.

In addition, a few simple rules of thumb were adopted, namely:

. Each recorded and selected bicycle trip is made on one and the same day.

. Each bicycle trip should at least be more than 1,000 m in distance (on average, more
than four minutes).

. Trip stops lasting more than 20 minutes are interpreted as a termination of the pre-
vious trip at a destination (so that, as soon as the snifferbike starts to move again, a
new trip is recorded).

. Individual outliers in completely different regions (e.g. cyclists using their BEEP on a
bikes outside the greater Utrecht area) are also omitted. Consequently, the study for
bicycle movements and air quality measurement was demarcated for the greater
Utrecht area, including towns, suburbs, and villages in the surroundings from or to
which cyclists were frequently traveling.

Figure 1 shows the surface model details of how the interpolated pollution values are dis-
tributed in the greater Utrecht area. These rules for inclusion reduce the number of trips
from 24,624 to 4,720 in which the majority of the dismissed trips were because the bikes
were stationary (BEEP active but bike does not move), followed by short trips, and trips
outside the area.
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In addition to the snifferbike data, two other data sources were used in our research.
First, the data describing land-use and infrastructure in the area concerned was derived
from OpenStreetMap (OSM), where infrastructure is represented by all cyclable roads
and lanes in the Greater Utrecht area (represented by gray lines in Figure 1). This infra-
structure data was useful to select roads and lanes to be included in the network data set
used to estimate the counterfactual trajectories, and to create a line density measure. The
line density measure expresses the length of roads within a 50 m radius from any 10m²
spatial unit. Cyclists’ observed or counterfactual trajectories picked up these values at
each geo-coded location, and these values were used as an indicator for the densification
of roads. Next, the trip-average line density value was used in our subsequent regression
models. In addition, the Cartesian distance to these amenities, viz. the nearest park,
nature reserve/natural park (green amenities), and water (blue amenities), was calculated
for each geo-coded observation for both the observed and the counterfactual trips. We
were able to estimate the average distance to these three amenities for each of the trip-
types (observed and counterfactual) and for each of the trips. In addition, we also esti-
mated the standard deviation of the Cartesian distances to all land-use amenities
between origin and destination for observed and counterfactual trips. The two
different measures (average distance and standard deviation of distance) were deter-
mined to capture the exposure to amenities as well as the variability of exposure to ame-
nities. Secondly, weather data describing average temperature and total precipitation per
day were also used. These data were derived from the official station operated by the
Royal Netherlands Meteorological Institute (KNMI) recording weather conditions in
the Greater Utrecht area. Weather data were included in order to analyze to what
extent weather conditions affected traveling behavior.

Figure 1. Interpolation of crowed-sourced snifferbike-values of PM2.5 pollutants in the study area
including Utrecht with suburbs (center-west, also marked with the letter U in the map) and nearby
towns including Amersfoort (top right), Zeist (center), and Nieuwegein (south west of Utrecht)
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Statistical and Modeling Results on Local Air Quality: Air Quality and
Route Choice Exposure

As mentioned, our article serves two goals: to collect detailed air quality information at
the local level and ascertain the route choice implications for cyclists as a result of infor-
mation on air quality at a very detailed spatial scale. In this section, we first present simple
paired-sample statistics and t-test results where the distribution of pollutants along the
observed and counterfactual routes are compared. Then, we present the empirical
model which examines the route choice of cyclists and the relationship of this choice
to air quality exposure and urban environmental quality. The section also offers a discus-
sion of the main findings for both paired sample statistics and first-difference estimates.

The snifferbike system is based on an open data platform with anonymized online
information on all space-time bike trips and related air quality data where each “sniff”
contributes to create a real-time database with values describing location, time, and pol-
lution. The spatial distribution of sniffs varies between land-use, but the concentration of
measurement points to roads is very dense, while outside of the roads, only a few sniffs
are collected. From the information recorded by snifferbikes, we can follow the air quality
along the cyclists’ journey for three pollutant levels and compare it to the air quality in
the counterfactual route, i.e., the hypothesized shortest route from any origin to
destination.

After measuring the air quality along the route choice of cyclists and that of counter-
factual routes, we ran t-tests to investigate whether there were substantial and significant
differences in the pollutant levels between the observed and the counterfactual routes.
Paired t-tests were undertaken for each level of particles in the air and were expected
to reveal if there was a significant difference between the route alternatives in relation
to observed and counterfactual exposure to the pollutants encountered. If we compare
exposure levels between observed and counterfactual models, we see that on average
the exposure levels are substantially different (See Table 1). The statistics in Table 1
also indicate the following ranking of particle amounts: PM10 > PM2.5 > PM1, where
the differences between counterfactual and observed values are the greatest for PM10
and lowest for PM1. Knowing that heavier particles (PM10) are less easily dispersed
over distance compared to small particles, the large differences between observed and
counterfactual models of exposure suggest that cyclists are avoiding the dustiest areas
(see also EPA, 2018).

Next, Table 2 shows the outputs from the paired t-tests using the average observed and
counterfactual exposures. The results indicate that the negative difference of exposure to

Table 1. Average concentration of particles in the air on the observed (denoted by PM1, PM2.5 &
PM10) and counterfactual routes (denoted by PM1CF, PM2.5CF & PM10CF)

Mean N Std. Deviation Std. Error Mean

Pair 1 PM1 6.417 4720 7.109 0.103
PM1CF 19.663 4720 36.276 0.528

Pair 2 PM2.5 7.160 4720 8.477 0.123
PM2.5CF 24.067 4720 53.752 0.782

Pair 3 PM10 7.790 4720 9.974 0.145
PM10CF 28.244 4720 72.780 1.059

Trips
Distance in meters

Observed 7433.93m 4,720 7286.102 61.891
Counterfactual 5916.46m 4,720 4252.107 119.193
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Table 2. T-test outputs of paired samples of the average quantity of particles in the air between the observed (denoted by PM1, PM2.5 & PM10) and
counterfactual (denoted by PM1CF, PM2.5CF & PM10CF) routes. Comparison of trips (bottom row) expresses differences in meters
Paired Samples Test

Paired Differences

Mean Std. Deviation Std. Error Mean

95% Confidence Interval of
the Difference

t df Sig. (2-tailed)Lower Upper

Pair 1 PM1 vs. PM1CF -13.24689 36.44025 0.53041 -14.28674 -12.20705 -24.975 4719 0.000
Pair 2 PM2.5 vs. PM2.5CF -16.90698 53.65037 0.78091 -18.43793 -15.37602 -21.650 4719 0.000
Pair 3 PM10 vs. PM10CF -20.45459 72.44006 1.05441 -22.52172 -18.38747 -19.399 4719 0.000
Trips Observed vs Counterfactual 1517.468 5511.753 80.22667 1360.186 1674.75 18.9148 4719 0.000

10
K
.KO

U
RTIT

ET
A
L.



the pollutants between the observed and counterfactual routes is statistically significant
for each of the three particle sizes. Note that the t-values are greater for the smaller par-
ticle sizes. Moreover, our t-test results also show that the distances traveled during the
observed trips are significantly longer than those estimated for the counterfactual
trips. The differences from the counterfactual routes correspond to 20 percent of the
observed routes.

Our statistical geo-science experiments appear to lead to very interesting findings. The
analysis of the mean differences of pollutants along the observed and counterfactual
routes shows that the cyclists’ route choice is indeed correlated with air quality. The
assumption is that this choice is driven by exposure to varying levels of air quality on
alternative routes. However, we may also assume that the choice is determined by
such factors as blue and green surroundings, and the time of the observed trip (weekdays
vs. weekends or morning vs. evening). And therefore, we now present an empirical
econometric model which can integrate additional factors that are potentially relevant
to the decision to deviate from the counterfactual route, i.e., the closest route between
origin and destination pairs.

The route choice can be modeled as the deviation of observed routes from the counter-
factual ones and the differences in the set of exposure elements along the routes. Here, we
develop a regression framework that makes use of the deviations in the dependent and
independent variables in a fashion similar to the first-difference estimators. In our
study of the route choice, the model can be specified as follows:

DYir = Db1Xir + b2Zi + eir (1)

where DYir denotes the distance difference between the observed and counterfactual
routes-traveled by cyclists i, DXir is the deviation of a set of independent variables—
such as pollutants and distances to parks, water, and nature along the observed route—
from counterfactual routes, and Zi are variables that do not vary between the observed
and counterfactual route but are expected to influence DYir. Note that interacting Zi

with the routes dummy before first differencing ensures that they appear in the
final model. Finally, b1, b2 and eir are parameters to be estimated and error terms,
respectively.

In Equation (1), we associate the observed and counterfactual trips with their sur-
roundings regarding blue and green amenities in order to analyze the urban qualities
that influence the choice between the two. The model includes the differences of standard
deviations in the distances to the nearest parks, natural amenities, and water between the
observed and counterfactual routes. We also control for a line-density measure of road
networks, which is expected to reflect the choice alternatives the cyclist has, while travel-
ing from an origin to a destination. Therefore, a line density2 measure can be understood
as an index of “bikeability” (see Kourtit et al., 2022 for a similar approach). The remain-
ing variables of weekday, morning, and afternoon are dummies indicating the time of the
trip. The regressions are run for each pollution particle separately, as shown in the
columns of Table 3.

The estimation results of the three competing model specifications indicate that dis-
tance differences between the actual and counterfactual trips decrease with the density of
particles in the air. In particular, when a counterfactual route has one more unit of PM2.5
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concentration in the air, cyclists diverge from the shortest route by three meters. Thus,
cyclists make longer trips to reach their destination, when air quality is better along the
chosen road network and nearby areas. This also means that, if pollutant levels are similar
between the two options, observed trips converge to their counterfactual road connec-
tions. Similar observations are made by Zhao et al. (2018) for Beijing, where especially
female cyclists appear to shift to other means of transportation during polluted
weather. Not surprisingly, the line-density measure of road networks or “bikeability”
index shows a statistically significant and positive effect on the dependent variable.
One square kilometer increase in the route network corresponds to around 13-meter
longer trips. Therefore, the availability of alternative road links increases the tendency
to deviate from the shortest route. Similarly, Dill and Voros (2007) also find that a posi-
tive perception of the availability of cycle paths is associated with higher cycling activity
in Portland, Oregon.

Regarding the distances to blue and green amenities, we have used the first difference
between the standard deviation of the distance to the amenities on the observed and
counterfactual routes. The regression output suggests that the route choice is influenced
by the selected set of natural amenities surrounding the route network. Since the
observed distances are always longer than the counterfactual distances, the differences
between the standard deviations, then reflect people’s behavior of maximizing their
exposure to various elements in the land surface. The results indicate that the deviation

Table 3. Regression results for particles PM1.0, PM2.5 and PM10
(1) (2) (3)

VARIABLES PM10 PM2.5 PM1.0

diff_PM10 -2.040**
(1.031)

diff_PM2_5 -2.883**
(1.392)

diff_PM1_0 -4.505**
(2.050)

Line Density 12.891*** 12.911*** 12.951***
(1.232) (1.233) (1.233)

diff_parks 9.378*** 9.377*** 9.376***
(0.526) (0.526) (0.526)

diff_water 1.377 1.384 1.401
(1.448) (1.448) (1.447)

diff_Nature 3.583*** 3.583*** 3.582***
(0.411) (0.411) (0.411)

weekday -289.438* -291.978* -296.364*
(168.210) (168.221) (168.254)

morning -418.713** -418.634** -418.366**
(177.461) (177.454) (177.444)

afternoon -344.863* -346.170* -348.339**
(177.087) (177.090) (177.098)

Temprature 85.997*** 85.598*** 84.976***
(10.404) (10.421) (10.450)

mmPrecipitation -40.633** -40.878** -41.260**
(16.348) (16.352) (16.359)

Observations 4,716 4,716 4,716
R-squared 0.207 0.207 0.208

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
Note: The dependent variable is the difference of distances between observed and counterfactual routes.
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in distances from the shortest route increases with the spread of the observed road
network around parks and natural amenities. This means that diversification of land
use elements has the potential of nudging people to cycle longer distances. This
finding is in line with Nair et al. (2019). Following GPS traces, they also find that cyclists
prefer green areas in Philadelphia. Cervero et al. (2019) provide evidence that land-use
mix, and green and blue landscapes, induce bike commuting in British cities and
towns. Our findings also reveal that the actual trips are in general closer to the counter-
factual trips on weekdays and in mornings. On weekdays, the distance difference between
observed and counterfactual routes decreases as much as 289 meters, and in the morn-
ings even to 418 meters. Ton et al. (2017) show a similar finding regarding bicycle route
choice in Amsterdam, where cyclists are found to minimize traveling distance in the
morning peak. The results are clearly also able to reflect the choice of route in trips to
work. Apparently, cyclists choose to take shorter trips to work on weekdays and early
mornings, while they prefer to choose longer routes on weekends and in the evenings.
Thus, the choice for healthier bike trips is not only dependent on place-specific environ-
mental quality conditions, but also on the “relaxed mood” of the cyclist. Finally, observed
trips diverge from counterfactual routes on warmer days and converge when precipi-
tation is high. Indeed, according to our model specification, weather conditions are
the most impactful factors in cycling behavior (except for time indicators). One degree
increase in temperature is associated with about 86 meters deviation from the counter-
factual routes. An et al. (2019) also provide support to this finding for New York. They
show that cycling rates are affected by weather conditions more than other factors includ-
ing topography, infrastructure, and land-use mix. We may thus conclude that detailed
information on local air quality tends to significantly affect the route choice of cyclists.

Retrospect and Prospect

“Slow motion,” in particular biking and walking, has recently become a fashionable
transport mode choice, especially because of the COVID pandemic. This article has
focused its attention on spatial biking patterns in the Netherlands, from the perspective
of using bicycles as vehicles for measuring online the concentration of air quality com-
ponents in urban areas. Besides the conventional system of fixed (immobile) measure-
ment sensors, the mobile snifferbike system based on mobile sensors offers a great new
opportunity for measuring urban air quality with an extraordinarily fine granularity.
In addition, using the data on both geographically based air quality elements and detailed
spatial mobility patterns in urban agglomerations allows us to study the nexus of air
quality and cyclists’ route choice. It is a noteworthy finding that—on the basis of a
complex space-time geo-science-oriented statistical approach—cyclists are not necess-
arily choosing the shortest routes, but rather those routes that are more attractive
from an environmental quality perspective. Exposure to air quality has apparently an
implication for an individual’s route choice as a cyclist. This suggests that air quality
information in urban agglomerations may, in principle, have considerable impacts on
the spatial mobility choices of those citizens that are directly exposed to poor external
air quality, such as cyclists and pedestrians. This finding may, of course, also have a
great relevance for “slow motion” commuting decisions, including a shift from the auto-
mobile to the bicycle. Stimulating the benefits of biking behavior means—in addition to
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the human health impacts of daily physical movement—also proper and reliable infor-
mation on external air quality and livability conditions.

From our study important policy lessons can be distilled. Good air quality in cities
tends to raise the residents’ feelings of health and wellbeing. This means that modern
happiness research (see, e.g. Argyle, 2013; Frey and Stutzer, 2002; Easterlin, 2004;
Ferrer-i-Carbonell and Frijters, 2004; Graham, 2005; Bruni, 2006, 2010; Cohn et al.,
2009; Diener et al., 2009, 2010; Dolan et al., 2008; Yu and Wang, 2017; Harsman Wahl-
strom et al. 2020; Kourtit, 2020; Kourtit et al., 2021) is closely connected with environ-
mental quality research, while both streams of research are also related to spatial mobility
research. This calls for policy initiatives at the interface of well-being, livability, and the
mobility of residents, such as zero-emission urban districts and online bicycle route plan-
ning in environmentally favorable urban areas.

The design of fine-grained online air quality information systems in urban neighbor-
hoods is clearly another important policy challenge in cities, so that healthy local
environmental conditions will favor “slow motion” choices. Clearly, such information
can be combined with data from fixed air quality monitoring stations in a city. In this
framework, there is a need for better integrated GIS-based measurement tools, so that
geostatistical data can be combined with mobility data in the city. An example of empiri-
cal follow-up research along these lines is the question of how far the COVID-19 pan-
demic—with its rising health concerns—has influenced bicycle route and destination
choices during successive waves of the pandemic in the past years (see, e.g., Nijkamp
and Kourtit, 2022; Velders et al., 2021).

Next, a fine granularity of urban air quality data may also be important to examine the
livability impacts of, for example, green areas, lakes, and rivers, density and height of
buildings, land use (e.g., residential vs. industrial), or major traffic arteries in a city.
Micro-meteorological data (e.g., temperature, humidity, precipitation, wind exposure)
can then be important to provide a proper assessment of moderator impacts on urban
air quality.

All such information can be used to identify air quality zones in a city. By controlling
traffic in such urban zones, a city may be able to develop emission zones of different
quality that in the long run might benefit the health conditions in urban neighborhoods.

Notes

1. Reference to the Snifferbike Project can be found on: https://civity.nl/en/data-management-
platform-cip/cip-iot/sniffer-bike/

2. We use line density functionality of ArcGIS. For details, see https://pro.arcgis.com/en/pro-
app/2.8/tool-reference/spatial-analyst/line-density.htm
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