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Abstract. Accurate modeling of ash clouds from volcanic
eruptions requires knowledge about the eruption source pa-
rameters including eruption onset, duration, mass eruption
rates, particle size distribution, and vertical-emission pro-
files. However, most of these parameters are unknown and
must be estimated somehow. Some are estimated based on
observed correlations and known volcano parameters. How-
ever, a more accurate estimate is often needed to bring the
model into closer agreement with observations.

This paper describes the inversion procedure implemented
at the Norwegian Meteorological Institute for estimating ash
emission rates from retrieved satellite ash column amounts
and a priori knowledge. The overall procedure consists of
five stages: (1) generate a priori emission estimates, (2) run
forward simulations with a set of unit emission profiles,
(3) collocate/match observations with emission simulations,
(4) build system of linear equations, and (5) solve overde-
termined systems. We go through the mathematical founda-
tions for the inversion procedure, performance for synthetic
cases, and performance for real-world cases. The novelties
of this paper include a memory efficient formulation of the
inversion problem, a detailed description and illustrations of
the mathematical formulations, evaluation of the inversion
method using synthetic known-truth data as well as real data,

and inclusion of observations of ash cloud-top height. The
source code used in this work is freely available under an
open-source license and is able to be used for other similar
applications.

1 Introduction

Volcanic ash is considered a significant hazard for aviation,
since ash particles at flight altitudes can be ingested into the
jet engine, leading to debris buildup, with potential damage
and engine failure risk (Casadevall, 1994; Clarkson et al.,
2016). For that reason, it is important to forecast the location
and movement of volcanic ash in the atmosphere to help aid
safe flight operations. Atmospheric transport and dispersion
models (ATDMs) are widely used for this task (e.g., Steensen
et al., 2017b; Beckett et al., 2020; Osores et al., 2020; Chai
et al., 2017; Gouhier et al., 2020). The accuracy of the model
forecasts depends critically on details of the eruption source
parameters (ESPs) (e.g., eruption onset; duration; mass erup-
tion rate, MER; vertical-emission profiles; particle-size; fine
ash fraction) which the models require as input. While some
volcanoes are well monitored and observations of, e.g., erup-
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tion onset and duration can be directly observed (Lowenstern
et al., 2022), other volcanoes (typically in remote areas) are
not routinely monitored. Moreover, the MER is a quantity
that often cannot be obtained directly with current measure-
ment techniques but needs to be estimated indirectly using
other observations. Plume height observations from radar has
often been used in combination with an empirical relation-
ship from Mastin et al. (2009) to estimate the MER. How-
ever, this approach has large uncertainties (for example it
is biased towards large eruptions) and does not provide an
estimate of the vertical distribution of the ash in the erup-
tion column. A more robust approach to estimate ESPs is us-
ing data assimilation and inverse-modeling techniques which
combine satellite data and transport modeling with the aim
to estimate ESPs that bring the model simulations in closer
agreement with observations (Stohl et al., 2011; Heng et al.,
2016; Chai et al., 2017; Zidikheri and Lucas, 2020; Pelley
et al., 2021).

Since the 2010 eruption of the Eyjafjallajökull volcano in
Iceland, significant innovations and improvements in the ca-
pability of detecting and quantifying volcanic clouds from
space have been made (Mastin et al., 2022), particularly the
ability to estimate the ash cloud altitude (see, e.g., Prata and
Lynch, 2019; Prata et al., 2022). Some satellite instruments
are furthermore able to provide both volcanic ash mass load-
ing and ash cloud height information, such as the SLSTR
(Sea and Land Surface Temperature Radiometer) instrument
on board the Sentinel-3 satellite. Still, there are issues and
uncertainties in the detection of volcanic ash, particularly
around the effect of water vapor, cloud identification, and
the presence of ice (Kylling, 2016). These uncertainties are
important to characterize and account for in any inverse-
modeling method or other data assimilation approaches (see,
e.g., Pardini et al., 2020; Osores et al., 2020; Tichý et al.,
2020).

In this paper, we present a Python software package that
is a further development of an inversion method originally
developed for volcanic ash emission estimation (Stohl et al.,
2011). The main idea of the method is based upon the varia-
tional principle, i.e., to use a set of forward simulations with a
set of unit emission profiles and then attempt to find the linear
combination of these that best matches the observed ash loca-
tions and total column loadings. The methodology used here
has previously been used for sulfur dioxide emission (see,
e.g., Seibert, 2000; Seibert et al., 2011; Eckhardt et al., 2008).
It was for the first time used for volcanic ash emission rate
determination for the 2010 Eyjafjallajökull eruption (Stohl
et al., 2011). Steensen et al. (2017a) presented an uncertainty
assessment of the method. This work extends the approach
to also incorporate ash cloud-top height as an observation
in the inversion. The ash cloud-top height can be estimated
using the SLSTR instrument, using photogrammetric paral-
lax between different satellites (Zakšek et al., 2013), or us-
ing other geometric approaches (Horváth et al., 2021). Chai
et al. (2017) also included satellite retrievals of ash cloud-

top heights as an additional constraint in their volcanic ash
inverse system by explicitly enforcing no ash above the ob-
served ash cloud-top height. However, they found that in their
case study such extra constraints were not helpful for the in-
verse modeling. In this paper we use a similar approach by
using observations of non-zero ash mass from the ground up
to the detected plume top and observations of zero ash mass
above the observed ash cloud top.

The paper is organized as follows: in Sect. 2 the the-
ory behind the inversion procedure is outlined. The atmo-
spheric dispersion model is described in Sect. 2.1. The syn-
thetic benchmark cases and real-world cases are described
in Sects. 3 and 4, respectively. The paper is summarized in
Sect. 6.

2 Mathematical formulation and solution framework

We base our inversion procedure on the approach taken by
Seibert (2000) and adopted to ash emission by several au-
thors (see, e.g., Stohl et al., 2011, and the references therein).
Figure 1 shows the general solution framework which we
use. We first compute a set of forward runs, representing pos-
sible emissions; collocate these with satellite observations;
and finally assemble them into a source–receptor matrix. We
then formulate the solution as a least-squares problem in-
corporating these collocated simulations and observations as
well as an a priori estimate (initial guess) of the emission.
Together with the uncertainties in the observations and an a
priori estimate, we solve the least-squares problem to find
the emission that recreates the observed satellite observa-
tions best (in a least-squares sense). As there is no guarantee
of non-negative values in this process, we may end up with
non-physical emissions. Negative emissions are forced closer
to the (non-negative) a priori estimate by decreasing the un-
certainty of these values and solving the least-squares prob-
lem again. This process is repeated until we have sufficiently
few negative emissions. Other inversion methods (e.g., Pel-
ley et al., 2021) use an algorithm with a direct non-negative
emission constraint.

2.1 Atmospheric dispersion model

For this work, we use the eEMEP (emergency European
Monitoring and Evaluation Programme; Steensen et al.,
2017b) model version rv4_17, which is the emergency
version of the basic EMEP MSC-W chemical transport
model (Simpson et al., 2012, 2018; EMEP MSC-W, 2018).
The model is based on an Eulerian advection model, uses
the fourth-order positive definite advection scheme of Bott
(1989) and an ash particle diameter distribution with nine
bins from 4 to 25 µm, and has gravitational settling in all
model layers. It is used operationally to generate volcanic
ash forecasts at the Norwegian Meteorological Institute, and
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Figure 1. General solution framework for creating an accepted a posteriori emission estimate. The input to the algorithm is marked in gray
(forward simulations, satellite observations, an a priori estimate, and initial uncertainties for both observations and a priori estimate). The
algorithm runs sequentially through stages 1 to 4, marked as dashed boxes, and computes and iteratively refines the estimate in stage 4. The
most computationally demanding stages are stage 1 (forward simulations), 2 (collocation of observations and simulations), and 3 (assembly
of source–receptor matrix). Iteratively solving the least-squares system is highly efficient.

these forecasts are published on the Avinor Internet Pilot
Planning Centre web pages for all pilots to use.

The current operational setup uses 48 vertical hybrid
sigma layers from the ground up to 9.26 hPa (around 26 km
above sea level) with ECMWF meteorology. The layer thick-
ness is smallest close to the ground and increases with al-
titude. For our use, this may not be the most efficient ap-
proach1, and we instead use 22 vertical levels which are close
to 650 m thick each, shown in Fig. 2. This is a trade-off be-
tween the number of levels to emit into (which corresponds
to the system matrix size; see Sect. 2.2), and the computa-
tional time required to run the model. We restrict the vertical
extent of our model to around 14 km due to limitations in the
meteorological input fields available for the 2010 Eyjafjalla-
jökull case.

An inversion run with 22 levels of emission every 3 h for
4 d results in over 700 different unit emission scenarios that
need to be simulated to generate the source–receptor matrix
M. A regular run with the simulation model takes around
20 min to complete using 32 CPU cores, which means that
this represents over 40 weeks of CPU time. This is pro-
hibitively expensive, and we therefore use a special version
of the eEMEP model that can run up to 19 tracers simultane-
ously. These tracers are independent and reduces the number
of simulator runs from 700 to 36. The major savings come
from only having to read and process the meteorology 36
times instead of over 700 times (which typically is the bottle-

1The levels closest to ground are typically very thin, which is
good from an accuracy point of view for concentrations close to
ground. However, when we want to estimate the ash emissions, it
requires a huge computational effort to handle these layers without
them having a significant effect on the result. Most of the volcanic
ash we observe in our case studies is emitted high into the atmo-
sphere.

Figure 2. Vertical hybrid sigma levels for the inversion runs. Each
level is designed to correspond to roughly 650 m of altitude given a
ground pressure of 1013.25 hPa. The bottom layer shows a synthetic
topography and how this alters the altitude of the different layers.
Please note that these layers are only represented as hybrid sigma
coordinates and never represent actual height as meters above sea
level. The actual vertical-definitions file is available in Brodtkorb et
al. (2020).

neck for this kind of application).2 The numerical advection
and writing results to file are not optimized by this approach.
For a simpler setup, we also do not use the uppermost three
levels so that the 19 altitudes at each emission time can be
simulated with a single run. We end up with 33 runs that
each take around 20 min to complete, and using the Nebula

2By using tracers, the eEMEP program can advect up to 19 in-
dependent tracers simultaneously in one simulation run, thus only
having to read the meteorology once instead of 19 times.
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supercomputer3 we are able to get all these inversion runs
completed in less than 1 h.

Figure 3 shows the result of emission simulations for dif-
ferent emission altitudes. The three simulations emit ash at
level 1, 9, and 19 at midnight on 14 April. The simulation
then progresses, and the plot shows how the ash is distributed
in the vertical dimension as time goes on. Notice that large
parts of the ash cloud leave the simulation domain4

2.2 Source–receptor matrix

The inversion procedure is based upon creating the so-called
source–receptor matrix M from a set of forward simulations
with unit emissions (see Fig. 3). We define the set of unit
emissions as follows:

{S} = {S(α1,β1), . . .,S(α1,βl),S(α2,β1), . . .S(αk,βl)}

= {S1, . . .,Sn}. (1)

Here, αk denotes emission time k and βl denotes emis-
sion level l. An individual simulation Sj then contains time-
dependent three-dimensional simulation results of a unit of
ash emitted into the atmosphere at the given emission time
and emission level.

We equivalently have the set of observations arising from
individual pixels of processed satellite images,

{O} = {O(y1,x1, t1),O(y2,x2, t2). . .O(ym,xm, tm)}

= {O1, . . .,Om}, (2)

in which (xi,yi) denotes the spatial coordinates and (ti) the
observation time. The observations are sorted according to
increasing time ti . We can assemble matrix M so that el-
ement (i,j) of the matrix has simulation results from unit
emission j at observation coordinate i,

Mi,j := Sj (yi,xi, ti). (3)

We can similarly do this for the vector of observations so that
element i corresponds to observation coordinate i,

y0i :=Oi . (4)

This means that each row in the matrix corresponds to one
observation and each column corresponds to a single simu-
lated unit emission.

3Nebula is a research and development cluster located at
Linköping University and is part of the MetCoOp supercomputing
infrastructure shared by Swedish Meteorological and Hydrologi-
cal Institute (SMHI), the Norwegian Meteorological Institute (MET
Norway), and the Finnish Meteorological Institute (FMI). The com-
puter consists of 4352 cores partitioned over 136 nodes connected
by an Intel Omni-Path 100 Gbit network. Each compute node has
two Intel Xeon Gold 6130 processors and 96 (thin node) or 384 GiB
of memory (fat node) and is identical to the operational infrastruc-
ture.

4The full simulation domain is shown in Fig. 11 and covers
the area from 30° N, 30° W to 76° N, 45° E. just after midday on
16 April.

Figure 4 shows a small source–receptor matrix and part of
the inputs used to create it. For each observation at (yi,xi, ti),
we find the simulated ash content at the same time and spatial
coordinate for all of the different emission simulations.

With the source–receptor matrix assembled, the aim of the
inversion procedure is to find vector x so that

Mx = y0. (5)

Here, x is the linear combination of unit emissions that best
reproduce the observations. In an ideal world, we could have
hope of finding the vector of unit emissions x that repro-
duces our observations. However, in the presence of obser-
vation and simulation uncertainties, we instead have to resort
to finding the vector that best represents our observations.

The size of the matrices and vectors involved in the com-
putation is determined by the number of observations and
unit emissions. The number of unit emissions n can typi-
cally be a few hundred to a few thousand, and the number
of observations m can be hundreds of thousands or even
millions. For example, for the beginning of the 2010 Ey-
jafjallajökull eruption (to be discussed later in Sect. 4), we
have an emission simulation every 3 h starting at 00:00 UTC
on 14 April an continuing to 00:00 UTC on 18 April and
emission heights every 650 m up to about 12 km. This cor-
responds to 33 distinct times and 19 elevations, totaling to
627 unique unit emissions with one simulation each. The
corresponding satellite images for this period has a total of
92 403 observations, leading to an overdetermined system
(i.e., 92 403 constraints and 627 degrees of freedom).

2.3 Linear least squares with Tikhonov regularization

We cannot hope to solve the system in Eq. (5) exactly, as it is
typically overdetermined and both the simulations and obser-
vations have errors. We therefore seek a solution for vector x
using linear least squares with Tikhonov regularization. The
aim is to find a smooth solution that accounts for both obser-
vational and modeling errors.

Using (ground/visual) observations of the eruption, we
create an a priori estimate of emission xa and incorporate
this a priori knowledge into our least-squares solver to give
preference to solutions close to the a priori estimate. We start
by replacing our inverted emissions x with x̃ = x− xa,

Mx = y0,

M(x− xa)= y0−Mxa,

Mx̃ = ỹ,

to penalize solutions that lie far from our a priori estimate.
We still cannot hope to find an exact solution to this problem,
but we can find the optimal solution, in a least-squares sense,
by minimization:

J1 = ||Mx̃− ỹ||.
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Figure 3. Unit emission profiles used in the inversion procedure. Here we emit a unit (1 Tg, teragram) of ash at different emission levels and
plot the amount of ash in different layers over time. The figure has been created by spatially integrating the ash mass in each layer and thus
shows how the ash emitted at a specific altitude disperses as time passes. The ash is released at the hybrid terrain-following vertical model
levels shown in Fig. 2. Notice that for emissions close to ground, the ash travels only for a short time.

However, the observations are known to have measurement
error, and this uncertainty can be included by assigning a
weight to each observation:

J1 = ||σ
−1
o (Mx̃− ỹ) ||, (6)

in which σ o is a diagonal matrix with the standard error of
observations to control how close we want our computed so-
lution to match observation y0i .

In the formulation above, we can also control how closely
we want our solution to lie to the observations. To control
how closely our solution should lie to the a priori knowledge,
we add a second minimization term,

J2 = ||σ
−1
x (x− xa)|| = ||σ

−1
x x̃||, (7)

where σ x is a matrix with the estimated standard error of the
a priori estimates on the diagonal. In our experiments, we
have used σ x = 1

2xa.
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Figure 4. Linear system of equations. Panel (a) shows the vector of observations originating from the SEVIRI (Spinning Enhanced Visible
and InfraRed Imager) instrument, in which a single location is highlighted with its corresponding location in the observation vector. Note
that the image shows only part of the domain, and many of the detected ash pixels are outside the highlighted area. Panel (b) shows the
source–receptor matrix M. Each row in the matrix contains all simulated ash mass loadings at the observation coordinate of the observation
in the same row in the observation vector (see also Eq. 3). Equivalently, each column in the matrix corresponds to one individual emission
simulation Sj . The matrix shown here has 60 observations (columns), 3 emission time points, and 19 emission altitudes (3×19 rows). White
means no ash in the simulation, and the colored elements correspond to the concentration of ash in the individual simulations. See also Fig. 5,
which shows the full matrix.

Unfortunately, solving this minimization problem often re-
sults in implausible solutions with non-physical discontinu-
ities in the vertical dimension. To avoid such non-physical
solutions, we can add a smoothness minimization term,

J3 = ε||Dx̃||, (8)

in which D is a tridiagonal matrix that calculates the second
derivative of x̃, and ε determines how smooth we want the
solution to be. We have used ε = 1.0e−3, and this parameter
is typically set by experimentation.

We can solve these combined minimization problems as a
Tikhonov regularization problem (with a Tikhonov matrix of
Q= σ−2

x + εDTD),

[MT σ−2
o M+ σ−2

x + εDTD]x̃ =MT σ−2
o ỹ,

in which the optimal solution x can be computed as

x = xa+ [MT σ−2
o M+ σ−2

x + εDTD]−1MT σ−2
o ỹ

= xa+G−1MT σ−2
o ỹ

= xa+G−1B. (9)

Figure 5 shows both the source–receptor matrix M and the
least-squares matrix G, which then is used to compute the a
posteriori emission estimates x. M is generally a large sparse

matrix with m rows (one per observation Oi) and n columns
(one per emission Sj ), whilst G is a relatively small banded
matrix with n rows and columns. The band width depends
on the maximum time from emission to observation and is
1824 for our typical inversion parameters (19 emissions eight
times per day for 6 d).

It is important that the units of the matrices and vectors
are compatible when formulating the minimization problem.
Our source–receptor matrix M and observation vector y0 are
column loadings expressed in kg m−2. The a priori emission
estimate xa is mass-scaled to teragrams (1012 g), and our in-
dividual simulations Sj have a source term from the volcano
that emits one teragram of ash at the given time point α and
altitude β. This means that our computed solution x is given
in teragrams of emitted ash.

2.4 Efficient computation of a least-squares matrix

One novelty in this paper is the efficient assembly and cal-
culation of the least-squares matrix, enabling the inversion to
run on a regular laptop computer. The linear system in Eq. (5)
is solved using the Tikhonov regularization, formulated as

x = xa+G−1B (10)

by inverting the least-squares matrix G. G is a matrix of di-
mension n× n, in which n is the number of emissions we
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Figure 5. (a) Source–receptor matrix M and (b) least-squares matrix G. The source–receptor matrix for the Eyjafjallajökull case without
no-ash observations for the period 14 April–24 May has 736494 rows (observations) and 6061 columns (ash emissions to estimate). It has
approximately 521 million non-zero entries. The least-squares matrix is a square matrix with 6061 rows and columns. The band width of the
matrix is approximately 2000, which is determined by the maximum allowable time between an emission and observation of ash.

want to estimate. This matrix is computed from the larger
matrix M of sizem×n, in whichm is the number of observa-
tions. For the full Eyjafjallajökull eruption case, that means
that up to 56536603 observations5 are used to calculate the
6061 unknown emissions.

The 56.5 million observations are matched against the
simulations and stored in matrix M so that each row has up
to 912 non-zero entries (19 emissions eight times per day for
6 d) but an average of around 170 in our runs. The matrix then
has approximately 9.7 billion non-zeroes, which corresponds
to 72.27 GiB of data. This is prohibitively expensive for the
inversion procedure and limits the number of observations
that are possible to assimilate. However, by carefully exam-
ining and restructuring the products involved, we can refor-
mulate the procedure to compute G directly without storing
M. This reduces the memory requirement from the afore-
mentioned 72 GiB to less than 300 MB (a improvement of
a factor of 260), enabling efficient inversion even on laptop
computers with no special hardware requirements.

Matrix G in Eq. (9) is computed using

G=MT σ−2
o M+ σ−2

x + εDTD. (11)

5The full Eyjafjallajökull eruption case has 876 906 observa-
tions of ash and 55.7 million observations of no ash. In addition,
there are uncertain observations, e.g., due to cloud coverage, that
are not used.

Here, M is the enormous sparse matrix with 72 GiB of non-
zero entries, whilst G is a relatively modest dense matrix.
The classical way to compute this expression is to use the
inner product,(

MT σ−2
o M

)
i,j
= diag(σ−2

o ) ◦ (M:,i ·M:,j )

=

m∑
k=1

σ o
−2
k Mk,i ·Mk,j

= σ o
−2
1 M1,i ·M1,j + . . .

+ σ o
−2
m Mm,i ·Mm,j , (12)

in which diag(σ−2
o ) is the vector composed of the diagonal

entries of σ−2
o . Recall that m is here the number of observa-

tions.
By examining this inner product, we see that we can com-

pute matrix G as a sum of outer products for each row of
M instead of the inner-product formulation for each column
above:

G=
m∑
k=1

σ o
−2
k Mk,:⊗Mk,:+ σ

−2
x + εDTD. (13)

By using the outer product, we can avoid having to store
the large matrix M in memory and instead store only the
relatively small n× n matrix. For the full Eyjafjallajökull
eruption case that means that we store a dense matrix of

https://doi.org/10.5194/gmd-17-1957-2024 Geosci. Model Dev., 17, 1957–1974, 2024
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6061× 6061 elements, which takes less than 300 MB of
memory. In essence, this means that we assemble matrix G
using one observation at a time.

Unfortunately, this also means that we need to compute

B =MT σ−2
o ỹ =MT σ−2

o (y0−Mxa) (14)

simultaneously. Whilst this does not seem to have a signif-
icant impact, it means that we can no longer change our
a priori estimate xa without also re-assembling the right-
hand side. However, it is trivial to use matrix Xa, in which
each column represents one a priori estimate, and solve for
all these simultaneously.

Equations (12) and (13) represent two extremes in how
to compute matrix G, in which the former first assembles
M and computes G using the (sparse) matrix product and
the latter assembles G directly one observation at a time us-
ing the outer product. We can also use a hybrid approach in
which we assemble a set of observations into G simultane-
ously. If we create a row partition of M and call each parti-
tion Q<1>, . . .,Q<p>, we can compute the same product as
follows:

G=
p∑
k=1

QT
<k>σ

−2
o Q<k>+ σ

−2
x + εDTD. (15)

This is analogous to computing Eq. (12) for a subset of the
rows of M at a time or a subset of observations at a time.
The benefit of this hybrid approach is that the computa-
tional speed can increase dramatically, as we can use efficient
dense linear algebra routines from Python libraries, thereby
avoiding the prohibitive memory requirement of Eq. (12) as
well as the expensive outer-product formulation required for
Eq. (13). The total performance benefit of the hybrid ap-
proach is up to 15 times in terms of wall clock time spent
assembling and computing the least-squares matrix.

2.5 Iterative inversion procedure

Because there are large uncertainties in both the meteorology
and the satellite observations (see, e.g., Harvey et al., 2022),
we may end up with negative emission estimates at certain
points, as there is nothing in our minimization problem that
prohibits negative solutions. Negative values in the a posteri-
ori data are forced to lie closer to the a priori estimate by re-
ducing the uncertainties σ x for these values and recomputing
the solution. The iterative procedure repeats until the amount
of negative ash emissions is reduced to a fraction (e.g., 1 %)
of the total a posteriori emission estimate.

2.6 Including ash cloud-top information

A novelty in this paper is the use of observed altitude from,
e.g., the SLSTR instrument. The dual-view capabilities of the
SLSTR instrument may be used to detect the top of the ash
plume and thereby restrict the inversion procedure to give

more correct altitudes for the a posteriori emissions. Math-
ematically, we formulate this by splitting each observation
into two observations: one non-zero observation from the
ground up to the detected plume height and one zero ob-
servation from the plume height to the top of the model. In
essence, we simply split each row in the source–receptor ma-
trix M into two as shown in Fig. 6. This then doubles the
number of rows in the matrix, whilst keeping the number of
non-zeroes constant. The rest of the algorithm is unchanged.

The computational cost of this extra information is negli-
gible for the whole algorithm as our final linear least-squares
system G has the same dimension both with and without al-
titude information.

3 Verification using synthetic data

To check if the inversion procedure presented here works as
intended is a non-trivial exercise, as there are large uncer-
tainties in both the simulation model and observations be-
ing used. We have therefore checked our inversion procedure
against a known truth, generated by the simulation model it-
self. We first generate an a priori emission estimate using
radar observed plume heights and the mass eruption rate esti-
mate in Mastin et al. (2009) and subsequently use this a priori
estimate to generate synthetic satellite images. The synthetic
satellite images are created by scaling the unit emission sim-
ulations with the a priori value and then vertically integrat-
ing them to yield grams per square meters. We observe these
satellite images at random locations in space and time to gen-
erate the truth. We then expect that our inversion procedure
should generate a posteriori data which lie close to the a pri-
ori estimate used to generate the truth. It should be noted
that we do not expect a perfect inversion, as we try to esti-
mate the vertical and time distribution of the ash emission,
whilst we only observe the vertically integrated ash concen-
tration at certain points. We have used the 2010 Eyjafjalla-
jökull eruption as a basis to generate a realistic scenario from
14 to 18 April. We also vary the a priori estimate and the ash
cloud-top altitude to see the effect of these parameters on the
solution. It should also be noted that synthetic benchmarks
remove any uncertainty in both the transport model and the
numerical weather forecast data.

We have devised several different experiments to test the
inversion, which are summarized in Table 1. The expected
outcomes of the experiments are as follows:

A. This case uses an a priori estimate that is identical to
the truth, and the inversion procedure should be able
to produce something close to the truth. These default
a priori data are created using an estimate of the erup-
tion altitude and the relationship given by Mastin et al.
(2009). Because we are using a Tikhonov regulariza-
tion, we will expect a small deviation between the de-
fault a priori data and the computed a posteriori data. If
the inversion is unable to capture this state, we expect
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Figure 6. Linear system of equations with altitude information. Panel (a) shows the source–receptor matrix M with altitude information,
and panel (b) is the corresponding vector of observations. Compare with Fig. 4 and notice that each row is now split into two new rows.
Even-numbered rows now correspond to observations of ash (below the detected ash plume height), and odd-numbered rows correspond to
no ash. The rest of the solution procedure remains the same.

Figure 7. Satellite image and corresponding detection of ash. Panel (a) is from NASA Terra MODIS 2010/105 on 15 April 2010 at
11:35 UTC, and panel (b) is from the SEVIRI satellite instrument after the detection of ash concentrations at 11:00 UTC. White pixels
are unobserved or uncertain parts of the domain, and blue pixels are observations of no ash. Panel (c) shows only certain instances of
non-zero detection of ash.

that something is wrong – either with the implementa-
tion or with the data.

B. This case uses the default a priori data, but the truth has
an emission altitude of half the a priori data. As the in-
version does not use altitude information in the inver-
sion, we may not be able to resolve this case.

C. This case is identical to case B, but we use the altitude
information in the inversion. Case B and C therefore
showcase the added value of restricting the inversion
with altitude information in the case we have a too large
an altitude estimate for the a priori data.

D. This case shows how the inversion handles a constant a
priori estimate without the use of altitudes in the inver-
sion procedure. This is to simulate a “worst-case sce-

nario” in which we do not have a good description of
the eruption and therefore only have a very crude a pri-
ori estimate.

E. This case is identical to case D but now using altitude
information in the inversion.

All of these cases use synthetically generated satellite obser-
vations (shown in Fig. 8) in the inversion. These synthetic
satellite observations are generated by first multiplying the
true a posteriori data with the simulated emissions, followed
by vertically integrating to achieve a column load for the
whole domain. We finally sample at random locations to sim-
ulate true satellite images. The synthetic dataset consists of
235 observation time points with a total of 462 654 ash ob-
servations and covers the domain shown in Fig. 8.
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Figure 8. Synthetic satellite observations used in the validation of the inversion procedure with (a) mass loading (g m2) and (b) ash cloud-top
altitude (m). The synthetic observations are based upon a vertical integration of simulation results at specific coordinates. The figure shows
a synthetic satellite observation from 10:00 UTC on 15 April using the standard a priori estimate shown in Fig. 9 (compare also with Fig. 7,
which shows actual satellite data). The coordinates are randomly generated and consist of 774 observation points uniformly distributed in
space.

Table 1. Summary of experiments using synthetic data. The observations column shows what kind of synthetic observations are being used.
The observations are generated using an eruption using the default a priori emission (“default”) or using the same amount of emission as the
default a priori data but with half the plume height (“half altitude”). The a priori estimate used is either the default or a constant estimate
based on an 8.4 km plume height.

Case name Observations A priori data Altitude used? Expected result/truth

A Default Default Yes Same as default a priori data
B Half altitude Default No Same total emission as default a priori data but half altitude
C Half altitude Default Yes Same total emission as default a priori data but half altitude
D Default Constant 8.4 km plume No Same as default a priori data
E Default Constant 8.4 km plume Yes Same as default a priori data

Figure 9 shows the result of running the verification ex-
periments. For case A (the top row) the inversion algorithm
is quite capable of recovering the truth. The inverted results
show a slight increase in the total emission, in particular
during the peak of the eruption on 14 April. However, the
inverted results are overall in good agreement with the ex-
pected results.

For case B, shown in the second row, the effect of overes-
timating the altitude of the eruption in the a priori estimate
is evident, illustrating that the inversion does not capture the
true emission very well. However, the result is not very sur-
prising as the inversion algorithm is only using observations
of vertically integrated quantities. Without a restriction on
the altitude in the inversion itself, there needs to be a signif-
icant difference in the prevailing winds at different altitudes
to penalize emissions at wrong altitudes.

Case C in the third row shows the exact same experiment
as in the second row, but this time we use observations of
the ash cloud top to restrict the inversion. Compared with
case B, we clearly see the benefit of using altitude obser-
vations. The inversion is capable of capturing the emission

altitude very well during the peak of the eruption on 14 April
and also shows a relatively good reduction in higher-altitude
emissions during the eruption from 16 to 17 April.

Case D and E are shown in the final two rows, which show
how the inversion algorithm behaves when we do not have a
good a priori estimate of the eruption. The results show that
both with and without altitude observations, the algorithm is
unable to find a satisfactory result. The two experiments are
able to capture the peak of the eruption on 14 April quite well
but wrongfully estimate a larger eruption from 15 to 16 April.
This can be explained by our synthetic satellite observations
shown in Fig. 8, which do not include observations of no
ash. Thus, the algorithm does not have sufficient observations
to restrict the inversion, particularly the eruption-free period
from 15 to 16 April.

4 Validation using the 2010 Eyjafjallajökull eruption

The previous section outlined some of the sensitivities of
the inversion procedure on synthetic datasets, in which we
have generated satellite observations from a synthetic known
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Figure 9. Verification of the inversion code. The color bar is in teragrams of emitted fine ash, and the altitude is in meters above sea level
(volcano altitude is 1666 m above sea level). The rows (from top) represent the five cases (A–E) outlined in Table 1. The left column shows
the a priori data used in the inversion, the middle column shows the inverted a posteriori estimate, and the right column shows the truth. The
left axis shows the emission altitude above sea level, and the right axis shows the total emission in teragrams. The first row uses a priori data
equal to the truth (case A), the second and third rows use a truth in which the ash is emitted at half the altitude of the a priori data (cases B
and C), and the fourth and fifth rows use a constant a priori estimate (cases D and E). The first (case A), third (case C), and fifth rows (case E)
use ash cloud-top observations to restrict the inversion.

truth. In this section, we apply the methodology to a real-
world eruption, the 2010 Eyjafjallajökull eruption. The Ey-
jafjallajökull eruption is a well-studied case which makes it
possible to compare the quality of our results with other ap-
proaches.

We have run two scenarios with our inversion code. The
first uses the same setup as Steensen et al. (2017a) and covers

the onset of the eruption from 14 to 18 April with an a priori
estimate from eruption altitude and the relationship given by
Mastin et al. (2009). The second mimics the setup of Stohl
et al. (2011) and covers the whole eruption from 14 April
to 24 May with a more complex a priori estimate. The full
dataset consists of 959 observation time points and a total of
876 906 non-zero observations (detected ash), and the erup-
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tion onset dataset is simply a subset of the 96 first observation
time points with a total of 43 241 non-zero observations. The
extent of the dataset is shown in Fig. 11.

4.1 Eyjafjallajökull eruption onset

In this case, we use the same setup as in Steensen et al.
(2017a) and have, as far as possible, used the same param-
eters. We have used the same SEVIRI satellite data and sim-
ulated unit emission simulations with the eEMEP advection
model.

Figure 10 shows the result of the inversion algorithm.
Overall our results match those of Steensen et al. (2017a), but
there are some differences. We find that the main emissions
for 14 April are fairly evenly spread from 3 to 7 km, with
a maximum around 5 km, while in Steensen et al. (2017a)
the emissions peak around 8 km and there is no emission
below 3 km; secondly, early on 17 April we find emissions
below 6 km, while none are reported by Steensen et al.
(2017a). It is noted that results presented here agree better
with those presented by (Fig. 2c of Stohl et al., 2011). We
have identified several possible reasons for the differences
with Steensen et al. (2017a): this is a new implementation,
and we have used different parameters in the simulation runs
with eEMEP; there are different parameters used in the inver-
sion run; there is a slightly different vertical discretization of
the eEMEP model; and the advection model (eEMEP) has
gone through significant upgrades and changes. As the de-
tails required to reproduce the runs of Steensen et al. (2017a)
are not fully available, it is not possible to reproduce their
results.

4.2 Eyjafjallajökull full eruption

We use a similar setup as in Stohl et al. (2011) in the in-
version of the full eruption period of Eyjafjallajökull, last-
ing from 14 April to around 24 May 2010. Our inversion re-
sults (Fig. 12) show a clear reduction in the eruption strength
around 16 April, as well as the two high-altitude eruptions
on 14 and 16 May, and a significant increase in the erup-
tion strength on 12–13 May. Our results generally match
well with those of Stohl et al. (2011), but there are some
differences. In particular, the eruption onset on 14 April ap-
pears to be stronger in our results, and our results maintain
more ash in the a posteriori data below 3 km. There are sev-
eral factors that contribute to these differences: different ad-
vection models are used (eEMEP and FLEXPART, FLEX-
ible PARTicle dispersion model); different meteorological
datasets (ECMWF and a combination of ECMWF and GFS,
Global Forecast System); differences in analysis of satellite
observations; and a similar but not identical a priori estimate.

Figure 11 compares our a priori and a posteriori results
with the retrieved ash from satellite observations for five
different time points during the eruption. The figure shows
quantized results in the same color scheme as the official

Norwegian volcanic ash reports used by airline pilots6, with
total column loadings of no ash (< 0.2 g m−2), low ash (0.2–
2.0 g m−2), medium ash (2.0–4.0 g m−2), and high ash (>
4.0 g m−2). The left column shows the a priori estimate, the
central column shows the a posteriori result, and the right
column shows the satellite images.

The satellite images illustrate that the observations of ash
are relatively sparse and that they suffer from false positives
(including detected ash far from the simulated ash cloud; see
also Fig. 7). They also show that there are differences be-
tween the position of the modeled and observed ash clouds,
as shown in the fourth row close to the Faroe Islands. This is
possibly due to errors in meteorology driving the advection
model. Both false positives and positional errors between ob-
served and modeled ash clouds make the inversion scenario
significantly more challenging than the idealized data used
for the verification in Sect. 3.

If we compare the a priori estimate with the a posteriori
results, we see that the inversion algorithm reduces the areas
with high-ash column loadings during parts of the eruption
(first, third and fifth rows), whilst increasing it at other time
points (second and fourth rows). Overall, this matches well
with the observations of ash in the satellite images.

5 Performance assessment

The inversion framework consists of the four main stages
(Fig. 1), and we have optimized each of these. The most
novel improvements and optimizations have been in the as-
sembly of the least-squares system in stage 3, but the other
stages have also been improved.

In stage 1, we simulate the time development of unit emis-
sions for a given altitude and time. This requires over 6000
unique simulation results, which is reduced to 319 eEMEP
runs by using tracers (see also Sect. 2.1). Still, each run can
take up to 40 min to complete, thus requiring over 200 com-
puting hours on the Nebula supercomputer infrastructure. We
have optimized the eEMEP runs by limiting the simulation
time to a maximum of 6 d (thus assuming ash in the atmo-
sphere older than 6 d will not be important for the inversion),
which reduces the requirement to 110 computing hours on
the cluster, as shown in Fig. 13. By running five simulations
in parallel on the cluster, the wall clock time spent for the
forward simulations is reduced to 10 h. By fully utilizing the
cluster, it would be technically possible to reduce the wall
clock time to approximately 1 h.

Stage 2 is also a computationally demanding stage and
consists of collocating all observations with the simulations
created in stage 1 as well as generating the a priori estimate.
The generation of the a priori estimate is not a computation-
ally demanding challenge, but the collocation of observations
is quite demanding as it requires us to match each observa-

6The Norwegian volcanic ash reports are available on https://
ippc.no/ (last access: 21 February 2024).
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Figure 10. Comparison of the a priori estimate with the inverted results (kg (m s)−1) for the Eyjafjallajökull eruption onset. The altitude is
in meters above sea level (volcano altitude is 1666 m above sea level). The dashed line shows the total erupted mass in teragrams.

tion to the unit emission simulation that might have caused
it. This means that for each of the 56.5 million observations
we have to find the corresponding temporospatial location in
912 unique simulations (see also Sect. 2.4). We can perform
this on the PPI cluster7, and the process takes just shy of 5 h
of wall clock time. This process is parallelizable (e.g., each
of the 962 hourly satellite images can easily be processed in-
dependently), and it would be technically possible to signifi-
cantly reduce the wall clock time by utilizing the full cluster.

Finally, stage 3 is the last of the computationally demand-
ing stages, in which we assemble the collocated simulations
and observations into the least-squares system. This process
takes over 19 h to complete on the PPI cluster when first as-
sembling the huge matrix M and subsequently computing
the matrix product MT σ−2

o M. The reformulation to compute
matrix G directly reduces this process to just over 1 h. This
stage may in fact also be parallelized further by following an
approach similar to that shown in Eq. (15), i.e., partitioning
the set of observations; assembling

Gq =QT
<q>σ

−2
o Q<q>+ σ

−2
x + εDTD

in parallel; and finally summing to compute the final matrix,

G=
p∑
q=1

Gq .

The performance increases in this new approach are sum-
marized in Table 2. In total, the inversion procedure runs
approximately 2.7 times faster with the improvements dis-
cussed in this paper. Furthermore, an added benefit of the

7The postprocessing infrastructure (PPI) is a Linux-based com-
pute cluster at the Meteorological Institute of Norway that runs Gri-
dEngine. The nodes have 16-/32-core AMD CPUs, with 130 GiB of
memory, and are connected with a 100 Gbit s−1 InfiniBand inter-
connect.

new inversion procedure is that it is extremely memory effi-
cient, allowing it to run efficiently on a simple laptop.8

6 Summary and discussion

We have presented an inversion algorithm and open-source
implementation for volcanic ash emission estimates based on
satellite imagery. The main novelties of this paper include
a memory-efficient algorithm for the assembly and calcula-
tion of the least-squares system, inclusion of ash cloud-top
altitude information in the inversion, and verification using
synthetic datasets. Our verification shows the potential ben-
efit of using observations of the ash cloud top to restrict the
inversion, and we have also run our code on the 2010 Ey-
jafjallajökull eruption. Our results are mostly in agreement
with previously presented results but with some differences
believed to be mainly due to differences in the model setup
and meteorology used.

Our approach to assembling and calculating the least-
squares system has reduced the computational time from
over 19 h to just 1 h for this part of the inversion. For the
simulation of the unit emissions, the computational time has
gone from 19 to 10 h. These two stages constitute the most
time-consuming parts of the inversion and reduce the total
time to solution by a factor 2.7.

Our framework is also well tailored to an operational set-
ting with an eruption going on for several weeks. It is techni-
cally possible to use a least-squares matrix G1 representing,
e.g., the first 3 d of the eruption and simply add another ma-
trix G2 that may represent a subsequent 4 d (and equivalently
for vector B), instead of assembling the full 7 d period from
scratch. With satellite imagery coming in continuously, this

8The forward simulations using the eEMEP model must run on
a supercomputing infrastructure with access to the relevant meteo-
rology.
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Figure 11. Modeled and observed ash clouds over Europe during the 2010 Eyjafjallajökull eruption at different times. From top to bottom,
the figures represent 17 April 2010 at 19:00 UTC, 6 May 2010 at 10:00 UTC, 8 May 2010 at 19:00 UTC, 13 May 2010 at 03:00 UTC, and
18 May 2010 at 16:00 UTC. The leftmost column shows the modeled a priori estimate, the next column shows the modeled a posteriori
estimate after inversion, and the rightmost column shows the satellite image. The colors in the figures correspond to the color codes used
operationally at the Internet Pilot Planning Centre (IPPC) operated by Avinor Air Navigation Services AS (https://ippc.no/, last access:
21 February 2024). The color codes groups total column loadings into no ash (< 0.2 g m−2), low ash (0.2–2.0 g m−2), medium ash (2.0–
4.0 g m−2), and high ash (> 4.0 g m−2). For the satellite images, non-analyzed areas are in light gray.

may save large amounts of computational time to create up-
to-date estimates.

Our results show that using ash cloud-top altitude informa-
tion gives a clear benefit, which contrasts the findings of Chai
et al. (2017), who report a negative impact of using this in-

formation in the inversion. Our explanation to this is that we
have performed testing with synthetic data in which there is
no meteorological error. In the presence of meteorological er-
ror, we agree that there may be circumstances where adding
more constraints to the inversion may negatively impact the
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Figure 12. Eyjafjallajökull full eruption a priori vs. inverted emission estimate (kg (m s)−1). The altitude is in meters above sea level, and
the volcano summit is at 1666 m above sea level.

Table 2. Summary of wall clock time for the inversion procedure for the full Eyjafjallajökull eruption.

Stage Old approach New approach

Stage 1: forward simulations 19 h 10 h
Stage 2: collocation of observations and simulations 5 h 5 h
Stage 3: least-squares assembly 19 h 1 h
Stage 4: iterative inversion 1 min 1 min

Whole inversion 43 h 16 h

results. Nevertheless, our results show that using ash cloud-
top observations can improve the inversion results under fa-
vorable conditions.

This work has several opportunities for further improve-
ment that we see natural to pursue. First of all, the use of
coordinates in the collocation of satellite observations and
simulations makes the inversion procedure sensitive to slight
differences in the modeled vs. true meteorology. It would be
fruitful to explore other forms of collocation strategies, e.g.,
using polar coordinates centered on the erupting volcano or at
a streamlined distance from it, to possibly reduce this sensi-

tivity. The use of ensemble meteorology coupled with ensem-
ble inversion will possibly also address the sensitivity to dif-
ferences between modeled and observed meteorology (see,
e.g., Webster and Thomson, 2022; Crawford et al., 2022).

The current algorithm is somewhat robust when it comes
to false positives (false detection of ash) and false negatives
(false detection of no ash) in the satellite images. However,
it will be valuable to quantify this sensitivity using synthetic
satellite images, i.e., determining when false negatives and
positives will affect the inverted results. On a similar note,
full uncertainty quantification of the inversion will be impor-
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Figure 13. Computing time per forward simulation on the Nebula
cluster. Notice that the last simulations take significantly less time as
they approach the end simulation time (24 May 2010). The regular
sawtooth pattern for the other runs is similarly explained by each
new simulation starting at 00:00 UTC, even though the emission
may start at, e.g., 21:00 UTC. This is due to a technical limitation
in the eEMEP model.

tant to determine when and where the inversion is most valid
in the presence of different kinds of errors, including false
positives, false negatives, meteorological errors, and inver-
sion parameter settings.

Another aspect to explore is the use of iterative least
squares to solve the inversion problem without non-physical
(negative) emissions. An alternate approach may be to use
non-negative least squares or other optimization strategies to
solve the system.

Code and data availability. The source code and data used
in this work are released under an open-source license, and
archived versions are available on Zenodo. The software pack-
age is available at https://doi.org/10.5281/zenodo.8073110
(Brodtkorb, 2022). Satellite observations are available
at https://doi.org/10.5281/zenodo.3855526 (Brodtkorb,
2020). Forward eEMEP simulations are available at
https://doi.org/10.5281/zenodo.3818196 (Brodtkorb et al., 2020).

Video supplement. The video at https://www.youtube.com/watch?
v=cohBP3LNArQ (Brodtkorb, 2023) shows a comparison of the a
priori emission estimates, a posteriori emission estimates, and satel-
lite images for the 2010 eruption at Eyjafjallajökull. The leftmost
plot shows the a priori estimate, the central plot shows the a pos-
teriori estimate, and the rightmost plot shows the satellite images
(observations) used in the inversion.
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