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Abstract
This study evaluates six commonly used detrending methods and discuss how 
detrending may change the timing of events, the identification of lead-lag rela-
tions between GDP and employment, and the identification of cycle periods. The 
detrending methods examined includes linear detrending, polynomial detrend-
ing, the first-order differencing, locally weighted scatterplot smoothing (LOESS), 
Hodrick–Prescott filter, and the Hamilton filter. We apply the detrending methods 
to the United States and United Kingdom gross domestic product (GDP) from 1977 
to 2020. We find that for the GDP series the first-order differencing score best on all 
three criteria, however, it also shows more false recessions than the other detrend-
ing methods. A linear, a polynomial, and a LOESS trend all scored well. The three 
methods miss-specified the timing of the recessions with less than one quarter and 
all three gave results that would comply with stylized facts in macroeconomics. The 
Hodrick–Prescott (HP) filter and Hamilton filter did not achieve high scores on one 
or two of the criteria and scored worst on average performance.

Keywords Detrending methods · Forecasting · Recessions · LOESS filter · 
HP-filter · Hamilton-filter

JEL Classification E32 · E37 · C10 · C82 · G01

1 Introduction

In empirical business-cycle analysis, it is widespread practice to decompose the 
trending variables, such as real output, into a secular (or trend) component and a 
stationary component that shows cyclical behavior. Various detrending methods 
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are used to remove the effects of a trend and to identify potentially important 
cyclical patterns. However, there is an adage in economics: “One scientist’s time 
trend may be part of another scientist’s cycle”. Thus, detrending may in a sense 
be the partitioning of a cyclic series into cyclic components that each represent a 
distinct mechanism. In addition, some peaks and troughs in a cyclic series may be 
due to dynamic chaos (Sugihara & May, 1990; Tømte et al., 1998), or they may 
be due to interactions between two oscillating mechanisms, (Seip & Pleym, 2000) 
and not relate to one single driving mechanism. Thus, with respect to business 
cycle series, there is no “ground truth”.

Detrending methods may affect the raw time series in several ways. Different 
methods usually lead to a different trend-cycle decomposition that can be com-
pared to theoretical macroeconomic models (see, e.g., Canova, 1998, 1999). 
There are two groups of rationales for detrending (i) to get focus on the objective 
of the study or to disentangle component series that are generated by different 
processes and (ii) to get the data into a format that allows common statistical 
methods to be applied correctly to the data.

Within the first group are the study of fluctuations around the trend of a 
series, for example to examine business cycles or growth cycles. (Canova, 1999). 
Another objective is to distinguish short term movements in the economy caused 
by e.g., rapid movements in the stock market, from longer movements caused by 
e.g., changes in tax policies (Mountford and Uhlig 2009). Stylized facts about 
economic issues may help setting parameter values for detrending algorithms. 
One issue is the dating of business cycle turning points, or the length of business 
cycles or growth cycles (Burnside, 1998; Canova, 1999; Pollock, 2016). Canova 
(1998) examined the US Gross national product (GNP) series 1955–1973 using 
the Hodrick Prescott (HP) filter with its parameter λ set to 4 (high frequency var-
iability) and 1600 (business cycle frequency), but other values for λ have also 
been used. Correct timing is also important for the dating of recessions, e.g., as 
defined by the National Bureau of Economic Research (NBER). Detrending must 
not distort the time series so that dates are significantly changed and associations 
between patterns in the time series and candidate causal events become flawed. 
A second set of dates, or tie-points, are structural breaks in the economy. A third 
issue are lead-lag relations between indexes that are used to forecast future devel-
opment in a macroeconomic variable and their target variable (Christiansen et al., 
2014; Seip et  al., 2019, Krüger, 2021). To compare two detrended series, one 
should probably apply the same detrending procedure to both series (Burnside, 
1998; Enders., 2010, p 256).

Within the second group are the question related to cointegration of time series to 
avoid spurious regressions. Differencing the series may help avoid spurious results, 
but a first differencing will show a peak when the raw series has its steepest slope, 
and thus shift peaks (and troughs) relative to the raw series. Second, the statistical 
parameters of ordinary least square (OLS) regression applied to series with descend-
ing or increasing trends will characterize the trends, and not variabilities around 
the trends. Third, cross correlation tests are often applied to series that are candi-
date cause and effect variables, but since the technique is to shift one series relative 
to another to see if one get better overlap between the two series by shifting them 
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(measured by the explained variance, r2 versus time shifts t−2, t−1, t, t+1, t+2..), the 
series has to be detrended.

Many studies compare detrending methods. For example, Canova (1998) using 
six different detrending methods, examines the business cycle properties of seven 
real US macroeconomic time series including the GNP. The results suggests that 
the HP(1600) filter of Hodrick and Prescott (1980) and the segmented polynomial 
time function method (his SEGM) are those that come closest in reproducing stand-
ard dating and business cycle features. For other series, amplitude and duration of 
cycles are sensitive to detrending method. Bjørnland (2000) finds for variables like 
real wage and prices that five different detrending methods with selections of param-
eters suggested very different cyclical behaviors. In addition, detrending without 
appropriately adjusting for the structural break in the trend could severely distort the 
results.

In this study we compare six detrending methods and discuss how detrending 
may change (i) the timing of events, (ii) the identification of high-resolution lead-lag 
relations between GDP and employment and (iii) the identification of cycle periods. 
The detrending methods we examine in this paper include the subtraction of a linear 
or second order polynomial trend, a segment detrending method (we use LOESS, 
a locally weighted scatterplot smoothing algorithm), the first order differencing 
procedure, the HP-filter from Hodrick and Prescott (1997), and the Hamilton-filter 
developed by Hamilton (2018). Except for the linear and second order polynomial 
detrending, all methods require some parameters to be determined that depend on 
characteristics of the time series studied. Lastly, although not a detrending method, 
we study the effects of stabilizing the variance of the US GDP by taking the loga-
rithm of the data. Characteristics and source information of the alternative detrend-
ing methods are summarized in Table 1.

We hypothesize that linear detrending is sufficient for time series that have a per-
sistent upward sloping trend like the US GDP (or alternatively a persistent down-
ward trend). The rationale is that more complex detrending will only give minor 
changes in the timing of important event which has little improvement of the overall 
performance.

Our contribution is to examine six commonly use detrending methods and evalu-
ate their performance with respect to the GDP of the United States (US) and the 
United Kingdom (UK) on three criteria, the timing of recessions, lead-lag relations 
to employment and cycles in the US and UK GDP time series. We find that the first 
difference gave the best score on the three criteria, whereas the linear detrending, the 
second order polynomial detrending, and the LOESS methods all satisfied criteria 
values for reasonable detrending results. The HP-filter and the Hamilton-filter meth-
ods failed on one or two of the three criteria.

Our study differs from other studies in five ways. First, we interpolate the GDP 
data to monthly data to be able to determine the timing of recessions within a month 
(the NBER recession dating gives the timing in months). Second, we identify reces-
sions by calculating the slope of a moving seven-month regression applied to both 
raw and detrended data. Third, we measure the skill of detrending on three crite-
ria: the dating of a proxy to the NBER recessions, high resolution lead-lag relations 
to employment, and cycle periods. In addition, we interpret the results in a richer 
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macroeconomic context that normally associated with the term “stylized facts”. 
We can do this because the lead-lag relations we use are calculated over very short 
time intervals and over series that are not detrended (n = 3; n = 9 allows calculation 
of confidence interval). Fourth, we use a version of a multiple window spectrum 
(MWS) method, that is common in climate research for analyzing power spectral 
densities (PSD) (Johnson, et al., 1996). Last, we use principal component analysis 
(PCA) to compare trends and cyclic components to reference trends and reference 
cycles.

The remainder of the paper is organized as follows. The next section presents a 
literature survey. Descriptions on the data and methods are shown in Sects 3 and 4, 
respectively. In Sect. 5, we present the results for the detrended series and in Sect. 6 
we discuss the results in an economic context. Section 7 concludes.

2  Literature Review

Several detrending methods are studied in the literature. We here outline (i) the 
methods examined, (ii) the tests that are applied to the detrending results, and (iii) 
the goodness of the detrending results.

We summarize the literature on detrending methods in business cycle research in 
Table 2. We have not included studies that attempt to determine the “best” param-
eters for a specific detrending method, e.g., as Franke & Kukacka (2020) and Ravn 
& Uhlig (2002) for the HP-filter. Most studies include linear detrending (abbreviated 
as LIN in the table), as one option. The HP- filter is also used abundantly in macro-
economics, often with its standard parameter λ = 1600 for quarterly data (Hamilton, 
2018). Other detrending methods listed in the table include polynomial functions 
of time (abbreviated as POL), LOESS filter, first-order differencing (abbreviated as 
DIF), Beveridge & Nelson (1981) method (abbreviated as BN), frequency domain 
filtering (abbreviated as FR), unobservable component method (abbreviated as 
UCM) and Hamilton filter (abbreviated as HAM) using the approach as in Hamilton 
(2018).

Apart from linear detrending and a second order polynomial function, most meth-
ods require judgements on which parameters to choose for the detrending method, 
(Canova, 1999; p. 130). To assess the goodness of the detrending algorithms the 
most common tests are comparison with recessions (see, for example, Canova, 
1999), examination of volatilities (e.g., Bjørnland, 2000; Park, 1996) and cycle 
period characteristics like amplitudes, durations, and persistence (Canova, 1999; 
pp. 142–144). However, there are also comparisons with “stylized facts”, which 
most often refer to relations that are commonly observed in economics (Brault & 
Khan, 2020). Bjørnland (2000; p. 381) establish “facts” in terms of correlations and 
lead-lag relation between macroeconomic series and GDP, and in terms of volatil-
ity of the detrended series. Recessions are determined in numerous ways. Canova 
(1999) gives two definitions, e.g., a peak is defined by two consecutive increases 
(quarters) followed by a decline. This study defines the beginning of a recession for 
GDP data that first are normalized to unit standard deviation as a negative regression 
coefficient over 7 months (about two quarters) that exceeds − 1.5 or − 2.0 (values 
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normalized to unit standard deviation rang between about − 3 and + 3). Several stud-
ies make recommendations after testing detrending methods, but not always with 
respect to which detrending methods that have highest skill in reproducing a cyclic 
component that are “best” or “satisfactorily”.

3  Data

Our sample period is from 1977 to 2020. For part of our analysis, we use economic 
data at monthly frequency, from 1977M1 to 2019M5 for the US. The reason is that 
the pandemic in 2020 showed a marked decrease in GDP that tended to distort the 
detrending processes abnormally. In an additional analysis, we also evaluate our 
findings by applying the same detrending methods to the UK data.

We use the real GDP as a proxy for real economic growth and identified reces-
sion periods using National Bureau of Economic Research (NBER) definitions. We 
study the US GDP for the period 1977–2020 because the NBER recessions are well-
defined events during this period, and they are fixed in time to certain dates. We 
have collected all the data from the Federal Reserve Bank of St. Louis. The GDP is 
available at the quarterly frequency and is linearly interpolated to monthly data to 
match the frequency of employment data. We compare the monthly GDP data with 
corresponding monthly data supplied by the Research and Analysis IHS Markit,1 see 
robustness section.

The US employment (EM) is a measure of the number of US workers (in thou-
sands of persons) in the economy that excludes proprietors, private household 
employees, unpaid volunteers, farm employees, also known as total nonfarm pay-
roll.2 It is monthly and seasonally adjusted. The data sets contain 520 entries.

Table 3  Recessions in the USA 1970 to 2020

Recession seriousness is calculated as the sum of deviation from a linear trend and its duration, both var-
iables normalized to unit standard deviation. The period is peak through trough. Source: NBER, National 
bureau of economic research. https:// www. nber. org/ resea rch/ data/ us- busin ess- cycle- expan sions- and- 
contr actio ns, visited 11–11-21

No Recession Key factors Seriousness Period

1 The 1980 recession The Volcker inflation targeting 1 Jan. 1980–July 1980
2 The 1981–1982 recession The 1979 energy crisis 3 July 1981–Nov. 1982
3 Early 1990s recession 1990 oil price shock 4 July 1990–Mar. 1991
4 The 2001 recession The dotcom bubble, the 9/11 

attacks and accounting scandals 
at major US firms

2 Mar. 2001–Nov. 2001

5 The great recession The subprime mortgage crisis 5 Dec. 2007–June 2009
6 The Covid-19 recession Pandemic 6 Feb. 2020

1 The data is retrieved from https:// ihsma rkit. com/ resea rch- analy sis/ index. html
2 https:// fred. stlou isfed. org/ series/ PAYEMS

https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
https://ihsmarkit.com/research-analysis/index.html
https://fred.stlouisfed.org/series/PAYEMS
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Table  3 lists all the NBER recession dates for recessions in USA during the 
1970–2020 period. The NBER dating of recessions uses as a “rule-of-thumb” 
(ROT), a decrease in GDP for two consecutive quarters. However, there are three 
additional criteria for identifying a NBER recession: it should have a certain depth, 
it should be widespread across US (diffusion), and it should have a certain dura-
tion. The three criteria combine are used to define a recession, but one criterion may 
compensate for another in identifying a recession. In Table 2 we have added a meas-
ure of seriousness as the sum of its deviation from a linear trend and its duration 
over the period defined by NBER, both measures normalized to unit standard devia-
tion. The data were retrieved from St. Louis Fed.3

4  Methods

This section first briefly describes the seven procedures used to extract trends from 
the observable time series. A survey of the methods examined and references to their 
first use were given in Table 1. Then we explain how we determine the reference tie-
points, which are the proxy for the NBER recessions, as well as two empirical tests 
for the resulting cyclic series.

4.1  Alternative detrending methods

In the following, we denote the original time series by y(t) , its trend by y∗(t) and the 
resulting series by Y(t) . The trend series y∗(t) is the difference between the original 
series, y(t) and the detrended series Y(t).

Linear and polynomial trends. Linear and polynomial detrending assume that 
y∗(t) is a deterministic process which can be approximated by polynomial functions 
of time. With linear and second order polynomial detrending we used the residuals 
after subtracting the data corresponding to the regression line from the raw data y(t) 
where y∗(t) is obtained by regressing the raw series, y(t) , on time, t.

The detrended series is then.

The LOESS smoothing algorithm. LOESS, originally proposed by Cleveland 
(1979) and further developed by Cleveland and Devlin (1988) and Cleveland and 
Grosse (1991), is also known as local regression. It is a method that smooths 
a time series piecewise by fitting a smooth curve to a set of data points with 
weighted linear regression. For each value of t, an estimated value of f(t) is found 
by using its neighboring sampled values within a running window. The length 

(1)y∗(t) = �1t + �2t
2 + �

(2)Y(t) = y(t)−y∗(t).

3 GDP is retrieved from https:// fred. stlou isfed. org/ series/ UKNGDP and unemployment from https:// fred. 
stlou isfed. org/ series/ AURUKM

https://fred.stlouisfed.org/series/UKNGDP
https://fred.stlouisfed.org/series/AURUKM
https://fred.stlouisfed.org/series/AURUKM
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of the running window is defined by a factor (f) that determines the fraction of 
the time series that is used as a running window, that is, it determines n in win-
dows ti − ti+n, i < tmax−n. A factor (p) that determines the polynomial degree used 
to interpolate within the window. To detrend the GDP series in our example, we 
used f = 0.8 and p = 2 to identify the trend y*(t). Since we always use p = 2, we use 
the acronym LOESS(f) to show the LOESS parameters used. The LOESS algo-
rithm is available in many statistical packages, and we use the program package 
SigmaPlot for the LOESS smoothing. The LOESS algorithm may perform fairly 
similar to the Detrended Fluctuation Analysis (DFA) as it is discussed in Bashan 
et al., (2008 p. 5082). However, here we avoid calculating the difference between 
maximal and minimal values.

The first derivative. There are two major techniques for taking the first deriva-
tive. One method is to subtract observations over a certain interval, h.

We follow Estrella and Hardouvelis (1991) by making the subtraction  yt+4 −  yt. 
Using this method, the unit root is eliminated.

A second method is to calculate an ordinary linear regression, (OLR), over 
a moving time window and then use the β1—value of the regression as the new 
detrended time series. The β values will replace Δh =  Yt+h–Yt, in the traditional 
first difference method, but damp extreme values that could occur if  Yt+h and Yt,, 
should happen to be extreme in opposite directions, e.g., Seip and Wang (2023).

The HP-filter. The Hodrick–Prescott, HP, high-pass filter separates a time 
series into trend and cyclical components. The HP filter is frequently used in 
economics. For example, Bjørnland et  al. (2008) apply it among several other 
methods to study the effect of output gaps on forecasting. The HP filter extracts 
a stochastic trend which for a given value of λ moves smoothly over time and is 
uncorrelated with the cycle. Kydland & Prescott (1990) argue that λ = 1600 is 
a reasonable choice for quarterly data and many subsequent studies have used 
this value. As we have monthly data, we use λ = 3 × 1600 = 4800. The HP-filter is 
implemented in several statistical packages, e.g., Stata© and R©.

The Hamilton- filter. The HP filtering technique is said to introduce spurious 
dynamics that have no basis in underlying data-generating processes (Hamilton, 
2018). Hamilton therefore introduces a new technique that estimates an OLR 
regression of yt+h on a constant and the p most recent values of y as of date t  . The 
description follows closely that of Hamilton (2018).

The residuals are

This gives a way to construct the transient response component.

(3)Y(t) = yt+h−yt

(4)Y(t) = �1(t), y
∗(t) = Y(t)−y(t).

(5)Yt+h = �0 + �1yt + �2yt−1 + �3yt−2 + �4yt−3 + �t−h

(6)�̂t+h = �t−h − �̂0 − �̂1yt − �̂2yt−1 − �̂3yt−2 − �̂4yt−3
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For quarterly GDP data Hamilton (2018) recommend p = 4 and h = 8 , which for 
monthly data would translate into p = 12 and h = 24 . The parameter values for p 
and h refer to cyclical factors for the business cycle movements (Hamilton, 2018).

The logarithm. The logarithm is often applied to time series to stabilize the vari-
ance (see Table 1), but the series will not be detrended.

4.2  Comparing Detrending Methods

We first explain how we determine the reference tie-point, which is the proxy for the 
NBER recessions. Thereafter we describe two empirical tests for the resulting cyclic 
series, their lead-lag relations to employment (EM), and their cycle periods.

4.2.1  Determining the Reference Dates

To determine recessions in the GDP data, we examine if there are periods in the 
data where GDP decreases over two consecutive quarters. A negative trend will cor-
respond to an approximation to the NBER definition of a recession. (The NBER 
definition has three additional criteria). To the raw GDP data, we first apply a mov-
ing ordinary linear regression, OLR, over 7 months, about two quarters, but with 
an additional month to get an odd number of months. Our “rule of thumb” (ROT) 
is that there is an overall decrease in GDP for seven months. The β-coefficient of 
the OLR is then negative, and thus signaling a possible recession. We do not stabi-
lize the variance of the GDP data since the NBER 2-quarter rule is applied to the 
raw data. We identify the mid-point month when a negative β-value is encountered. 
Since the slope may continue to be negative for several months, we discard the dates 
that correspond to consecutive negative trends. The rationale is that after the first 
negative GDP change, the following negative coefficients describe the continuation 
of a deep recession. The dates we identify with the negative slope may correspond 
either to a NBER recession or to an event with a negative trend over 7 months but 
not assigned as a NBER recession. Such events that are more than 4 months apart 
from a NBER recession will be ranked as false. If no signal appears within 4 months 
interval around the ROT recession, the detrending method will be ranked as missing 
that ROT recession.

To compare the results for the detrended series, we normalized all series to unit 
standard deviation. As the year reported is the midpoint year for the slope, the nega-
tive trend may start 3 months ahead of the reported date. To make it easier to eval-
uate the comparisons of dates obtained with the different detrending methods, we 
report the number of the month since January 1977 (1977M1) when a recession or a 
ROT event occurred.

For the detrended data, we do not know with any precision what a negative slope 
in the raw data would correspond to in the detrended data. We therefore divided 
the β -values into compartments separated by the values: 0, − 0.5, − 1.0, − 1.5, − 2, 
− 2.5, and − 3.0 and record β-coefficients within each compartment. Naturally, there 

(7)Y(t) = log10(1 + y(t))
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will be more dates with negative β-coefficients with values in the compartments 
closest to zero and a negative sign far from zero would suggest a deep recession. 
We chose to record dates that showed β-coefficients steeper than − 1.5 and − 2. The 
values are a tradeoff between identifying all official recessions and not obtaining too 
many false recessions.

4.2.2  Lead‑Lag Relations

One objective for detrending may be to identify leading indexes for prediction of 
future movements in GDP. To compare a leading index to GDP, one must normally 
detrend the GDP since the leading indexes often vary between set limits, e.g., per-
centages. During cross-correlation studies, series are shifted forward and backward 
in time to see overlapping patterns. Cross correlation procedure is used to establish 
if “stylized facts” are supported by macroeconomic time series that are assumed to 
have a certain relation to GDP, e.g., as in Bjørnland (2000).

We examine the relation between the raw GDP and EM series (both with long-
term trends). The lead-lag method calculates an angle, θ(3), for two paired series x(t) 
and y(t) based on three consecutive paired observations in the phase diagram for the 
series (x = x(t), y = y(t)). The angle, θ(3), gives information on the lead-lag relations 
for three consecutive paired observations in the time series x(t) and y(t). The lead-
lag analysis is related to the Lissajous representation of cyclic curves, e.g., Seip & 
Gron (2017).

A lead- lag method that also uses the dual presentation of x(t) and y(t) as time 
series and as phase plot is described in Krüger (2021). The rotational direction rep-
resented by the angle θ between two successive vectors  v1 and  v2 through three con-
secutive observations in the trajectory is calculated with Eq. (2)4:

The vectors are calculated as (yi − yi−1)/(xi − xi−1) with i = 2, 3, ….
Since the lead-lag method uses a moving window of three time steps, we can 

apply the method to time series that are not detrended and not stationary. The lead-
lag relations implicitly assumes that a peak in the leading series is followed less than 
½ of a common cycle period, λ, of a peak in the target series.

A measure of the persistence of a leading relation, the LL strength, is defined as

where  N+ is the number of leading relations for two time series x and y, x → y, and 
N− is the number of lagging relations between the time series, x ← y. Thus, if there is 

(8)� = sign(�1 × �2) ⋅ Arccos

(
�1 ⋅ �2

||�1||||�2||

)

(9)LL-strength = (N+ − N−)∕(N+ + N−)

4 The equation can be implemented in a spread sheet (e.g., Excel format): With  v1 = (A1,A2,A3) and 
 v2 = (B1,B2,B3) in an Excel spread sheet, the angle is calculated by pasting the following Excel expres-
sion into C2: = SIGN((A2 − A1)*(B3 − B2) − (B2 − B1)*(A3 − A2))*ACOS(((A2 − A1)*(A3 − A2) + (B2 
− B1)*(B3 − B2))/(SQRT((A2 − A1)2 + (B2-B1)2)*SQRT((A3 − A2)2 + (B3 − B2)2))).
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a persistent positive lead-lag relation over nine consecutive observations, we get N+ 
= 9, N− = 0 , and LL strength = (9–0)/(9 + 0) = 1. The number 9 is a tradeoff between 
measuring lead-lag relations over short periods and the possibility to establish sig-
nificance. The 95% confidence interval (CI) for the LL strength for two raw uni-
formly stochastic series is ± 0.32. Frequently, we will smooth time series, partly to 
avoid high frequency noise and partly to identify cycle variabilities that are of inter-
est, e.g., business cycles. When we calculate LL strength(9) for the smoothed series, 
the probability to obtain sequential angles, θ(3), that have the same sign increases, 
so the CI does not strictly apply. Since we want to report the results for the smoothed 
versions, we use the term “pseudo-significant” when Abs(LL strength) > 0.32. We 
screened for noise by applying increasing LOESS smoothing to the GDP and EM 
series and found that significant (positive or negative) LL values stabilized after 
LOESS (0.15) were applied to the series. To score the lead-lag relations for US data, 
we calculated the distances in a PCA loading plot between the lead-lag results for 
paired detrended data series, GDP and EM and the lead-lag result for the paired raw 
series GDP and EM. The lead-lag method is illustrated with an example in Appen-
dix B and the spreadsheet with the essential calculations are available upon request.

4.2.3  Cycle Periods

Power spectral density analysis, PSD estimates the magnitudes of the frequency 
components that combine to make up the variability of a (semi) cyclic time series. 
By applying PSD, we identify cycle periods in the series. Its result is a graph that 
shows the density (or strength) of component sine functions of a given cycle period, 
λ. We stack the PSD graphs, normalized to unit standard deviation, obtained with 
all six detrending methods and examine if there are cycle periods (peaks) that do 
not cancel out across detrending methods (Johnson et al., 1996). We examine if the 
detrended series identify similar cyclic periods, and if the cycles we identify can be 
related to stylized facts in the macro economy.

4.2.4  Principal Component, PCA, Plots, and Tabulation Of Scores

We examine similarities between the six trends and the six detrended series by com-
paring them in PCA loading plots. We calculate the effects of detrending on lead-lag 
relations between GDP, EM pairs and we calculate the effects on cycle period iden-
tification. The end-result is a set of scores for the six detrending method on three 
criteria related to the timing of events, the lead-lag relations to EM, and the identifi-
cation of cycle periods.

5  Results

First, we examine how our ROT definition of recessions, that is, a negative trend 
that prevails over 7 months, corresponds with the recessions defined by NBER. The 
reason we do not use the NBER dates directly for comparison with our detrending 
results is that NBER has a wider definition than we use, and thus may differ slightly 
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from the dates found by the ROT method. We first present the detrending methods 
that is close to being generic and last the detrending methods where the parameters 
are set depending upon characteristics of the time series to be detrended.

All our results in the main text apply to the GDP series for USA. We use that 
series because the well-defined NBER recessions (tie-points) allows us to identify 
errors in timing caused by detrending. However, to secure that our test for the skill 
of detrending methods are robust, we applied the tests also to UK data and report the 
results as an additional analysis in the Appendix A.

5.1  Dating Proxies for NBER—Recessions

We compare the timing of the NBER recessions with the recessions found by apply-
ing our ROT criterion. Figure 1a shows the raw series, not detrended for the GDP 
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Fig. 1  Raw data for US GDP 1977 to 2020, monthly data. a The raw GDP time series including the Feb. 
2020 pandemic, b Running average regression coefficient (7 months). Dots and drop lines show dates for 
NBER recessions

Table 4  Time between the US NBER recession dating and negative regression coefficient over 7 months 
(β-coefficient)

The number in the “False” column show that negative β-values are registered, but the dates are more than 
4 months from the dates for any of the six NBER recessions. n.a. = not applicable

Recession Difference from 
NBER

Average 
differ-
ence

False

1980 1981–1982 1990 2001 2008 2020

Month since Jan 
1977

37 55 163 279 372 518 n.a n.a

Dates identified 
by negative β- 
coefficient

36 56 162 293 371 514 1

Difference, 
months

− 1  + 1 − 1  + 14 − 1 − 4 8 (ex 2001) 1.6
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1977–2020 and Fig.  1b shows the 7  months running OLR β-coefficient for GDP, 
after the GDP has been normalized to unit standard deviation. The NBER recessions 
are shown with drop lines from the dates of the recession peaks. Dotted lines show 
incremental β-coefficients values 0, − 0.5, − 1.0, − 1.5, − 2, − 2.5, − 3.0.

Table 4 summarizes the time difference (in months) between the NBER reces-
sion start dates and those identified using the negative β-coefficient over 7 months. 
(The comparison shows that, apart from the 2001 recession, the average difference 
between the ROT recessions and the NBER recessions is 1.6 months, Table 4.

5.2  The Trends and the Detrended Series

The trends for the six detrending method were shown in Fig. 2a, c, and their simi-
larity in the PCA loading plot in Fig.  2e. (We removed a common average trend 
because the slopes became identical down to the third decimal without removing 
it). The linear, LIN and the second order polynomial, POL trends are similar to each 
other, and the LOESS (0.8) trend is also similar to the LIN and POL trends. (In 
the figure, they are at about the same position on the PC1 axis that counts for 71% 
of the variance). The Hamilton-filter, HAM, and the first order differencing, DIF, 
trends are quite similar, and they are similar to the raw (RAW) data. The detrended 
series were shown in Figs. 2b, d. Their PCA loading plot shows that the cyclic com-
ponents for the LIN, POL, and the LOESS time series are similar. In addition, the 
Hodrick–Prescott filter, HP, and the HAM series are a somewhat similar (they score 
similarly on PC1), however, the DIF time series are different, Fig. 2f.

5.3  The Three Tests

To evaluate the results, we constructed three criteria for acceptable performance of 
the detrended GDP time series. (i) The deviation in time of the recessions from the 
ROT dates should be less than three months (one quarter). (ii) The lead-lag rela-
tions LL(GDP, EM) detrended should not be far from the LL(GDP, EM) raw. (iii) It 
should be possible to identify the same cycle periods for the detrended GDP series 
as a cycle that corresponds to a prominent peak in the stacked series.

5.3.1  Dating Recessions

The results for all methods are calculated in the same way as explained for Fig. 1b. 
Numerical results are shown in Table  5. For each alternative detrending method, 
we report two sets of “ROT recession” dates. The first alternative shows slopes 
(β-coefficients) that are steeper than (minus) − 1.5. The second alternative shows 
slopes that are steeper than − 2.0. The first alternative identifies more dates for nega-
tive β-coefficient as possible recessions, but also more “false” recessions. The right-
most column shows the number of “false” recessions. The COVID-19 pandemic 
that started in 2019 caused an abnormal V-shaped pattern in GDP, which leads to 
extreme values in the detrended GDP. These extreme values are problematic for 
some detrending methods that give unreasonable results at the extreme ends of the 
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Fig. 2  Trends and detrended series. a Gross domestic product for the US 1977 to 2019, and trends in the 
series obtained with linear (LIN) and polynomial (POL) regression and by subtracting a series obtained 
by first difference of the GDP series. The trends are shifted upward 3 units to better distinguish among 
them. b Detrended series corresponding to the trends in figure (a). Detrended series are normalized to 
unit standard deviation. Droplines show peak (or bend) values for HAM detrended series. c Similar to 
(a), but the trends are obtained by LOESS smoothing GDP with parameters f = 0.8 and p = 2 (See text), 
and detrended by the Hodrick–Prescott, HP, filter and the Hamilton method, HAM. d Similar to (b) 
but with LOESS, HP, and HAM detrending methods. Droplines show peak (or bend) values for HAM 
detrended series. e) PCA loading plot for the trends. f) PCA loading plot for the detrended series
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time series. Therefore, we deleted 3 months at the beginning and 6 months at the 
end of the time series.

Linear (LIN) and polynomial (POL) trends. The GDP linearly and polynomial 
detrended is shown in Fig.  2a. The corresponding detrended series normalized to 
unit standard deviation are shown in Fig. 2b. In this latter figure, we have added a 
LOESS (0.3) smoothed thin line to better distinguish common peaks and troughs 
in the series. The droplines identify peaks in the uppermost series. We applied a 
7-month moving OLR to the detrended data as in Fig. 1b. We found that the average 
difference from the ROT dates were 2.4 months for linear detrending and 1.6 months 
for the second-order polynomial function. (We use the cut-off value that gives the 
shortest average difference from the ROT recessions. Data for recessions that are not 
identified are not included in the average.) The average differences were less than 
a quarter. There is no false recession for linearly detrended series. For polynomial 
detrended series, the number of false recessions is 3 at negative slope − 1.5 and 1 at 
negative slope − 2.0.

The LOESS smoothing algorithm, LOESS. The time series are first smoothed 
with the LOESS algorithm and then the residuals after smoothing are calculated. 
The degree of smoothing may be chosen to disentangle two cyclic processes that 
together give their imprint on the studied series. This algorithm thus presupposes 
that the degree of smoothing is evaluated a priori and then implemented in the 
LOESS algorithm by determining the values of the method parameters f and p. For 
the GDP series we chose LOESS(0.8), that is, a high degree of smoothing. We will 
discuss this choice in the discussion section. The trend and the detrended series after 
the LOESS smoothing are shown in Figs.  2c, d. The average difference from the 
ROT dates were 1.4–2.8 months, that is less than a quarter. However, the date for the 
2001 recession is not identified (and therefore not included in the average). There is 
1 false recession at − 1.5 and zero at − 2.

The first difference (DIF). The detrended series is shown in Fig. 2b. The droplines 
allow us to compare peaks in the original series and the first difference series. Dif-
ferentiating shifts the original series backward. The date for the 2001 recession were 
not identified. The average difference from the ROT dates is 2.4 and 2.6 months, that 
is less than a quarter, Table 5. There are 8 false recessions at − 1.5 and 1 at − 2.0.

The HP-filter (HP). The trend and the detrended series using the HP filter with its 
standard parameter λ = 4500 for monthly series are shown in Fig. 2c, d. The average 
difference from the ROT dates is 3.7 to 3.8 months, which is more than a quarter off 
the ROT values. However, the date for the 2001 recession is identified at the cut-off 
value of − 1.5. According to Table 5, there are two false recessions at cut-off value 
− 1.5 and zero at cut-off value − 2.

The Hamilton filter (HAM). The trend and the detrended series using the Hamil-
ton-filter identifies all 6 recessions with a cut off value at − 1.5 and 4 recessions with 
a cut-off value of − 2.0. However, the average differences from the ROT dates are 
2.7 and 4.75 months, the latter being greater than one quarter. There are zero false 
recessions.

The logarithm (LOG). For the GDP series, the average difference from the 
ROT dates are 4 months. However, the date for three of the recession is not iden-
tified (and therefore not included in the average), Table 5. Many of the studies in 
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Table 1 first log-transform the data, but as far as we can see they do not comment 
on possible shift in timing caused by the log-transformation.

5.3.2  Lead‑Lag Relations

Figure 3a shows the GDP and EM not detrended. The time series are displaced 
relative to each other for clarity. Figure  3b shows their lead-lag relations. The 
green bars show results for the LOESS(0.2) smoothed, but not detrended, series 
and the black bars show the results for raw unsmoothed series. An OLR between 
the two series gives R = 0.30 and p < 0.001. Here GDP leads EM 63% of the time 
and GDP lags EM 35% of the time.

We applied the lead-lag method to the six set of detrended series for GDP and 
EM and made a PCA plot for the six lead-lag series to see similarities between 
them, Fig. 4a. The LIN, POL and LOESS give similar LL(GDP, EM) series. The 
DIF and the HP detrended series show lead-lag relations that are similar to the 
lead-lag relations based on the RAW series shown in Fig. 3b. The HAM detrend-
ing method is different from the RAW series and from the other detrended series.

5.3.3  Cycle Periods

The stacked power spectra for the six time series is shown in Fig. 4b. The shortest 
cycles have been removed. The resulting PSD graph shows that there are peaks 
for the stacked series at 10, 14, 16, 24, 33, 37, 39, and 72 months.
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Fig. 3  Lead-lag relations between GDP, Employment, EM. a GDP and EM, both LOESS(0.2) smoothed. 
(text removed). b LL relations between GDP and EM, both LOESS(0. 2) smoothed (green) and raw, 
unsmoothed (black). (Text removed). Drop-lines show the beginning of recessions. OLR between green 
and black bars give R = 0.30, p < 0.001
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5.3.4  Summary of Results

We summarize the results by reporting: (i) the average dating difference for each of 
the detrending methods to the ROT dating, Table 6. (ii) The difference in LL rela-
tions between the LL value for each method and the LL relations found for the raw 
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Table 6  Three criteria for good detrending (US)

Recessions zero best; LL: zero best; Peak: large value best. Italic: outside and better than the 95% con-
fidence interval for the six methods. Numbers marked in bold are outside and worse than the 95% confi-
dence interval
Criteria: The dating of recessions < 3  months wrong, LL(GDP,EM)detrended close to LL(GDP;EM) raw, 
identifying 24 months cycle period with peak > 1.0, Scores outside acceptable levels in bold. Average: 
lowest number is best
* For all detrending methods, except HAM, GDP leads EM more than 50% of the time. Raw (57), 
LIN(66), POL(63), LOESS (62), DIF (66), HP (69), HAM (77)

Method Recessions LL(GDP, EM)* Contributing to peak 
25 months

Average

Score, months Best-worst Score Best-worst Score, months Score Best-worst

LIN 2.4 5 0.29 3 1.54 2 2.50
POL 1.6 2 0.32 5 1.38 3 4.00
LOESS 1.4 1 0.31 4 1.02 5 3.80
DIF 2.0 3 0.03 1 4.96 1 1.20
HP 3.7 6 0.2 2 1.04 4 2.47
HAM 2.3 4 0.41 6 0.01 6 4.67
Average 2.23 3.50 0.26 3.50 1.66 3.50 3.11
Criteria < 3 < 3.9 > 1
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series. (iii) A measure of the contribution to the peak for cycle periods at 24 months 
(calculated as peak value at 24 months minus the average of PSD values for the two 
previous and the two following months), and the method’s skill for each of the three 
tests are then ranked 1–6. The average of their ranks then expresses their overall 
skill, all three tests contributing equally.

5.3.5  Additional Analysis Using the UK Data

To verify that our test for the skill of detrending methods are robust, we apply the 
same tests also to UK data for the period 1977 to 2021. The Bank of England reported 
four recessions during the period 1977–2021: 1980Q1–1991Q1, 1990Q3–1991Q3, 
2008Q2–2009Q2, and 2020Q1–2020 Q2. For the sake of space, the tables are 
included in Appendix A. Table  A1 summarizes the time difference (in months) 
between the NBER recession start dates and those identified using the negative 
β-coefficient over 7 months. The table shows that the average difference between the 
estimated recessions with the rule-of-thumb and the actual recessions is 4.5 months.

Table  7 provides a summary of the three criteria for evaluation the detrending 
methods. Overall, the detrended GDP for UK gave better results than the detrend-
ing for US. For example, the four recessions were determined with an average of 
0.79 months precision in the UK (Table 7), whereas it was 2.23 months precision for 
the US (Table 6). We calculated 95% confidence intervals for the recession scores 
and for the average scores. The first difference method gave the best detrending 
results both in the US and the UK, but the method also gave most false recessions. 
The LOESS detrending method, US, and the LIN detrending, UK, scored better 
than the averages (averages are scores within the 95% confidence band) on recession 
dating. The HP and the HAM detrending methods both scored worse than average, 
either on the recession scores or on the average scores.

Table 7  Three criteria for good detrending (UK)

Recessions: zero best; LL: zero best; Peak: large value best. Italic: outside and better than the 95% con-
fidence interval for the six methods. Numbers marked in bold are outside and worse than the 95% confi-
dence interval. Last column shows the scores for both US and UK

Method Recessions LL(GDP, EM)* Contributing to peak 25 Average Sum US 
and UK

Score 
months

Best-worst Score Best-worst Score, 
months

Best-worst Best-worst

LIN 0.50 1 0 1 0.86 5 2.33 4.83
POL 0.75 3 0.002 4 2.12 3 3.33 7.33
LOESS 0.75 3 0.038 3 2.12 3 3.00 6.80
DIF 0.50 2 0.074 1 2.41 2 1.67 2.87
HP 1.25 6 0.204 5 3.70 1 4.00 6.47
HAM 1.00 5 0.182 0.18 6 5.50 10.17
Average 0.79 3.33 0.08 2.80 1.90 3.33 3.31
Criteria < 3 < 1.0 > 1
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6  Discussion

Our results are closely related to our choice of test series, the GDP and EM, series 
for the US the UK. If we replace EM with unemployment, the two series are related 
through Okun’s law. For GDP it is often assumed that there is steady trend that last 
for the whole study period (Hamilton, 2011; Franke & Kukacka, 2020, p. 1 and 11). 
The UK data showed much of the same characteristics as the US data.

6.1  Detrending Methods

We use three criteria for assessing the skill of the detrending method. The scores on 
the criteria we chose for acceptable results are subjective but are based on the distri-
bution of scores for all six detrending methods. However, depending on the purpose 
of the detrending, one of the three tests may be more relevant than the others.

Our numerical results show that the first order differencing (DIF) method gave 
the best overall result, which were quite surprising since differentiating a cyclic 
series would shift peaks and troughs in the series. On the second place comes lin-
ear detrending (LIN). The polynomial detrending (POL), LOESS filter and HP filter 
are all within the 95% confidence band. On the last places came the HAM method. 
Complex detrending with the HP and the HAM method using the parameters rec-
ommended for GDP gave results that were worse on one or two of the criteria for 
acceptable results (Tables 6 and 7). However, better determination of the parameters 
may increase the skill of the two methods.

Our results can be compared to results in other studies, although test criteria are 
different. Hall et  al., (2017, p. 212) found that the HP- filter (λ = 1600; quarterly 
values) had best fit to New Zealand stylized facts, whereas LOESS (≈ 0.5) fit the 
facts “to a lesser extent”. Hall and Thomson (2021) found that the HP- filter per-
formed poorly without extensions at the extremes, but that the HAM (h = 8) per-
formed worse.

6.2  The Three Tests

We first discuss the dating of recessions, then the lead-lag relations, and last the 
cycle periods. The discussion relates to the US time series. The test results using UK 
data are similar.

6.2.1  Skill in the Dating of Six Recessions

Except for the 2001(2) recessions, all recessions were identified by the ROT method 
(the number in parentheses is the seriousness of the recessions measured as deepness 
plus duration, high numbers give the most serious recessions). The recessions were 
identified with various timing errors. The recessions in 1980 (1) and 1990 (4) was 
best identified giving an average of 1/3–½ month in error relative to the NBER iden-
tification. The recessions in 1981–82 (3) was also well identified by all detrending 
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methods, and with an average of 2 months difference from the NBER recessions. 
The two recessions, 2008 (5) and 2020 (6) had an average error of 3–5 months. The 
recession in 2001 was not identified by the ROT method, but a ROT recession was 
identified in May 2002, 14 months later. The LIN, the HP, and the HAM methods 
all detected the 2001 recession. All methods, except for the HP filter, gave dates that 
were shifted less than a quarter.

For most detrending purposes, the correct dating of events in the series may be 
most important, for example when events that are assumed to be predictive or causal 
for a recession are compared to the date of the recession. For detrending the LOESS 
method scored best with an average of 1.4 months difference from the ROT dates, 
but with the POL method close (1.6 months). The trends that are removed from the 
raw data are similar for LIN, POL and LOESS (Fig. 2e, PC1 counts most), and they 
result in the detrended series for LIN, POL and LOESS to be quite similar (Fig. 2f).

6.2.2  Skill in Determining Lead‑Lag Relations

A leading role for a causal effect is a prerequisite, but not a sufficient criterion 
for causation. However, the leading role is often offered as a strong argument for 
a causal effect, (Sugihara et al., 2012). Thus, it is important that lead-lag relations 
are preserved. We examined the lead-lag relations between: Real GDP and employ-
ment. The results for EM support Hamilton (2018; p. 838)’s finding that the cyclical 
component of EM starts to decline significantly before the NBER business cycle 
peak for essentially every recession. (Here before 1980, 1990, 2008 and 2020 reces-
sions). However, although EM leads GDP before a recession, it lags GDP after the 
recession.

Since the lead-lag method can be applied to raw, not detrended series, we com-
pared the results obtained with the different detrending methods to the result for the 
raw series (slightly smoothed). We found that the DIF method gave lead-lag rela-
tions that were closest to the results for the RAW series. The LIN, POL and LOESS 
methods came out similarly, whereas the HAM method came out worst.

6.2.3  Skill in Determining Cycle Periods

Strong peaks, apart from those at very short cycle periods, are at 24  months, 
(2 years) and at 72 moths, (6 years). Both cycle periods can be related to the in-
between elections to the congress and to the senate and less directly to presidential 
tenures of 4 and 8  years. The cycle periods (24 and 72  months) are close to the 
domain for business cycles identified by Burns & Mitchell (1946) who suggest that 
business cycles are between 18 and 96  months. To our surprise, the DIF method 
gave the far best result in identifying cycle period of 24 months and it also identified 
a cycle period of 72 months. The LIN and POL methods came on the next places 
and LOESS, HP, and HAM (worst) came on the last places. Hallett & Richter (2006) 
use a short-time Fourier transform for the UK GDP 1981Q4 to 2003Q1 and find the 
US and the UK have cycle periods that are common in the long run. (There is a prin-
cipal cycle period of 62 quarters, 15 years).
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6.3  Robustness

We have applied the detrending methods to monthly US GDP from 1977 to 2019. 
To obtain monthly values, we interpolated linearly the quarterly data reported by US 
Bureau of Economic Analysis and retrieved from the Federal Reserve Bank of St. 
Louis. However, the IHS Markit reports monthly values from 1992 to present. Our 
interpolated monthly GDP data compare well with the monthly data supplied by the 
IHS for the period 1992 to 2020  (R2 = 0,999, p < 0.001.) Furthermore, using quartile 
data would not have given us the resolution we obtained, with many recession dating 
events less than a quarter.

It is a concern that smoothing, e.g., LOESS (0.1) smoothing gives a moving win-
dow of ≈ 53 months for our data set, and the LL strength period (9 months) may 
impact the variations in LL strength and the cycle periods we identify. However, the 
lead-lag measure for the “not detrended and not smoothed” data shows a recession 
pattern that coincide with the NBER recession pattern. In addition, a cycle period 
of 24 months was found by the PSD for almost all detrending methods (no smooth-
ing). Thus, we believe that the advantage of smoothing the time series and using a 
short period for the LL strength measure outweighs the possible disadvantage that 
an imprint of our periods (≈ 53 and 9 months) may have on the results.

Statistical confidence intervals. There are no “ground truth” to what the trend for 
economic time series, like the GDP really is. Thus, we cannot compare our results 
to the “real” trend. We calculated the 95% confidence interval for the average scores 
in Table 6. In theory one could construct a trend by incorporating in a model the 
variables that are assumed to cause a trend, like population, capital stock and tech-
nology (Hamilton, 2018, p. 1006). A second approach, as used here, was to apply 
the detrending methods to the GDP of two “unions”, the US and the UK. Both the 
US and the UK experienced similar recessions, although the UK only recorded four 
recessions and the dating was with respect to quarters.

For the GDP of both countries the “simple” detrending methods, LOESS detrend-
ing scored well and met our criteria values. Furthermore, determining the factor, f, 
for smoothing with the LOESS algorithm is visually simple and the LOESS smooth-
ing algorithm is available in most statistical packages.

6.4  Further Studies

Several studies explore the effects of parameter settings for different detrending 
methods, e.g., Ravn & Uhlig (2002), Hamilton (2018), and Hall & Thomson (2021) 
on the HP filter. Wills et al. (2018) try to disentangle time series to identify com-
ponent series that are due to specific mechanisms in climate science. Thus, further 
studies could explore how generic algorithms for the choice of parameters for each 
filter could be established and how each choice of parameters would help identify 
the mechanisms that are acting to create component series in the observed super-
imposed series. Several detrending methods, e.g., the HP filter, the LOESS smooth-
ing algorithm would allow a stepwise use of detrending from low frequency to high 
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frequency variabilities. Thus, criteria that would signal that an economically signifi-
cant cycle component is identified would be especially useful. One criterion could 
be to stop detrending when stylized facts suggest that a cause/target relationship 
between two series actually show persistent leading relations and persistent common 
cycle periods. A second criteria could be that visual inspection of a series show rea-
sonable reproduction of peaks and troughs. A third criterion could be that forecast-
ing based on a training/ test set gives a minimum for root mean square error values.

7  Conclusion

We applied the six detrending methods to the gross domestic product, GDP, for 
US and the UK 1977 to 2019, and found that first differencing the series gave a 
detrended series that on the average scored best on three tests: (i) Small shifts in 
the date for six recessions during the period. (ii) Good and reasonable reproduction 
of lead-lag relations between GDP and EM, and (iii) identification of cycle periods 
at 24 and 72  months. However, methods that detrended by subtracting a linear, a 
second order polynomial, or a LOESS smoothed trend also performed well and sat-
isfied our criteria for adequate detrending. Two common detrending methods, the 
Hodrick–Prescott, HP-filter and a detrending method developed by Hamilton (2018) 
obtained worst overall score. However, better judgements of the two last method’s 
parameters may improve their detrending skills.

Appendix A

Detrending of United Kingdom Gross Domestic Product, GDP

Estimating recession dates for United Kingdom recessions for the period 1977–2021. 
There were four recessions: 1980Q1 to 1991Q1, 1990Q3 to 1991Q3, 2008Q2 to 
2009Q2, and 2020Q1–2020 Q2 (Fig. 5).

The calculations differ a little from the calculations for the US recessions. 
The GDP time series shows an extreme outlier after 2019:11 (due to the Covid-
19 pandemic and probably also to the Ukraine war), so we used the linear trend 
1977–2019:11 for the whole period 1977:1 to 2021:7 (Tables 8, 9).
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UK Gross domestic product, GDP
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Appendix B

Economy Example

US GDP 1947Q1-1965Q2 We use GDP on itself. The GDP raw would be an ideal-
ized leading index for GDP + 3. An independent leading index would be similar to 
the raw GDP (Fig. 6).

Pos. bars: GDP(x) leads GDP+3 (y)
Neg.bars: GDP(x) lags GDP+3 (y)
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Fig. 6  Example: GDP LOESS (0.2) smoothed (x) and shifted forward three quarters (y). a GDP time 
series, original (blue) and shifted 3 quarters forward (red). The zigzag curve indicates the length of cycle 
periods found by the cumulative angle method. b Lead-lag relations between GDP original and GDP 
shifted 3 quarters forward, LL (GDP, GDP + 3). The black bars show θ (3); that is, the lead-lag rela-
tion over three consecutive observations in the paired time series. The grey bars show LL (9); that is, 
the relation between positive and negative angles over 9 consecutive observations. c Phase plot for the 
pairs GDP and GDP + 3. Note that most rotations are counterclockwise (positive, +) showing that GDP 
leads GDP + 3. d Phase shifts calculated relative to running cycle period and relative to an average cycle 
period. The phase shift corresponds to the three quarters design phase shift. Average cycle period is 
about 13–14 quarters, lower curve shows running β—coefficient. Number for cycle periods are divided 
by 10 in a)
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