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Abstract: This article presents a novel methodology to extract the bridge frequencies from the
vibrations recorded on train-mounted sensors. Continuous wavelet transform is used to distinguish
the bridge frequencies from the other peaks that are visible in the Fourier amplitude spectrum of
the accelerations recorded on train bogies. The efficacy of the proposed method is demonstrated
through numerical case studies. For this, a detailed three-dimensional finite element model that can
capture the vibration characteristics of the bridge, track, and train is created, and each component
of the model is separately validated. The train model used is a three-dimensional multi-degree-of-
freedom system that can simulate the pitching and rolling behavior. The train was then virtually
driven over the bridge at different speeds and under varying track irregularities to evaluate the
robustness of the proposed method in extracting bridge frequencies from train-mounted sensors
under different conditions. The proposed methodology is shown to be capable of identifying bridge
modal frequencies even for aggressive track irregularity profiles and relatively high speeds of trains.

Keywords: vehicle-track-bridge interaction; bridge frequency; drive-by monitoring; vehicle scanning
method; wavelet transformation; dynamic identification

1. Introduction

Identifying the dynamic properties of bridges including their vibration frequencies is
critical for understanding their behavior. This will allow engineers to, among other things,
create numerical models that can better represent the physical behavior of the bridge [1–3],
identify any degradation in the materials by tracking the variations in the frequencies over
time [4], and determine the critical speeds of the trains that traverse the railway bridges
with the ultimate goal of effective and efficient infrastructure management [5–8].

Conventionally, identification of frequencies and mode shapes is based on on-site
measurements, which requires instrumentation of each bridge using several accelerom-
eters and a data acquisition system (e.g., [9,10]). These methods are referred to as direct
measurement methods as they directly measure the vibrations on the bridge [11]. One of
the most significant limitations of direct measurement methods is the need for a separate
instrumentation system for each bridge. Considering the sheer number of bridges that are
in operation worldwide, the costs and the labor-intensive nature of instrumenting each
bridge with its own instrumentation system becomes quickly overwhelming. Thus, only a
fraction of the bridges is currently instrumented [12].

Using vehicle-mounted sensors to identify the vibration frequencies of the bridges
provides an attractive alternative. These methods promise to identify the vibration fre-
quencies of numerous bridges from a few sensors mounted on a vehicle at a fraction of
the cost compared to the direct methods. The idea of using indirect methods, known
as such because the vibrations on the bridge are never measured directly, was first pro-
posed in [13] and several studies have been published on this topic since. The focus of the
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early studies was the identification of highway bridge frequencies using the accelerations
obtained from the quarter- or half-car models in numerical simulations [14–19]. Several
other studies then aimed to determine the mode shapes of bridges [20–26], to identify
and remove the adverse effects of surface roughness [27–31], or to identify the presence of
damage [32–36]. Although few in number, laboratory and field experiments were used to
confirm the theoretical and numerical findings [37–43]. Refs. [11,12] provide an excellent
summary of the most influential publications on the indirect methods. At the end of these
summaries, Yang et al. [11,12] also list the challenges that still remain on the identification
of dynamic properties of bridges via indirect measurements. The three most prominent
challenges are as follows: (i) Most studies are based on vehicle models that are simplified
as a single-degree-of-freedom (SDOF) system. Few studies so far have considered multiple
DOFs that represent the vehicle and the coupling effect of the multi-DOFs such as pitching
and rolling. (ii) The Fourier Amplitude Spectrum (FAS) of the accelerations recorded
on a vehicle-mounted sensor was shown, both analytically and experimentally [13,37],
to include the vibration frequencies of the bridge. However, these spectra often include
numerous other peaks due to road roughness and other factors, whose effects can arguably
be alleviated using different methods such as using dual vehicles, filtering techniques,
inclusion of vehicle damping, etc. (iii) Vehicle speed directly affects the duration of the data
sampling and the quality of the indirect measurements. It is, therefore, suggested in most
of the previous studies to use low-to-moderate speeds for the vehicles.

These challenges, which are valid for the road bridges, can arguably be amplified for
the railway bridges because of the complex nature of the railway track and its interaction
with a railway bridge. Although indirect methods have been available since the turn of the
century, only in 2021 their feasibility for the railway bridges was proven analytically [44]. After
deriving the theoretical equations which show that the frequencies of the rail-track system
and the bridge are inherent in the acceleration response of the vehicle, Yang and Yang [44]
demonstrate this using finite element analysis considering the impact of different parameters
such as track irregularities and infinite boundary conditions of the track. However, the FAS
includes several other peaks many of which can be much more prominent than the peaks
associated with the bridge frequencies. In a theoretical study such as [44], the frequencies of
the bridge are known a priori and can be identified among several peaks in the FAS. Yet, in
practice where the bridge frequencies are unknown and sought after, it is often not possible to
identify them among many peaks. Furthermore, the train is represented by a SDOF, which
cannot consider several phenomena related to the movement of a rail vehicle such as pitching
as well as the loading frequencies associated with different degrees of freedom crossing the
sleepers. In this regard, the examples of indirect monitoring for railway bridges are very scarce
and mostly based on numerical simulations. Zhan et al. [45,46] conducted numerical studies
using a series of SDOF and two-axle MDOF vehicles to identify the dynamic response of
simply supported railway bridges. Quirke et al. [47] tried to identify the presence of damage
on railway bridges using a virtual longitudinal profile. Fitzgerald et al. [48] numerically
investigated the feasibility of scour damage monitoring using the acceleration measurements
obtained from train bogies. Matsuoka et al. [49] proposed a method to identify resonant
railway bridges using the track irregularity measured from high-speed trains. They also
applied their method to operating high-speed trains in Japan and demonstrated the resonance
condition on some of the inspected railway bridges. It should be noted, however, that railway
track was not explicitly considered in these studies.

The main contribution of this article is to propose a novel methodology that can dis-
tinguish bridge frequencies from the other frequencies visible on the Fourier amplitude
spectrum. For this purpose, the proposed method combines Fourier Transform with Con-
tinuous Wavelet Transform (CWT). Leveraging the vibrations recorded on the bogie as it
is crossing the bridge as well as the front and back approaches, the natural frequencies of
the bridge are distinguished from other frequencies by investigating the time variation of
the frequency content of the recorded vibrations using CWT. Hence, the article provides a
theoretically sound and replicable methodology to identify the railway bridge frequencies
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using indirect methods considering track irregularities and relatively high train speeds.
The proposed methodology is demonstrated on numerical case studies where the train is
modeled using a three-dimensional multi-degree-of-freedom system with eight wheels
located on four bogies. The bridge was modeled using a dual-beam system as suggested
in [44] to fully capture the interaction between the vehicle, track and the bridge. Further-
more, the front and back approaches were modeled using a beam that simulates the rail
with the ballast and the track stiffness is simulated using linear springs discretized at every
60 cm. We used two different track profiles to account for the effect of track irregularities
on the frequency content of the vibrations recorded on the bogies. As such, the article
addresses all three challenges in bridge frequency identification from indirect methods
summarized in [11,12] by proposing a methodology that can distinguish bridge frequencies
from others that are visible on a complicated Fourier amplitude spectra under both low and
relatively high train speeds and using a complex vehicle model that can consider pitching
and rolling effect.

The article is structured as follows: First, the theoretical formulation by [44] which
proves that the bridge frequencies are visible in the acceleration response recorded on a
vehicle traversing a railway bridge is summarized. A brief summary of the continuous
wavelet transform is also introduced. In the following section, the breakdown of the
proposed methodology is explained. In Section 4, a summary of the finite element model
consisting of all the components of a railway system, i.e., the bridge, track, and the train is
provided. Each component of the FE model is modeled in detail in three-dimensional space.
The results of the numerical analysis carried out at different train speeds and with and
without track irregularities are provided in the following section, where case studies are
presented. The proposed methodology to detect the bridge frequencies from the vibrations
recorded on the bogie of the train is demonstrated and its efficacy under different track
irregularity profiles and train speeds is shown. Concluding remarks and suggestions for
future works conclude the article.

2. Theoretical Background
2.1. Equation of Motion

The governing equations for a sprung mass traveling over a dual-beam system that
simulates the rail-track-bridge structure (Figure 1) is presented in detail in [44] and will be
summarized here. Assuming that the damping and the mass of the vehicle is very small
compared to the track and the bridge, the governing equations of the rail and the bridge,
i.e., the upper and lower beams, and the vehicle can be written as follows:

Figure 1. Sprung mass moving on a dual beam that represents the rail-track-bridge system.

E1 I1
∂4u1(x, t)

∂x4 + ρ1 A1
∂2u1(x, t)

∂x2 + Θ(u1(x, t)− u2(x, t)) = fc(t)δ(x− vt) (1a)

E2 I2
∂4u2(x, t)

∂x4 + ρ2 A2
∂2u2(x, t)

∂x2 + Θ(u2(x, t) + u1(x, t)) = 0 (1b)
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where subscripts 1 and 2 denote the beams representing the rail and the beam, respectively,
ρ is the density, E is the Young’s modulus, A is the cross-sectional area, I moment of inertia
and u(x, t) is the beam displacement, Θ is the track modulus, δ is the delta function.

q̈v(t) + w2
vqv(t) = w2

vu1(xc) (2a)

fc(t) = kv(qv − u1(xc)) + Mvg (2b)

where qv is the displacement of the vehicle, wv is its natural frequency, Mv is the lumped
vehicle mass, kv is the spring constant, xc is the coordinate of the contact point, fc is the
contact force and g is the acceleration of gravity.

Defining Ki = Ei Ii, Mi = ρi Ai (i1, 2) and equating the right hand sides of
Equation (1a), a couple of homogeneous differential equations that represent the free
vibration behavior of the rail-bridge system is obtained:

K1
∂4u1

∂x4 + M1
∂2u1

∂x2 + Θ(u1 − u2) = 0 (3a)

K2
∂4u2

∂x4 + M2
∂2u2

∂x2 + Θ(u2 + u1) = 0 (3b)

Assuming that the mode shapes of a simply supported beam can be represented using
sinusoidal functions and using modal superposition, the displacements ui (i = 1, 2) can be
related to the modal coordinates qin as:

ui(x, t) =
∞

∑
n=1

qin(t)sin(knx) (4)

where kn = nπ/L.
Inserting Equation (4) into Equation (3) and solving these equations simultaneously,

the natural frequencies of the beams representing the track and the bridge can be solved as:

w2
1n =

1
2
{(Ω2

11n + Ω2
22n)−

√
(Ω2

11n −Ω2
22n)

2 + 4Ω4
120} (5a)

w2
2n =

1
2
{(Ω2

11n + Ω2
22n) +

√
(Ω2

11n −Ω2
22n)

2 + 4Ω4
120} (5b)

where Ω2
iin = (Kik4

n + Θ)M−1
i , and Ω4

120 = Θ2(M1M2)
−1.

With the frequencies of the dual-beam system available and using the modal superpo-
sition, the displacements of the upper and lower beams can be written as:

u1(x, t) =
∞

∑
n=1

sin(knx)
2

∑
i=1

Sin(t) (6a)

u2(x, t) =
∞

∑
n=1

sin(knx)
2

∑
i=1

ainSin(t) (6b)

where Sin(t) =in sin(ωint) + ηincos(ωint), in, ηin are equation coefficients, and
ain = Ω−2

10 (Ω
2
11n − ω2

in). Inserting Equation (6) into Equation (1), the equation of motion
for the double beam system under a moving load can be rewritten as:

∞

∑
n=1

sin(knx)
2

∑
i=1

(S̈in + ω2
insin) = M−1

1 fc(x)δ(x− vt) (7a)

∞

∑
n=1

sin(knx)
2

∑
i=1

(S̈in + ω2
insin)ain = 0 (7b)
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Using the orthogonality rules and trigonometric functions, the closed-form solutions
for the displacement of the dual-beam system subjected to a single moving load can be
written as:

u1(x, t) =
N

∑
n=1

2

∑
i=1

(
bji Mvg(sin(ωjitvki − sin(kivt)ωji)

ωji(vki −ω ji)(vki + ωji)
)sin(kix) (8a)

u2(x, t) =
N

∑
n=1

2

∑
i=1

aji(
bji Mvg(sin(ωjitvki − sin(kivt)ωji)

ωji(vki −ω ji)(vki + ωji)
)sin(kix). (8b)

where N is the number of eigenmodes included, b1n = 2a2n
(a2n−a1n M1L) , b2n = 2a1n

(a1n−a2n M1L)
Using Equation (8a) and by setting x = vt and uc(t) = u1(vt, t), the contact point

displacement uc(t) can be computed as:

üc(t) =
N

∑
n=1

2

∑
i=1

Aijcos((ωji − kiv)t) + Bijcos((ωjikiv)t) + Cijcos(2kivt) (9)

Aij, Bij, Cij are functions of the structural and vehicle properties, and their formulation
is omitted here for brevity but can be found in [44].

Finally, by substituting the contact point displacement into Equation (2a), the dis-
placement of the vehicle can be solved. Differentiating this displacement twice reveals the
acceleration response of the vehicle:

q̈v(t) = −
N

∑
n=1

2

∑
i=1

Dijω
2
vcos(ωvt) + Eij(ωji − vki)

2cos((ωji − kiv)t)+

Fij(ωji + vki)
2cos((ωji + vki)t) + Gij(2ki)v2cos(2kivt) + Hij (10)

where

Dij =
2(v2k2

i ω2
ji + 2ω2

v)v2k2
i Mvgbij

(2kiv−ωv)(2kiv + ωv)(kiv−ωji −ωv)(kiv + ωji + ωv)(kiv + ωji −ωv)
(11a)

Eij =
−ω2

vkivMvgbij

2ωji(kiv−ωji −ωv)(kiv−ωji + ωv)(kiv + ωji)(kiv−ωji)
(11b)

Fij =
ω2

vkivMvgbij

2ωji(kiv + ωji + ωv)(kiv + ωji −ωv)(kiv + ωji)(kiv−ωji)
(11c)

Gij =
−ω2

v Mvgbij

32(2kiv + ωv)(2kiv−ωv)(kiv + ωji)(kiv + ωji)
(11d)

Hij =
−Mvgbij

2(kiv + ωv)(kiv−ωv)
(11e)

It is clear from Equations (10) and (11) that the frequencies of the rail-track-bridge
system, ωji, are included in the acceleration response of the vehicle, and therefore, theoreti-
cally speaking, can be extracted from the accelerations recorded on a sensor mounted on
the moving mass. It can further be observed that the frequencies of the rail-track-bridge
system are not observed in their original form in the acceleration response of the vehicle
but they are shifted in the form of ωji ∓ vki where ki = iπ/L.

2.2. Continuous Wavelet Transform

Traditionally, Fourier transform is widely applied to a signal to determine its frequency
characteristics. However, it has two main drawbacks. First, it considers the entire signal
and does not provide any information about the potential time-dependent variations in
the frequency content of the signal. Furthermore, the Fourier transform is limited to
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sinusoidal waves as the basis for the decomposition of the signal. Wavelet transform (WT)
alleviates both shortcomings of the Fourier transform by providing a detailed information
about the variation of the frequency content with time as well as allowing different basis
functions, called mother wavelets, to be used to decompose the signal. A mother wavelet is
a waveform of limited duration and has an average value of zero:∫ +∞

−∞
Ψ(t)dt = 0 (12)

where Ψ(t) is the mother wavelet.
The Continuous Wavelet Transform (CWT) of a signal f (t) is given by:

W(a, b) =
1√
a

∫ +∞

−∞
f (t)Ψ(

t− b
a

)dt = 0 (13)

W(a, b) represents how closely the signal at a given time interval is correlated with
the wavelet. The scaling parameter, a is used to stretch and dilate the mother wavelet and
is correlated to the frequency of the wavelet while the translation parameter, b, is used to
move the wavelet of finite duration in time. In this study, Morlet wavelet [50] is used as it
is widely used in structural health monitoring applications [48,51]. The reader is referred
to these references for further information about wavelets [52].

3. Proposed Methodology

The proposed methodology consists of five steps:

1. Mount accelerometers on the bogeys of a train and measure the vibrations that occur
before, during, and after the train crosses a bridge.

2. Compute the Fourier Amplitude Spectrum (FAS) of the recorded vibrations and
identify the candidate frequencies. The candidate frequencies are the peaks that are
visible in the FAS that can be the bridge frequencies.

3. Perform a continuous wavelet transform (CWT) of the acceleration signals recorded
on the bogeys and create their wavelet coefficient maps.

4. For each candidate frequency, isolate the coefficients of the CWT for that frequency by
taking a horizontal section of the wavelet coefficient map at the scale corresponding
to that candidate frequency.

5. Compute the time variation of the energy of the coefficients at each candidate fre-
quency and its development over time. The bridge frequency can then be identified
as the frequency where the energy of the wavelet coefficients is concentrated at the
time-frame where the bogey is crossing the bridge.

The proposed methodology presented in Figure 2 is validated via case studies using a
detailed finite element model of the train-track-bridge system.

Figure 2. Flowchart of the proposed methodology.
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4. Finite Element Model
4.1. Train Model

The train model properties used in the study are based on the Manchester train
benchmark model [53]. A detailed three-dimensional model of the Manchester train was
developed. The wheels were modeled using a linearly elastic spring and a lumped mass
(kw and mw in Figure 3, respectively) while the bogies are modeled using a rigid beam
supported by at the primary suspension system (k1 and c1) connected to the wheel and
the bogie. Finally, the secondary suspension system (k2 and c2) connected to the bogie
supports the car, which is modeled as a rigid beam. The principle of the model is explained
in the schematic drawing shown in Figure 3 and the parameters used in the model and
their values are listed in Table 1.

The 3D train model, which is used in the numerical analysis, consists of two bogies
(front and back) each housing four wheels; two on each side of the track. The car body is
connected to the bogies at the middle of the bogie as illustrated in Figure 4a. Due to the
geometry of the train model, the effect of the pitching motion on the vibrations recorded on
the train-mounted sensors can be fully captured. On the other hand, the rolling motion of
the train, although can be captured to a certain extent due to the 3D nature of the model,
cannot be fully considered because the car body is modeled using a beam element.

Figure 3. Schematic illustration of the train model and the parameters.

Table 1. Mechanical properties of the train components.

Component Property Symbol Value

Wheel Stiffness kw 1× 105 kN/m
Mass mw 906.5 kg
Height Hw 0.46 m

Boogie Stiffness k1 1120 kN/m
Damping c1 4 kNs/m
Mass inertia Iyb 1610 kgm2

Mass mb 2615 kg
Height Hb 0.88 m
Length Lb 2.56 m
Density ρ1 10,200 kg/m3

Young’ Modulus E 1× 105 GPa
Poison’s ratio ν 0.2
Cross section H1, B1 0.25 m, 0.15 m

Car Stiffness k2 430 kN/m
Damping c2 20 kNs/m
Mass inertia Iyc 1.97× 106 kgm2

Mass mc 32,000 kg
Height Hc 1.8 m
Length Lc 19 m
Density ρ1 7400 kg/m3

Cross section H2, B2 0.65 m, 0.35 m
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Eigen-value analysis was conducted to determine the vibration frequencies and mode
shapes of the train and the results are plotted in Figure 4b–d. The mode shapes and the
vibration frequencies presented in Figure 4 indicate that the developed train model has
vibration characteristics that are similar to their counterparts reported in the literature for
the Manchester Train [53].

(a) 3D illustration of the Train Model

(b) Mode 1, f1 = 0.77 Hz (c) Mode 2, f2 = 0.79 Hz (d) Mode 3, f3 = 5.68 Hz

Figure 4. Numerical model of the train and its mode shapes.

4.2. Bridge and Track Model

The model developed in the Sofistik computational environment and used in the
numerical analysis consists of three sections: the front approach, the bridge and the back
approach. The front and the back approaches are modeled using elastic beams representing
the rail supported by a set of springs and dashpots discretized at constant intervals, which
represents the stiffness and damping characteristics of the track and the ballast. This rail
and track model is continuous throughout the three sections of the model, i.e., the front and
back approaches as well as the railway bridge. The lengths of the front and back approaches
were selected as 58.8 m and 70.8 m, respectively. Figure 5 presents a 2D schematic view of
the model as well as a 3D representation from the finite element software.

(a) Schematic representation of the track-bridge model

(b) Model in Sofistik

Figure 5. Numerical model of the track-bridge system.



Sensors 2023, 23, 1191 9 of 24

A typical prestressed concrete, single-span bridge with a span length of 32.4 m, was
used in the study. The bridge deck has a U-shaped cross-section with a total depth of
1.4 m. It is 5.8 m wide and houses a single, ballasted track. The flanges of the cross section
are 1.4 m high and 0.7 m wide, while the web is 0.5 m thick and 4.4 m wide. The area
and the moment of inertia of its cross-section are 6.81 m2 and 16.89 m4, respectively. The
longitudinal axis of the bridge is straight with no curvature. The Young’s Modulus and
density of concrete was assumed to be 36 GPa and 25 kN/m3, respectively. The bridge
deck was modeled using four-node shell elements.

Figure 6a provides a detailed schematic illustration of the track model between three
support points, i.e., three sleepers, on the track. The centerline distance between two
sleepers was taken as 0.6 m, which is also equal to the unsupported length of the rail. The
elastic Bernoulli–Euler beam representing the rail has the cross-section properties of the
rail profile 60E1 and is supported by a pair of springs and dashpots at each support point.
The spring-dashpot set at the bottom represents the stiffness and the damping provided
by the ballast (kb, cb) while those at the top represents the stiffness and the damping of
the rail-pad (kp, cp). In computing the stiffness and damping properties of the rail-pad,
the rail-pad thickness was taken as 10 mm [54]. The mass of the ballast, mb, is modeled
as a lumped mass between the two elastic springs. The numerical values of the modeling
parameters of the track are summarized in Table 2. The springs simulating the ballast are
fully restrained at the bottom on the back and front approaches while, on the bridge, they
are connected to elastic four-node shell elements that represent the bridge deck (Figure 5).

To validate the developed track model, a numerical receptance test was carried out on
a 6 m long stretch. The receptance test is a widely used method to characterize the global
track behavior for a range of frequencies and allows the identification of the main resonance
of the rail system while quantifying its sensitivity to vibrations [55] as well as the dynamic
flexibility of the track [56]. A sinusoidal load of 1N was applied at the middle of the 6 m
rail with frequencies ranging from 10 Hz to 1500 Hz with 10 Hz increments. The sampling
frequency was set to 6000 Hz. Acceleration time histories for each frequency was ex-
tracted from the model and the peak steady-state amplitudes were computed and plotted in
Figure 6. Furthermore, plotted in Figure 6 is the results of the receptance test repeated by
applying the sinusoidal load at the sleeper location. There are three main frequencies that
can be observed from the receptance test at around f = 60 Hz, f = 200 Hz, and f = 1160 Hz.
The first frequency corresponds to the rails and sleepers oscillating on ballast and is thus
associated with the ballast stiffness. The second frequency corresponds to the oscillation of
the rails on the sleepers and depends on the stiffness of the rail-pads. On the other hand,
the last frequency corresponds to the local bending of the rail elements between the sleepers
and, thus, can only be captured when the load is applied at the mid-point of two sleepers.
The receptance test results show that both the mode shapes and frequency of the rail-track
system is in line with previous studies [57], thus validating the developed model.

Table 2. Mechanical properties for track components.

Component Property Symbol Value

Rail-pad Stiffness kp 62 MN/m
Damping cp 32 kNs/m

ine Ballast Stiffness kb 230 MN/m
Damping cb 200 kNs/m
Mass mb 1400 kg

Rail Young’s modulus ka 200 GPa
Poisson’s ratio νr 0.3
Area Ar 8.13× 10−3 m2

Moment of Inertia Iy 3.09× 10−5 m4

Density ρr 7800 kg/m3
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Figure 6. (a) Schematic illustration of the track model and (b) Receptance test results.

Eigen-value analysis on the track-bridge model was conducted to determine the vibra-
tion frequencies and the mode shapes of the bridge. Accordingly, the natural frequencies of
the first three modes were computed as 1.79 Hz, 6.72 Hz, and 13.30 Hz, respectively. The
mode shapes and vibration frequencies are presented in Figure 7.

(a) Mode 1, f1 = 1.79 Hz (b) Mode 2, f2 = 6.72 Hz (c) Mode 3, f3 = 13.30 Hz

Figure 7. Mode shapes of the bridge.
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4.3. Track Irregularities

Track irregularities have a significant impact on the accelerations recorded on the trains
and they adversely affect the indirect monitoring efforts by contaminating the frequency
content of the acceleration signal [58]. As such, any method that aims to detect bridge
frequencies from vehicle-mounted sensors needs to be robust against these adverse effects.

In this study, two different track irregularity profiles, profiles A and B, which were
recorded in Sweden, were used. The track profiles are plotted in Figure 8, where the two
dashed red lines indicate the start and the end of the bridge, respectively. Irregularity profile
A is a track profile is of good standard, whereas B is a track profile with average standard
according to CEN/TC 256 [59]. As shown in Figure 8, the second profile represents a case
where the irregularities are the most aggressive within the bridge while the first profile
represents a case where the irregularities on the bridge are not as prominent.

(a) Profile A

(b) Profile B

Figure 8. Track irregularity profiles.

5. Case Studies

Next, as summarized in the following subsections, the efficacy of the proposed method-
ology in identifying the bridge frequencies from vibrations recorded on train-mounted
sensors is investigated on different case studies.

5.1. Case I: No Track Irregularities; Slow Train Speed

For the first case study, the Manchester train was driven on the track-bridge system
with a speed of 20 km/h to be able to compute the vibrations on the bridge and on the
train. The accelerations recorded at the quarter point of the bridge (i.e., 8.1 m from the
left support) during the crossing of the train and its Fourier Amplitude Spectrum (FAS) is
plotted in Figure 9. Both the time history and the FAS is plotted for two cases: ignoring and
considering the track irregularities for the irregularity profile A. Figure 9a,b, respectively,
indicate that neither the acceleration amplitudes nor the frequency content of the vibrations
recorded on the bridge are significantly influenced by the track irregularities. As such,
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the first and second vibration frequencies of the bridge can be clearly identified from the
Fourier amplitude spectrum for both cases.

(a)

(b)

Figure 9. (a) Acceleration time history recorded at the x = 8.1 m on the bridge (b) Fourier Amplitude
Spectrum of the recorded accelerations 20 km/h.

As the next step, the accelerations recorded at the middle of the back bogie ignoring
and considering the track irregularities are plotted in Figure 10. The back bogie traverses the
bridge between t = 10.48 s and t = 16.31 s. As expected, the track irregularities significantly
impact the accelerations recorded on the bogie while the bogie is both on and off the bridge.

Figure 10. Accelerations recorded on the bogie for a speed of 20 km/h ignoring and considering
track irregularities.
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To evaluate the frequency content of the vibrations recorded on the bogie, the Fourier
Amplitude Spectrum ignoring the track irregularities is plotted in Figure 11.

In addition to the first bridge frequency at f = 1.76 Hz, there are several peaks on
the FAS of the accelerations recorded on the bogie some having more energy than the
first natural vibration frequency of the bridge. The first of these frequencies is visible
at f = 9.25 Hz. This frequency can be identified as the sleeper passing frequency for a
speed of 20 km/h or 5.56 m/s, which is defined as the frequency that the bogie meets each
consecutive sleeper that are spaced at every 0.6 m. Here, it should be noted that the shift
in the first bridge frequency due to the driving frequency is not significant because of the
relatively low speed of the vehicle.

Figure 11. FAS of the accelerations recorded on the bogie ignoring track irregularities.

Although the frequencies associated with the bridge and the train/track can be distin-
guished from the FAS plotted in Figure 11 when the train-track geometry and the speed
of the train is known a priori as in the case of a numerical model, the FAS itself does not
provide enough information to distinguish the bridge frequencies from the others when
the track geometry and the train speed is unknown. The main reason for this is the fact
that the Fourier Amplitude Spectrum is valid for the entire time history. On the other
hand, the vibrations associated with the frequency of the bridge are expected to occur
only while the sensor is traversing the bridge whereas the vibrations associated with the
train-track system should be visible during the entire motion of the train including the front
and back approaches. However, Fourier amplitude spectrum does not any provide any
information on the time evolution of the frequency content of the vibrations. To overcome
this shortcoming, Continuous Wavelet Transform of the acceleration signal recorded at the
bogie using Morlet wavelet is computed and the wavelet coefficient map of the signal is
plotted in Figure 12. The wavelet coefficient map shows that the high frequency vibrations
indicated by scales lower than 20 in Figure 12 has a relatively evenly distributed energy
content throughout the entire time history. On the other hand, the vibrations associated
with lower frequencies (i.e., higher scales in Figure 12) are only prominent while the sensor
is crossing the bridge. From this, it can be deducted that the lower frequencies prominent in
the FAS (Figure 11) correspond to the bridge frequencies and the higher frequencies visible
in the FAS plotted in Figure 11 correspond to the frequencies related to the vibrations in
the train track system.
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Figure 12. Wavelet coefficient map of the accelerations recorded on the bogie for a speed of 20 km/h.

Although this visual identification can arguably be sufficient when the bridge fre-
quencies and the frequencies related to the train-track system are well-separated, a more
robust, objective, and theoretically sound method is necessary. For this, in this article, we
propose to use the horizontal sections taken from the wavelet coefficient map. Physically,
the horizontal sections of the wavelet coefficient map depict the time variation of the
oscillations at each frequency by quantifying how close the signal is to the Morlet wavelet
for that scale. The horizontal sections will be taken at the scales corresponding to the
prominent frequencies observed in the Fourier amplitude spectrum of the signal selected
using peak picking. Once they are selected, the scales corresponding to these frequencies
can be computed by:

a =
fc

fs∆
(14)

where a is the scale corresponding to the frequency of interest, fs, in Hz, fc is the center
frequency of the wavelet in Hz, ∆ is the time step of the data. In the example studied
here, the Morlet wavelet with a center frequency of fc = 0.825 Hz is used and the sam-
pling rate is ∆ = 0.005 s. The horizontal sections of the wavelet coefficient map taken at
the scales corresponding to the frequencies of 1.76 Hz, 9.28 Hz, and 18.52 Hz, which are
the prominent frequencies of the acceleration signal recorded at the bogie, are plotted in
Figure 13a. It is clear from Figure 13a that the vibrations at the frequencies of
9.28 Hz and 18.52 Hz are continuous throughout the entire duration of the train’s journey
on the front and back approaches as well as the bridge indicating that these frequencies are
associated with the vibrations on the train-track system and not the bridge. On the other
hand, the vibrations at the frequency of f = 1.76 Hz occur only while the sensor is crossing
the bridge and, therefore, this frequency can correctly be identified as the frequency of the
bridge. This can be further visualized by computing the energy of the signals shown in
Figure 13a and its evolution over time. For each time step, ti, the ratio of energy in the
coefficients signal c f (t) up to that time step to the total energy signal with a total duration
of T is computed using:

RE =

∫ ti
0 [c f (t)]2dt∫ T
0 [c f (t)]2dt

(15)

where ti is each time step during the train traversing the entire track model including both
approaches and the bridge; 0 6 ti 6 T, T is the total duration of the signal and c f (t) is the
signal of the wavelet coefficients at a given frequency (scale). Computing the RE term for
each of the coefficient signals in Figure 13a and plotting them as shown in Figure 13b, we can
visualize the evolution of the energy in each signal during the crossing of the train. Recalling
that the sensor crosses the bridge between 10.1 s 6 ti 6 16.0 s, it is clear that the entire energy
in the signal for the frequency of 1.76 Hz is concentrated during the sensor crossing the bridge
indicating that this frequency is associated with the vibrations on the bridge. On the other
hand, the energy in the signals for 9.28 Hz, and 18.52 Hz evolve linearly during sensor’s
entire journey over the approaches as well as the bridge indicating that the vibrations at these
frequencies are related to the train-track system. Therefore, the steepness of the relative energy
curve during the crossing of the bridge compared to that while the sensor is on the back and
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front approaches can be used to classify the peaks in the Fourier amplitude spectrum as bridge
frequencies and frequencies associated with the train-track system.

(a)

(b)

Figure 13. Regular track at a speed of 20 km/h. (a) Coefficients from CWT of the acceleration
signal at different pseudo-frequencies. (b) Development of the energy in the coefficients at different
pseudo-frequencies.

5.2. Case II: Considering Track Irregularities; Slow Train Speed

To evaluate the efficacy of the proposed methodology when the track irregularities
are considered, the numerical analysis was repeated by incorporating the track irregularity
profiles shown in Figure 8. First, the acceleration response recorded on the bogie for track
profile A (Figure 8a) will be investigated.

As the acceleration time history recorded on the bogie presented in Figure 10 indicates,
track irregularities are the main source of the accelerations recorded on the bogie. The
Fourier amplitude spectrum plotted in Figure 14a for regular and irregular tracks clearly
demonstrates how complicated the frequency content becomes once the track irregularities
are considered. However, a close inspection of Figure 14a clearly indicates that among
the several peaks in the FAS, the bridge frequency is visible in the Fourier amplitude
spectrum at f = 1.80 Hz. This observation is in line with [44], which also showed that both
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analytically and numerically, the bridge frequency is visible in the FAS of the acceleration
signals recorded on the bogie irrespective of the presence of the track irregularities.

To differentiate the bridge frequency from the other peaks in the FAS, the wavelet
coefficient map of the acceleration signal recorded at the bogie for the irregularity pro-
file A is created using continuous wavelet transform and plotted in Figure 14b. At the
lower scales, i.e., the higher frequency region, the energy is concentrated at two intervals;
1.8 s 6 ti 6 2.9 s, and 23.8 s 6 ti 6 24.5 s. A quick inspection of the track irregularity profile
(Figure 14b) show that these energy concentrations can be attributed to the two sudden
bumps in the track for the profile A. On the other hand, the energy content in the lower
frequency regions is more concentrated on the 10 s 6 ti 6 16 s, i.e., while the sensor is
crossing the bridge.

(a)

(b)

Figure 14. Frequency content of the accelerations recorded on the bogie for a speed of 20 km/h for
the track irregularity profile A (a) Fourier Amplitude Spectrum (b) Wavelet Coefficient Map.

The proposed methodology requires that a horizontal section at the scales correspond-
ing to each of the frequency peaks in the FAS. Considering the number of peaks in the FAS
for the irregular profile shown in Figure 14a, only three such sections are presented at the
frequencies of 1.80 Hz, 4.32 Hz, and 6.83 Hz in this article for brevity. These frequencies cor-
respond to the highest peaks in the FAS of the acceleration response recorded at the bogie
considering the track irregularity profile A. The time variation of the coefficients at these
pseudo-frequencies are depicted in Figure 15a. While the coefficients at the frequency of
f = 1.80 Hz are dominated by the vibrations occurring as the sensor is crossing the bridge,
the vibrations at the frequencies of 4.32 Hz, and 6.83 Hz are minimal during this phase
(10 s 6 ti 6 16 s). Instead, the vibrations associated with f = 4.32 Hz and f = 6.80 Hz
are more dominant while the sensor is on the front and back approaches. The energy
content of the coefficient signals computed using Equation (15) plotted in Figure 15b more
clearly demonstrate where the energy at these frequencies are concentrated. The signals at
all three pseudo-frequencies show a significant increase in the energy content at around
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t = 2 s and again at around t = 24 s, i.e., while the sensor is crossing the highest bumps on
the rail profile A. However, the increase in the energy for f = 1.80 Hz during the crossing
of the bridge (10s 6 ti 6 16s) is much higher compared to any other location indicat-
ing that the vibrations at this frequency are associated with the bridge response while
the other two frequencies are associated with the train-track system. Although not pre-
sented here, repeating the procedure described above for all the peaks in the FAS diagram
(Figure 14a) show that only the vibrations at f = 1.80 Hz have the highest energy at
during the crossing of the bridge. Hence, the frequency of f = 1.80 Hz can be identified
successfully as the bridge frequency using the proposed methodology among the other
peaks of the FAS complicated significantly by the presence of track irregularities.

(a)

(b)

Figure 15. Irregular track (profile A) at a speed of 20 km/h. (a) Coefficients from CWT of the
acceleration signal at different pseudo-frequencies. (b) Development of the energy in the coefficients
at different pseudo-frequencies.

As the next step, the vibrations recorded on the bogie while the train is traversing
the track profile B is evaluated. The Fourier amplitude spectrum depicted in Figure 16
shows that, as in the case of track irregularity A, several peaks can be observed, most of
which can be attributed to the train-track vibrations and track irregularities. To be able to
identify the bridge frequencies among these peaks, the wavelet coefficient map is created
similar to the previous examples. Selecting three of the peaks at f = 1.76 Hz, f = 4.48 Hz,
and f = 6.40 Hz from Figure 16 as candidate frequencies, the time variation of the the
wavelet coefficients at these frequencies are plotted in Figure 17a. Finally, the energy in the
coefficient signals is computed and plotted in Figure 17b.
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Figure 16. Fourier Amplitude Spectrum of vibrations recorded on the bogie for track profile B for
V = 20 km/h.

Comparing the evolution of the relative energy of the coefficient signals with time
for in Figures 15b and 17b for track profiles A and B, respectively, reveal that having an
aggressive track irregularity on the bridge can further complicate the identification of the
bridge frequency. More specifically, for all three frequencies selected from the Fourier
amplitude spectrum, there are three points in time where a sharp increase in the relative
energy is observed: 5.5 s 6 ti 6 6.6 s, 14.2 s 6 ti 6 14.8 s, and 21.0 s 6 ti 6 22.5 s. These
can be attributed to the three sudden bumps in the track irregularity profile, one of which
is located on the bridge; see Figure 8b. However, a closer look at the relative energy curve
in Figure 17b indicates that, for the frequencies of f = 4.48 Hz and f = 6.40 Hz, the highest
increase in the relative energy is at 21.0 s 6 ti 6 22.5 s, in other words while the sensor has
already left the bridge. On the other hand, for the frequency of f = 1.76 Hz, the increase in
the energy while the sensor is on the bridge starts approximately 1.5 s earlier compared to
its counterparts at f = 4.48 Hz and f = 6.40 Hz. Furthermore, this increase corresponds to
almost 40% of the total energy in the signal, which is much higher compared to the other
two points where the sharp increase in the relative energy while the sensor is on the bridge
is limited to 15%. Finally, the time variation of the coefficients presented in Figure 17a show
that the vibrations at f = 1.80 Hz have a continuous and harmonic nature while the sensor
is on the bridge (10.0 s 6 ti 6 16.0 s) whereas the vibrations at f = 4.48 Hz and f = 6.40 Hz
remain relatively low before the sensor reaches the end of the bridge. Therefore, it can be
concluded that the frequency f = 1.76 Hz is associated with the bridge vibrations while
the frequencies f = 4.48 Hz and f = 6.40 Hz, although exhibit significant energy while the
sensor is on the bridge, cannot be associated with the bridge vibrations because they are
only limited to a certain point in the bridge while those at f = 1.76 Hz are continuous. As
such, the proposed methodology can successfully identify the bridge frequencies even for
a track profile that has a sudden bump on the bridge.

5.3. Case III: Considering Track Irregularities; Higher Train Speeds

The studies that focus on system identification from vehicle-mounted sensors show
that [58] increased train speeds significantly complicate the problem as the amount of
recorded data is reduced. Most of the methodologies proposed so far are effective for very
low speeds and fail to identify the bridge frequencies once the train speeds increase [11].
To be able to evaluate the efficacy of the proposed methodology for higher speeds, the
numerical analysis was repeated for the speed of 90 km/h.

Figure 18 depicts the Fourier amplitude spectrum of the accelerations recorded at the
bogie for the speed of 90 km/h for the track irregularity profile A. Comparing the FAS for
the case of regular track for speeds of 90 km/h and V = 20 km/h (Figure 14a) demonstrates
the additional complexity the higher train speeds bring into the frequency content of the
vibrations. This is mainly due to the fact that, for the same sampling frequency and length
of the railway section considered, the higher speeds lead to much less data compared
to lower speeds, leading to inaccuracies in the frequency content of the data that can be
recognized through Fourier transform.
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(a)

(b)

Figure 17. (a) Coefficient time history and (b) time evolution of energy at different frequencies
computed using CWT for V = 20 km/h for track irregularity profile B.

Figure 18. Fourier Amplitude Spectrum of the accelerations recorded on the bogie for a speed of
90 km/h.

Despite this shortcoming, the FAS computed from the accelerations recorded consid-
ering the track irregularities and plotted in Figure 18 for a speed of V = 90 km/h have
two distinct peaks at f = 1.69 and at f = 2.15 Hz. Following the proposed methodology,
the Wavelet Coefficient Maps of the acceleration records from the irregular track is created,
and horizontal sections of the WCM at candidate frequencies are taken. For the speed
of 90 km/h, four candidate frequencies were determined from Figure 18 as f = 1.69 Hz,
f = 2.15 Hz, 7.07 Hz, and 16.90 Hz. The variation of the coefficients at these frequencies
is plotted in Figure 19a and the evolution of the relative energy of the coefficient signals
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with time is plotted in Figure 19b. The back bogie which houses the sensor traverses the
bridge between 2.3 s 6 ti 6 4.1 s. Both the sharp increase in the energy of the coefficients
signal for the frequencies of f = 1.69 Hz and f = 2.15 Hz during this time period and the
coefficient signal itself clearly indicate that the vibrations at f = 1.69 Hz and f = 2.15 Hz
are associated with bridge vibrations while the vibrations at the two other frequencies are
associated with the train-track system as the energy at these frequencies are concentrated
when the sensor is off the bridge.

The reason for observing two frequencies at a speed of 90 km/h instead of a single
peak as in the case of V = 20 km/h is the fact that the bridge frequency is evident in the
acceleration response recorded in the bogie in a shifted form of ωji ∓ vs.iπ/L where v is the
speed of the vehicle and L is the length of the bridge [44]. For a speed of 90 km/h (25 m/s)
and L = 32.4 m, this shift can be computed as 2.42 rad/s or 0.38 Hz. Accordingly, from
the left shifted frequency (i.e., ωji − vs.iπ/L) of f = 1.69 Hz, the bridge frequency can be
computed as 2.08 Hz. From the right shifted frequency (i.e., ωji + vs.iπ/L) of f = 2.15 Hz
that is visible in Figure 18, the bridge frequency can be computed as 1.76 Hz. Here it should
be noted that [44] reports that, although both left and right shifted frequencies theoretically
are present in the acceleration response of the vehicle, only the right shifted frequency
(ωji + vs.iπ/L) can be consistently recognized from the Fourier Amplitude Spectrum. Thus,
the error in the left shifted frequency can be stated to be expected. As such, ignoring the
left shifted frequency and focusing only on the right shifted frequency observed from the
FAS, the bridge frequency can be computed as 1.76 Hz; an error of 1.7% compared to the
computed frequency of 1.79 Hz.

Therefore, the proposed methodology distinguishes itself from the works reported in
the literature by identifying the bridge frequency with relatively high accuracy for speeds
which are in the range of regular travel speeds of trains en-route.

(a)

(b)

Figure 19. (a) Coefficients time history and (b) energy at different frequencies computed using CWT
for V = 90 km/h.
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6. Conclusions

This article summarizes a new methodology to identify the vibration frequencies of a
bridge from the vibrations recorded on the bogie of a train. First the theoretical background
which shows that the vibration frequencies are indeed present in the accelerations on the
vehicle traversing a railway bridge is revisited. The numerical simulations are based on
detailed finite element models of the rail, track, bridge and the train. The train was modeled
as a 3D MDOF system that can take the effects of pitching and, to a certain extent, rolling
into account. The proposed framework distinguishes the bridge frequencies that are visible
on the Fourier amplitude spectrum of the vibrations recorded on the bogie from the other
prominent frequencies using continuous wavelet transform. The following conclusions can
be drawn from the presented work.

• The numerical analysis indicate that the frequency content of the vibrations recorded
on the bogie of a train is generally very complex with numerous peaks visible. This
complexity is further amplified when the track irregularities are considered.

• Including the vibrations recorded on the front and back approaches in the data set
collected from the bogie provides an opportunity to distinguish the bridge frequen-
cies from the other peaks in the Fourier amplitude spectrum because the vibrations
associated with the train-rail-track system are generally continuous through the entire
route which includes the front approach, the bridge and the back approach. On the
other hand, the vibrations on the bogie that are associated with the vibrations of the
bridge occur only while the sensor is on the bridge.

• The continuous wavelet transform provides a powerful tool to distinguish the frequen-
cies associated with the bridge vibrations from the other peaks visible in the Fourier
amplitude spectrum. By taking a horizontal section on the wavelet coefficient map
of the vibrations recorded on the bogie at the prominent frequencies visible on the
FAS and computing the development of the energy at each frequency over time, the
vibration frequencies associated with the vibrations of the bridge can be identified.

• The proposed method was shown to be able to pick out the bridge frequencies among
other frequencies that have much higher energy than the bridge frequencies.

• Two different track irregularity profiles used in the numerical analysis showed that the
proposed method can successfully detect the bridge frequencies even for very aggressive
track irregularity profiles with sudden bumps located in the middle of the bridge.

• The proposed method was shown to work as effectively for high speeds as well as
low speeds. As shown theoretically, the bridge frequencies that can be detected on the
vehicle is shifted and this shift is linearly proportional to the speed of the vehicle. As
long as this shift is considered, the bridge frequencies can be identified successfully for
a speed of 90 km/h. The capability of identifying the bridge frequencies for relatively
high train speeds distinguishes the proposed method from most of the work in the
literature that is limited only to low vehicle speeds.

• The identified bridge frequencies are limited to the first vibration mode. This can be
explained by the fact that the behavior of single-span bridges is generally dominated
by the first mode. As such, only the first mode frequency is visible in the FAS of the
accelerations recorded on the bogie. To evaluate the efficacy of the proposed method
in identifying higher mode frequencies, further analysis on bridges whose behavior is
significantly influenced by higher modes is needed.

The study presented herein is limited to single-span bridges. Although this limitation
is similar to the vast majority of similar literature, further work on multi-span bridges with
vehicle models that represent en-route trains are required to be able to fully realize the
potential of vehicle-mounted sensors operating on railway bridges. Furthermore, although
a very detailed vehicle model is used in this study, it was limited to a single locomotive.
Furthermore, the proposed method could only identify the first mode frequency of the
bridge. Future studies should address this disadvantage by developing methods that can
identify higher mode frequencies. Finally, only the Morlet wavelet was used in the current
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article. However, other wavelets such as Debuchies, Coiflet and Gaussian have previously
been used successfully in structural health monitoring applications [60] and their efficacy
in distinguishing the bridge frequencies when used within the proposed framework should
be investigated.
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