
Cloud Operations to Support UX and
Accessibility for Crowdsourced Online

Survey Framework Deployment

Bjørge Seim Øvstedal

Thesis submitted for the degree of
Master in Applied Computer and Information Technology (ACIT)

30 credits

Department of Computer Science
Faculty of Technology, Art and Design

OSLO METROPOLITAN UNIVERSITY

Spring 2023

Cloud Operations to Support UX and
Accessibility for Crowdsourced Online

Survey Framework Deployment

Bjørge Seim Øvstedal

© 2023 Bjørge Seim Øvstedal

Cloud Operations to Support UX and Accessibility for Crowdsourced Online Survey
Framework Deployment

http://www.oslomet.no/

Printed: Oslo Metropolitan University

http://www.oslomet.no/

Abstract

This study investigates different cloud service providers (CSPs) and their deployment
platforms in terms of user friendliness and experience. With the help of Docker vir-
tualization, allowing to create an isolated environment, the application deployment
process can be replicated on different platforms and prevent technical issues linked to
the underlying technical configurations of a CSP. It further allows for non-technical
users to choose their CSP based on requirements other than the necessary technical
aspects and deploy their applications. To ensure a higher level of user experience
(UX) and accessibility for application deployment, we investigate ways of optimiz-
ing cloud operations.

Docker is used to create a container image along with Docker Compose to define
multi-container applications. The Docker Compose files are created as base files for
further development with a production and development environment. Using these
files, an evaluation is conducted on the features, services, and deployment processes
of different CSPs. We conducted a deployment test using both a web-based GUI and
a terminal for the CSP, which resulted in a consistent and comparable deployment.
As discovered through testing, using the developed Dockerfiles prevent certain issues
of the technical infrastructures of CSPs.

As part of the thesis, a subjective user study is conducted consisting of a pre-
questionnaire, a deployment guide and a post-questionnaire involving System
Usability Scale (SUS). This user study uses the Huldra application for deployment
on a CSP named Render. The pre-questionnaire responses regarding familiarity
with computer science, application deployment, and Docker did not appear to
significantly impact the deployment time. We also analyzed the relationship between
the variables in terms of time and difficulty level of each deployment step were we
found few significant trends. We also found low ratings of difficulty throughout
the user study and a high mean score in participants responses with respect to user
experience.

i

Keywords— Cloud Service Provider (CSP), Deployment Platform, Docker, Docker
Compose, Virtualization, Container

ii

Acknowledgments

First and foremost, I would like to thank my principal supervisor Pål Halvorsen
for his guidance and contributions during this thesis. I would also like to thank my
co-supervisors, Cise Midoglu and Saeed Sabet, for their astonishing support and
feedback throughout this thesis. Without them, this thesis would not be possible.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 4

1.3 Scope . 5

1.4 Research Methods . 6

1.5 Ethical Considerations . 6

1.6 Main Contributions . 7

1.7 Thesis Outline . 7

2 Background and Related Work 9

2.1 Subjective User Studies . 9

2.2 Huldra Framework . 10

2.2.1 Huldra Pages . 10

2.2.2 Huldra Frontend with React . 12

2.3 Cloud Fundamentals . 14

2.3.1 Infrastructure as a Service . 15

v

2.3.2 Platform as a Service . 15

2.3.3 Software as a Service . 16

2.4 Relevant Concepts and Technologies . 16

2.4.1 Virtualization . 16

Hypervisor Type 1 . 17

Hypervisor Type 2 . 17

2.4.2 Containerization . 17

Docker . 19

2.4.3 Application Deployment . 20

Deployment without Technical Expertise 21

2.4.4 DevOps . 22

Software Development Lifecycle 22

2.5 Deployment Platforms . 24

2.5.1 Fly . 24

2.5.2 Railway . 24

2.5.3 Render . 25

2.6 Related Work . 25

2.7 Chapter Summary . 28

3 Methodology 29

3.1 Proposed Approach . 29

3.2 Plan for Subjective Study . 31

3.2.1 Method . 31

3.2.2 Participant Recruitment . 31

3.2.3 Study Material . 32

vi

3.3 Chapter Summary . 36

4 Implementation 37

4.1 Containerization of Huldra . 38

4.1.1 Multi-stage Builds . 39

4.1.2 Dockerfile Production Environment 39

4.1.3 Try Files for Nginx . 40

4.1.4 Dockerfile Development Environment 41

4.1.5 Docker Compose files . 43

4.2 Alternative Deployments . 47

4.2.1 Huldra Deployment using ALTO Cloud 47

Production Environment . 47

Development Environment . 50

Container Solution for Huldra . 51

4.2.2 Huldra Deployment using Render 51

4.2.3 Huldra Deployment using Railway 60

4.2.4 Huldra Deployment using Fly . 66

4.3 Chapter Summary . 70

5 Results 73

5.1 Objective Results . 73

5.2 Subjective User Study . 77

5.2.1 Data Cleaning . 77

5.2.2 Study Results . 78

5.3 Chapter Summary . 83

vii

6 Discussion 85

6.1 Addressing the Research Questions . 85

6.2 Lessons Learned . 87

6.3 Other Contributions . 88

6.4 Limitations . 89

6.5 Future Work . 89

7 Conclusion 91

viii

List of Figures

2.1 One-way vs. two-way data binding . 13

4.1 ARG and ENV availability . 38

4.2 Dockerfile for production environment 40

4.3 Try_files . 41

4.4 Dockerfile for development environment 42

4.5 Base Docker Compose file . 43

4.6 Docker Compose production file . 44

4.7 Docker Compose development file . 45

4.8 Docker Compose start command for production environment 47

4.9 Docker Compose production environment output 48

4.10 Production container successfully created 48

4.11 List containers and Docker Compose down 49

4.12 Docker Compose starting a development environment 50

4.13 Docker volume and location . 50

4.14 Available Render services . 52

4.15 Render repository connection . 53

4.16 Render Deployment configuration . 54

4.17 Render Deployment advanced configuration 55

ix

4.18 Render secret file . 56

4.19 Render deployment build . 57

4.20 Dockerfile build stage commands executed in Render 57

4.21 Build commands output, creation of production build 58

4.22 Successful build stage . 58

4.23 Output from Nginx on Render . 59

4.24 Render Web Service dashboard . 59

4.25 Railway project selection . 61

4.26 Railway variables selection . 61

4.27 Railway raw editor with an example of Firebase connection parameters 62

4.28 Railway variables filled including Firebase connection parameters, port
and Dockerfile path . 62

4.29 Dockerfile detection . 63

4.30 Render build stage complete . 64

4.31 Railway separate logs, Nginx output . 64

4.32 Railway environment settings . 65

4.33 Railway email preferences . 65

4.34 Fly personal dashboard . 67

4.35 Fly configuration file . 68

4.36 Flyctl secrets list . 69

4.37 Flyctl deployment output . 70

4.38 Fly application dashboard . 70

5.1 Outliers based on total time per step after sign in 77

5.2 User study gender results . 78

x

5.3 User study age results . 79

5.4 Difficulty level per Deployment Step . 80

5.5 Correlation Matrix, pre-Questionnaire and time 80

5.6 Correlation Matrix, pre-Questionnaire and step difficulty 81

5.7 Render - System Usability Scale (SUS) scoring of the participants 82

6.1 Grep command and found file . 86

6.2 Firebase api key location . 86

6.3 Firebase api key using web developer tool 87

7.1 Render - user study pre-questionnaire . 94

7.2 Render - user study step 1 . 95

7.3 Render - user study step 2 . 96

7.4 Render - user study step 3 . 97

7.5 Render - user study step 4 . 98

7.6 Render - user study step 5 . 99

7.7 Render - user study step 6 . 100

7.8 Render - user study step 7 . 101

7.9 Render - user study post-questionnaire 102

7.10 Fly - user study pre-questionnaire . 103

7.11 Fly - user study step 1 . 104

7.12 Fly - user study step 2 . 105

7.13 Fly - user study step 3 . 106

7.14 Fly - user study step 4 . 107

7.15 Fly - user study step 5 . 108

xi

7.16 Fly - user study step 6 . 109

7.17 Fly - user study step 7 . 110

7.18 Fly - user study step 8 . 111

7.19 Fly - user study post-questionnaire . 112

xii

List of Tables

5.1 Mean and standard deviation of the familiarity questions. 79

5.2 Mean and standard deviation of the SUS and QoE questions, first five
questions. 82

5.3 Mean and standard deviation of the SUS and QoE questions, last six
questions. 83

xiii

xiv

Chapter 1

Introduction

Simula was established as a project under the University of Oslo in 2001 and was
founded as a limited liability company in 2002. Simula is owned and managed
by the Norwegian Ministry of Education and Science. The research laboratory
focuses its research towards communication systems, scientific computing, software
engineering, cybersecurity, and machine learning. With research in both the industry
and public sector, Simula also works in collaboration with partner universities which
allows the education of students and for them to finish their degree by offering
projects for master thesis with supervision.

The Department of Holistic Systems (HOST) at Simula started a project called
Huldra [20] in 2021 as a framework for deploying custom online surveys, which
facilitate conducting subjective user studies in many fields of research. Since its
inception, Huldra has had many contributors such as master students and interns. As
a framework for collecting crowdsourced feedback on multimedia assets, Huldra has
been used for two surveys until 2022, one involving the collection of feedback from
medical experts about how they perceive different eXplainable Artificial Intelligence
(XAI) methods demonstrated on images from the gastrointestinal (GI) tract [22], and
another involving the collection of feedback from the general public about how they
perceive alternative thumbnails for a given soccer video clip [23].

Huldra is an open-source framework [20] developed to address the challenges of
other traditional survey frameworks or applications. With commercial platforms
providing little configuration regarding both the survey as a whole and the backend
solution, the making of such surveys can be tiresome although with available tools.
Without the use of online survey platforms or tools, the expertise and knowledge
within development for a good user interface and interaction is needed as well

1

as a secure backend depending on the information gathered from the survey. For
example, some of the available survey tools require publicly available content to
be used within the survey. This can for example be videos which are needed to be
uploaded to YouTube or other video sharing websites in order to be used within
a survey. A survey creator should not be obligated to upload its survey content
publicly in order to be used in a survey as the survey and the content may or may
not be used internally in an organization where the information should not be made
public for security reasons or otherwise. Regarding privacy and security, other
platforms are also not clear where the participant data and responses are stored.

With focus on the participants regarding design of a study, the framework aims to
reduce the complexity of such studies to make participants complete the studies
and provide feedback. A study should not feel like a chore and a cumbersome task
and this is what Huldra tries to prevent along with the easy creation of a study for
the creator. It also focuses on diversity with universal accessibility. For the creator
of a study, it is important that the survey is diverse and inclusive as it gives a more
accurate result and clarification of the data. The framework assists this issue with
accessibility in mind with 4 alternative formats for the case pages.

1.1 Motivation

Cloud computing has its roots in the concept of time-sharing, which emerged in
the 1960s as a way for multiple users to access a single computer simultaneously.
DARPA, the Defense Advanced Research Projects Agency, funded Massachusetts
Institute of Technology (MIT) for the project called Project on Mathematics
and Computation (Project MAC) [31]. From this project and the use of a single
computer where a couple of people could gain access simultaneously, full-time-
sharing solutions were not available before the early 1970s. Followed by the 1990s,
virtualization came to life which paved the way for the development of cloud
computing later on. Although virtualization failed to gain widespread adoption, the
groundwork of cloud computing was set and by the early 2000s the technology was
in place to launch modern cloud services as we know it today.

The idea behind cloud computing and its goal was for businesses to easily gain
access to and use computing resources. By delivering computing resources over the
internet, these resources could be scaled and accessed on an on-demand basis. As
the first cloud-based service, Salesforce introduced Software as a Service (SaaS) in
1999 by delivering enterprise applications via a simple website. Followed by SaaS,

2

Infrastructure as a Service (IaaS) was pioneered by Amazon Web Services (AWS) in
2006 with the launch of Elastic Compute Cloud (EC2) service. Shortly after, Platform
as a Service (PaaS) was introduced in 2008 by Google App Engine [52].

Since the initial goal and focus on allowing businesses to rent computing resources
provided by IaaS, cloud computing has expanded over time to include a wider range
of services and applications. Including specialized services such as machine learning,
data analytics and other areas, cloud computing is also increasingly being used closer
to the devices generating it. The overall goal of cloud computing has shifted from
simple on-demand access to a more comprehensive set of solutions and services.

Cloud computing has become the 21st century wonder that holds its importance
in almost every field. With the increase of collaboration and remote work, cloud
computing has become important in today’s digital workplace by providing a
centralized platform for data access and sharing. Along with scalability, cloud
computing brings important but necessary benefits that are needed in a constantly
changing world with new technology. Many associate cloud computing with
organizations and businesses, but it has become useful for the average person as
well. As an essential part of many aspects in a daily life, cloud computing is hard to
avoid on a daily basis. From storage such as Google Drive and mobile applications
to entertainment such as Netflix, cloud computing is hard to avoid in everyday
interaction with the world.

With the growing popularity of cloud computing, deployment and management
has become easier for its users. Cloud providers are developing services and
tools to reach a wider audience, increasing the accessibility of deployment and
management of applications on the cloud. Without extensive technical knowledge,
tools are designed to simplify the deployment process which allows users to not
be heavily invested in technical understanding. Further third-party tools and
services also help users deploy and manage applications on the cloud. For example,
containerization platforms like Docker allow users to package their application into
portable containers that can be easily deployed on any cloud platform that supports
containerization.

As an open-source survey framework, Huldra is available for use by others. The
framework should be able to deploy on any deployment platform of choice provided
by a CSP. Regardless of the technical expertise of the users, the users should be able
to deploy the Huldra framework without any further technical issues caused by the
chosen CSP.

3

1.2 Problem Statement

In a digital world with rapid growth in cloud computing, this thesis aims to
explain how tools and services provide accessibility in terms of deployment and
management of applications on cloud platforms. By explaining the fundamentals
of cloud computing and the underlying technologies, the knowledge is presented to
enlighten the process of deploying through existing tools and services along with an
investigation of availability of cloud services.

As an important technology in development and deployment of applications or
software, containerization is one of the most significant technological advancements
in cloud computing. Although as a technological advancement, containerization may
imply the complexity of configuring and managing containers. Further explanation
aims to get an overall view of for what reason it is increasing in popularity and the
current state of containerization in cloud-based deployment.

How can cloud operations be optimized to ensure a high level of user experience
and accessibility for application deployment?

• RQ1: How can the accessibility of application deployment on cloud be
improved through the use of containerization technology and simplify the
process of deploying applications on the cloud using cloud service providers?

• RQ2: How does cloud service providers facilitate its features and provide access
to a wider range of people regardless of technical expertise?

Implemented and tested with the Huldra framework, a containerized solution will
be developed together with researching existing cloud-based services to combine
and improve accessibility and enhance the user experience regarding application
deployment. Containerizing the application keeps the environment in the same
state and prevents failures on different platforms it is deployed. For example, if
the application is deployed outside of a container on one deployment platform
and it works fine, it may not work on another deployment platform. This may
happen when a platform uses a different operating system, software libraries, or
hardware configurations that does not correspond with the deployed application
as it relies on specific dependencies that are not present or configured on the given
deployment platform. Containerization helps to address the issue by containerizing
the application as it isolates and provides a consistent runtime environment for the
application to run in. This allows the application to be deployed without issues

4

of different configurations on different deployment platforms and enhances the
experience of application deployment without the underlying technical expertise.

Deploying an application on the cloud can be difficult for people lacking technical
expertise. This technical aspect can hinder some individuals from deploying their
applications on the cloud, as they may not be familiar with the deployment process.
To simplify the deployment process, many CSP’s provide step-by-step guidance to
deploy using their platform. Also, many of them offer a web-based integration of the
deployment process which the users can follow to successfully deploy an application.

The complexity of the deployment process can also pose a challenge for those
with limited technical knowledge, especially when the application has many
dependencies that require proper management and updating. Also, dependencies
may require specific configuration such as a specific operating system or network
settings for the application to function properly. To simplify the deployment
process, containerization technology like Docker can bundle the application and
its dependencies into a single container that can run anywhere. This eliminates
issues that may arise from deploying the application on different platforms and
makes troubleshooting and reconfiguration less complex based on the platform the
application is being deployed on.

1.3 Scope

The goal of this thesis is to implement a containerized solution of Huldra that
standardise the application environment to prevent issues regarding the deployment
process. With focus on accessibility, the containerized solution is deployed on several
CSP’s to observe the deployment in regards to requiered technical expertise.

The implementation of the Docker image is done through the use of OsloMet Alto
Cloud, where it is also tested based on application dependent configurations. Once
the Docker image is successfully deployed, further deployment tests are made using
Render, Railway and Fly. These tests are made to see how the use of a Docker image
is used within the deployment platform, and to see if further configurations are
needed beyond the Docker image.

To understand and evaluate the accessibility of CSP, we present a user study of a
deployment using one of the CSP called Render. The user study aims to discover
difficulties and issues of the deployment process based on various leveles of
technical expertise. With a pre and post-questionnaire along with the actual guide of

5

deployment, we will see the correlations between the respondents technical expertise
in regards to the guided deployment and the participants UX based on usability.

1.4 Research Methods

This thesis aims to investigate the accessibility of application deployment using
cloud service providers with focus on Docker image implementations. To get a better
understanding of this topic, a mixed-methods approach combining both quantitative
and qualitative data collection methods is utilized. The study involves the creation of
Docker images, which are used to evaluate a containerized deployment using various
CSP’s. The research design also includes a subjective user study that is conducted
online using Google Forms with a shared account for Render. The participants
are asked to complete a user study from different backgrounds to evaluate the
accessibility of application deployment using the CSP.

The mixed-methods approach combining quantitative [3] and qualitative [19] data
collection methods is chosen to provide a understanding of the evaluation of cloud
service providers and the UX of application deployment. Qualitative research
methods will provide insights into the users experiences of using the cloud service
providers, which cannot be captured by quantitative data alone. The subjective user
study is conducted to evaluate the UX of application deployment and to gather
qualitative data on the difficulty of application deployment. By combining both
quantitative and qualitative data, the study aims to provide a more complete picture
of the evaluation of cloud service providers and to better understand the factors that
affect the UX of application deployment.

1.5 Ethical Considerations

In the context of our user study, the collection and handling of sensitive information
related to the participants was treated with great care and responsibility. To ensure
the protection of the participants privacy, identifying information such as names
or contact details was not collected. Further, no questions regarding metadata
was required. This allowed participants to provide information at their own will.
Furthermore, Self-described and other options were provided for metadata questions,
ensuring that participants could provide information at their own discretion. These
measures were implemented to respect the participants autonomy and maintain their

6

privacy throughout the study.

1.6 Main Contributions

In this thesis we provide insight into how the use of containerization technology
improves the accessibility of application deployment. We develop Dockerfiles that
creates a production build of the Node application Huldra. We also developed
Docker Compose files and a Dockerfile for a developer environment were the Docker
Compose files further defines the application stack. Using the developed Dockerfile
for production, we explored different deployment platforms to examine their
features and application deployment using containers. The tested CSP’s provided
similar features in terms of deployment, but differentiated based on the available
deployment methods using either a web-based GUI or via a terminal. We identified
several CSP’s that did not successfully deploy the application without the use of the
developed Dockerfile.

We also conducted a subjective user study to evaluate accessibility of application
deployment. The study consisted of a pre-questionnaire with questions regarding
familiarity with technical competence, web application deployment and Docker.
After the pre-questionnaire, the participants was asked to follow a guide to deploy
Huldra on the CSP. The user study ends with the participants answering questions
using SUS. Based on the results we determine that the participants in any case based
on their technical background, found the CSP to be user-friendly and reported a high
level of satisfaction with the deployment procedure.

1.7 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2 (Background and Related Work) introduces the Huldra framework
and the React library that it is built on. It further explains cloud and its main
services before introducing relevant concepts and technologies for the thesis
followed by related work.

• Chapter 3 (Methodology and Implementation) explains the containerization of
Huldra and shows the deployment of the application on different cloud service
providers (CSP).

7

• Chapter 4 (Results) presents the objective results of the tested CSP’s and
subjective user study results.

• Chapter 5 (Discussion) addresses the research questions and limitations of the
thesis.

• Chapter 6 (Summary and Conclusions) summarizes and concludes the thesis
by the results from previous chapters in addition to providing suggestions for
future work.

8

Chapter 2

Background and Related Work

2.1 Subjective User Studies

User studies are commonly used in research to gain insights into user behavior,
preferences, and attitudes towards a product or service. These studies can be
controlled, where researchers carefully design and execute the study with a specific
set of participants and conditions [44], or crowdsourced, where researchers rely on
a large and diverse group of participants who volunteer to provide feedback on a
product or service. Controlled studies allow researchers to carefully control and
manipulate variables to test specific hypotheses, while crowdsourced studies provide
a larger and more diverse set of data, but with less control over participant selection
and experimental conditions [26].

Subjective user studies are used to gain a better understanding of the opinions,
attitudes, and experiences of their users when interacting with a product or service
[28]. These studies aim to gather qualitative data on how users perceive the product
or service. By collecting feedback directly from users, subjective user studies can
provide insights that may not be apparent through other forms of research, such
as quantitative data analysis. Subjective user studies are important because they
provide insights into the users’ needs, expectations, and behaviour. By collecting
users feedback, designers and developers can identify the strengths and weaknesses
of a product or service and make informed decisions to improve its quality, usability,
and user satisfaction [14].

9

2.2 Huldra Framework

Huldra is a React-based framework built to conduct online surveys for collecting
crowdsourced feedback on multimedia assets. The Huldra framework uses React,
a JavaScript library, for web development to build interactive elements with
encapsulated components that manage their own state and are composed to make
more complex user interfaces. React aims to provide a modular and configurable
framework for adjusting the user interface. React also allows for easy scalability
due to its components which allows for complexity [29]. Along with React, NodeJS
is used for Huldra’s backend. As a framework of JavaScript, NodeJS is working as
the backend of the application with the job of communicating between the actual
survey and its storage. Storage in this case, is provided by a Google Cloud Platform
(GCP) S3 bucket. The storage holds the content of a survey as well as the responses of
participants and is accessed via Firebase. With a folder structure in Firebase, the cases
are constructed by uploading the multimedia assets.

Huldra uses Heroku to deploy its applications with triggering of automatic
deployments from a GitHub repository. As an option, the use of ALTO Cloud should
allow to develop further solutions to Heroku as Huldra’s third-party integrations [20]
to deploy the Huldra framework on different deployment platforms. This would also
give a more secure solution as the data is under the user’s control. It could be a better
solution as cloud platforms may experience downtime and vulnerabilities such as
data theft, data loss, data leakage and more [33]. It further allows to customize the
servers for the user’s needs.

As a part of the Salesforce Platform, Heroku eliminated its free services in November
2022. Free product plans and data services were stopped, and inactive accounts got
deleted along with associated storage for accounts that had been inactive for over
a year [55]. For testing purposes, free cloud platform alternatives had to be found.
Research resulted in 5 potential cloud platforms including Render, Cyclic, Railway,
Deta and Fly. Other Heroku alternatives also included Vercel, Netlify and GitHub
pages. With the most similarity to Heroku, Render along with Railway and Fly was
chosen for deployment testing of a containerized environment.

2.2.1 Huldra Pages

Huldra offers the overall functionality of registration and login, introduction,
questionnaire and summary and feedback. The registration and login functionality

10

allows participants to collect a new participant ID to be able to participate in a
given survey. The registration page also allows the collection of information from
the participants. Further, the introduction functionality offers information to
the participants on how the expected survey is held. This includes instructions,
demonstrations audio and video checks. Followed by the introduction pages,
the questionnaire functionality is presented. The questionnaire pages hold the
core functionality of the framework where survey questions are introduced to the
participants. As explained in the introduction pages, the questionnaire pages are
where the participants answer the given survey questions for the several multimedia
content. These survey questions are presented in the four available formats of audio,
hybrid, image and video. Lastly, the summary and feedback functionality involve
a page where the summary of the survey questions and the participant answers
are presented. This page also provides a feedback form for participants to provide
information regarding the particular study along with information regarding the
survey framework itself.

For a survey, the survey questions or cases are presented in the four available
formats. For an audio case, the page is constructed by two columns. A case
description in the left-middle column with two audio assets for answer options. The
most rightward column holds and displays the participant answer. Next, the hybrid
case holds a mix of video and image assets and is constructed into three columns.
The left column holds the video and the case description. The middle column holds
two image assets from the video as answer options, and the rightest column holds
the participant answer. The next available format, image, is used for image assets and
the page is constructed of three columns. The left column holds the main image of
the case with two image assets in the middle column as answer options. The right
column displays the participant answer. Lastly, the video case is constructed of
two columns. The left columns hold the case description and two video assets that
can be selected. The selected videos, in order, are shown in the right column as the
participant answer.

Other available frameworks such as SurveyMonkey and Google Forms are difficult to
customize for a particular study and are often designed to work with a certain type
of content like audio or video. Survey Monkey for example, does not allow for more
than 10 survey questions with 100 results for free. Exceeding this, a monthly payment
is needed. Further, Survey Monkey is limited when it comes to customization were
formatting a survey can for some people be challenging.

Since the beginning of the coronavirus pandemic, online survey-based studies have
increased. With the reduced ability to conduct social surveys and restricting other

11

social data collection methods, online surveys have since been increased and are
now more important [27]. These changes mean that social data collection methods,
as an alternative, can be held online through a survey. The conversion of social
data collections to an online survey can be tricky and time consuming [4]. Huldra
addresses this issue with dynamic and easy setup of surveys with multimedia assets
in mind. The framework aims to address this task along with other boundaries when
it comes to the creation of a survey and the ability to scale the survey to the needs of
the creator towards its participants.

A search of existing popular online survey platforms resulted in a wide range of
platforms regarding features, design, customization, data collection and analysis.
While some of these platforms are free, some offer a paid plan with more advanced
features. Many of these online survey platforms are tailored to a specific type of
study. For example, Google Surveys can be used for many different types of studies,
but other survey platforms such as SurveyGizmo are popular for market research as
it offers features like conjoint analysis and other features regarding marketing. Other
examples include Culture Amp which focuses on employee engagement. This survey
platform is popular for employee experience and satisfaction as it offers features
specifically designed for HR and company leaders. Further categories of survey
platforms developed to serve specific studies include academic research, customer
satisfaction and healthcare research. Based on the specific needs will be dependent
on the survey that is being conducted as well as what kind of data that should be
collected and budget.

2.2.2 Huldra Frontend with React

Built and maintained by Facebook, React is one of the most popular frontend
frameworks and is used by many, including Apple and Netflix [46]. React offers
a lot of benefits when it comes to development. The frontend framework offers
speed in which the developers utilize individual parts of the application which
ultimately would not cause problems regarding the logic of the application. With
high performance in mind, React was designed to use server-side rendering and the
use of virtual DOM (Document Object Model). Virtual DOM provides a high level of
abstraction from the actual DOM which in return makes it faster and easier to update
the UI of an application.

React can use two-way data binding by the use of LinkedStateMixin instead of one-
way where the overall structure flows from parent to child. As the only option, and

12

close competitor, Angular offers two-way binding in which a changed value in an
input box will automatically update the added property value of the component class
[29]. This creates a real-time synchronization of data between model and view.

Figure 2.1: One-way vs. two-way data binding

Figure 2.1 displays the difference between one-way and two-way data binding in
React. One important performance metric is the speed of updating the real DOM,
which can be slow if the whole tree structure needs to be refreshed even for a single
change. To avoid this problem, React uses a virtual DOM. When there is a state
change, React updates a virtual copy of the real DOM instead of talking to the real
DOM directly. React then compares this updated virtual DOM with a snapshot of the
virtual DOM right before any changes were made to determine which component
needs to be updated in the real DOM. React updates only the changed objects in the
real DOM, making the process much faster than manipulating the real DOM directly.
This approach is called reconciliation, where a virtual representation of the user
interface (UI) is kept in memory and manipulated before updating the ReactDOM
[9].

As an alternative option for a front-end development framework, Angular is close
in popularity to React. Supported and led by Google, Angular is used widely by
big companies such as Google, Microsoft, Samsung and PayPal. Released a few
years before React, Angular has its popularity regarding single-page application and
more complex applications. Angular provides a fully fledge framework for software
development. Additional libraries are usually not required since functions such as
data binding, component-based routing, dependency injection and form validation
are included within Angular. With these libraries, more complex applications are
easier to build. On the other hand, React requires implementation of libraries, but
gives more freedom regarding organization of code. With a simpler architecture,

13

React is easier to learn and understand [57]. There are benefits from both frameworks,
but some features should determine the framework depending on development
needs.

2.3 Cloud Fundamentals

As an incredibly popular and increasingly used tool, the term “cloud” in the context
of technology refers to the concept of delivering computing resources such as
servers, storage, databases, networking, software, analytics and intelligence over the
Internet [45]. These computing services offer faster innovation, flexible resources and
economies of scale. Instead of having to own and maintain physical hardware and
software on-premises, users can access these resources remotely from a third-party
provider’s infrastructure.

For better understanding, a simple example of cloud computing is using an online
file storage service such as Dropbox or Google Drive. Instead of storing files locally
on a device, the files are uploaded to a cloud storage service like Dropbox or Google
Drive. These services store the files on their servers, providing accessibility over the
internet. The files uploaded can be accessed by any device anywhere and can be
shared for others to read and write [38]. With the level of accessibility, the ability of
collaborations and remote work are increased. For a project or remote employees, this
is very beneficial for businesses.

By storing files in the cloud, local storage and its capacity is removed. As an
important feature of cloud storage, scalability comes easily where the storage
capacity can be increased or decreased deepening on the user’s needs. For businesses,
this feature becomes useful when undergoing growth and expansion. Along with
scaling the storage capacity, the cost also scale. In cloud and cloud computing,
single users and businesses only pay for what they use. More directed towards
businesses, flexibility regarding computing resources can be scaled up or down
depending on demand [45]. Investing in hardware and software for an on-premises
solution is often very expensive and brings along additional drawbacks such as staff
and maintenance. Also, a combination of technical and administrative controls is
needed within on-premises security to achieve an acceptable standard of security
measurements [12]. By using a cloud service, the security is typically managed by
the cloud providers in which the cloud provider is responsible for securing the cloud
infrastructure.

14

There are generally three types of clouds, public, private and hybrid clouds. Public
cloud refers to a cloud infrastructure that is owned and operated by a third-party
provider. Examples of a public cloud provider are Amazon Web Services, Microsoft
Azure and Google Cloud, all of which are accessible to anyone. Unlike public clouds,
a private cloud is exclusively used by a single user, organization or company. Private
clouds can be a company’s own on-premises server or be located in a datacenter
where the computing resources are not shared with other organizations or the public
[1]. Benefits of private clouds include security, low latency and greater control over
data governance.

As the name suggests, hybrid clouds refer to a combination of public and private
clouds that are integrated and work together to provide a unified computing
environment. In a hybrid cloud, organizations can run certain workloads or
applications in the public cloud while keeping others in their private cloud. For
example, running public cloud services on privately owned infrastructure. Cloud
computing is a broad spectrum that encompasses a wide range of technologies and
services. These services, provided and maintained by cloud service providers, can be
divided into three main categories [45].

2.3.1 Infrastructure as a Service

Infrastructure as a Service (IaaS) is where the cloud service provider manages the
entire infrastructure which includes data storage, servers, network and virtualization
[53]. With IaaS, users or businesses use these resources to build and run their own
application on hardware provided by the cloud service provider. Users of IaaS have
complete control over the operating system, applications and software that runs on
the virtual machines. Examples of IaaS providers are Amazon Web Services (AWS),
Microsoft Azure and Google Cloud Platform (GCP).

2.3.2 Platform as a Service

Platform as a Service (PaaS) is where the cloud service provider offers a complete
platform for developing, running and managing applications [56]. In contrast to IaaS,
PaaS gives users more flexibility and ease of use in which IaaS provides more control
in terms of the infrastructure. With higher simplicity, users of PaaS do not need to
worry about the underlying infrastructure, operating system, middleware and tools.

15

2.3.3 Software as a Service

Software as a Service (SaaS) is commonly used daily by millions of people. As an
increasingly popular choice for businesses, SaaS provided a flexible way to access
software applications and services. SaaS allows users to access software applications
over the internet, typically accessed through a web browser or a mobile app, without
downloading or installing the software on their own devices [45]. Some examples
of popular SaaS applications used by many are Google Drive, Zoom, Dropbox,
Microsoft Teams and OneDrive. These services are managed by the cloud service
provider which maintains the servers, databases and other hardware to assure a
consistent delivery of the product.

2.4 Relevant Concepts and Technologies

2.4.1 Virtualization

A key technology used in cloud computing is virtualization which is a foundational
technology that enables the development of clouds. Virtualization enables single
physical instances to be shared to its users by allowing multiple operating systems
to run on the same physical machine. Resources such as CPU, memory, storage and
network interface get shared among the users. The physical machine is called the
host and the virtual machines running on the physical machine are called quests [40].

As a software-based computer, virtual machines (VM) function like a physical
machine with their own operating system and applications. On the same host, via
the hypervisor, different operating systems can be used on different virtual machines.
As they are independent, a virtual machine is portable where it can be moved from
one hypervisor to another hypervisor on a different physical machine. This, along
with other benefits of using virtualization, provides speed and efficiency at which
virtual machines can be deployed [39]. Starting a virtual machine is quick and is
simpler than creating an entire new environment for developers. For example, if a
development team needs a testing environment one could simply create or start a
new virtual machine designated for that purpose. Virtualization is also beneficial
regarding uptime where virtual machines can easily be redeployed by being moved
to another physical server or host if that host has crashed. Another key benefit of
using virtualization is low costs. Reducing the need for additional hardware along
with power, cooling and maintenance, virtualization lowers the cost by running

16

multiple virtual environments from one piece of infrastructure [40].

Hypervisor Type 1

Installed on the physical machine, the hypervisor is responsible for allocating
resources to the virtual machines. Most commonly used are the hypervisor 1, also
known as a bare-metal hypervisor, which runs directly on the host hardware. As
a separate environment, a quest is allocated its own resources and is isolated from
other quests. The isolation ensures that none of the virtual machines can interfere
with each other like access to data or resources belonging to each individual guest
which improves security and reliability [10]. Examples of Type 1 or bare-metal
hypervisors are VMware ESXi, Microsoft Hyper-V and open source KVM.

Hypervisor Type 2

Hypervisor Type 2, in contrast to Type 1, has a layer of host OS that sits between the
physical server and the hypervisor. Also known as “hosted” hypervisor, hypervisor
Type 2 runs on top of an operating system which is installed on the host computer.
With direct access to the hardware resources, Type 2 hypervisors run on an existing
operating system and provide virtualization as an application. They are less common
and mostly used for end-user virtualization working as a regular application running
within the host [10]. Examples of Type 2 or hosted hypervisors are Oracle, VirtualBox
and VMware Workstation.

2.4.2 Containerization

Containerization holds a big part in future technological advancements of application
deployment and management. The technology allows applications to be packaged
along with its dependencies, libraries and configuration files into a single package
called a container. As more organizations move their applications to the cloud,
containerization has become a critical part of their strategy to build and deploy
applications faster and more efficiently [37]. It also provides a standardized
deployment process, making application deployment more accessible for non-
technical people.

Containerization can prevent certain issues that often appear when deploying
and running applications in a traditional environment. These issues often involve

17

compatibility and dependency conflicts, but may include other issues such as
performance issues, security vulnerabilities, deployment and management
complexity [7]. For example, for a developer who is developing an application
on his local machine, and everything is working as it should, the application can
run and function the same way on other machines. A typical scenario is where an
application functions as it should for one developer but does not function on another
machine for another developer. This can happen when files are missing, software
version mismatches or due to different configuration settings like environmental
variables. With containerization the application is within its own package with
everything it needs to run. For an application consisting of multiple services such as
a database, monitoring or backup, each service is isolated in its own container with
their needed dependencies [7]. The isolated environment also allows for multiple
applications to use different versions of a software side by side where the same
dependencies are used but with different versions. These containers are isolated from
each other and from the underlying host operating system which then again can run
the same containerized application on any system that supports containerization
technology. With the use of containerization, one can consistently build, run and ship
applications.

Containerization provides multiple benefits including portability, isolation,
scalability, consistency and more. As containers are able to run on any system that
supports containerization, moving applications from one environment to another
is made easy. For example, from a developer’s laptop to a production server.
Further, isolation and scalability offer reduced conflict between application as well
as improved security with the ability to scale up or down the containers based on
changes in application demand [41]. Overall, containerization provides a convenient,
efficient, and reliable way to run and manage applications.

To use containers, certain components are necessary. Firstly, a host operating system
is required, which can be either a physical or virtual machine. This operating system
can either be a physical machine or a virtual machine as well as being compatible
with the container runtime. Containers typically runs on virtual machines as they
provide additional advantages such as isolation between the containers and the host
operating system, resource management, portability, combability as in integration
of containers into existing environment and security. Further components include
container runtime like Docker and container images.

18

Docker

As the prominent containerization platform, Docker is one of the most widely
used platforms for containerization with 40 percent of enterprises using it and 30
percent more planning to do so [60]. With its popularity and community support,
Docker is well supported and is constantly developed by developers and other
contributors in an active community. Docker has gained widespread adoption due to
its portability, flexibility, performance and available tools which makes it an attractive
option to containerize applications [6]. It also brings tools and services for container
orchestration, image management, continuous integration and deployment.

A container may look similar to a virtual machine in terms of virtualization, but as
virtual machines virtualize entire machines, containers virtualize software layers
above the operating system. VM’s is the isolation of machines, while containers are
the isolation of processes [5]. Depending on the use case, virtual machines are usually
used when there is a need for different operating systems and varying processing
power to run multiple applications simultaneously. As containers focus more on
packaging applications rather than simulating physical machines, it solves some
of the difficulties by using VM’s. Combining VM’s and containers and running
them together and not as competing technologies, brings isolation and management
benefits of VM’s, and the resource efficiency and flexibility of containers [34].

As a crucial part of the Docker architecture, the Docker Daemon is responsible for
managing Docker images, containers, networks and storage volumes. Provided by
Docker, the Docker Daemon is accessible and can be interacted with using REST
API through the Docker CLI. The Docker Daemon constantly listens for Docker API
requests which are made through the Docker CLI.

To create a container, a Docker image must first be created which works as a
template that contains the instructions for creating a container. A docker image is
a lightweight, stand alone, executable package that includes everything needed to
run a piece of software, including the code, libraries, environment variables and
configuration files. This set of instructions which specify how to build the image, are
defined in a file known as a Dockerfile. The Dockerfile contains information such as
which base image to start from, which software packages to install, how to configure
the environment, and what command to run when a container is started from the
image. In other words, the Dockerfile is used to build the Docker image which is a
pre-packaged environment. It is this image that is being executed as a container on a
system that supports containerization. The image can then be pushed to some cloud-
based registry for easy access by users and other applications.

19

2.4.3 Application Deployment

As part of the software development process, application deployment is an
important stage and encapsulates the process of installing, configuring, updating
and monitoring [36]. Also known as software deployment, the process validates an
application and makes it available for use by its intended audience. In response to
customer preferences, requirements and demand, methods used to build, test and
deploy new code are heavily impacted. Along with updates and the delivery of new
features, software development has become important in terms of workflows that
enables frequent deployment of updates to the production environment.

Deploying the application typically involves transferring application files to the
server using File Transfer Protocol (FTP) [16] client or a Command-Line Interface
(CLI) [51] tool. FTP is a simpler and easier way of transferring files from a local
machine to a remote server using a graphical user interface. It is preferred over
CLI for those who are not familiar with CLI but are slower in terms of transferring
files and automation of the deployment process. CLI is more flexible but requires
direct interaction with the server through a terminal window. With the use of
commands, the deployment process can be automated and is more secure compared
to FTP as it uses protocols like secure shell (SSH) and SSH File Transfer Protocol
(SFTP). Depending on the hosting provider, Git also offers a way to transfer files
for deployment. As a version control system, Git has become a common way of
deploying an application directly on to the server. With Git installed on the server,
developers push their code to a remote repository where the app gets updated by
pulling those changes to a directory on the server which contains the application.

An important process after an application is deployed, is the process of monitoring
is implemented. Regular checks of performance, security and availability are done
to ensure correct functionality and that the application delivers what is intended for
end-users [54]. To help identify and resolve issues before they cause any downtime
or other inconveniences, monitoring the application after deployment is critical. Key
aspects of monitoring include performance in which resource usage is monitored,
along with other metrics, to identify issues affecting speed and reliability. As its own
aspects of monitoring, availability monitoring ensures accessibility to its users. By
checking the uptime of infrastructure components such as servers and application,
availability monitoring makes sure that technology and services are in operation
and available for users to access. Further, security monitoring is implemented as an
automated process [54] of collecting and analyzing signs of potential threats. Events
and activities are monitored and alerted when certain anomalies are detected. Other

20

monitoring aspects involve logs and user experience monitoring.

Deployment without Technical Expertise

Deploying applications and configuring cloud-based services can be a complicated
task, especially for non-technical people. For those who are not familiar with cloud
infrastructure and deployment process, cloud deployment can be overwhelming.
With the complexity of configuring and managing cloud-based services, individuals
or smaller businesses which do not have a dedicated IT department may find
it overwhelming [36]. As for smaller businesses and individuals, cloud service
providers remove a lot of these complications by offering management and
maintenance of the underlying infrastructure.

Cloud service providers proceed to develop, implement and improve their services to
make them easier to use and reach a wider audience. As a non-technical user, cloud
service providers have user-friendly interfaces that aid non-technical users in the
deployment process [2]. With an intuitive interface, the deployment process offered
by a graphical representation and instructions helps users understand what to do.
The interfaces are simple with intuitive design making the layout and its content
not difficult to navigate. Deployment offered by cloud service providers is often
well documented and outlines the deployment process by a step-by-step procedure.
The documentation often includes images and examples, making it easier to follow
and perform certain tasks. Along with the detailed documentation, many cloud
service providers offer tutorials as part of their get started programs. To troubleshoot
issues, users may use the provided documentation and tutorialsl, and as an option
use support services such as email or phone. Not all cloud service providers have
support services, but those who do can offer a more specific guidance to help identify
and fix problems. In addition to the Graphical User Interface (GUI) provided by the
cloud service providers, some cloud service providers also offer CLI tools. For more
advanced users, CLI allows scripts and automation which is often needed for more
complex deployments [51].

Customers or users of cloud service providers choose the provider based on factors
such as cost, reliability and features. Flexibility in terms of cloud service providers
refers to the ability to choose from multiple cloud service providers. In a flexible
approach, selecting a provider that does not lock the user and provides vendor
independence is beneficial [42]. Furthermore, many cloud service providers offer
different features and as a customer, these specific features or strengths provided by
each of the providers should be highly considered.

21

As part of many cloud service providers and deployment platforms the implementa-
tion of Continuous Integration and Continuous Deployment (CI/CD) [58] can help
deploy applications more easily and reliably. Implementing (CI/CD) pipelines to
automate deployment will remove the technical aspect of deployment and human
interaction. As a key benefit, (CI/CD) pipelines remove technical details of deploying
an application which means non-technical people such as project managers, analytics
etc. can deploy without the underlying technical details of the deployment process.
As a key component of DevOps, (CI/CD) pipelines help deploy and release new ver-
sions but also improve the overall quality and efficiency of the deployment process.

2.4.4 DevOps

Application deployment and monitoring is an essential element in DevOps which
encompasses the combination of software development and operations. To help
organizations deliver software and services with higher quality and reliability,
DevOps aims to emphasize the collaboration and communication between
development teams and IT operations [11]. With the goal of automating the processes
and creating a more efficient way of developing software, DevOps shifts from
traditional software delivery by encouraging an integrated and collaborative
approach [25]. DevOps focuses on CI and CD which means that with a central code
repository, developers continuously integrate their code which is automatically tested
and deployed to production.

As a critical part of DevOps, the software development lifecycle (SDLC) lies in focus
where DevOps aims to streamline and optimize its process to facilitate efficiency
in terms of application development and delivery [32]. DevOps practices play a
key role in CI/CD which relates to many of the stages in SDLC. By integrating
development, testing, and deployment processes, DevOps aims to optimize the
SDLC to enable faster, more efficient, and higher quality software development and
delivery. Collaboration and communication between development and operations
teams throughout the SDLC are also emphasized, enabling teams to work together
more efficiently and effectively.

Software Development Lifecycle

The software development lifecycle or SDLC, defines the steps that are taken to build
software and provides a well-structured flow that allows for high quality, well tested

22

and quick development. It also defines the responsibilities for team members during
each step of the phase [17]. The typical SDLC stages consists of a planning stage,
requirement stage, design stage, development stage and testing stage as described
by [49].

The planning phase involves gathering requirements from the stakeholders and
identifying the scope of the project. The project goals, timelines, resources, and risks
are identified, and a feasibility study is conducted to determine the project’s viability.

The analysis stage is where the detailed requirements are defined and documented
in the Software Requirement Specification (SRS) [21] document. The SRS document
outlines the functional and non-functional requirements of the software product,
including user interface design, database design, and system performance
requirements.

In the design stage, the high-level design of the software system is created based on
the requirements gathered in the previous stage. Different software architectures
are designed, reviewed, and evaluated based on factors such as risk assessment,
robustness, design modularity, time, and cost. The best design is selected, and a
detailed design is created.

The development stage the actual development of the software product begins. The
software developers use different tools and programming languages to generate the
code based on the design. The code is developed, tested, and reviewed to ensure that
it meets the requirements outlined in the SRS document.

Lastly, in the testing stage, the developed product is tested to ensure that it meets
the user’s requirements outlined in the SRS document. The testing process involves
identifying software defects, reporting them, tracking them, fixing them, and
retesting them to ensure that the product meets high quality standards.

Using SDLC provides a clear plan and structure for the entire development process,
ensuring that all necessary stages and activities are accomplished. It helps to ensure
that requirements are well-defined and that the development team has a clear
understanding of what needs to be built. The process also enables better collaboration
between development teams and stakeholders, ensuring that everyone is aligned on
project goals and timelines [17].

23

2.5 Deployment Platforms

2.5.1 Fly

Fly is a platform designed to provide an easy way to run full-stack applications
and databases. The platform utilizes Firecracker virtualization technology to
enable micro-virtual machines that are located closer to end-users around the
world. Fly aims to make it easier for developers to manage complicated self-service
infrastructure without abstracting away important details. The platform features a
purpose-built cloud that runs physical servers in cities close to the users. It supports
multiple programming languages and frameworks, such as Ruby, Laravel, Python,
Go, and Dyno, as well as Docker for increased flexibility [13]. Additionally, Fly offers
an automated process for creating Fly Postgres databases, complete with extensions
to simplify the management process. Fly’s Postgres offering includes features such
as CPU and memory allocation, metrics/alerts, load balancers, and SSL for secure
access.

Fly offers extensive documentation regarding their features and services. The
documentation involves everything from how to start a project and working with
application within Fly, to pricing and support. Guides for language and frameworks
are also provided such as running a Node application, Go application, Python
application and many others. These guides are listed based on their extensive
documentation and are categorized as “Comprehensive Guides” and “Starter
Guides”. Other guides such as production, custom domains, deploying with GitHub
actions, running multiple processes, UDP services and others are also provided in the
documentation of Fly [13].

2.5.2 Railway

Railway is a platform as a service (PaaS) tool designed to make app development
more accessible for developers. Railway allows developers to choose their own
preferred database, such as MySQL, Redis, or Postgres, and offers a variety of
templates for building apps from scratch. To deploy an app on Railway, all you need
is a GitHub account. The interface is straightforward and allows developers to add
database tables and make queries using a web form. Railway also offers features
like autoscaling, which scales the application based on user demand, and real-time
metrics for debugging issues [43]. Unlike some other PaaS providers, Railway allows

24

apps to run indefinitely, either using a Procfile or by deploying a Docker file.

Railway offers detailed documentation on every available feature and service
offered by Railway. This documentation involves development of projects, services,
variables, environments and development using CLI. Further documentation
involves deployment where commands, networking, integrations, and Dockerfiles
are displayed. The documentation also includes diagnostics, the use of different
databases, troubleshooting and references such as pricing and plans [43].

2.5.3 Render

Render provides all the necessary features and functionalities that a backend
application needs, providing fast and secure development, deployment, and hosting
services. Render comes with SSL certificates and network configurations, enhancing
the security of a deployed applications. Containers, API’s, Web Services, Static Sites,
and others can be hosted using Render where the feature of auto-deploy from Git is
offered to automatically deploy changes in the remote repository [47]. Render offers
several features, including DDoS attack protection, SSD storage, database experience,
and instant deployment. Its PostgreSQL database provides easy configuration and
management with daily database backup for at least 7 days.

Render offers a high level of flexibility through its various features and services. For
example, Render allows responses to take up to 100 minutes for HTTP requests. In
terms of performance and reliability, the focus is shown in several of its features and
services. One of these features is HTTP requests where Render serves all requests
over HTTP/2 (and HTTP/3 where available), which reduces page load times and
minimizes simultaneous connections to your Render apps [47].

With documentation on the use of the platform, users can find information about
the different services, custom domains, integrations and more. All documentation
includes images and steps regarding certain applications. Render also supports
private assistance beyond community support.

2.6 Related Work

Along with the increased popularity of cloud computing, cloud service providers
have emerged as a competitive participant to the market. As competitors, they all

25

strive to be the best regarding price, including discounts and promotions as well as
pricing models. Different features also differentiate cloud service providers where
specialized or unique services are offered along with a more user-friendly interface.
Other features regarding security also differentiate cloud service providers where for
example encryption and access controls are offered. Other competing factors include
reliability, performance and customer support. With the amount of available cloud
service providers and more to come, the choice of which one is difficult.

Lang [30] conducted a Delphi study to identify and rank Quality of Service (QoS)
attributes used by customers within a cloud computing environment. Based on
previous studies, Lang [30] identified four changes within the cloud market. These
include an increase in the importance of data protection, cloud customers continue
to seek value co-creation with CSP, a decrease in the possibility of CSP opportunistic
behaviour and the continuation of product uncertainty as a major problem during
CSP selection. Identifying relevant QoS attributes is difficult, and to choose the
correct CSP, both technical and managerial QoS attributes are considered. The study
approaches the identification of QoS attributes based on earlier research and their
own panel of professionals with experience in the cloud computing field.

The earlier studies included 4 managerial QoS attributes and 21 technical QoS
attributes by Saripalli and Pingali [50]. Repschlaeger [48] identified 8 managerial
QoS attributes along with a growing number related to data protection issues, and
13 technical QoS attributes.

Lang’s [30] panel selection involved the recruitment of professionals with significant
work experience in the cloud computing field. The chosen professionals were asked
predefined questions regarding their cloud experience and use of cloud deployment
and cloud delivery methods. Novice persons, private and hybrid cloud users and
cloud service users who use cloud services less frequently than once a day were
excluded from the panel selection.

The exploratory interview phase brought 31 unranked QoS attributes for CSP
selection in combination with the earlier studies. 14 new QoS attributes were
identified by the panel as not mentioned in previous studies and it is suggested that
new QoS attributes have appeared during the past few years, mainly managerial QoS
attributes. As the first major topic, the new QoS attributes involves reliable CSP with
good financial performance to assure long-term relationships. As part of the long-
term relationships, lock-in effects come as a second major topic. Flexibility in terms
of exit strategies and standardized operating environment as changes in business
strategies may frequently occur are highly requested as a result. The third major

26

finding of new QoS is directed against data protection capabilities as laws force cloud
customers to take responsibility for the cloud services in use and data transferred.

Based on the opinion of the professionals with experience in cloud computing, the
top 5 QoS attributes that were repeatedly ranked highest among the professionals
were functionality, legal compliance, contract, geolocation of server and flexibility.
The study interpreted these attributes as a universal indicator of the most important
QoS attributes during CSP selection decisions. Further ranking and classification
based on the interviews, the QoS attributes were classified based on technical and
managerial QoS attributes. The technical QoS consisted of functionality, flexibility,
integration and control which relates to the operational aspects of the cloud service.
The managerial QoS attributes consisted of contract, legal compliance, geolocation
of services, transparency of activities, certification, monitoring, test of solution and
support. Lang [30] states that the most important QoS attributes were ranked by also
considering dependencies between the attributes.

In conclusion, their results show that cloud customers require a variety of managerial
QoS attributes during CSP selection. Further, based on previous studies, their study
aligned with the following four key changes within the cloud market. First, the
importance of increasing data protection. Second, value co-creation pursued by the
customer of cloud service providers. Third, the possibility of a decrease in CSP’s
opportunistic behavior and lastly, product uncertainty.

Containerization holds a big role in continuous deployment (CD), and in a paper
published by Zhang [59], the study on CD workflows caused by containerization
is presented. The paper investigates Docker-enabled CD workflows by collecting
and combining lessons learned and offering data-driven evidence from different
CD implementations. With data collection from GitHub and Docker Hub, the paper
addresses the motivations and differential benefits of Docker-enabled workflows.

Using an online form, the study conducted a survey of developers who had source
code repositories on GitHub. Based on 168 responses, common CD implementations
involved pushing images to Docker Hub while other projects used their own scripts
to deploy images. They also found two prominent Docker image deployment
workflows. A Docker Hub auto-builds Workflow where the registry itself builds the
image automatically when GitHub source files change, and a CI-based Workflow
where CI tools build images during the build and test stage followed by publishing
it to Docker Hub.

Based on the first question regarding motivation, the survey found that 60 out of

27

140 respondents valued automatic deployment instead of manual deployment as
the motivation of CD workflows. Further, 27 respondents said that their motivation
for using CD workflows was that it gave them smoother and easier deployments.
In a question about current Docker workflow, the developers reported using either
Docker Hub auto builds or CI-based workflows. Using Docker Hub workflow for
automated builds, the GitHub source files are automatically built into a Docker
image. The new build, triggered by new code that is pushed, produces a Docker
image that is further pushed to Docker Hub. Respondents of Docker Hub workflows
specified advantages of Docker Hub workflows to reduce the time spent on setting
it up and to deploy more frequently. As another reason, respondents said that it is
free and ready to work with GitHub projects, and that it is easy to share with Docker
users.

2.7 Chapter Summary

This chapter explained the Huldra framework and its features and how it compares
to other online survey platforms. We also examined the technology which Huldra
is built on before going into the concept of Cloud and other technologies such as
virtualization and containerization. In addition, we looked at related work that
identified QoS attributes when choosing a CSP and we looked at a study of CD using
containerization.

28

Chapter 3

Methodology

3.1 Proposed Approach

This thesis aims to explain the investigation of cloud service providers with focus
on deployment platforms in terms of deployment accessibility for non-technical
people. Existing research shows how important cloud computing have become and
its relevance for many fields. As the amount of CPS’s are growing, choosing the
correct CSP can be difficult. New QoS attributes show that data protection and long-
term relationships have become important in the choice of CSP. Many CSP’s that
provide deployment platforms have become easier to use due to their improved
tools and GUI for deployment which allows less technical knowledge to deploy an
application.

Depending on the needs, size and requirements of a project, it is essential to
understand what is offered by the cloud service provider in terms of features. With
many different cloud service providers and platforms to deploy on, the ability to
choose which type of cloud service provider should not be based on the technical
aspect but rather the performance and features proved by the platform. To assist the
deployment process and create an isolated environment, the use of container images
limits the technical issues associated with deployment on different platforms as they
may differentiate in operating systems or software configurations. This can cause
issues for the deployed application as the environment it is deployed in can vary.

The implementation and design encompass the development of Dockerfiles for
production and a development environment. It also includes the development of
Docker Compose files for both environments to facilitate further development and

29

easier configuration of services within an application. As a tool for defining and
running multi-container Docker applications, Docker Compose allows users to define
the services and dependencies of an application in a single file. Using the specified
Docker Compose files for a specific environment, the users can define new services
and its connection between them as a single application. For example, creating a
storage system or database for the application which would be defined in the Docker
Compose file. As a higher-level abstraction tool, Docker Compose is implemented
to bring simplicity to the defining of the environments using YAML. As a YAML file,
the environment can be effortlessly launched by other people using Docker Compose.
Docker Compose replaces the Docker run commands which are executed repeatedly
when rebuilding and redeploying containers, for example when changing code for an
application in a development environment.

Docker was chosen as the containerization platform due to its popularity and support
along with Docker Compose for defining multi-container applications. For better
control and security, the containerized solution was developed and tested with
OsloMet ALTO Cloud before it was further tested and deployed using different
deployment platforms provided by CSP. The development and testing was utilized
on the OsloMet ALTO cloud using a virtual machine including the following
specifications:

• Ubuntu 18.04 instance

• 1 virtual Central Processing Unit (CPU)

• 2 gigabytes of Random Access Memory (RAM)

• 20 gigabytes of disk space

The GitHub repository was cloned and added to the virtual machine using the "git
clone" command. The files for Docker, Docker Compose and Nginx was then added
at the root of the application directory. Using Docker commands, the application
was then built as an image and started as a container using the Dockerfiles. During
build time and runtime the logs was examined, and for any occurrence of errors the
application was shutdown and reconfigured based on the error messages. Once the
application was successfully deployed using the virtual machine and Docker, the
application was tested in the browser using an demo survey to verify that it worked
correctly.

As many deployment platforms differ in terms of the deployment process and
technical control, the development using the ALTO Cloud provided full access to

30

files, VM’s, containers, images, logs, configurations and other management of the
container. This allowed for better trouble shooting during the development of the
Docker, Docker Compose files and the containerized deployment of the application.
The application was then deployed on different platforms including Render, Railway
and Fly where the use of their web-based deployment process was used. Fly does not
support any form of GUI when deploying on their platform and must instead use
command line interface to interact with their platform. This requires some technical
knowledge over the use of the platforms GUI.

3.2 Plan for Subjective Study

The motivation of this user study is to gather feedback and insights from the
participants about the experience of deploying the Huldra application using Render.
The study consists of three parts where the first part involves a pre-questionnaire
to gather information about the participants followed by a guided deployment, and
ends with a post-questionnaire with questions based on System Usability Scale (SUS)
[8] and a QoE question.

3.2.1 Method

To understand the difficulty or simplicity of deploying an application to the web
using CSP’s, we proposed a user study to gather data from participants with varying
level expertise in application deployment and with technical expertise in general.

3.2.2 Participant Recruitment

Application deployment is not common knowledge and is not a task that is done on
a regular basis. Therefore, the survey was distributed to as many people as possible
to ensure a diverse range of participants with varying levels of technical expertise
and to maximise the number of participants. The study were conducted online using
Google Forms were participants completed the survey at their own time using their
web browser.

31

3.2.3 Study Material

The subjective user study begins by giving the participants an introduction of the
study containing the purpose and contents. Followed by the introduction, the
participants are asked to answer some questions before starting the deployment.

Pre Questionnaire
The pre-questionnaire asks the participants to selects their age in range of:

• less than 18

• 18 to 29

• 30 to 39

• 40 to 49

• 50 or above

Followed by the age selection, the participants were asked to select their gender with
the options of choosing:

• Female

• Male

• Non-binary

• Other

As part of the study, the participants were asked to range their familiarity with:

• Computer sciene

• Web application deployment

• Docker virtualization

These familiarity’s were ranked on a scale from 1, indicating very low familiarity, to 5
indicating very high familiarity. Lastly in the pre-questionnaire, the participants can
enter their profession as an optional text input.

Step 1
After the pre-questionnaire, the guided deployment begins with logging in to Render.
Two bullet points are provided as follows:

32

• Go to https://render.com/

• Enter e-mail (huldra@simula.no) and password (******) and click Sign In

In this step there are also provided a screenshot of the sign in page on Render.
The participants enters the local time at completion of this step and also ranks the
difficulty level of this step by using a likert scale from 1 to 5. The participants can also
choose to give a comment on this step.

Step 2
Step 2 of the guide includes the creation of a Web Service where the participants are
given four bullet points and two screenshots. The provided bullet points include:

• Click New from the top right, and select Web Service

• After clicking Web Service, navigate to Public Git repository at the bottom of the
next page

• Enter https://github.com/BjorgeO/docker-deploy in the input field as the
public GitHub repository address

• Click Continue

The first bullet point is also provided as a screenshot, showing the participant where
to click and choose the Web Service. Another screenshot is also provided, showing
the Render page were the GitHub repository address is added. As the previous step
and further steps of the guide, we asked the participants to enter their local time
when completing this step and also choose the difficulty level of this step using a
likert scale from 1 to 5.

Step 3
Followed by step 2 of the guide, step 3 included the Web Service setup. Five bullet
points are provided including:

• Choose a Name for the web service (you can pick any name), and enter it in the
relevant input field

• Choose a Region for the web service (preferably Frankfurt (EU Central)) using
the relevant dropdown menu

• Set the Branch to be main

33

• Leave the Root Directory blank

• Set the Runtime to be Docker

As Render automatically sets the runtime to Docker due to the detection of a
Dockerfile in the GitHub repository and branch is set to main be default, only the
name and region is changed by the participant. Branch is by default set to "main" and
the root directory should remain blank. A screenshot is also provided, showing the
correct input in the different fields.

Step 4
Step 4 of the guide consists of five bullet points for setting advanced options of the
Web Service. These bullet points includes:

• Navigate to the bottom of the page, and click Advanced

• Inside the advanced options, click on Add Secret File

• Enter .env as Filename

• Copy and paste the following lines into File contents

– REACT_APP_FIREBASE_API_KEY=********************
REACT_APP_FIREBASE_AUTH_DOMAIN=********************
REACT_APP_FIREBASE_PROJECT_ID=********************
REACT_APP_FIREBASE_STORAGE_BUCKET=********************
REACT_APP_FIREBASE_MESSAGING_SENDER_ID=********************
REACT_APP_FIREBASE_APP_ID=********************
REACT_APP_FIREBASE_ROOT_DIRECTORY=********************

• Click Save, this will close the Secret File window.

This step asks the participants to navigate to the bottom of the page and clicking
the "Advanced" button that opens further configuration of the Web Serivce. The
participant then gets asked to click on "Add Secret File" that opens a popup windows
were the user inputs filename and file contents. The filename and file contents are
provided in the guide and as a bullet points we ask the participant to copy and paste
the lines from the guide into the file contents of the popup window. We also provided
a screenshot of the popup window with the correct filename and file contents. The
last bullet points asks the participant to save and close the "Secret File" window.

Step 5
Step 5 of the guide consists of three bullet points:

34

• Navigate to the bottom of the page, and click Create Web Service

• The deployment takes a few minutes

• The web app is deployed when the In progress indicator changes to Live

Step 6
The last bullet point is also visible in the provided screenshot of this step. As the
next step in the guide, we ask the participant to go to the deployed application to
verify that it is working. Two bullet points are provided to help the user find the URL
of the deployed application and to inform the participant to confirm the deployed
application by provided screenshot:

• The URL for the deployed app is displayed at the top left, below the
web service name (looks like: https://<web service name>-<random
string>.onrender.com, for example https://mywebservice-pa5m.onrender.com/)

• Click on the URL, and check if the Huldra app is properly deployed (it is
enough if you confirm that you see the Huldra homepage as indicated below)

Step 7
As the last step of the guide we ask the participant to delete the Web Service. Three
bullet points are provided with a screenshot. These bullet points include:

• Go to the Settings tab on the left side

• Scroll all the way down in the page, and click Delete Web Service

• Type or copy-paste the red text into the input field and click Delete Web Service

This step concludes the guided deployment and the participants ends the user study
by answering questions related to SUS.

Post Questionnaire
The post-questionnaire uses the SUS [8] to measure the usability of Render and
includes a QoE question. The questions were presented with a likert scale were the
participants could choose from 1 as strongly disagree to 5 as strongly agree. Eleven
questions were presented as follows:

1. I think that I would like to use this system frequently.

35

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this
system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

11. My overall quality of experience with the deployment procedure was high.

The participants could also give general comments at the end.

3.3 Chapter Summary

We have in this chapter looked at the aim of thesis, investigating how difficult it is
for people with less technical expertise to deploy applications on different CSP’s.
We also looked at the approach of developing a containerized solution for Huldra
that by using Docker, should remove issues related to application deployment on
deployment platforms. This study tests the deployment process using a specific cloud
service provider and then tests the same process on different providers.

We also looked at the plan of the subjective user study, containing the deployment
steps, pre and post-questionnaires. The user study is conducted to understand the
difficulties of deploying an application using CSP’s, and are conducted to estimate
the deployment process based on different backgrounds and familiarity’s of the
participants.

36

Chapter 4

Implementation

The following chapter includes the containerization of the application Huldra and the
deployment on different cloud service platforms including a deployment on OsloMet
ALTO Cloud.

Huldra uses Firebase which provides a set of backend services used serve a
specific survey. For an application to be connected to Firebase, certain connection
parameters must be set in order for it to communicate with the Firebase project.
These parameters include an API key, authentication domain, project ID, storage
bucket, messaging sender ID, application ID and root directory. For security
reasons, these parameters are not added in code, but are passed through either as
an environment file or passed as environment variables through the CSP interface.
It is arguably safer to provide the Firebase connection parameters as environmental
variables within the instance the service is running, but as a containerized solution
the Docker container is isolated from its host operating system and is not able to
access these variables. As a solution, the environmental variable values can be passed
to the Dockerfile at build-time.

37

Figure 4.1: ARG and ENV availability

With the use of ARG instruction and ENV instruction, the environmental variables
defined at the host OS can be passed through to the Docker container. At build-time,
the variables and its values are defined using ARG. These variables are not accessible
by a running container and must be defined within a ENV instruction. The ENV
instruction sets the environment variable in the Docker image which will be available
in the running Docker container. By passing the host OS environment variables
as ARG and then using the ARG variable in the specified ENV instructions, the
environment variables and their values specified in the interface of the deployment
platform are passed through to the container.

Using ARG and ENV instructions as build-time variables for passing data makes it
visible to any user of the image. As an option, secrets can be added in the Dockerfile
as secret mounts. Although this option also can result in data being stored in the
image, it is considered as a better practise than adding data in plain sight.

4.1 Containerization of Huldra

For further development of the framework and as an option for the users of Huldra,
a Docker image is developed to support a containerized deployment. With the
implementation of Docker image and the containerization of the application, the
framework can operate on many different CSP platforms including on-premises
servers and other platforms supporting containerization. By using containerization
to deploy the framework the code does not need to change along with the required

38

services for deployment. With an image, the created containers will work on multiple
operating systems where Docker is more versatile in deployment.

For testing and development of the Docker configurations, a virtual machine (VM)
was created in ALTO Cloud at OsloMet for fast and easy deployment. The VM was
created to test a containerized environment using different Dockerfile configurations
for deployment of the Huldra framework. Since Huldra uses React, different methods
of deployment were tested. As a possibility, a development environment along with
production environment can be containerized. A development environment is not
available to the end-user and is created for developers to ensure that the application
functions as intended before moving it to the production environment. With a
containerized development environment, the entire development stack, including
the operating system, runtime and dependencies are wrapped into containers which
provides containerized benefits. Since developers of the Huldra framework do local
testing running ReactJS in localhost, a containorized development environment may
not be needed but is added as an option. Running the React project locally also helps
detecting and fixing problems as React provides warnings and tools for eliminating
potential bugs. These development features increase the project size and as a result
slow down the app. To prevent a slow running app in production, a production-
ready version is created where the source code is compiled, optimized and bundled
into a set of static files which can be served via a web server. For production, a multi-
stage docker build is used to break the steps in building a Docker image into multiple
stages.

4.1.1 Multi-stage Builds

Multi-stage builds help optimize Dockerfiles both in readability and maintenance. It
allows the use of multiple images within the same Dockerfile to build the finishing
image. Keeping the image as small as possible or optimized is desirable as they
decrease potential security vulnerabilities and surface area of attack. Only what the
application needs should be defined to run in a production environment [15].

4.1.2 Dockerfile Production Environment

Multi-stage builds eliminate the use of multiple single-stage builds which is
implemented through the use of multiple Docker files. For example, the following
figure displays a multi-stage build Dockerfile which is used to build a React project

39

for a production environment and served by a Ngnix webserver.

Figure 4.2: Dockerfile for production environment

Figure 4.2 displays a multi-stage Dockerfile of building and serving a React project by
Nginx. This file is used to serve the Huldra framework as a containerized application.
With the command "npm run build", the executed command returns a couple of files
which then needs to be served in a Docker container. A Nginx server must also be
created to serve those files. This is the reason for multi-stage builds as it allows to run
the FROM command multiple times, defining the base image of each build stage of
the Dockerfile. By default, the stages are not named, but can be named as shown in
figure 4.2 by adding an “AS <name>” to the FROM instruction. The first stage of the
multi-stage docker build includes the installation of node, copying the "package.json"
file, installation of dependencies, copying source code and executing the command
“npm run build”. This stage returns the static files in a build folder which is then
used in the next stage, stage 2. Stage 2 starts by installing the official Nginx image
and copying a Nginx configuration file named “try_files” to the container which
holds a new parameter. Lastly, the last line in the Dockerfile 4.2 copies the build
folder from the first stage into the directory of Nginx. Nginx will then serve the
copied files in the HTML directory as a web server.

4.1.3 Try Files for Nginx

The "try_files" is a directive used in the configuration file of the Nginx web server.
It is used to define a set of files or paths that Nginx should try to serve in case the
requested file or resource is not available or cannot be found.

40

Figure 4.3: Try_files

Figure 4.3 displays the Nginx configuration file which allows users to refresh
the website. When the React application loads, the routes are handled on the
frontend by the “react-router”. For example, when a user is on a page routed at
“http://huldra.com” and navigates to “http://huldra.com/registration”, the
route change is handled in the browser itself. When the user refreshes the URL at
“http://huldra.com/registration” the request for that URL is sent to Nginx where
the specific route does not exist. As a result, the user gets a 404-error message which
indicates that the requested page is not available or does not exist. To prevent the
error, the configuration surrounded in red in figure 4.3 is added. The “try_files”
directive is used to specify a set of files to look for when a URL is requested. In
sequence, these files are to be tried when a client request is received. Further, the
“uri” variable contains the requested URI (Uniform Resource Identifier) for a
particular request. It is a string that represents the path component of the requested
URL. In action, the user first makes a request to the web server which receives the
requested URI. The “try_files” directive in Nginx specifies a list of files to look for
in order to serve the requested content. If the requested URI is not found, Nginx
sends “index.html” back to the browser. With this Nginx configuration, the users can
refresh the webpage and get the correct requested URL back.

4.1.4 Dockerfile Development Environment

Together with the production environment, a containerized development environ-
ment is also created. As shown in figure 4.2, the filename of the Dockerfile is “Dock-
erfile.prod”. Two files are made for each environment where the Dockerfile for the

41

development environment is called “Dockerfile.dev”. The development Dockerfile
holds different configuration relative to the production file as it does not require to be
built.

Figure 4.4: Dockerfile for development environment

Figure 4.4 displays the Dockerfile, called “Dockerfile.dev”, used for a development
environment. Like the Dockerfile for production, the file starts with the “FROM”
command to initialize the base image for subsequent instructions. Base images
can be official Docker images or custom images. In figure 3 the Alpine Linux
distribution is specified to build the Docker image. When not defining any specific
image, the latest version of node will be installed. The command “node” is an alias
to “node:latest” meaning that when only specifying “node”, the lastest version
will be installed. For the task of creating a container used for React, a smaller
image is used. Depending on the image, more or less dependencies are installed
along with a smaller vulnerability surface. With a complete package repository,
Alpine is significantly smaller than the default node image where a lot of libraries
are removed which are not necessary for this solution. A smaller image gives
benefits such as less memory, better performance, security and maintainability.
The second line in the "Dockerfile.dev" file 4.4, the working directory of the Docker
container is set by using the “WORKDIR” command. Any “RUN”, “CMD”, “ADD”,
“COPY” or “ENTRYPOINT” command used inside Dockerfile succeeding this
line will be executed in the specified working directory. The working directory is
specified as “app”, but should be specified to match the host folder structure. The
following command copies the “package.json” file into the container and further
runs npm to install the required dependencies. To prevent recopying and reinstalling
dependencies, the “package.json” file and the installation of dependencies is done
before the rest of the react application is copied over. All commands is executed
within the working directory, specified by the dotted path. Finally the CMD
command is executed to run the start script in the “package.json” file. The docker

42

CMD command specifies instructions to be executed when a Docker container starts,
in this case “npm start” as shown in figure 4.4.

4.1.5 Docker Compose files

With the Docker files for development and production, three docker-compose files
are created to support, maintain and scale the application when needed. Although
the react project only consists of one container, docker-compose allows to change
the configuration easily and add more containers if necessary. It also provides the
organization of volumes and it can be used to look at current configuration of the
containers.

Instead of a single docker-compose file, three files are created since there are multiple
environments. A single docker-compose file is usually used per service as multiple
services should not be dependent on different docker-compose files. For example,
in a scenario where multiple services are using a common database. If one of
the services causes the database to go down, then other services that rely on the
database are also affected. The same problem occurs when one service overloads
the database so that it goes down or reduces the performance. With those conditions
in mind, a single docker-compose file is created per environment. The third docker-
compose file is created to share configuration between the two docker-compose files
and works as a base file for those services. The base docker-compose file is called
“docker-compose.yml” and does not hold that much configuration other than the
commonalities between the production and development environment.

Figure 4.5: Base Docker Compose file

Figure 4.5 displays the base docker-compose file which holds the shared configura-
tion between the two docker-compose files for a production and development envir-
onment. The file starts by specifying the version of the Compose file format. Com-
pose file format version depends on the features needed for the Docker Compose

43

files. The base Docker Compose file and the files for production and development en-
vironment does not require any special features and are the reason for the chosen ver-
sion. The version can be changed easily and can be done so accordingly depending
on further development of the containerized application. In the next line the service
is specified. The service along with Docker, represents the container. This service is
named react-app as shown in the third line in figure 4.5 as the service will hold the re-
act application. Within the specified service name, the configuration for that service is
specified. As this solution uses a custom image, the build parameter is added with a
context. The build parameter specifies that “react-app” service should be built using
a Dockerfile located in the current directory. The context parameter also specifies the
build context in which the directory contains the files that will be used to build the
image. In this case, the same directory is specified. Both Docker files for production
and development are located at the same directory as the path are defined as “.”.

Figure 4.6: Docker Compose production file

Like in the base Docker Compose file, the services are defined in the production
Docker Compose file. Along with the specified version, the service name must be
declared the same as in the base Docker Compose file 4.5. Further, with the image
property the specified name of the image which is used to create the container
is defined. The image is declared as “app-prod-i" shown in figure 4.6 as it holds
the production environment instruction for a container of the application and
are specified with an “i” as in “image”. Along with specifying the path to the
“Dockerfile.prod” file, the name must also be specified. This is done by the property
“dockerfile” which when combined with base Docker Compose file “docker-
compose.yml” 4.5, builds the image using the context of the base Docker Compose
file and the Docker File “Dockerfile.prod”.

44

Further, within the created react-app service, a name is given to the container which
is created from the image. The container is given a name by the “container_name”
instruction where the name is specified as “app-prod-c", "c" for container. Used
to map the exposed ports of a container to the host machine’s ports, the “ports”
property is used. When a container is started, Docker creates a network interface to
allow communication between the container and the host machine. These interfaces
are isolated by default from the host machine and need port mapping to expose
the container’s services to the host machine or to the outside world. The ports
specified are “8080:80” which means that the container’s port 80 is mapped to the
host machine’s port at 8080.

Lastly, in figure 4.6, the environment property is defined. Used to set environment
variables for a container, the environment property defined at the service level
implies that the environment variables are applied to all containers created from
that service. In this case, the environment variables are only applied to that specific
container. The only environment variable specified in “docker-compose.prod” is the
variable “NODE_ENV”. It defines the environment in which the NodeJS application
is running, in this case the production environment. The NODE_ENV environment
variable is commonly used in NodeJS applications to enable or disable certain
features based on the environment. By setting NODE_ENV to production, features
like debugging or logging is disabled, improving performance and reduces security
risks.

Figure 4.7: Docker Compose development file

45

Similar to the Docker Compose production file, the Docker Compose development
file holds the configuration of a development environment. With most of the
same configuration settings as the Docker Compose production file, the Docker
Compose development file mainly focuses on the Docker volumes. Docker volume
is an independent file system that is entirely managed by Docker. The volumes
keyword defines a persistent data storage for a container and stores data outside of
a container’s file system. As for a development environment, persistent data storage
allows data to persist even if the container is deleted or recreated.

The specified volumes in figure 4.7 show that the host directory is "./” and that the
Docker directory is “/app”. Whenever anything is changed inside the client directory
on the host machine, these changes will be replicated in the Docker container.
Another volume is also defined as a named volume defined at the bottom of the
Docker Compose file 4.7. The named volume references the container directory to
a name which is applied with “node_modules”. This prevents the node modules
folder from the host environment to overwrite the node modules folder within the
container. Used to share data between containers or to store data that needs to persist
across containers restarts, the named volume prevents issues for node modules if
the container architecture is different than the host operating system. For example,
different dependencies will be installed regarding NPM on a container that uses
MacOS versus a container that uses Ubuntu. Node modules are defined outside of
the services with their own volumes keyword and mounted to the app directory
inside the react-app container. Any data written to this directory by the react-app
container will be persisted on the host system even if the container is deleted or
reacted.

In difference from the Docker Compose production file the ports, image, container
name and the node environment variable properties are set to different values.
Ports are set to "3000" as the default port of a ReactJS application in development
mode runs on port "3000". Image and container name are changed to development
rather than production, and the environment variable “NODE_ENV” are set to
development.

46

4.2 Alternative Deployments

4.2.1 Huldra Deployment using ALTO Cloud

Production Environment

Tested and built on ALTO Cloud the Docker files including “Dockerfile.prod”,
“Dockerfile.dev”, “docker-compose.yaml”, “docker-compose.dev.yaml” and “docker-
compose.prod.yaml” are executed on a virtual machine to simulate a real deployment
of each environment. The virtual machine is created using Ubuntu 18.04 instance
with 1 virtual Central Processing Unit (CPU), 2 gigabytes of Random Access Memory
(RAM) and 20 gigabytes of disk space.

Figure 4.8: Docker Compose start command for production environment

Figure 4.8 displays the execution of the Docker Compose command used to
build and start a production environment. Surrounded in a red box, the Docker
Compose command uses two Docker Compose files. The base Docker Compose file
which holds similar configuration of both environments and the Docker Compose
production file. The command “docker compose up” is used to start and run Docker
containers as defined in the Docker Compose files. By reading the configuration
defined in these files, Docker creates and starts the containers specified in the file. If
the containers do not already exist, Docker builds them on the configuration defined
for each service. It is also visible as the last line of figure 4.8 that the “dockerignore”
file is loaded. With the “dockerignore” file the build process gets optimized as it
excludes unnecessary files and directories from the build context. It reduces the size
of the build context and speeds up the build process.

Executing the “docker-compose up” command for the production environment
outputs the following messages displayed in figure 4.9. The output messages
in figure 4.9 show that “Dockerfile.prod” has been executed and are following
the instruction defined in the file to create its container. The Dockerfile for each
environment is specified in its matching Docker Compose file. Each line in
figure 4.9 represents the commands used in the “Docker.prod” file and are executed

47

Figure 4.9: Docker Compose production environment output

systematically.

Figure 4.10: Production container successfully created

Visible in figure 4.10, the production environment is successfully created and started.
The first line “Network huldra_default Created” indicates that Docker created a
new network with the specified name based on the name of the directory it exists in.
Since no networks where specified in the Docker Compose file, the network name is
taken from the directory name where the Docker Compose file is located. The created
network is isolated and only used by the containers specified in the Docker Compose
file. Other containers on different networks cannot communicate with each other
unless network forwarding or routing between the networks is configured.

Next, the “Container app-prod-c Created” message indicated that Docker has
created a new container with the name specified in the Docker Compose file. Docker
follows by attaching the console output to the terminal, indicated that it has been
successfully created and are running. Further messages are logs from the container,
and as the last messages visible in figure 4.10 there are two messages output as
“start worker processes” and “start worker process 27”. These messages are related
to the command being executed inside the container and not Docker itself. As the
production environment uses Nginx, the “start worker processes” message indicates
that the Nginx web server is starting and is starting worker processes to handle
incoming requests.

The worker processes are a critical component of the Nginx architecture. As a high-

48

performance web server, Nginx uses an asynchronous event-driven architecture to
improve performance and handle multiple connections simultaneously. With one
master process that evaluates configuration files and maintains worker processes,
Nginx is flexible and lightweight when it comes to resource usage. Assigned by
the master process, an incoming client request is assigned to an available worker
process which handles the request and serves the correct response. Depending on
the available system resources, the number of worker processes are determined by
the specified configuration file. By default, the number of worker processes are set to
the number of CPU cores on the server.

Redeployment with Docker Compose. If changes to the “docker-compose” files are
made, using the command “docker compose up” with the corresponding files will
delete and recreate affected containers. As the “up” command is idempotent, none
of the services and its configuration will be duplicated but instead overwritten or
recreated. Services can be stopped by “docker-compose stop” command. This stops
the services but does not delete them. The “docker-compose down” command will
both stop and remove the services including its containers, networks etc. Images
and volumes can also be removed by including “–volumes” or “–rmi” at the end of a
“docker-compose down” command, for example “docker-compose down –volumes".

Figure 4.11: List containers and Docker Compose down

Displayed in figure 4.11 are the container created for the production environment
named “app-prod-c". With the docker command “docker ps” as visible in figure 4.11
surrounded in yellow, all running containers are displayed. Only one container
is running, which is displayed in a green box where some information about the
container is also displayed. The container in figure 4.11, named “app-prod-c", has
been up for 30 hours which is when it was created. It also shows the image used
to create the container named “app-prod-I". Further, figure 4.11 displays the use of
the command “docker compose down” surrounded in a red box. The output of the
command is displayed in blue text, showing that both the container and the network
created for the service are removed.

49

Development Environment

The containerized development environment is made using the same Docker
Compose command to create and start the container as for the production
environment. Using a different Docker Compose file, the command to start a
development environment is “docker compose -f docker-compose.yml -f docker-
compose.dev.yml up”. When using files together with the Docker Compose
command, the option “-f” needs to be specified before each file. Further, the same
base Docker Compose base file is used, but the file “docker-compose.dev.yml” is used
instead.

Figure 4.12: Docker Compose starting a development environment

As displayed by figure 4.12, the command and files used to create and start the
development environment is surrounded in a red box. The container and network are
created, marked in a yellow box in figure 4.12, where the container name is “app-dev-
c" indicating that it is a development container. With different configurations than the
Docker Compose production file, the development file is configured using Docker
volumes. When the “docker-compose.dev.yml” is executed, a Docker volume is also
created.

Figure 4.13: Docker volume and location

The Docker volume is located at the path “/var/lib/docker/volumes/” as shown by
figure 4.13 surrounded in a yellow box. By using the command “ls” to list files and
directories, the Docker volume is visible named “huldra_node_modules” surrounded
in a red box in figure 4.13. The default Docker volume name is based on the folder of
which the Docker files and Docker Compose files are executed from. Much like the
default network name, the Docker volume name becomes the folder name in addition
to the specified folder of the volume.

50

Container Solution for Huldra

The solution for Huldra consists only of one container depending on the environment
that is running. As it uses Heroku for deployment and Firebase for storage, only
one container which is served and running is sufficient. If multiple containers and
services were to be served for the application, Docker Compose would be an option
for such an application. If Huldra had a database as part of the application, these
two services would be defined and served in separate containers. In order to create
these containers which holds each service, a Dockerfile is created to specify these
services and create the image. Much like the single-stage Dockerfile, one would
like to avoid such development structures as it inhibits control and maintenance by
having multiple files for each service along with running a container one by one.
To solve the problem of having multiple containers for a single service, the tool
Docker Compose is available and facilitates multiple services which are running
simultaneously [35].

Docker Compose is used to manage and deploy multi-container Docker applications
and simplifies the deployment process by defining and running multiple containers
as a single application. Not all scenarios benefit from Docker Compose, but it is
useful when running an environment which consists of multiple services such as a
web server, a database server or a caching server for a development environment.
Other examples include test environments consisting of multiple containers where
each container represents different aspects of the application. Developers can easily
run automated tests against the application in these environments which helps the
automation of continuous integration workflows. Further examples include the
production environment which ultimately consists of multiple containers which
allow the deployment and management of the entire application as a single unit [24].

4.2.2 Huldra Deployment using Render

Given as one of the cloud service provider alternatives to Heroku, Render is first
tested as an alternative over Heroku and used for testing as a cloud service provider
along with OsloMet ALTO Cloud. Render focuses on beating Heroku on aspects such
as flexibility, performance, reliability, developer experience, pricing and customer
focus. Render itself provides a comparison over Heroku where features within said
aspects are listed and compared against Heroku. Render also provides a guide to
migrate a Heroku application to Render, making it a clear competitor for Heroku.

51

At the time of developing and testing a containerized environment using Docker,
Render does not support Docker Compose. The containerized deployment solution
uses Docker Compose as part of the configuration and support for later services but
cannot be used on Render. Instead, the individual Dockerfiles are used without the
Docker Compose files.

Render offers deployment through CLI or by using their web-based interface. This
deployment will be using the web-based interface.

Figure 4.14: Available Render services

As displayed in figure 4.14, Render offers services including static sites, web services,
private services, background workers, cron jobs, PostgresSQL, Redis and blueprints.
For a containerized deployment using Docker, a web service is chosen which
automatically builds and deploys the service every time code gets pushed to the
selected repository. After selecting and clicking on “New Web Service”, a repository
must be connected to further proceed with the deployment.

52

Figure 4.15: Render repository connection

Displayed in a green box in figure 4.15, the available repositories are listed based
on the connect GitHub account. By connecting a GitHub account to Render,
specific selected repositories or all repositories will be available for connection to a
service. Repository access can be changed by navigating to account configurations
surrounded in a red box named “Configure account”. The link takes the user to
GitHub where all or selected repositories can be chosen for Render to access. If
the repository is public, the repository URL can be added in the input field at
the bottom of the page marked in a purple box in figure 4.15. Using the URL of a
public repository disables certain features like PR Previews and Auto-Deploy as the
repository has not been configured for Render.

53

Figure 4.16: Render Deployment configuration

Once the correct repository is selected, a few configurations must be selected
displayed in figure 4.16. First, the name of the web service is set, in this case it’s
called “docker deployment”. Next the region is chosen where the web service is
hosted. For services to communicate privately, they must be deployed in the same
region. The region chosen for this web service is Frankfurt (EU Central). After
selecting the region, the repository branch used for the web service is chosen. In
a text field the branch is written, and in the deployment displayed by figure 4.16,
the main branch is chosen. Second to last configuration of the web service is the
root directory specification. The path of which the root directory is specified where
Render runs all the commands. Changes made outside the specified root directory
are ignored. Finally, the runtime is chosen which specifies the runtime of the web
service. Depending on the selected runtime, further configuration must be made
such as build command and start command. Other runtimes include Node, Python,
Go, Ruby, Elixir and Rust. As a containerized deployment using Docker, the runtime
Docker is chosen as displayed by figure 4.16. The figure also displays that this web
service is using a free instance, limiting the resources available and performance.

As designed by Render to explore, build personal projects and get a preview of the
Render developer experience, the free web service instance type automatically goes
down after 15 minutes of inactivity. When new requests for the web services are
detected, Render spins the service back up so it can process the requests. Render
states that this can cause a response delay of up to 30 seconds for the first request
that comes in after a period of inactivity. The free instance type further allows only
750 hours of uptime per month across all free web services on the account and 100 GB

54

of egress bandwidth for each free service. Egress bandwidth meaning the amount of
traffic that gets transferred from the hosted service to external networks.

Since Render does not support Docker Compose, further configurations are made
for the deployment. In the deployment page there is a dropdown menu of advanced
options.

Figure 4.17: Render Deployment advanced configuration

Figure 4.17 displays some of the advanced configuration. The only configuration
used is the Dockerfile path. Since the Docker Compose files are not available for
use, the individual Dockerfiles are instead defined explicitly and used to build the
containers for the deployment of the application. All the Dockerfiles and Docker
Compose files are located at the root directory and the path are therefore specified
as “./Dockerfile.prod.yaml”. For this deployment the production environment is
deployed as specified by Dockerfile named “Dockerfile.prod.yaml”, prod being
production. Other configurations can be set such as a Health Check Path to which
the load balancer sends health check requests. Next is the Docker Build Context
Directory where the specified path of the Docker build context is defined. This
is specified in the Docker Compose files, but since they are not used, they must
be defined explicitly. By default, Render uses the root directory unless specified
otherwise and is where the build context is located. Further configuration includes
Docker Command which overrides Docker CMD and Entrypoint which specifies the
executable to be invoked when the container is started. This optional command is not
set. Lastly the Auto Deploy is set to yes, indicating that Render automatically deploys
on every push to the repository or changes made to the service. Other advanced
configurations include environment variable, secret file and build filters.

55

Figure 4.18: Render secret file

The secret file configuration is used where a small window is prompted asking for
file name and file contents. The filename is specified as “.env” and the file contents
will be the Firebase configuration parameters as displayed by figure 4.18. These files
can be accessed during builds and in the code just like regular files. All secret files
created are available to read at the root of the repo or Docker context. This allows the
container to access the defined environmental variables.

When deploying a web service on Render, the platform performs port detection to
determine the appropriate incoming traffic forwarding for the service, including
those that utilize custom Dockerfiles. Although setting a PORT environment variable
can expedite the port detection process, it is not mandatory. Render does not require
exposing port 80 or 443, and it can locate the open port for HTTP traffic on which
the server listens. Render’s services operate exclusively over HTTPS, with HTTP
requests being redirected to HTTPS. The load balancer terminates TLS for the
service, and traffic is then transferred over to the HTTP service on a private network.
Therefore, it is possible to serve content over HTTP using any desired port as Render
automatically encrypts all traffic.

56

When done with the configuration of the deployment, a button at the bottom of the
page which says “Create Web Service” is clicked and the user gets moved to another
page where the deployment is taking place. During deployment, a console windows
displays the commands that are being executed and other information.

Figure 4.19: Render deployment build

Based on the last commit to the main branch of the repository, Render deploys or re-
deploys the web service. It starts by cloning the repository before loading the build
definition from “Dockerfile.prod.yaml”, the “dockerignore” file and build context.
These steps are displayed in figure 4.19.

Figure 4.20: Dockerfile build stage commands executed in Render

57

The instructions defined in the “Dockerfile.prod.yaml” file can be visible in the
logs of the Render deployment. Figure 4.20 represents the executed instructions
defined in the Dockerfile where the “FROM node:alpine” command, working
directory command, copying of packages and NPM install command is visible. These
commands are surrounded by a red box in figure 4.20.

Figure 4.21: Build commands output, creation of production build

Figure 4.21 displays further logs, continuing the build stage from the Dockerfile. Step
5 copies all the files from the repository to the container. As the last step of the build
stage, the command “npm run build” is executed which creates build directory with
the production build of the application. As mentioned, the Dockerfile for production
is a multistage Dockerfile including a build stage which is used within the stage of
Nginx. The build stage creates the image and builds the application before the next
stage for Nginx is executed.

Figure 4.22: Successful build stage

As displayed by figure 4.22, the output of the following stage succeeded and is
followed by the message “the build folder is ready to be deployed” surrounded in
a yellow box. The build folder from the previous stage is then copied to the Nginx

58

folder located at “/usr/share/nginx/html” for hosting. This command is visible
in figure 4.22 by a red box. The stage is completed by pushing the image to the
container registry and the message “upload succeeded”.

Figure 4.23: Output from Nginx on Render

Figure 4.23 shows the given output when starting a Docker container that is running
Nginx. The line “using the epoll event method” indicates that Nginx is using the
"epoll" event method, which is a scalable I/O event notification mechanism that is
available on Linux systems. It further shows the version of Nginx that is running, in
this case the version is “1.23.3”. The “built by gcc 10.2.1” line indicates the compiler
used to build Nginx and its version. Furthermore, the operating system that the
container is running on is shown, in this case Linux 5.15.0-1031-aws. Next, the
resource limit is displayed by the line “getrlimit (RLIMIT_NOFILE). This line shows
the maximum number of open files allowed by the system. After these messages,
Nginx starts the worker processes where each worker is allocated an ID.

Figure 4.24: Render Web Service dashboard

59

When a deployment is successful, the time of the deployment and service availability
is visible in the dashboard. This is displayed in figure 4.24 surrounded in a green
box. The link for the website is at the top left of the page surrounded in a red box.
The domain name will be the web service name followed by “.onrender.com”. In
this case the name would be “docker-deployment.onrender.com”. One can manually
deploy by using the button at the top right. With a drop-down menu, three options
of deployment can be chosen as visible in figure 4.24 surrounded in a purple box.
A manual deployment can be done using the latest commit, a specific commit or
clear build cache and deploy. Lastly, different features are available to the left of the
dashboard. Surrounded in a blue box, features such as logs, metrics, scaling and
settings can be found. By using a free instance type, not all features will be available.

4.2.3 Huldra Deployment using Railway

As a relatively new infrastructure platform, Railway is a deployment platform
inspired by its pioneer Heroku. Much like Render, Railway is presented as an option
to Heroku and is a close competitor. At the time of developing a containerized
environment of Huldra and deploying using Railway, Docker Compose is
not supported. Instead of using Docker Compose for deployment, individual
Dockerfiles are used and for the deployment of the production environment,
“Dockerifle.prod.yaml” is used. Further, Railway does not provide any features
regarding build secrets or secret files. Instead, the only option to include environment
variables defined at the host is to implement ARG and ENV instructions in
the Dockerfile. Railway states in their guide of deploying using Docker that
environments variables defined in the web-based interface must be combined with
ARG instructions in the Dockerfile in order to be available at build time.

60

Figure 4.25: Railway project selection

When deploying on Railway, the option of which deployment method is presented
in figure 4.25. By clicking “Deploy from GitHub repo”, one is prompted to choose
from the available repositories associated with the GitHub account. Railway
requires a linked GitHub account if deployment is made using templates or GitHub
repositories. After choosing the correct repository for deployment, an option to either
deploy or add variables is prompted.

Figure 4.26: Railway variables selection

After choosing the variables option when deploying, the environment gets created
and the variable section is displayed. Single variables can be added by clicking the
“New Variable” button or it can be added using the raw editor. It can also be added
using shared variables which are defined within project settings. These variables can
be referenced by multiple services within an environment.

61

Figure 4.27: Railway raw editor with an example of Firebase connection parameters

The Firebase connection parameters are added using the raw editor as displayed by
figure 4.27. The values displayed in figure 4.27 are dummy variables and are replaced
with actual Firebase connection parameters which are generated when creating a
Firebase project. Further, two more variables are added to ensure a containerized
deployment of the production environment served by Nginx.

Figure 4.28: Railway variables filled including Firebase connection parameters, port
and Dockerfile path

62

Figure 4.28 displays the service variables for the deployment of Huldra. In a green
box the Firebase connection parameters are displayed, and in a red box are the two
specified service variables that enable the containerized deployment using Docker
and Nginx are displayed. Railway does not store secret files like Render and suggests
using ARG instructions at build time to pass the defined environment variables to
the Docker container. This is the only option of passing environment variables to the
container other than including them as a file in the GitHub repository.

Railway automatically detects and uses a Dockerfile at the services root if it exists,
but as the developed Dockerfiles are not named “Dockerfile” they must be specified
explicitly. By using the service variable “RAILWAY_DOCKERFILE_PATH”, the
correct Dockerfile is specified named “Dockerfile.prod.yaml”. The port of which the
application is listening on is also specified, in order to expose it to the internet. As by
default, the Nginx HTTP server listens for inbound connections and connects to port
"80" and are specified using the “PORT” service variable.

Figure 4.29: Dockerfile detection

When service variables are set, a re-deployment of the service starts. Displayed
by figure 4.29, Railway detects and uses the specified Dockerfile named “Docker-
file.prod.yaml”. The build process continues to execute the instructions specified in
the Dockerfile, completing both stages.

63

Figure 4.30: Render build stage complete

Figure 4.30 shows the log from the completion of the build stage. As the production
environment is built, a new folder is created with the corresponding files for
production. This is displayed in figure 4.30 surrounded in a red box. Further, the
build folder is copied to the Nginx folder to be served as a web application. This is
surrounded by a green box in figure 4.30. Output from the log also shows the build
time, in this case 106 seconds.

Figure 4.31: Railway separate logs, Nginx output

In a separate window, the deploy logs are found as an option named "Deploy
Logs" at the top of a specific deployment. Figure 4.31 presents the deployment logs
of the service where the configuration of Nginx is displayed in a red box. These
configurations are explained in subsection 4.2.2 of the Render deployment. The
configuration includes the use of the “epoll” event method followed by the version
of Nginx, the compiler, operating system on the container and resource limit. Finally,
Nginx starts the worker processes where each process will handle the connection and
incoming requests.

64

Figure 4.32: Railway environment settings

Before the service can be exposed to the public and accessed by a URL, the domain
must be specified. Surrounded in a green box in Figure 4.32, the choice of a generated
domain or custom domain is made. If choosing to create a custom domain, the
CNAME record must be added to the DNS settings of the domain. In this case, the
generated domain name is used and will be displayed within the green box when
generated. Also visible in figure 4.32 are the automatic deployments. Based on the
selected branch of the connected GitHub repository, the service automatically re-
deploys if it detects any changes made within the branch. This can be disabled using
the button displayed by a yellow box in figure 4.32.

Figure 4.33: Railway email preferences

Railway also provides a set of email preferences where notifications are sent based on

65

certain scenarios. Displayed in figure 4.33, these notifications include failed builds,
crashed deploys, usage alerts, changelog emails and marketing emails. With a simple
GUI, these notifications can be toggled based on which notifications one would like
to receive. Railway also provides a restart policy where the selected restart option
is executed at stopped services. The options include failure, always or never. As the
default settings, the option “on failure” is selected where Railway restarts the service
if it has stopped due to an error. By selecting “always” the service is restarted if it
has stopped for any reason. Lastly, selecting “never” means that Railway will not
automatically restart the service and is therefore done manually.

Like Render, Railway compares itself to Heroku and provides an own article of
comparison found in their documentation [43]. They claim to have focus on support
and developer experience where the Railway team will help scale based on the
deployment. Further, Railway offers PR deployments, variable management, rapid
builds and local development flows. Railway also uses autoscaling to meet user
demands and bills for computes on the platform. Compared to Heroku and Render,
the deployed application stays up and is not shut down when there is no activity.
Another important difference is that Render offers hidden files whereas Railway
does not provide any features for uploading hidden files. This in regard to the
Firebase connection parameters for the Docker container, must be passed by using
the environmental variables in Railway and implemented within the Dockerfile using
ARG and ENV instructions. This prevents a standardize Dockerfile which can be
used on other platforms as it is tailored specifically for Railway.

4.2.4 Huldra Deployment using Fly

Render and Railway both provide a deployment platform with a GUI and focus more
on simplicity in regard to the deployment process and overall technical aspects. With
its simplicity and reduced technical overhead, the platforms are more user-friendly
and accessible. As a more advanced deployment platform, Fly does not provide an
automated deployment process via GitHub like Render and Railway. Instead, Fly
utilizes CLI and relies heavily on application configuration using a “fly.toml” file.
Entering the CLI of Fly can be done through the browser using their Web CLI or by
installing the command-line utility “flyctl” on the local machine using the command
"iwr https://fly.io/install.ps1 -useb | iex". Further instructions are then provided to
sign in or sign up if not already registered.

When using the Web CLI, a Fly Machine is launched with an instance that has “flyctl”

66

installed. The presumed Fly Machines are Firecracker VMs which are developed
by Amazon Web Services. The Firecracker VM is different than typical VMs as it is
optimized for running micro-VMs that are extremely small and fast, and used to
isolate workloads or processes. Similarly, when deploying an application from a
local device which is installed and connected with “flyctl”, Fly Machine is used to
provision and manage that application.

Figure 4.34: Fly personal dashboard

At the dashboard, when logged in, one is prompted with different deployment
options. Each of the deployment options provides a detailed description of the
process and what commands to execute followed by examples. At the left side of the
dashboard, standard navigation such as deployed apps, machines, billing, usage and
other settings is located.

Fly does not support Docker Compose as of current deployment and specific
Dockerfiles are instead used depending on the environment that is deployed. In this
case, the production environment is deployed and specified in the launch command
as “fly launch –dockerfile Dockerfile.prod.yaml”. The fly launch command would
otherwise automatically detect a Dockerfile, but since there are two Dockerfiles
for each environment named differently the filename is defined explicitly in the
launch command. If Docker is running locally, the container is built on that machine
and then deployed. If Docker is not installed, it builds the container on a Fly build
machine.

67

Figure 4.35: Fly configuration file

The “fly.toml” file is used to configure an application for deployment. Figure 4.35
displays a generated “fly.toml” file that is automatically generated when launching
an application. When executing the command “fly launch” followed by the defined
Dockerfile, one is prompted to fill in an application name. The name can be filled in
manually or dynamically generated. For this deployment, the name was generated.
The chosen name, or generated name, will also be used to create the host name that
the application will use by default. Further configuration displayed by figure 4.35,
the “kill_signal” option is set to “SIGINT” by default that signals a running process
to shut down when an Fly app instance is shutting down. Further, the “kill_timeout”
option specifies how much time an instance has to close down before it gets killed.
The “primary_region” option specifies which region the application is hosted, in
this case Ashburn, Virginia (US). The website provides a list of all available region
locations with corresponding region ID.

Further, the specified Dockerfile is automatically defined within the build section
of the file as it is defined in the launch command. Other configuration can be made
within the build sections such as specifying a certain stage within a multistage
Dockerfile and specifying Docker build arguments. The internal port of the services
is set to "8080" by default and needs be changed to "80" as Nginx by default listens on
port 80.

68

Figure 4.36: Flyctl secrets list

Fly allows secrets to be set using the command “flyctl secrets set <name=value>”.
Each individual connection parameter are then set as a secret and staged for the first
deployment. One can check the secrets by executing the command “flyctl secrets list”
as seen in figure 4.36 below.

However, this approach does not allow the secrets to be accessed by the container
as they function as environment variables to the application and are not available
at build time. Fly offers another option by using build secrets where the secrets are
mounted to the Dockefile by using a RUN command. The secret values are then
provided at the deploy command. To prevent the Dockerfile from being changed only
to work with Fly, the Firebase connection parameters are provided as en environment
file.

Deploying the application is done using the “flyctl deploy” command. One can use
“fly” or “flyctl” as “fly” is a symbolic link to “flyctl”. The image will then be built
using a remote builder as Docker is not installed. The remote builder works by using
a series of Docker images and build packages to create a build environment that
is tailored to the application’s needs. It then uses this environment to compile the
application code and create a runnable artifact that is deployed to the Fly platform.

Figure 4.37 displays the deployment output of the application on the Fly platform.
When the image is pushed, the application is provisioned an IP address. Provisioning
an IPs refers to the process of assigning a unique IP address to a device, in this case
the machine, in a network. This allows the machine to communicate on the network.
As seen by the deployment output, the application “long-star-7892” is not linked
to a machine as it is the first deployment and is therefore automatically allocated a
machine. The name of the application is randomly generated hence the name “long-
star-7892”. Further, the deployment finished with the output “Finished deploying”.

69

Figure 4.37: Flyctl deployment output

Figure 4.38: Fly application dashboard

When the application is deployed it can be accessed in the personal dashboard of the
Fly platform under the Apps section as displayed by figure 4.38. Metrics such as data
transfer and memory usage of the VM are visible in the dashboard along with logs
produced by the virtual machine which is hosting the application. These web pages
are available to the left of the dashboard as separate navigational options. Further,
at the top right of the application overview the state of the application is visible.
The activity of the application is also visible in the application overview where new
deployments and activities executed on the VM are put.

4.3 Chapter Summary

In this chapter we have looked at the implementation of Dockerfiles and Docker
Compose files for the containerization of Huldra. None of the tested CSP’s supported

70

Docker Compose which resulted in only using the Dockerfile for a production
environment. We also looked at ways to supply the Firebase connection parameters
in regards to the different CSP’s. Not every CSP provides the same functionality
in terms of secrets implementation, and we have seen how these methods of
implementing those secrets are done.

71

72

Chapter 5

Results

5.1 Objective Results

In this chapter we will examine the range of features provided by Render, Railway
and Fly. Additionally, we will investigate the process of deploying an application
on each platform. In relevance to usability, the provided feature of deploying an
application gives flexibility in terms of choosing the deployment option that suits
the user. Further in this section, we highlight the features of each platform that
are relevant to usability and compare the technical expertise required to deploy an
application on each platform.

Render
With a user-friendly interface for deploying and managing applications, Render
makes it easy for users with varying levels of technical expertise to deploy and
manage an application. Render supports multiple deployment options including
Docker, Git and CLI with automatic scaling based on traffic. As another feature,
Render is integrated with GitHub, GitLab and Slack which makes it easy for
deployment workflows as new changes to the repository are automatically
deployed. It is also worth mentioning that all applications deployed on Render are
automatically assigned with a TLS certificate for the subdomain of Render or custom
domains.

Using their web-based GUI for deployment requires few clicks and provides step-
by-step guidance for deploying different types of services including Web Services,
Static Sites, Redis, Private Services, PostgreSQL, Cron Jobs and Background Workers.
Through the GUI, a wide range of configuration options is also offered depending on

73

the chosen service, including the configuration of environment variables, automatic
deployment, runtime, start and build commands which are clearly described. To
test how easy the deployment process is using Render, we created an account and
connected a private GitHub repository. Further, we selected Web Service to be
deployed and followed the guided steps provided by the GUI to configure the
deployment settings. The Firebase connection parameters were incorporated using
Render’s secret file feature, which functions similarly as adding an environment
file at the root of the repository. With an intuitive description of each available
configuration, choosing Docker runtime and configuring the deployment settings
for a containerized deployment was straightforward. Based on the walkthrough of
a deployment on Render, the deployment process would require little to no prior
knowledge of server administration or application deployment. We also found that
the provided monitoring tools of Render provided insights into the applications
performance via the dashboard and live logs from the application to troubleshoot
bugs.

We also found that without the use of the developed Dockerfiles, the application did
not work. This test was executed following the same steps and guidelines provided
by Render, but instead of using the Docker runtime we chose Node runtime. The
application did not successfully deploy where the logs displayed several NPM errors,
none of which was troubleshooted. This may be a result of the stated differences
in the underlying software of the deployment platform which interfere with the
dependencies required for the application to run. The containerized solution
therefore prevents this issue by isolating the application in its own environment.

In terms of security regarding the Firebase connection parameters, Render offers the
definition of a secret file at build time outside of the build directory. This prevents
including a secret file in the GitHub repository and in the root folder for a local
deployment using the CLI which can result in unauthorized access to its values.

Railway
Railway offers a modern interface with Git integration and the possibility of using
Docker. As with Render, Railway can be used using CLI to interact and create projects
from a local directory. With very few clicks a project is created and deployed using
a GitHub repository or deployed using a chosen template. Railway offers numerous
templates to choose from and automatically creates a GitHub repository when using
a template. It also provides the necessary environment variables at creation when
using the templates, for example when using a Discord Bot template, it requires a
Discord token that identifies the Discord account.

74

These features together with the simple GUI allow users to deploy their application
quickly and efficiently. There is very little room for error when deploying on Railway,
but it lacks the overall management and control of the deployment process which is
heavily automated. Through testing using the containerized version of Huldra, we
discovered that Railway only offers the implementation of environment variables for
a containerized application using build arguments. As stated, using build arguments
for sensitive information should be prevented as it leaves traces of the information in
the image.

We also tested a deployment without the use of the Docker image to test how the
platform succeeded by automatically detecting a Node application. Following the
same guidelines as with a containerized deployment, the deployment failed with
compile errors and build errors. These errors was not further investigated and it is
likely that they were related to the internal build commands used by Railway.

Fly
Based on the previous platforms, Fly requires some technical expertise as it does
not provide any GUI for application deployment. With similar features as Render
and Railway in terms of scaling and monitoring, Fly also allows for a wider range
of commands through the CLI including SSH connection to a running instance of an
application. This feature makes it easier to debug potential issues rather than relying
on logs and monitoring through the dashboard.

We tested the containerized solution using the CLI, deploying Huldra from a local
directory. To avoid the need for an environment file containing Firebase connection
parameters, Fly offers the use of secrets. These secrets can be added either through
the dashboard of the application or via the Fly CLI using their Fly secret command.
This provides a more secure way to manage sensitive information, such as connection
parameters, without exposing them in the environment file. Through testing, the
Firebase connection parameters were added as secrets during deployment of Huldra,
but as a result the Fly secrets were not available by default at build-time during
the deployment. The error suggested that the React application did not find any
environment variables in order to connect to Firebase. After some troubleshooting,
we tried adding a new configuration file for Nginx as by default, nginx removes all
environment variables inherited from its parent process. The new directive for Nginx
included the Firebase connection parameters which propagated the environment
variables. This solution did not work either as the same errors appeared.

We also tested a deployment without the use of the developed Dockerfile using Fly’s
CLI. As we did not include any Dockerfile, Fly made a default Dockerfile in the

75

deployed directory which consisted of a multi-stage build. The generated Dockerfile
was defined with Debian Bullseye as base image followed by an environment
variable with the path to the Node binary files. Further, the generated Dockerfile
executed a RUN command with packages and tools to build the Node application.
It then removed the build tool after the installation was complete. The generated
Dockerfile also created a directory called "app" and sat it as the working directory.
It then copied the application content into the directory. It then executed NPM install
NPM run build command to install dependencies and build the application.

The second part of the multi-stage also used the Debian Bullseye base image, but
with a smaller version. It starts by copying the previous built "node_modules" and
the installed version of Node to the new image along with the application. It further
sets the working directory and creates two environment variables. One is set to
"production" and the other is a path set to the Node binary files. The generated
Dockerfile finishes by using a CMD command that is executed when the container
is started. This command is "npm, run, start" which starts the Node application.

When trying to deploy with the generated file, the building of the image succeeded
and the application got deployed. It deployed without any errors, but when trying
to enter the deployed application in the web-browser we got a 502 bad gateway
error indicating a response error from the server when trying to request the website
content. Based on the logs in the Fly dashboard, the process was killed due to
memory outage. Although the same application was deployed with the use of the
developed Dockerfile instead of the generated one, this error seemed strange and was
not investigated further.

During the testing phase of the deployment process for each platform, Docker
Compose was not supported by any of them. Therefore, all tests were conducted
using the production Dockerfile instead of the implemented Docker Compose files.
This meant that the service definition and configuration provided by the Docker
Compose files were not utilized. However, since the Compose configuration for
production only consisted of specific image and container naming and port mapping,
the deployment was not affected. For CSP’s that supports Docker Compose, the
Docker Compose files should be utilized. As an option to Docker Compose, all of
the tested deployment platforms provided a distinct configuration file which offers
more specific configuration options for a particular service. These files are strictly
linked to each of the deployment platforms and are created in the root directory or
repository. For example, Render provides the option to use a “render.yaml” file that
stores service configuration for a deployment. This file is automatically detected
when deploying on Render and it uses the defined configuration for the service

76

which is being deployed. Similarly, for each corresponding deployment platform,
a similar file needs to be created and configured to specify and configure a service
further. Thus, these files were not tested or included in the development because
the containerized solution is meant to be platform-neutral and readily deployable
without any additional configuration from users on various platforms.

5.2 Subjective User Study

5.2.1 Data Cleaning

The dataset from the survey was manually cleaned and re formatted due to its small
size. We also used Python with the Pandas and Plotly library for further analysis
and removal of outliers. By using the Python libraries we can visually represent data
analysis techniques.

During the deployment guide, the participants was asked to enter their local time
when completing each step. This value was re formatted given the time after sign
in as reference and changed the following times per step relative to that value. This
means that at the last step, deleting the Web Service, the total time is registered from
after the sign in step. Since the participant choose an age range, we had to choose a
method of handling the value of a given range. The chosen method involves taking
the middle value from the start and end points of a give range. Therefore, the 18-29
range becomes 24, 30-39 becomes 35 and 40-49 becomes 45. For the range less than
18, we subtract 5 as average number of the other ranges, and add 5 for the 50 and up
range as there are not likely to be any respondents over 60.

Figure 5.1: Outliers based on total time per step after sign in

77

Through cleaning and re formatting the dataset, we identified outliers linked to the
given time at each step of the guided deployment. These outliers are removed as
they may represent human errors of incorrect inputs, distractions or pauses of the
participants during the user study. Only the outliers are removed, not the data row
associated with the outliers as the rest of the responses from the participant is still
used. The outliers are replaced with the mean of the column it is removed from.

5.2.2 Study Results

The sample consisted of 22 responses were 14 (63,6%) of the responses were male and
8 (36,4%) were female. This is visible in figure 5.2 were male is represented in red
and female represented in blue.

Figure 5.2: User study gender results

Based on the method of handling the age range, the mean age was 28,8 years were 16
(72,7%) of the participants were between the age of 18-29, 4 (18,2&) of the participants
between the age of 30-39, and 2 (9,1%) of the participants were of the age 50 or higher.
This is visible in figure 5.3.

78

Value
Description

Familiarity
with computer
science

Familiarity
with web app
deployment

Familiarity with
web Docker
virtualization

Mean 2.318 1.864 1.227

SD 1.323 1.207 0.528

Table 5.1: Mean and standard deviation of the familiarity questions.

Figure 5.3: User study age results

The standard deviation of the dataset according to age is 9.5. A standard deviation of
approximately 9.5 indicates that the ages in the dataset vary quite a bit from the mean
age of 28, and are probably a result of the participants who are older than the mean
age.

The standard deviation and mean of the familiarity questions asked in the pre-
questionnaire are displayed by table 5.2.2. The table shows a relatively large amount
of variation in terms of "Familiarity in computer science" with a value of 1.323. This
value indicates that familiarity with computer science or technical competence is to
some degree diverse among the participants although the mean of 2.318 indicates that
the participants has somewhat low technical competence based on the range 1 to 5.

Further, the standard deviation for "Familiar with application deployment" is 1.206,
indicating that familiarity with application deployment is less diverse than computer
science. Lastly, the standard deviation for "Familiar with Docker" is 0.528, indicating
that respondents have the most similar level of familiarity with Docker.

79

Figure 5.4: Difficulty level per Deployment Step

To get a better overview of each step in the deployment guide, a grouped bar chart
is made. Figure 5.4 displays the number of participants in the y-axis and each
deployment step in the x-axis. From a scale of 1 to 5, the blue bars indicate a difficulty
level of 1. The oragne bars displays the number of participants who answers the
difficulty level of 2. Difficulty level of 3 is displayed by green bars, 4 by red and
purple indicating that the deployment step was hard. We can see that the step that
most of the participants struggled with was the "Setup Web Service (Advanced
Options)" step were the participants had to create an environment file and copy
paste the file contents from the guide. The following steps also proved to be harder
than the first three steps, deleting the service as the second hardest step to complete.
Overall as indicated by figure 5.4, the blue bars are prominent and are showing that
most participants found each deployment step easy to accomplish.

Figure 5.5: Correlation Matrix, pre-Questionnaire and time

80

To understand the relationship between the pre-questionnaire questions and time
spent on each deployment step, a correlation matrix is made displayed by figure
Figure 5.5. In this matrix, each row and column represents a variable, and the values
in each cell indicate the correlation coefficient between the row and column variables.
When analysing, a score closer to 1 and -1 indicates a strong relationship between two
variables. A value of 1 indicates a perfectly positive linear correlation and are visible
as red in figure 5.5. A value of -1 indicates a perfectly negative linear correlation and
are visible as blue in figure 5.5. Each square of the correlation coefficient gradually
changes colour to either blue or red based on positive or negative correlation. This
means that when there is a positive correlation, the dependent variable increases as
the independent variable increases in value. When we have a negative correlation,
the dependent variable decreases in value as the independent variable increases.

Comparing the technical, deployment and Docker familiarity with time of each
deployment step, we see based on the correlation matrix that there are slightly
negative to no correlation.

Figure 5.6: Correlation Matrix, pre-Questionnaire and step difficulty

With the same analysis method, we made a correlation matrix of the pre-
questionnaire questions and difficulty level of each deployment step. Based on the
results visible in figure 5.6, there was a slightly negative correlation for "Familiarity
with computer science" and "Famililarity with web Docker virtualization". With the
variable "Familiarity with web app deployment", there was a moderate correlation
with a value of 0.33 in step five of the deployment guide.

We also see that gender has a negative correlation on the technical, deployment and
Docker familiarity’s with technical familiarity’s being highest with a value of -0.48.
We also found that age had a moderate to high correlation with the difficulty of

81

Value
Description

Would like to
use this system
frequently

System
unnecessarily
complex

System
was easy
to use

Need the support
of a technical
person to be able
to use this system

Various functions
in this system
were well
integrated

Mean 2.681 2 4 2.681 3.818

SD 1.249 1.023 0.975 1.323 0.906

Table 5.2: Mean and standard deviation of the SUS and QoE questions, first five
questions.

step 4 and 5 with a correlation coefficient of 0.41 in step 4 and a coefficient of 0.46
in step 5. The variable "Familiarity with computer science" had a high correlation
with "Familiarity with web app deployment" with a correlation coefficient of 0.77
which indicates that participant with technical competence also had familiarity’s with
application deployment.

Figure 5.7: Render - System Usability Scale (SUS) scoring of the participants

Based on the post-questionnaire containing the SUS questions and QoE question 3.2,
we see that there is a variety of answers ranging from 1 to 5 as visible in figure 5.7.
Each bar and its colour represents the total number of answers within the given range
of agreement. Blue (1) indicates strongly disagree followed by orange (2), green (3),
red (4) and purple (5) which indicates strongly agree.

With a mean of 4.136 and a standard deviation coefficient of 0.888, "Quality of
experience with the deployment procedure was high" ranked the highest in terms
of the mean 5.2.2. Both "System was easy to use" and "People would learn to use this
system very quickly" questions had a mean of 4, indicating that the majority of the
participants found the system easy to use and thought that people would quickly
learn how to use the system. With the lowest standard deviation coefficient of 0.911,
the question "I felt confident using the system" indicates that the ratings are relatively

82

Value De-
scription

Too much
inconsistency
in this system

People would
learn to use
this system
very quickly

System very
cumbersome
to use

Confident
using the
system

Needed to learn a
lot of things before
I could get going
with this system

Quality of
experience with
the deployment
procedure was high

Mean 1.863 4 1.909 3.545 2.136 4.136

SD 0.940 1.023 1.019 0.911 1.283 0.888

Table 5.3: Mean and standard deviation of the SUS and QoE questions, last six
questions.

gathered around the mean of 3.545 5.2.2. The mean further indicates that in average,
the participants answered just above mid in regards to confidently using the system.

5.3 Chapter Summary

Through the results we have discovered based on the objective results, similarities
of the available features provided by the CSP’s. As stated in the implementation
chapter 4, the implemented Docker Compose files where not used. We discovered
unique configuration files similar to Docker Compose of each platform that could be
used as a substitute. We also discovered that without the implemented Dockerfiles, a
deployment using the default deployment configurations for Node provided by the
CSP’s, the deployment failed.

The subjective user study showed that participants found the deployment process
fairly simple with most of the participants scoring each deployment step the lowest
score, indicating that the step was easy. Based on the presented correlation matrices,
no significant correlations was found based on time and difficulty level linked
to the pre-questionnaire questions and the deployment process. On average, the
participants also found the system easy to use.

83

84

Chapter 6

Discussion

6.1 Addressing the Research Questions

In this chapter, we will address the research questions outlined in the introduction
of the thesis. These questions guided our investigation into the accessibility
of application deployment using Cloud Service Provider (CSP) and the use of
containerization in CSP environments. Our goal was to identify best practices and
potential challenges associated with these technologies to ensure that cloud-deployed
applications are accessible to users with less technical expertise regarding application
deployment.

At the beginning of this thesis, we formulated specific research questions to guide our
investigation. These research questions was introduced in section 1.2.

RQ1. How can the accessibility of application deployment on cloud be improved
through the use of containerization technology and simplify the process of deploying
applications on the cloud using cloud service providers? Using containerization
technology has proven to imporove accessibility of cloud deployment by providing
a standardized environment, resolving the problem of technical issues linked to
the underlying infrastructure of a CSP. Improving the accessbility by removing the
technical expertise acquired to address technical issues that appears when deploying
on different cloud platforms. To simplify the deployment process, the use of a Docker
image which contains the necessary configuration for the application to be built and
run are removed. The image separates the configuration needed from the users to a
ready to deploy image that is deployed.

85

RQ2. How does cloud service providers facilitate its features and provide access to
a wider range of people regardless of technical expertise? Based on the observations
and testing of different CSP’s regarding application deployment, the observed/tested
deployment process through the web-based interface typically involved guided
steps. In cases where the deployment was done through the CLI, the corresponding
platform provided documentation on how to install and execute commands based
in order to achieve the necessary outcome. Despite the fact that the platforms that
were tested had varying templates available, they all shared the same fundamental
functionality of deploying applications from either a personal directory or repository.
Based on the accessibility, the web-based GUI is user-friendly and designed for
people with less technical expertise. The use of the various features offered by
the CSP is presented in a way that does not require knowledge of the underlying
technical implementation.

The user study’s relatively small sample size and shortcomings in regards to age
increases the concern of potential age bias. With 16 participants in the age range of
18-29, 2 participants in the age group of 50 or above, and no participants in the 40-
49 age range, the study’s results may not be representative of the older population’s
perspectives and experiences. Furthermore, the absence of participants below the age
of 18 further limits the generalizability of the findings. By focusing on a more diverse
sample size, future studies could get a better representation from various age groups
to ensure findings that are more generalizable. This way, the user study and research
is not biased against specific age groups.

Figure 6.1: Grep command and found file

Figure 6.2: Firebase api key location

86

Figure 6.3: Firebase api key using web developer tool

6.2 Lessons Learned

According to the documentation [18], React incorporates environment variables into
the generated HTML/JS files, resulting in the inclusion of the Firebase connection
parameters in the image. As a result, anyone who can access the deployed app will
be able to view them. Since all the code runs on the client side, there is no other

87

way to prevent this. Build secrets cannot protect the environment variable values.
To verify this, we set a build secret to a searchable value and search for it using the
command “grep -rl test16682” after running npm run build. The build secret was set
using Docker mount where a file or directory on the host machine is mounted into a
container.

This command revealed a file containing the secret value, which can be confirmed
by viewing the source of those files using a web browser. Although Firebase allows
exposing the API key as documented by Firebase, relying solely on build secrets to
protect sensitive information can be dangerous.

To confirm that the secrets are being sent to the client even with build secrets, we
navigated to the known file that contained the secret by viewing it in the web
browser using the developer tool.

With the known generated file we also entered the URL that points to the generated
file where we further searched for the environment variable.

To clarify, while the general advice to avoid embedding secrets in images is valid,
it does not apply to the specific case of React and Firebase. While build secrets are
a better option than using an environment file or ARG, it can still be challenging to
ensure that secrets are not embedded in the image.

6.3 Other Contributions

Other contributions, after main contributions in section 1.6 related to research
questions, are as follows:

• Source code: The application used for deployment testing and as the
application used in the subjective user study can be found publicly at
https://github.com/simula/huldra

• Research artifacts: The developed Dockerfiles for a development environment
4.4 and production environment 4.2, Docker Compose file for production 4.6
and development environment 4.7, and Nginx configuration 4.3 files can be
found in chapter 4.

• Guidelines: The guidelines of the subjective user study can be found in the
appendix where each page of the Google Forms are listed. These includes the
pre-questionnaire, each step of the guided deployment and post-questionnaire.

88

6.4 Limitations

The objective of this study was to evaluate the accessibility of deployment platforms
using Docker Compose for containerized application deployment. One of the
significant limitations of this research was the lack of availability of cloud service
providers that support the use of Docker Compose. Although Google Cloud and
Amazon Elastic Container Service (Amazon ECS) are two popular deployment
platforms that offer Docker Compose support, they were not evaluated due to the
requirement of payment method in order to use their platform. As a result, the
study had to rely on other CSP’s that provide free trials but did not support Docker
Compose. However, the study was able to successfully test and deploy the Huldra
application using Docker Compose on the OsloMet Alto Cloud, which indicates the
advantages and usefulness of the approach.

In terms of the user study, a small representative of older participants were limited.
This limitation of older participants impacts the age bias of the study.

As another limitation due to time constraints, the planned subjective user study for
Fly was not conducted. This study would have involved the collection of data and
feedback from participants, like the study for Render, to gather information about
the experience of deploying an application using Fly. It would also identify issues
and challenges related to the deployment. While this study could have provided
valuable insights, as a deployment would be more technical on Fly, it was not feasible
within the remaining time. The lack of this user study may have limited the analysis
presented in this thesis as a comparison of time and likert scalings would further
show relevant findings regarding accessibility in terms of application deployment.

6.5 Future Work

This thesis has accomplished the implementation of Dockerfiles and Docker Compose
files that creates and builds a Node application for a production and development
environment for the Huldra application. We also managed to conduct a subjective
user study for one of the CSP’s with 22 responses. Due to time constraints, the
following tasks represents areas of potential future work:

• Identifying additional CSP’s that support Docker Compose were the application
is deployed with focus on accessibility. Examine the overall technical aspect of

89

deploying on such platforms and evaluate the technical expertise acquired to
deploy.

• Conduct a subjective user study on Fly. The deployment guide for Fly is made
and as future work, should be conducted and compared against the previous
user study on Render.

• Conduct a user study on deployment accessibility using Docker Compose
on platforms that supports it. This would further evaluate accessibility and
user experience linked to application deployment. It would also discover any
difficulties of application deployment in regards to technical knowledge.

90

Chapter 7

Conclusion

In this thesis we have looked at the different types of clouds and how they operate.
With the continuous growth and utilization of cloud services, we examined
the use of cloud and how it leverages virtualization to manage resources and
isolate environments. We have analyzed the differences between containers and
virtualization, as well as how these technologies can be effectively utilized together.
Containerization, although not a new technology, has gained significant popularity
in recent years due to its efficiency and flexibility in managing and deploying
applications in the cloud.

With an increasing number of people using the cloud and the emergence of more
cloud service providers, we have developed a containerized solution for Huldra
to facilitate deployment on any chosen CSP. The solution is implemented using
Docker and Docker Compose. The files we have developed consist of a production
environment and a developer environment. By utilizing multi-stage builds, our
Dockerfiles contain the essential commands to build a production ready Docker
image of React. Additionally, we have created Docker Compose files to allow users
to easily configure their service deployment by editing the appropriate files based on
the environment, whether it is production or development.

Our deployment testing of various platforms has demonstrated that a functional
containerized environment leads to consistent and comparable deployments with
previous deployments on other platforms. This is particularly helpful for users with
limited technical expertise as it eliminates technical issues related to the platform
on which an application is deployed. We conducted a deployment test using both
a web-based GUI and a terminal. The GUI proved to be user-friendly and easy to
understand, as the platform provided clear and simple steps for deploying and

91

configuring a deployment. However, deploying through the terminal requires
some technical knowledge but offers additional configuration options including
deployment using local directories.

After conducting numerous iterations of testing using various approaches to
implement Firebase connection parameters, we discovered that regardless of
the method used, the values of these parameters were accessible to users. This
is true even in a non-containerized environment since the Firebase connection
parameters are embedded in the client-side application rather than the server-side
as discussed in lessons learned 6. We also explored different methods to exclude the
Firebase connection parameters from a container image, including using the secret
implementation of CSP’s and Docker mount with secrets during build time. None of
these approaches proved to work as the build secrets were available in the browser
by using the developer tool. Although build secrets offer better protection than using
a .env file to hide the secrets in the image, it remains difficult to ensure that the secrets
are not embedded within the image.

The user study showed that were little affect in terms of familiarity with computer
science, application deployment and Docker with the time used for each deployment
step. Based on difficulty, the study also found a moderate correlation between
technical knowledge and step 4 (advanced configuration of the web service) and
step 5 (deploying the application). The majority of participants rated the difficulty
level of each step as 1, suggesting that application deployment using the CSP is
overall accessible based on the participants in the study. These findings suggest that
the CSP deployment process is intuitive and user-friendly, even for those without
a background in computer science or application deployment. In regard to user
experience (UX), all participants rated the statement "My overall quality of experience
with the deployment procedure was high" on the System Usability Scale (SUS) with a
score of 3 or higher on the 5-point agreement scale ranging from 1 (strongly disagree)
to 5 (strongly agree). These results suggest that the deployment procedure was
generally well-received by participants and that the UX was considered to be of high
quality.

92

Appendix

Huldra Deployment User Study - Render

The user study for Render consists of the pre-questionnaire followed by seven
steps of the deployment and the post-questionnaire 3.2. The results of this study
can be found in section 5.2. Figure 7.1 represents the pre-questionnaire questions
presented to the participants. Figure 7.2 to figure 7.8 represents the deployment steps
the participants had to accomplish. As the final section of the user study, the post-
questionnaire is displayed by figure 7.9.

Huldra Deployment User Study - Fly

We also present the Google Forms pages of the Fly user study. The pre-questionnaire
can be found in figure 7.10. Figure 7.11 to figure 7.18 displays each step of the
deployment process for the participant on Fly. This user study also consist of a post-
questionnaire found in figure 7.19.

93

Figure 7.1: Render - user study pre-questionnaire

94

Figure 7.2: Render - user study step 1

95

Figure 7.3: Render - user study step 2

96

Figure 7.4: Render - user study step 3

97

Figure 7.5: Render - user study step 4

98

Figure 7.6: Render - user study step 5

99

Figure 7.7: Render - user study step 6

100

Figure 7.8: Render - user study step 7

101

Figure 7.9: Render - user study post-questionnaire

102

Figure 7.10: Fly - user study pre-questionnaire

103

Figure 7.11: Fly - user study step 1

104

Figure 7.12: Fly - user study step 2

105

Figure 7.13: Fly - user study step 3

106

Figure 7.14: Fly - user study step 4

107

Figure 7.15: Fly - user study step 5

108

Figure 7.16: Fly - user study step 6

109

Figure 7.17: Fly - user study step 7

110

Figure 7.18: Fly - user study step 8

111

Figure 7.19: Fly - user study post-questionnaire

112

Bibliography

[1] Mahyar Amini, Nazli Sadat Safavi, Seyyed Majtaba Dashti Khavidak and
Azam Abdollahzadegan. ‘Types of cloud computing (public and private) that
transform the organization more effectively’. In: (May 2013). URL: https : / /
papers.ssrn.com/sol3/papers.cfm?abstract_id=2270660.

[2] Andreea Andrei. ‘Industries that Need the Accessibility of Cloud Computing’.
In: (2022). URL: https : / /www . cloud - awards . com/ industries - that - need - the -
accessibility-of-cloud-computing/.

[3] Oberiri Destiny Apuke. ‘Quantitative Research Methods : A Synopsis
Approach’. In: Arabian Journal of Business and Management Review (kuwait
Chapter). 6 (Oct. 2017), pp. 40–47. DOI: 10.12816/0040336. URL: https ://www.
researchgate.net/publication/320346875_Quantitative_Research_Methods_A_
Synopsis_Approach.

[4] Helen L. Ball. ‘Conducting Online Surveys’. In: Journal of Human Lactation 35.3
(2019). PMID: 31084575, pp. 413–417. DOI: 10 . 1177 / 0890334419848734. URL:
https://doi.org/10.1177/0890334419848734.

[5] Rabindra K. Barik, Rakesh K. Lenka, K. Rahul Rao and Devam Ghose.
‘Performance analysis of virtual machines and containers in cloud computing’.
In: 2016 International Conference on Computing, Communication and Automation
(ICCCA). 2016, pp. 1204–1210. DOI: 10.1109/CCAA.2016 .7813925. URL: https :
//ieeexplore.ieee.org/document/7813925.

[6] Babak Bashari Rad, Harrison Bhatti and Mohammad Ahmadi. ‘An Introduction
to Docker and Analysis of its Performance’. In: IJCSNS International Journal of
Computer Science and Network Security 173 (Mar. 2017), p. 8. URL: https://www.
researchgate.net/publication/318816158_An_Introduction_to_Docker_and_
Analysis_of_its_Performance.

[7] Ouafa Bentaleb, Adam S. Z. Belloum, Abderrazak Sebaa and Aouaouche
El-Maouhab. ‘Containerization technologies: taxonomies, applications and
challenges’. In: The Journal of Supercomputing (2022). DOI: 10.1007/s11227-021-
03914-1. URL: https://doi.org/10.1007/s11227-021-03914-1.

113

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2270660
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2270660
https://www.cloud-awards.com/industries-that-need-the-accessibility-of-cloud-computing/
https://www.cloud-awards.com/industries-that-need-the-accessibility-of-cloud-computing/
https://doi.org/10.12816/0040336
https://www.researchgate.net/publication/320346875_Quantitative_Research_Methods_A_Synopsis_Approach
https://www.researchgate.net/publication/320346875_Quantitative_Research_Methods_A_Synopsis_Approach
https://www.researchgate.net/publication/320346875_Quantitative_Research_Methods_A_Synopsis_Approach
https://doi.org/10.1177/0890334419848734
https://doi.org/10.1177/0890334419848734
https://doi.org/10.1109/CCAA.2016.7813925
https://ieeexplore.ieee.org/document/7813925
https://ieeexplore.ieee.org/document/7813925
https://www.researchgate.net/publication/318816158_An_Introduction_to_Docker_and_Analysis_of_its_Performance
https://www.researchgate.net/publication/318816158_An_Introduction_to_Docker_and_Analysis_of_its_Performance
https://www.researchgate.net/publication/318816158_An_Introduction_to_Docker_and_Analysis_of_its_Performance
https://doi.org/10.1007/s11227-021-03914-1
https://doi.org/10.1007/s11227-021-03914-1
https://doi.org/10.1007/s11227-021-03914-1

[8] John Brooke. ‘SUS: A quick and dirty usability scale’. In: Usability Eval. Ind. 189
(Nov. 1995). URL: https://www.researchgate.net/publication/228593520_SUS_A_
quick_and_dirty_usability_scale.

[9] Ravi Chandola. ‘React Reconciliation Algorithm’. In: (2023). URL: https : / /
medium.com/javarevisited/react-reconciliation-algorithm-86e3e22c1b40.

[10] Ankita Desai, Rachana Oza, Pratik Sharma and Bhautik Patel. ‘Hyper-
visor : A Survey on Concepts and Taxonomy’. In: (2013). URL: https : / /
citeseerx . ist . psu . edu / document ? repid = rep1 & type = pdf & doi =
650fe84a42c2914fb94c282cb3736c48e506d462.

[11] Jessica Díaz, Daniel López-Fernández, Jorge Pérez and Ángel González-Prieto.
‘Hypervisor : A Survey on Concepts and Taxonomy’. In: Empir. Softw. Eng. 2
(2021). DOI: 10.1007/s10664-020-09919-3. URL: https://link.springer.com/article/10.
1007/s10664-020-09919-3.

[12] Cameron Fisher. ‘Cloud versus on-premise computing’. In: Am. J. Ind. Bus.
Manag. 08.09 (2018), pp. 1991–2006. URL: https : / / www . scirp . org / html / 7 -
2121263_87661.htm.

[13] Fly. ‘Fly.io Docs’. In: (n.d.). URL: https://fly.io/docs/.

[14] Asbjørn Følstad. ‘Users’ design feedback in usability evaluation: a literature
review’. In: Hum.-centric Comput. Inf. Sci. 7.1 (Dec. 2017). URL: https : / / hcis -
journal.springeropen.com/articles/10.1186/s13673-017-0100-y.

[15] Engy Fouda. ‘Image Creation, Management, and Registry’. In: A Complete Guide
to Docker for Operations and Development. Apress, 2022, pp. 15–34. URL: https :
//link.springer.com/chapter/10.1007/978-1-4842-8117-8_3.

[16] Michel Gien. ‘A File Transfer Protocol (FTP)’. In: Computer Networks (1976) 2.4
(1978), pp. 312–319. ISSN: 0376-5075. DOI: https://doi.org/10.1016/0376-5075(78)
90009-0. URL: https://www.sciencedirect.com/science/article/pii/0376507578900090.

[17] Gagan Gurung, Rahul Shah and Dhiraj Jaiswal. ‘Software Development Life
Cycle Models-A Comparative Study’. In: International Journal of Scientific
Research in Computer Science, Engineering and Information Technology (July 2020),
pp. 30–37. DOI: 10 .32628/CSEIT206410. URL: https : //www. researchgate .net/
publication / 346819120 _ Software _ Development _ Life _ Cycle _ Models - A _
Comparative_Study.

[18] Joe Haddad. ‘Adding Custom Environment Variables’. In: (May 2020). URL:
https://create-react-app.dev/docs/adding-custom-environment-variables/.

114

https://www.researchgate.net/publication/228593520_SUS_A_quick_and_dirty_usability_scale
https://www.researchgate.net/publication/228593520_SUS_A_quick_and_dirty_usability_scale
https://medium.com/javarevisited/react-reconciliation-algorithm-86e3e22c1b40
https://medium.com/javarevisited/react-reconciliation-algorithm-86e3e22c1b40
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=650fe84a42c2914fb94c282cb3736c48e506d462
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=650fe84a42c2914fb94c282cb3736c48e506d462
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=650fe84a42c2914fb94c282cb3736c48e506d462
https://doi.org/10.1007/s10664-020-09919-3
https://link.springer.com/article/10.1007/s10664-020-09919-3
https://link.springer.com/article/10.1007/s10664-020-09919-3
https://www.scirp.org/html/7-2121263_87661.htm
https://www.scirp.org/html/7-2121263_87661.htm
https://fly.io/docs/
https://hcis-journal.springeropen.com/articles/10.1186/s13673-017-0100-y
https://hcis-journal.springeropen.com/articles/10.1186/s13673-017-0100-y
https://link.springer.com/chapter/10.1007/978-1-4842-8117-8_3
https://link.springer.com/chapter/10.1007/978-1-4842-8117-8_3
https://doi.org/https://doi.org/10.1016/0376-5075(78)90009-0
https://doi.org/https://doi.org/10.1016/0376-5075(78)90009-0
https://www.sciencedirect.com/science/article/pii/0376507578900090
https://doi.org/10.32628/CSEIT206410
https://www.researchgate.net/publication/346819120_Software_Development_Life_Cycle_Models-A_Comparative_Study
https://www.researchgate.net/publication/346819120_Software_Development_Life_Cycle_Models-A_Comparative_Study
https://www.researchgate.net/publication/346819120_Software_Development_Life_Cycle_Models-A_Comparative_Study
https://create-react-app.dev/docs/adding-custom-environment-variables/

[19] K. Hammarberg, M. Kirkman and S. de Lacey. ‘Qualitative research methods:
when to use them and how to judge them’. In: Human Reproduction 31.3 (Jan.
2016), pp. 498–501. ISSN: 0268-1161. DOI: 10.1093/humrep/dev334. eprint: https:
//academic.oup.com/humrep/article-pdf/31/3/498/7066330/dev334.pdf. URL:
https://doi.org/10.1093/humrep/dev334.

[20] Malek Hammou, Cise Midoglu, Steven A Hicks, Andrea Storås, Saeed Shafiee
Sabet, Inga Strümke, Michael A Riegler and Pål Halvorsen. ‘Huldra: A
Framework for Collecting Crowdsourced Feedback on Multimedia Assets’. In:
ACM, June 2022. DOI: 10.1145/3524273.3532887. URL: https://dl.acm.org/doi/pdf/
10.1145/3524273.3532887.

[21] Eko Handoyo, R Rizal Isnantoa and Mikhail Anachiva Sonda. ‘SRS Document
Proposal Analysis on the Design of Management Information Systems
According to IEEE STD 830-1998’. In: Procedia - Social and Behavioral Sciences 67
(2012). 3rd INTERNATIONAL CONFERENCE ON E-LEARNING, ICEL 2011,
pp. 123–134. ISSN: 1877-0428. DOI: https://doi.org/10.1016/j.sbspro.2012.11.313.
URL: https://www.sciencedirect.com/science/article/pii/S1877042812052998.

[22] Steven Hicks, Andrea Storås, Michael Riegler, Cise Midoglu, Malek Hammou,
Thomas de Lange, Sravanthi Parasa, Pål Halvorsen and Inga Strümke. Visual
explanations for polyp detection: How medical doctors assess intrinsic versus extrinsic
explanations. 2022. arXiv: 2204.00617 [eess.IV]. URL: https://arxiv.org/abs/2204.
00617.

[23] Andreas Husa, Cise Midoglu, Malek Hammou, Pål Halvorsen and Michael A
Riegler. ‘HOST-ATS: automatic thumbnail selection with dashboard-controlled
ML pipeline and dynamic user survey’. In: ACM, June 2022. DOI: 10 . 1145 /
3524273.3532908. URL: https://dl.acm.org/doi/10.1145/3524273.3532908.

[24] Md Hasan Ibrahim, Mohammed Sayagh and Ahmed E Hassan. ‘A study of
how Docker Compose is used to compose multi-component systems’. In: Empir.
Softw. Eng. 26.6 (Nov. 2021). DOI: 10 . 1007 / s10664 - 021 - 10025 - 1. URL: https :
//link.springer.com/article/10.1007/s10664-021-10025-1.

[25] Ramtin Jabbari, Nauman bin Ali, Kai Petersen and Binish Tanveer. ‘What
is DevOps? A Systematic Mapping Study on Definitions and Practices’. In:
Proceedings of the Scientific Workshop Proceedings of XP2016. XP ’16 Workshops.
Edinburgh, Scotland, UK: Association for Computing Machinery, 2016. ISBN:
9781450341349. DOI: 10.1145/2962695.2962707. URL: https://doi.org/10.1145/
2962695.2962707.

115

https://doi.org/10.1093/humrep/dev334
https://academic.oup.com/humrep/article-pdf/31/3/498/7066330/dev334.pdf
https://academic.oup.com/humrep/article-pdf/31/3/498/7066330/dev334.pdf
https://doi.org/10.1093/humrep/dev334
https://doi.org/10.1145/3524273.3532887
https://dl.acm.org/doi/pdf/10.1145/3524273.3532887
https://dl.acm.org/doi/pdf/10.1145/3524273.3532887
https://doi.org/https://doi.org/10.1016/j.sbspro.2012.11.313
https://www.sciencedirect.com/science/article/pii/S1877042812052998
https://arxiv.org/abs/2204.00617
https://arxiv.org/abs/2204.00617
https://arxiv.org/abs/2204.00617
https://doi.org/10.1145/3524273.3532908
https://doi.org/10.1145/3524273.3532908
https://dl.acm.org/doi/10.1145/3524273.3532908
https://doi.org/10.1007/s10664-021-10025-1
https://link.springer.com/article/10.1007/s10664-021-10025-1
https://link.springer.com/article/10.1007/s10664-021-10025-1
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707

[26] Aniket Kittur, Ed H. Chi and Bongwon Suh. ‘Crowdsourcing User Studies
with Mechanical Turk’. In: CHI ’08. Florence, Italy: Association for Computing
Machinery, 2008, pp. 453–456. ISBN: 9781605580111. DOI: 10 . 1145 / 1357054 .
1357127. URL: https://doi.org/10.1145/1357054.1357127.

[27] Rosaline de Koning, Abdullah Egiz, Jay Kotecha, Ana Catinca Ciuculete,
Setthasorn Zhi Yang Ooi, Nourou Dine Adeniran Bankole, Joshua Erhabor,
George Higginbotham, Mehdi Khan, David Ulrich Dalle, Dawin Sichimba,
Soham Bandyopadhyay and Ulrick Sidney Kanmounye. ‘Survey Fatigue
During the COVID-19 Pandemic: An Analysis of Neurosurgery Survey
Response Rates’. In: Frontiers in Surgery 8 (2021). ISSN: 2296-875X. DOI: 10.3389/
fsurg.2021.690680. URL: https://www.frontiersin.org/articles/10.3389/fsurg.2021.
690680.

[28] Robert Kosara, Christopher Healey, Victoria Interrante, David Laidlaw and
Colin Ware. ‘Thoughts on User Studies: Why, How, and When’. In: IEEE CGA
23 (Mar. 2004). URL: https : / / www . researchgate . net / publication / 2897870 _
Thoughts_on_User_Studies_Why_How_and_When.

[29] Anurag Kumar and Ravi Kumar Singh. ‘COMPARATIVE ANALYSIS OF
ANGULARJS AND REACTJS’. In: (n.d). DOI: 10.21172/1.74.030. URL: https :
//www.ijltet.org/journal/148051944230.1245.pdf.

[30] Michael Lang, Manuel Wiesche and Helmut Krcmar. ‘Criteria for Selecting
Cloud Service Providers: A Delphi Study of Quality-of-Service Attributes’. In:
Information & Management 55.6 (2018), pp. 746–758. ISSN: 0378-7206. DOI: https:
//doi.org/10.1016/j.im.2018.03.004. URL: https://www.sciencedirect.com/science/
article/pii/S0378720617303142.

[31] J. Lee and R. Rosin. ‘The Project MAC Interviews’. In: IEEE Annals of the History
of Computing 14.02 (Apr. 1992), pp. 14–35. ISSN: 1934-1547. DOI: 10.1109/MAHC.
1992.10024.

[32] Lucy Ellen Lwakatare, Terhi Kilamo, Teemu Karvonen, Tanja Sauvola,
Ville Heikkilä, Juha Itkonen, Pasi Kuvaja, Tommi Mikkonen, Markku Oivo
and Casper Lassenius. ‘DevOps in practice: A multiple case study of five
companies’. In: Information and Software Technology 114 (2019), pp. 217–230. ISSN:
0950-5849. DOI: https : / / doi . org / 10 . 1016 / j . infsof . 2019 . 06 . 010. URL: https :
//www.sciencedirect.com/science/article/pii/S0950584917302793.

[33] Santosh Kumar Majhi and Sunil Kumar Dhal. ‘A Study on Security Vulnerabil-
ity on Cloud Platforms’. In: Procedia Computer Science 78 (2016). 1st International
Conference on Information Security & Privacy 2015, pp. 55–60. ISSN: 1877-0509.

116

https://doi.org/10.1145/1357054.1357127
https://doi.org/10.1145/1357054.1357127
https://doi.org/10.1145/1357054.1357127
https://doi.org/10.3389/fsurg.2021.690680
https://doi.org/10.3389/fsurg.2021.690680
https://www.frontiersin.org/articles/10.3389/fsurg.2021.690680
https://www.frontiersin.org/articles/10.3389/fsurg.2021.690680
https://www.researchgate.net/publication/2897870_Thoughts_on_User_Studies_Why_How_and_When
https://www.researchgate.net/publication/2897870_Thoughts_on_User_Studies_Why_How_and_When
https://doi.org/10.21172/1.74.030
https://www.ijltet.org/journal/148051944230.1245.pdf
https://www.ijltet.org/journal/148051944230.1245.pdf
https://doi.org/https://doi.org/10.1016/j.im.2018.03.004
https://doi.org/https://doi.org/10.1016/j.im.2018.03.004
https://www.sciencedirect.com/science/article/pii/S0378720617303142
https://www.sciencedirect.com/science/article/pii/S0378720617303142
https://doi.org/10.1109/MAHC.1992.10024
https://doi.org/10.1109/MAHC.1992.10024
https://doi.org/https://doi.org/10.1016/j.infsof.2019.06.010
https://www.sciencedirect.com/science/article/pii/S0950584917302793
https://www.sciencedirect.com/science/article/pii/S0950584917302793

DOI: https://doi.org/10.1016/j.procs.2016.02.010. URL: https://www.sciencedirect.
com/science/article/pii/S1877050916000120.

[34] Ilias Mavridis and Helen Karatza. ‘Combining containers and virtual machines
to enhance isolation and extend functionality on cloud computing’. In: Future
Generation Computer Systems 94 (2019), pp. 674–696. ISSN: 0167-739X. DOI: https:
//doi.org/10.1016/j.future.2018.12.035. URL: https://www.sciencedirect.com/
science/article/pii/S0167739X18305764.

[35] Cameron McKenzie. ‘Docker run vs docker-compose: What’s the difference?’
In: (2022). URL: https://www.theserverside.com/blog/Coffee-Talk-Java-News-Stories-
and-Opinions/Docker-run-vs-docker-compose-Whats-the-difference.

[36] Marco Miglierina. ‘Application Deployment and Management in the Cloud’.
In: 2014 16th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing. 2014, pp. 422–428. DOI: 10 .1109/SYNASC.2014 .63. URL:
https://ieeexplore.ieee.org/abstract/document/7034713.

[37] Oswaldo Moscoso-Zea, Joel Paredes-Gualtor, Pablo Saa and Fanny Sandoval.
‘Moving the IT Infrastructure to the Cloud’. In: 9 (Mar. 2018), pp. 79–89. DOI:
10.29019/enfoqueute.v9n1.219. URL: https://www.researchgate.net/publication/
331009708_Moving_the_IT_Infrastructure_to_the_Cloud.

[38] M. Lakshmi Neelima and M. Padma. ‘A STUDY ON CLOUD STORAGE’. In:
3 (May 2014), pp. 966–971. URL: https : // ijcsmc . com/docs/papers/May2014/
V3I5201499a81.pdf.

[39] Volker Nissen and Henry Seifert. ‘Virtualization of Consulting – Benefits, Risks
and a Suggested Decision Process’. In: Jan. 2015. URL: https://www.researchgate.
net/publication/291679483_Virtualization_of_Consulting_-_Benefits_Risks_and_
a_Suggested_Decision_Process.

[40] Awodele Oludele, Emmanuel Ogu, Shade Kuyoro and Chinecherem
Umezuruike. ‘On the Evolution of Virtualization and Cloud Computing: A
Review’. In: Journal of Computer Science and Applications 2 (Dec. 2014), pp. 40–
43. DOI: 10.12691/jcsa-2-3-1. URL: https://www.researchgate.net/publication/
270162063_On_the_Evolution_of_Virtualization_and_Cloud_Computing_A_
Review.

[41] Claus Pahl, Antonio Brogi, Jacopo Soldani and Pooyan Jamshidi. ‘Cloud
Container Technologies: A State-of-the-Art Review’. In: IEEE Transactions on
Cloud Computing 7.3 (2019), pp. 677–692. DOI: 10.1109/TCC.2017.2702586.

117

https://doi.org/https://doi.org/10.1016/j.procs.2016.02.010
https://www.sciencedirect.com/science/article/pii/S1877050916000120
https://www.sciencedirect.com/science/article/pii/S1877050916000120
https://doi.org/https://doi.org/10.1016/j.future.2018.12.035
https://doi.org/https://doi.org/10.1016/j.future.2018.12.035
https://www.sciencedirect.com/science/article/pii/S0167739X18305764
https://www.sciencedirect.com/science/article/pii/S0167739X18305764
https://www.theserverside.com/blog/Coffee-Talk-Java-News-Stories-and-Opinions/Docker-run-vs-docker-compose-Whats-the-difference
https://www.theserverside.com/blog/Coffee-Talk-Java-News-Stories-and-Opinions/Docker-run-vs-docker-compose-Whats-the-difference
https://doi.org/10.1109/SYNASC.2014.63
https://ieeexplore.ieee.org/abstract/document/7034713
https://doi.org/10.29019/enfoqueute.v9n1.219
https://www.researchgate.net/publication/331009708_Moving_the_IT_Infrastructure_to_the_Cloud
https://www.researchgate.net/publication/331009708_Moving_the_IT_Infrastructure_to_the_Cloud
https://ijcsmc.com/docs/papers/May2014/V3I5201499a81.pdf
https://ijcsmc.com/docs/papers/May2014/V3I5201499a81.pdf
https://www.researchgate.net/publication/291679483_Virtualization_of_Consulting_-_Benefits_Risks_and_a_Suggested_Decision_Process
https://www.researchgate.net/publication/291679483_Virtualization_of_Consulting_-_Benefits_Risks_and_a_Suggested_Decision_Process
https://www.researchgate.net/publication/291679483_Virtualization_of_Consulting_-_Benefits_Risks_and_a_Suggested_Decision_Process
https://doi.org/10.12691/jcsa-2-3-1
https://www.researchgate.net/publication/270162063_On_the_Evolution_of_Virtualization_and_Cloud_Computing_A_Review
https://www.researchgate.net/publication/270162063_On_the_Evolution_of_Virtualization_and_Cloud_Computing_A_Review
https://www.researchgate.net/publication/270162063_On_the_Evolution_of_Virtualization_and_Cloud_Computing_A_Review
https://doi.org/10.1109/TCC.2017.2702586

[42] Morteza Rahimi, Nima Jafari Navimipour, Mehdi Hosseinzadeh, Mohammad
Hossein Moattar and Aso Darwesh. ‘Toward the efficient service selection
approaches in cloud computing’. In: Kybernetes 51.4 (Mar. 2022), pp. 1388–1412.
DOI: 10.1108/K-02-2021-0129. URL: https://www.emerald.com/insight/content/doi/
10.1108/K-02-2021-0129/full/html.

[43] Railway. ‘Introduction’. In: (n.d.). URL: https://docs.railway.app/.

[44] Jorge Ramìrez, Marcos Baez, Fabio Casati, Luca Cernuzzi and Boualem
Benatallah. ‘Challenges and strategies for running controlled crowdsourcing
experiments’. In: (Nov. 2020). URL: https://arxiv.org/pdf/2011.02804.pdf.

[45] Aaqib Rashid and Amit Chaturvedi. ‘Cloud Computing Characteristics and
Services: A Brief Review’. In: INTERNATIONAL JOURNAL OF COMPUTER
SCIENCES AND ENGINEERING 7 (Feb. 2019), pp. 421–426. DOI: 10.26438/ijcse/
v7i2.421426. URL: https://www.researchgate.net/publication/331731714_Cloud_
Computing_Characteristics_and_Services_A_Brief_Review.

[46] Mukthapuram Reddy. ‘Analysis of Component Libraries for React JS’. In:
IARJSET 8 (June 2021), pp. 43–46. DOI: 10.17148/IARJSET.2021.8607.

[47] Render. ‘Quickstarts’. In: (n.d.). URL: https://render.com/docs.

[48] Jonas Repschlaeger, Stefan Wind, Ruediger Zarnekow and Klaus Turowski.
‘Decision Model for Selecting a Cloud Provider: A Study of Service Model
Decision Priorities’. In: (2013). Americas Conference on Information Systems.
URL: https://core.ac.uk/download/pdf/301359419.pdf.

[49] Shylesh S. ‘A Study of Software Development Life Cycle Process Models’. In:
(June 2017). URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2988291.

[50] Prasad Saripalli and Gopal Pingali. ‘MADMAC: Multiple Attribute Decision
Methodology for Adoption of Clouds’. In: 2011 IEEE 4th International Conference
on Cloud Computing. 2011, pp. 316–323. DOI: 10.1109/CLOUD.2011.61.

[51] Michael Schröder and Jürgen Cito. ‘An empirical investigation of command-
line customization’. In: Empir. Softw. Eng. 27.2 (Mar. 2022).

[52] Jatankumar Sedani and Minal Doshi. ‘Cloud Computing:From The Era Of
Beginning To Present’. In: (2015). URL: https://www.noveltyjournals.com/upload/
paper/Cloud%5C%20Computing%5C%20From-286.pdf.

[53] Mohammed Suliman. ‘A Brief Analysis of Cloud Computing Infrastructure as
a Service(IaaS)’. In: 6 (Feb. 2021), pp. 1409–1412. URL: https://www.researchgate.
net / publication / 349297686 _ A _ Brief _ Analysis _ of _ Cloud _ Computing _
Infrastructure_as_a_ServiceIaaS.

118

https://doi.org/10.1108/K-02-2021-0129
https://www.emerald.com/insight/content/doi/10.1108/K-02-2021-0129/full/html
https://www.emerald.com/insight/content/doi/10.1108/K-02-2021-0129/full/html
https://docs.railway.app/
https://arxiv.org/pdf/2011.02804.pdf
https://doi.org/10.26438/ijcse/v7i2.421426
https://doi.org/10.26438/ijcse/v7i2.421426
https://www.researchgate.net/publication/331731714_Cloud_Computing_Characteristics_and_Services_A_Brief_Review
https://www.researchgate.net/publication/331731714_Cloud_Computing_Characteristics_and_Services_A_Brief_Review
https://doi.org/10.17148/IARJSET.2021.8607
https://render.com/docs
https://core.ac.uk/download/pdf/301359419.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2988291
https://doi.org/10.1109/CLOUD.2011.61
https://www.noveltyjournals.com/upload/paper/Cloud%5C%20Computing%5C%20From-286.pdf
https://www.noveltyjournals.com/upload/paper/Cloud%5C%20Computing%5C%20From-286.pdf
https://www.researchgate.net/publication/349297686_A_Brief_Analysis_of_Cloud_Computing_Infrastructure_as_a_ServiceIaaS
https://www.researchgate.net/publication/349297686_A_Brief_Analysis_of_Cloud_Computing_Infrastructure_as_a_ServiceIaaS
https://www.researchgate.net/publication/349297686_A_Brief_Analysis_of_Cloud_Computing_Infrastructure_as_a_ServiceIaaS

[54] Damian A. Tamburri, Marco Miglierina and Elisabetta Di Nitto. ‘Cloud
applications monitoring: An industrial study’. In: Information and Software
Technology 127 (2020), p. 106376. ISSN: 0950-5849. DOI: https://doi.org/10.1016/
j . infsof .2020.106376. URL: https ://www.sciencedirect .com/science/article/pii/
S0950584920301452.

[55] Kyle Wiggers. ‘Heroku announces plans to eliminate free plans, blaming ‘fraud
and abuse’’. In: (Aug. 2022). URL: https://techcrunch.com/2022/08/25/heroku-
announces-plans-to-eliminate-free-plans-blaming-fraud-and-abuse/.

[56] Robail Yasrab. ‘Platform-as-a-Service (PaaS): The Next Hype of Cloud
Computing’. In: (Apr. 2018). URL: https ://www.researchgate .net/publication/
324859738_Platform-as-a-Service_PaaS_The_Next_Hype_of_Cloud_Computing.

[57] Ilham Yusron and Antoni Wibowo. ‘A Performance Analyst Comparison of
ReactJS and AngularJS in the Front-End Website’. In: (Aug. 2020). URL: http :
//www.warse.org/IJSAIT/static/pdf/file/ijsait01942020.pdf.

[58] Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota and Massimiliano
Di Penta. ‘CI/CD Pipelines Evolution and Restructuring: A Qualitative
and Quantitative Study’. In: 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 2021, pp. 471–482. DOI: 10 . 1109 /
ICSME52107.2021.00048. URL: https://ieeexplore.ieee.org/document/9609201.

[59] Yang Zhang, Bogdan Vasilescu, Huaimin Wang and Vladimir Filkov. ‘One
Size Does Not Fit All: An Empirical Study of Containerized Continuous
Deployment Workflows’. In: ESEC/FSE 2018. Lake Buena Vista, FL, USA:
Association for Computing Machinery, 2018, pp. 295–306. ISBN: 9781450355735.
DOI: 10.1145/3236024.3236033. URL: https://doi.org/10.1145/3236024.3236033.

[60] Hong Zhu and Ian Bayley. ‘If Docker is the Answer, What is the Question?’
In: 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE). 2018,
pp. 152–163. DOI: 10.1109/SOSE.2018.00027. URL: https://ieeexplore.ieee.org/
abstract/document/8359160.

119

https://doi.org/https://doi.org/10.1016/j.infsof.2020.106376
https://doi.org/https://doi.org/10.1016/j.infsof.2020.106376
https://www.sciencedirect.com/science/article/pii/S0950584920301452
https://www.sciencedirect.com/science/article/pii/S0950584920301452
https://techcrunch.com/2022/08/25/heroku-announces-plans-to-eliminate-free-plans-blaming-fraud-and-abuse/
https://techcrunch.com/2022/08/25/heroku-announces-plans-to-eliminate-free-plans-blaming-fraud-and-abuse/
https://www.researchgate.net/publication/324859738_Platform-as-a-Service_PaaS_The_Next_Hype_of_Cloud_Computing
https://www.researchgate.net/publication/324859738_Platform-as-a-Service_PaaS_The_Next_Hype_of_Cloud_Computing
http://www.warse.org/IJSAIT/static/pdf/file/ijsait01942020.pdf
http://www.warse.org/IJSAIT/static/pdf/file/ijsait01942020.pdf
https://doi.org/10.1109/ICSME52107.2021.00048
https://doi.org/10.1109/ICSME52107.2021.00048
https://ieeexplore.ieee.org/document/9609201
https://doi.org/10.1145/3236024.3236033
https://doi.org/10.1145/3236024.3236033
https://doi.org/10.1109/SOSE.2018.00027
https://ieeexplore.ieee.org/abstract/document/8359160
https://ieeexplore.ieee.org/abstract/document/8359160

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Problem Statement
	Scope
	Research Methods
	Ethical Considerations
	Main Contributions
	Thesis Outline

	Background and Related Work
	Subjective User Studies
	Huldra Framework
	Huldra Pages
	Huldra Frontend with React

	Cloud Fundamentals
	Infrastructure as a Service
	Platform as a Service
	Software as a Service

	Relevant Concepts and Technologies
	Virtualization
	Hypervisor Type 1
	Hypervisor Type 2

	Containerization
	Docker

	Application Deployment
	Deployment without Technical Expertise

	DevOps
	Software Development Lifecycle

	Deployment Platforms
	Fly
	Railway
	Render

	Related Work
	Chapter Summary

	Methodology
	Proposed Approach
	Plan for Subjective Study
	Method
	Participant Recruitment
	Study Material

	Chapter Summary

	Implementation
	Containerization of Huldra
	Multi-stage Builds
	Dockerfile Production Environment
	Try Files for Nginx
	Dockerfile Development Environment
	Docker Compose files

	Alternative Deployments
	Huldra Deployment using ALTO Cloud
	Production Environment
	Development Environment
	Container Solution for Huldra

	Huldra Deployment using Render
	Huldra Deployment using Railway
	Huldra Deployment using Fly

	Chapter Summary

	Results
	Objective Results
	Subjective User Study
	Data Cleaning
	Study Results

	Chapter Summary

	Discussion
	Addressing the Research Questions
	Lessons Learned
	Other Contributions
	Limitations
	Future Work

	Conclusion

