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Abstract 

The adoption of cloud computing by small as well as large organizations has 

been rapidly increasing now a days. While cloud computing can be cost-effective, it 

can also become very expensive if proper care is not taken. In order to ensure high 

availability, cloud providers often tend to overprovision resources, leading to 

resource wastage and financial losses. Therefore, there is a growing need for 

efficient resource management in cloud computing. Recognizing the growing interest 

among researchers in utilizing machine learning models for optimizing resource 

utilization in cloud computing, this study aims to enhance resource utilization by 

automating the scaling of a traffic controller in a cloud environment  by using a 

transformer model, which have gained popularity recently. The proposed approach in 

this research involves training and utilizing a time series forecasting model to 

implement an autoscaling strategy that can dynamically allocate resources based on 

actual and predicted future demand in cloud computing. To implement the proposed 

model, a transformer model was trained using publicly available data offline and used 

to predict future traffic. The predicted value was then utilized to calculate the target 

utilization and fed to a Kubernetes-based Event-Driven Autoscaler (KEDA) 

component for autoscaling an ingress controller integrated with a microservice 

application running in the cloud. The model was tested in four different scenarios, 

including without autoscaling, with Horizontal Pod Autoscaling (HPA), with KEDA, 

and with the implemented transformer model. The experimental results show that the 

proposed model did not significantly outperform HPA in terms of the performance 

metrics considered. However, the proposed model exhibited a trend of changing 

utilization levels while maintaining a stable response time, suggesting a possibility of 

improving resource utilization with further investigation and fine-tuning. 
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Chapter 1: Introduction:   

Over the last few years, cloud computing has gained widespread popularity due 

to its cost efficiency, flexibility, and scalability, and has been adopted by small, 

medium, and large companies. Flexible scalability, known as autoscaling feature in 

cloud architecture, refers to the process of adding or removing resources 

automatically based on demand. Autoscaling optimizes resource utilization (Schuler 

et al., 2021) for the providers and provides reliability to users. In public clouds, this 

feature like infrastructure maintenance is also maintained by the cloud providers. 

An ingress controller is a crucial component in cloud computing that distributes 

incoming requests to applications running in a cluster. By scaling an ingress 

controller, centralized traffic management is achieved, resulting in better control and 

management of incoming requests. Additionally, an ingress controller can manage 

traffic across the cluster, leading to improved resource utilization compared to 

independent application scaling. This approach ensures that resources are utilized 

more efficiently, resulting in better overall system performance. Kubernetes, the 

widely used open-source container orchestration framework autoscales instances 

using Horizontal Pod Autoscaler (HPA) based on CPU or memory utilisation deciding 

on predefined thresholds(Schuler et al., 2021). One of the challenges of using this 

autoscaler is it requires expert knowledge or good understanding of the application to 

define the threshold,  (Phung & Kim, 2022). It is not that the user can only autoscale 

depending on cpu and memory utilisation, but also can autoscale their services 

based on custom metrics using an adopter. A recently developed Kubernetes-based 

Event Driven Autoscaler (KEDA) has gained popularity as an adaptor or autoscaling 

solution for Kubernetes environments due to its diverse range of scalers and ability to 

scale down to zero, a feature not offered by HPA. However, although auto-scalers 

scale instances automatically, there is a delay in the process of adding or creating a 

new instance, commonly known as a cold start. This delay can hamper the 

availability and performance of the service. On the other hand, to meet the SLA 

(Service Level Agreement) agreement, cloud providers often overprovision 

resources, which can result in increased cost as well as under utilised resources.  
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Keeping these issues under consideration, this paper proposes an autoscaling 

policy which will scale up or down resources based on predicted future workloads 

using machine learning techniques. Machine learning, similar to cloud computing, is 

a formidable technology. Currently, there is a growing interest in employing machine 

learning techniques in cloud computing to enhance resource utilisation. Numerous 

studies have been carried out to optimise and improve resource utilisation in the 

cloud, utilising various machine learning techniques.  

The proposed autoscaling policy aims to utilize a transformer model to scale an 

ingress controller integrated with an application based on predicted incoming request 

rate. In natural language processing, the transformer model has already shown big 

success.  It's usage is now being investigated in time series forecasting and that is 

one of the reasons for choosing transformer for this project. By leveraging this model, 

the system seeks to optimize resource utilization while ensuring high availability and 

low latency of an application in cloud environment. 

1.1 Problem Statement:  

Current autoscaling methods in cloud computing often rely on scaling applications 

based on the current workload, which can negatively impact application performance 

by causing delays in resource allocation during sudden traffic surges. To mitigate this 

issue, cloud providers frequently overprovision resources, resulting in resource 

wastage. Predicting future workload can aid autoscalers in preparing for incoming 

traffic surges. To address this challenge, this project proposes an autoscaling policy 

that utilizes workload predictions to improve resource management. 

1.2 Research Question:  

Can resource utilization be improved by dynamically autoscaling a traffic 

controller in cloud computing through using the transformer machine learning 

forecasting model?   

1.3 Motivation behind the project: 

Recently, there has been growing interest in using machine learning (ML) techniques 

to optimize cloud computing resource utilization. Many researchers have explored 

different techniques and achieved significant improvements, mostly focusing on 

virtual machine (VM)-based monolithic architecture. However, there are fewer 
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studies on microservices and serverless applications, which are more complex than 

monolithic architectures but widely used nowadays. Among those researches they 

have not considered much on the fact of over provisioning resources and assuring 

Quality of service (QoS) at the same time(Wang et al., 2022). To be more specific to 

my knowledge no studies has been published utilizing machine learning model to 

scale request traffic controller to ensure high availability, low resource usage and low 

latency.  On the other hand, the transformer model, a Machine learning technique 

that has gained popularity recently and has demonstrated promising results in 

various fields but not used much in cloud resource management.  

These facts motivated the exploration of the potential of the transformer model, 

for forecasting future workload where workload varies considerably, in improving 

resource utilization as well as latency. By using this model, I hope to improve 

resource utilization through auto-scaling ingress controller based on predicted future 

workload.  

1.4 Structure of the paper: 

This thesis' remaining sections are structured as follows: 

• Background in Chapter 2 includes a synopsis of relevant technologies and a 

literature assessment.  

• The strategies and tools to be employed are described in Chapter 3 of the 

methodology. focuses on the project's architecture and design. 

• Chapter 4  goes into great detail about the implementation.  

• Results are illustrated and analyzed in Chapter 5 along with a succinct 

explanation. 

• Conclusions from Chapter 6 include project constraints and suggestions for 

future development.   
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Chapter 2: Background 

This chapter provides an introduction to the key concepts related to the project and 

an overview of related research works. The related concepts are presented to 

establish a foundation for understanding the project, while the related research works 

provide a context for the current project. 

2.1 Cloud computing 

Cloud computing is a modern popular technology that delivers computing 

resources such as storage, server, software, and databases over the internet. This 

technology has changed the traditional business model in the technology sector. 

Companies of all sizes, from small to large, are now adopting this technology instead 

of investing a significant amount in capital expenses associated with building and 

maintaining infrastructure. This allows organisations to utilise resources as required 

and scale them up or down, thereby improving efficiency and reducing costs by 

paying only for the usage.  

2.1.1 Types of cloud 

According to (Rashid & Chaturvedi, 2019) there are four main categories that 

cloud computing can be grouped into.  

• Public Cloud: This type of cloud is shared by hundreds of thousands of 

customers and is easily accessible by the public or organisations. Cloud 

providers like Amazon, Microsoft, Google are dominating the market at 

present. They rent infrastructure and services at a given cost.  

• Private Cloud: These are accessed only by authorised users within by a 

specific business or organisation. These can be managed by themselves or by 

a third party (Eshete, 2020).  

• Community Cloud: This type of cloud is shared among organisations with 

similar interests, such as Salesforce or QTS Datacenters. 

• Hybrid Cloud: A hybrid cloud is a combination of public and private cloud 

where organizations can take some advantages of public clouds while having 

full control on their sensitive resources. 
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2.1.2 Cloud Services 

Cloud services refer to the computational resources and services offered by cloud 

providers. The most commonly used types of cloud services include: 

• Infrastructure as a Service (IaaS): This service provides virtualized computing 

resources such as virtual machines, processors, storage, and networking to 

customers on a pay-as-you-go basis. Instead of investing in their own 

infrastructure, organisations can rent this service from cloud providers. IaaS is 

also known as Hardware as a Service. 

• Platform as a Service (PaaS): PaaS is used to develop, run, and test 

applications without having to worry about software, configuration, or 

hardware. Developers can focus on building their applications while the cloud 

provider manages the underlying infrastructure. 

• Software as a Service (SaaS): This service offers software applications, such 

as Microsoft Outlook, to users. With one subscription every employee of an 

organization can use a service. They don't need to install the application 

locally. 

• Function as a Service (FaaS): It is also known as serverless computing. This 

service make developers work easier by allowing them to only focus on writing 

code for a function. They don't need to worry about rest of the work like 

resource allocation or management of servers. Cloud providers automatically 

provision resources based on requests, and this service supports a variety of 

programming languages. AWS Lambda, Azure Functions, and Google Cloud 

Functions are widely used FaaS platforms. 

• Data as a Service (DaaS): It is a valuable cloud computing service for 

organisations that require large-scale data processing. Through a network 

connection, users can access vast datasets provided by DaaS. In addition, 

DaaS offers users a suite of data management and analytics tools for more 

efficient and effective data processing. 

2.1.3 Resource management in Cloud 

As mentioned previously, access to shared computing resources such as computing 

power, storage, network bandwidth, software, and services is made possible via the 

cloud computing platform. These resources are directly related to a system’s 
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performance, functionality and cost. In order to achieve high performance, scalability, 

and availability, effective management of these resources requires assuring optimal 

exploitation of existing resources while minimizing costs Due to unpredictable actions 

of a huge user group as well as complex infrastructure of the cloud make effective 

resource management challenging. If incoming traffic of a system is predictable the 

management or resource allocation can become more easier than handling an 

unplanned spike.  

Challenges are different in different cloud service models, IaaS, Paas, Saas, Faas, 

Daas and so do their corresponding strategies. Various tools and techniques are 

used for resource management. Among them virtualization, monitoring and 

automation are the most common. A systematic approach is essential for effective 

cloud resource allocation techniques. As per (Marinescu, 2022) there exists four 

basic mechanisms to implement resource management policies in cloud. They are 

namely control theory, Machine learning, utility based and Market-oriented 

mechanisms. Control theory employs feedback mechanism which can predict only 

local behavior whereas machine learning techniques can be applied for coordinating 

multiple autonomic system managers without the need of a performance model of 

the system. Market-oriented mechanism also doesn’t require a performance model 

but Utility-based approach needs performance model along with a coordinator to 

coordinate cost with end user performance. Use of these mechanisms depend on the 

structure and need of the cloud environment. 

2.1.4 Advantages and Disadvantages of Cloud Computing 

Some advantages and disadvantages as per (Apostu et al., 2013) of cloud 

computing are pointed out below. 

• Advantages: 

1. Cost efficiency: For start-ups and small companies that intend to use 

intensive computing techniques, cloud computing can provide a cost-

effective solution. By adopting cloud computing, these companies can 

reduce infrastructure costs, such as setting up computing resources and 

acquiring licenses. Furthermore, cloud computing offers cheaper 

maintenance and upgrades since companies do not need to hire experts 

for these tasks. There are many flexible pricing options available, including 
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one-time payments and pay-as-you-go models, which make it a very 

affordable option for any company.  

2. Unlimited data storage, Backup and recovery: Cloud computing makes 

data backup, restore, and storage simpler, more efficient, and more 

economical. Because all data is stored in the cloud, businesses don't have 

to worry about physical resources or the risks associated with them, such 

as damage, theft, or loss. Contrary to typical methods of data storage, 

cloud service providers handle data backup and recovery, substantially 

simplifying the process. Businesses have access to a wide range of 

backup and recovery options, including routine automatic or manual 

backups, whole system recovery or recovery of specific files and folders. 

This enables enterprises to select the best backup and recovery solution 

that meets their demands and ensures the integrity and availability of their 

data. 

3. Quick and easy application deployment: With cloud computing, developers 

can save time by not having to develop their own infrastructure, 

environments, or tools. This is because the cloud provides a platform that 

makes it possible to deploy applications quickly and easily, eliminating the 

need for labor-intensive setup or configuration. 

4. Scalibility: One of the main benefits of cloud computing is scalability. To 

adapt to shifting business demands, cloud infrastructure can automatically 

scale up or down. Since no additional hardware or infrastructure is 

required, businesses can automatically add or remove resources as 

needed. To accommodate the increased demand, more computing 

resources, for instance, can be introduced during times of high demand 

and then removed when the demand declines. This flexibility ensures that 

businesses are only paying for the resources they actually require while 

enabling them to react swiftly to changes in demand. 

5. Mobility: Businesses have more flexibility and agility because of cloud 

computing's mobility, which enables them to react quickly to changing 

customer demands and market situations. Applications and data are stored 

in the cloud, making them accessible from any location with an internet 

connection and on any device. Due to this mobility, businesses can give 

their employees access to the data and applications they require, 
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regardless of where they are or what device they are using. Employees, for 

instance, can work remotely whether at home or on the go without being 

bound to a certain gadget or place. In addition to lowering maintenance 

expenses for on-premises gear and infrastructure, this can boost 

productivity and teamwork. 

• Disadvantages: Despite of many advantages, cloud technology has some 

disadvantages that a company should consider while taking decision on 

migrating to cloud or adopting cloud. Some major disadvantages are 

discussed below.  

1. Data Security: Data security is a critical concern when it comes to cloud 

computing, as all sensitive data is stored and handled by a third-party 

cloud provider. This can introduce the risk of data breaches and other 

security threats. Therefore, it is essential to carefully consider the reliability 

and security measures before entrusting them with sensitive data. 

Choosing a reputable and trustworthy provider with robust security 

protocols can help to mitigate these risks and ensure the safety and 

confidentiality of sensitive data. 

2. Cost: Although cloud computing is considered cost effective, it can be 

more expensive sometimes if not managed and handled properly. Pay-as-

you-go service can be beneficial for a company but sometimes it can add 

unexpected expenses if the usage exits expectation and resources are not 

managed carefully. Therefore, business organizations should have a clear 

idea of their usage pattern and need to do a correct calculation to avoid 

unexpected cost and less resource wastage in a long run. 

There are two primary aspects of cloud computing. One is Service Level 

Agreements (SLA) and the other is Quality of Service (QoS). Cost can be affected by 

these two factors. SL Agreements between the client and provider includes 

performance indicators like response time, uptime, and availability. On the other 

hand QoS provides guarantee of a specific level of service to the end-user. It is 

related to network capacity and latency. 

Higher service level agreements (SLAs) and quality of service (QoS) levels in cloud 

computing typically incur a higher cost due to the need for more resources to meet 

the agreed-upon service levels. Providers may overprovision resources to ensure the 

SLAs and QoS are met, resulting in resource wastage and increased cost. This is an 



Page 14 of 56 
 

area of concern that requires attention to ensure that the cost of cloud computing is 

optimized without sacrificing service quality. 

2.2 Autoscaling 

Autoscaling is a major feature in cloud computing which is directly related to cost.  

Customers can use additional resources by allocating resources automatically 

when the demand is high and they only pay for their usage. Resources in this way 

don't remain unutilized when the demand is low. There are various types of auto-

scaling available to meet specific needs. 

• Reactive auto-scaling: It involves continuous monitoring of relevant metrics 

such as CPU utilization, memory usage, network traffic, and request latency. 

This process dynamically adjusts resource utilization through various tools 

and technologies, such as Kubernetes or other cloud provider services. There 

are two types of reactive auto-scalers: Horizontal Pod Autoscaling (HPA) and 

Vertical Pod Autoscaling (VPA). 

I. HPA is commonly used for stateless applications that do not require 

persistent data storage. It adds or removes instances of an application 

to adjust to changes in traffic volume. When traffic increases, more 

instances are added, and when traffic is low, instances are removed. 

II. Vertical Pod Autoscaling adjusts the capacity of instances of an 

application depending on load. This is typically used for stateful 

applications that require storage. It adjusts resources such as CPU, 

RAM, or other resources allocated to the instances. 

• Predictive Autoscaling: This type of autoscaling uses mainly machine learning 

algorithms to predict future loads from historical data or related factors. This 

type of autoscaling is used usually where the load is highly variable. It helps to 

predict the load and autoscale based on that. 

• Scheduled Autoscaling: Scheduled autoscaling is helpful where there is a 

clear trend of incoming loads like periods during day time or specific days in a 

month. The scaling process can be configured to get triggered on the specific 

time when the demand is high. This helps optimizing cost while serving high 

demand. 
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2.3 Machine learning 

Machine learning is a branch of Artificial Intelligence that has the ability to learn 

from data without requiring explicit programming (Bi et al., 2019). Its main objective is 

to extract insights and patterns from data to make predictions about new data. 

Machine learning algorithms can be classified into four main categories: 

• Supervised learning: In this type of learning, an algorithm is trained on a 

labeled dataset where each data point has a corresponding label. The 

algorithm learns the pattern of the labels and predicts the label of new data. 

• Unsupervised learning: In unsupervised learning the algorithm learns pattern 

or data relationship by getting trained on unlabeled data.  

• Semi-supervised learning: It involves the use of both labeled and unlabeled 

data to train a model. This approach is particularly useful when labeled data is 

limited due to expense or time requirements. By incorporating a large amount 

of unlabeled data with a limited amount of labeled data, the model can be 

trained to improve its performance. 

• Reinforcement learning: In this learning type, the system learns through 

interacting with an environment iteratively and receiving positive or negative 

feedbacks on a given task on some data(Bi et al., 2019). It learns to maximize 

the positive feedbacks over time.  

 

2.4 Literature Review 

Some related researches to this project are discussed below.  

An extensive examination of machine learning-based container orchestration 

methods in cloud computing settings had been presented recently by (Zhong et al., 

2022). The authors introduced detailed classifications to categorize existing research 

based on shared characteristics and performed a comparative analysis of the 

investigated techniques using the proposed classifications. Additionally, they 

identified several open research challenges and potential future research directions. 

The study concluded that container orchestration systems can effectively utilize 

machine learning algorithms to model behavior and predict multi-dimensional 

performance metrics, leading to enhanced resource provisioning decisions in 

response to shifting workloads in complex environments. However, the constantly 
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changing and diverse nature of cloud workloads and environments significantly 

increases the complexity of orchestration mechanisms. 

(Marie-Magdelaine & Ahmed, 2020) proposed a novel autoscaling framework for 

cloud-native applications that scales dynamically in both horizontal and vertical 

directions. The framework employs a Long Short-Term Memory (LSTM) forecasting 

model that relies on observability data to predict application workload. To validate the 

effectiveness of their approach, the authors developed a proof of concept and tested 

it in four distinct scenarios with a consistent load application. The results from the 

experiments demonstrate that the proposed framework was successful in optimizing 

the Quality of Service (QoS) while improving application performance. 

(Goli et al., 2021) introduced an innovative predictive autoscaling method for 

microservice applications that leverages various machine learning techniques to 

forecast the behavior of microservices for different workloads and microservice 

graphs. They have trained two models one for predicting CPU and another for 

request rate prediction of each microservice, using two datasets per microservice. 

During the training process, the authors used Linear Regression, Random Forest, 

and Support Vector Regressor algorithms, and evaluated their performance in terms 

of mean absolute error (MAE), mean squared error (MSE), root mean squared error 

(RMSE), and R2 score.Unlike other approaches, this method avoids transferring 

loads to other services to maintain performance and Quality of Service (QoS). The 

proposed model is based on the MAPE-K control loop and surpasses the HPA 

autoscaler in terms of response time and throughput. 

In 2021, Khaleq and Ra (Khaleq & Ra, 2021) suggested an intelligent 

autonomous autoscaling system that comprises two machine learning models. The 

first model employs a generic autoscaling algorithm to determine the microservice's 

resource demand, while the second model identifies HPA autoscaling threshold 

values based on the resource demand and Quality of Service (QoS) using 

reinforcement learning agents. The findings indicate that using this system results in 

a 20% improvement in response time compared to the default autoscaling paradigm. 

A workload burst aware autoscaling method has been introduced by (Abdullah et 

al., 2020)where the autoscaler detects bursts in dynamic workloads using workload 

forecasting and resource prediction. The goal was to minimize response time and 

avoid service-level objectives (SLO) violation. The authors explored various machine 

learning techniques to be used as the model learning algorithm and opted for 
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Decision Tree Regression for the resource prediction model, and regression 

techniques for workload forecasting. They evaluated their model against reactive and 

predictive autoscaling methods and observed superior performance. 

In a recent study, (Wang et al., 2022) tackled the limitations of rule-based and 

learning-based schemes for autoscaling in large-scale cloud systems by introducing 

DeepScaling, a deep neural network-based framework. The proposed method 

maintains stable CPU utilization while ensuring quality of service and reducing 

resource over-provisioning. The researchers employed a spatio-temporal graph 

neural network to accurately forecast the workload of each service by incorporating 

service call graphs, and a deep neural network to estimate CPU utilization. 

Furthermore, they utilized a reinforcement learning model to generate optimal 

autoscaling policies for services with different workloads. The experiments conducted 

on a production cloud service showed that DeepScaling outperforms the state-of-the-

art autoscaling approach by improving CPU utilization by 24.6% per day and saving 

14% more resources. A six-month deployment of DeepScaling on 135 production 

microservices resulted in an average saving of over 30,000 CPU cores per day. 

 
 (Phung & Kim, 2022) aimed to optimize resource usage and response time of an 

application while satisfying Quality of Service (QoS) requirements with minimal cost 

by utilizing machine learning techniques in serverless computing through the popular 

serverless workload management tool, Knative. The authors addressed the delayed 

response in scaling pods on the Knative platform, caused by the lack of knowledge of 

future workload. To solve this issue, they proposed an autoscaling policy for the 

Knative platform using the Knative Pod Autoscaler (KPA) that autoscales workload 

based on the number of pods calculated using a Bi-LSTM machine learning 

forecasting model. KPA, by default, considers two metrics for autoscaling: 

concurrency and request rate. The authors designed their forecasting model to 

predict future request rates, which they evaluated using the Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE) metrics after tuning the training parameters 

to obtain the lowest possible values. They evaluated the model using two different 

resource-consuming applications, one utilizing CPU and memory exclusively, and the 

other less. The primary experiment showed better results than the Knative scheme, 

motivating the authors to carry out their experiment on a larger production 

environment. 



Page 18 of 56 
 

The delay issue of the Knative platform is also addressed by (Zhang et al., 2022) 

but they have adopted reinforcement learning to develop an adaptive autoscaling 

framework, able to scale both horizontally and vertically, for serverless services that 

are more prone to delay. They characterized the services and developed service 

profiles based on their performance with different resource allocation using the Q-

learning algorithm. The autoscaling approach was then designed based on the 

resource service profile. To evaluate their framework, they deployed three different 

services: a sensitive image detection service, a face image recognition and 

processing service, and a natural language processing service. They compared the 

performance of their system with Knative KPA and Libra in terms of cost and 

resource utilization for different workload scenarios, such as burst, gentle and 

decreasing, as well as plunge increasing and stable. The evaluation results showed 

that their framework outperformed the other two autoscaling tools in terms of cost 

and resource utilization.  
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Chapter 3: Methodology 

The chapter begins with a brief overview of the technology and tools that have 

been chosen for the development of the project, followed by a thorough examination 

of the design and architecture. 

2.1 Tools or Technologies To be Used 

3.1.1 Docker 

 Docker is an open-source software framework that is designed to enable 

developers to build, deploy, and manage applications in containers. Containers are 

lightweight and portable packages including the source code and its dependencies. 

These packages can be deployed in any environment which installs all the 

dependencies so that the application can be run without spending time on finding 

and installing dependencies. Unlike virtual machines, containers only contain the 

essential data required for the application, making them compact and resource-

efficient (Docker, 2020). Docker's features allow for scalability, portability, easy 

management, and cost-effectiveness, making it a powerful tool for microservices and 

a foundation for cloud-native applications. Furthermore, In developing and testing 

software applications this tool can also be utilized. 

3.1.2 Kubernetes 

Kubernetes is a popular open-source container orchestration tool. It manages 

containerized applications across multiple hosts,providing features such as 

automated deployment, scheduling, monitoring, and scaling. Additionally, Kubernetes 

includes self-healing, fault-tolerance, and automatic load balancing capabilities. The 

platform is also highly extensible, enabling developers to customize their applications 

without modifying the source code. It also allows the users to declare their desired 

state of an application(Kubernetes, 2019).  

The common practice is to create a cluster which can be of one or multiple 

masters associated with required number of workers. The master manages the 

cluster while the workers run the applications deployed on that cluster. Master and 

workers all are nodes (virtual or physical machines) required to run the applications. 
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A Pod in Kubernetes is a fundamental unit of deployment that comprises one or 

more containers with the same network namespace and IP address, enabling them 

to communicate with each other(Kubernetes, 2019). Kubernetes is responsible for 

creating, monitoring, and managing Pods, and automatically restarting them if they 

fail. Kubernetes dynamically scales the number of Pods up or down based on 

demand to maintain application performance.  

Ingress is a powerful feature of Kubernetes that allows to manage traffic routing 

to applications, running inside Kubernetes, in a flexible and scalable way. It is an API 

object that allows services running inside a cluster to be accessed by external world. 

Multiple services can be accessed through ingress with a single IP address.  

In this project a Kubernetes cluster will be used with one master and two nodes. 

Architecture of Kubernetes:  

An architectural diagram of a single master with two nodes is shown  

 

Figure 3. 1 Architectural diagram of a Kubernetes cluster 

 

A master node of a Kubernetes cluster has four major components.  
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1. Kubernetes API Server: It serves as a central gateway to the cluster, 

enabling both external users and internal system components to interact 

with the cluster through the same API. This component handles all REST 

requests for configurations and modifications, providing a unified interface 

for managing the cluster. 

2. Controller: The controller manages the state of the objects present in the 

cluster. It retrieves the desired state of objects from the API server and 

compares it with their current state. If there is a discrepancy between the 

two, the controller takes the necessary actions to reconcile the state of the 

object with the desired state, which may include scaling up or down the 

number of replicas, updating the configuration, or restarting the pods. 

3. Scheduler: The API server sends work requests to the scheduler; it accepts 

and distributes the workload to the worker nodes based on their status. It 

maintains information about the nodes' quality, ranks them accordingly, and 

assigns tasks to the most suitable nodes.   

4. Key-value store: This component, also known as etcd, stores all the 

configuration details and the cluster state. It acts like a database.   

The worker nodes consist of four major components described below. 

1. Kubelet: Kubelet is a crucial program that runs on all nodes in a Kubernetes 

cluster. Its main function is to enable the worker nodes to be part of the entire 

cluster, by receiving new assignments from the master's API server, executing 

them, and reporting back to the master. Additionally, Kubelet monitors the 

pods running on the nodes it is installed and reports their status to the master. 

2. Kube-proxy: It works as a load balancer or network proxy for services running 

on a node.  

3. Container runtime: Container runtime is responsible for managing containers 

running on the node. It also manages the resources needed for the 

containers. Docker is nowadays a widely used container runtime tool.  

4. Pod: A Pod is the smallest unit that can be deployed in a worker node, and it 

may consist of one or more containers. While scaling to handle workload, 

pods are dynamically created or removed. 

Autoscaling in Kubernetes:  

Within a Kubernetes cluster, there are various approaches to scaling, as 

discussed in section Autoscaling. However, this project focuses on Horizontal 
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Pod Autoscaling (HPA), which allows for automatic scaling of workload resources 

based on demand. 

Kubernetes can dynamically adjust the number of replicas for a particular 

workload based on metrics such as CPU utilization or custom metrics with the 

use of a HorizontalPodAutoscaler. This means that the number of replicas can 

increase or decrease based on the current workload demands while providing a 

more efficient allocation of resources. 

How Kubernetes HPA works:  

In Kubernetes the configured HPA works as a Kubernetes API resource and 

controller that enables automatic scaling of replica sets or deployments based on 

observed CPU utilization, memory utilization, or other custom metrics (Authors, 

March 30, 2023). The HPA controller runs in a loop, with a default interval of 15 

seconds, which can be customized by the administrator. 

The HPA is implemented as a Kubernetes API resource. It can be created, 

updated, and deleted just like other Kubernetes resources.  

The configuration file for an HPA is where the intended scaling policy, target 

resource, and target metric value are provided.  The HPA controller can be 

configured to monitor a variety of metrics, including CPU and memory usage as 

well as custom metrics. It can be customized to modify the number of replicas in 

accordance with average usage of all pods related to the target resource.  

This makes HPA a flexible and powerful tool for managing workload resources in 

a Kubernetes cluster.  

Algorithm:   

The Kubernetes HorizontalPodAutoscaler (HPA) utilizes the following 

fundamental equation to scale a workload as per the official documentation of 

kubernetes (Authors, March 30, 2023):  

desiredReplicas = ceil[currentReplicas*(currentMetricValue /desiredMetricValue)] 

As previously stated, the HPA determines the required number of pods or 

desiredReplicas by using this equation and observed metrics. To further illustrate 

this, let's consider an example of a deployment with three replicas that needs to 

be scaled based on CPU utilization. 

Suppose the current CPU utilization of the deployment is 60%, and the desired 

value is 50%. Applying the formula, the calculated number of desired replicas is 

as follows: 
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desiredReplicas = ceil[3 * (60 / 50)] desiredReplicas = ceil[3 * 1.2] 

desiredReplicas = ceil[3.6] desiredReplicas = 4 

Thus, the desired number of replicas in this case would be four. This means that 

the HPA controller would scale the deployment by adding one more pod to the 

existing three. 

It is to be noted that, currentReplicas value is the average metric value of all pods 

running related to the deployment, not a single pod. Suppose, after the specified 

interval, the HPA controller found three pods running on the current time with 

CPU utilization values of 60%, 40%, and 30%, respectively. The controller will 

consider the average of these values as the CurrentReplicas which is (60 + 40 + 

30) / 3 = 43.33%. Since the current value is below the desired or target value of 

50%, the HPA controller will calculate the desired number of replicas as follows: 

desiredReplicas = ceil[currentReplicas*(currentMetricValue / desiredMetricValue)] 

desiredReplicas = ceil[3 * (43.33 / 50)]  

desiredReplicas = ceil[2.6]  

desiredReplicas = 3 

So the HPA controller will remove a replica, as the current number of replicas (4) 

is higher the desired number of replicas (3). 

Kubernetes Ingress:  

Kubernetes pods are designed to communicate within themselves inside the 

cluster, but they are not directly accessible from outside the cluster. To enable 

external traffic to reach services running within the cluster, Kubernetes provides an 

API object called ingress, which acts as a routing mechanism for incoming traffic. 

However, the ingress object itself does not handle user traffic; an Ingress controller is 

required to handle and manage the traffic. An Ingress controller acts as a specialized 

load balancer that bridges external users and Kubernetes services, simplifying the 

management of service traffic. The use of an Ingress controller is more cost-effective 

than using a load balancer provided by cloud providers, and it offers additional 

features like SSL termination, URL-based routing, and support for multiple protocols. 

By providing a single entry point for incoming traffic, an ingress controller simplifies 

traffic management and improves the security of applications running in a 

Kubernetes cluster. 
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Figure 3. 2 An Ingress controller routing request 

 

In Kubernetes the ingress controller works same as a deployment controller 

which manages and controls a group of identical pods. The primary task of the 

controller is to monitor and track the ingress resources and change their states as 

per user requirement. There can be multiple ingress controller present in a 

Kubernetes cluster. Any modification made to the ingress resources, such as their 

creation, modification, or deletion, triggers the controller to update its configuration 

accordingly. Figure 3. 2 shows how an ingress controller routes traffic to services. 

3.1.3 Prometheus  

Prometheus is an open-source monitoring and alerting tool used for cloud-native 

applications. It is very easy to integrate with other cloud-native tools. Prometheus 

collects metrics from a defined target and alerts the user when a defined condition is 

met at regular intervals. The collected metrics are stored in a time-series database. 

Using PromQL query language the database can be queried. Prometheus is a 

powerful tool that helps to identify and debug issues in the application by providing 

detailed metrics about its performance. In this project, Prometheus will be used to 

monitor and collect the required metrics from the metric server of Kubernetes.  
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3.1.4 Grafana 

Grafana is an open-source visualization tool often used in conjunction with 

another monitoring tool. It has a user-friendly UI to customize dashboards, display 

real-time visualization of data as well as getting alerts. It will be used with conjugation 

of Prometheus for visualizing metrics from Prometheus database. 

3.1.5 KEDA 

KEDA stands for Kubernetes-based Event Driven Autoscaler, is an automated 

scaling tool that allows the scaling of any container in a Kubernetes cluster based on 

events that required to be processed. This innovative tool offers a wide range of built-

in scalers, making it simple to integrate with other cloud-native applications. Even 

though KEDA works alongside Kubernetes' Horizontal Pod Autoscaler (HPA) it can 

scaling to zero which HPA is not capable of. Thus, this tool makes scaling more 

efficient than ever before. In this project KEDA will be used to integrate Prometheus 

metrics into the cluster HPA for autoscaling depending on the metrics value.  

3.1.6 Transformer Model  

The transformer model has become a widely popular neural network architecture 

and is increasingly being used to replace other models like convolutional and 

recurrent neural networks (Merrit, 2022). OpenAI utilized Transformers in their 

language models, achieving state-of-the-art performance on a range of benchmark 

datasets. Additionally, DeepMind also utilized Transformers in their program 

AlphaStar, which famously defeated a top professional Starcraft player (Giacaglia, 

2019). This success in the gaming industry highlights the versatility of Transformers 

beyond just natural language processing, and suggests their potential for use in a 

wide range of applications. 

Unlike other models, it uses only self-attention mechanisms to compute 

representations of input and output sequences, making it highly effective for 

processing sequential data. Additionally, the transformer model performs parallel 

processing, which allows it to run faster than other models. One of the main 

advantages of the transformer model is that it eliminates the need for costly and 

time-consuming labeled data training by finding mathematical patterns between 

elements (Merrit, 2022). The transformer model has demonstrated its effectiveness 

in various natural language processing tasks, including machine translation, text 



Page 26 of 56 
 

summarization, and question-answering. Recently, its applicability has expanded to 

other domains, such as Biochemistry in protein folding. In this project, the 

transformer model will be utilized to investigate its impact on predicting workloads in 

cloud environment. Specifically, it will be employed as a time-series prediction model 

to anticipate future workloads, optimizing resource utilization in cloud computing. 

Transformer Architecture:  

The Transformer was originally designed and developed for translation purposes 

(Face, 2023). The architecture comprises of an encoder and a decoder as shown in 

Error! Reference source not found.Error! Reference source not found.. The 

figure is taken from the paper “Attention is all you need”. The encoder, positioned on 

the left side of the architecture, takes input sequences in a specific language. In 

contrast, the decoder obtains input from the encoder in the targeted or desired 

language. The encoder is designed to utilize all the words in a sentence as the 

translation of a word depends on other words of the sentence. On the other hand, the 

decoder works sequentially and only has access to the words it has already 

translated. During training, the decoder is provided with the entire target sentence to 

speed up the process, but it is restricted from using future words to avoid gaining an 

unfair advantage. Different languages have different grammatical rules in placing the 

words in orders as well as some words in the sentence can make the context 

different. Keeping this in mind the decoder’s first attention layer is designed to have 

all the inputs from past but the second layer gets only the input sequence from the 

encoder. Thus it gains a full idea of the sentence for the prediction.   
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Figure 3. 3 Architecture of transformer model(Vaswani et al., 2017) 

3.1.7 Locust  

An opensource load testing tool called Locust is used to evaluate the functionality 

of online applications. By specifying the number of virtual users, the quantity of 

requests to be made, and the intervals between requests, it is possible for users to 

imitate real-world user scenarios. It is built in Python. The tool may produce thorough 

data on request response times, failure rates, and other crucial metrics, as well as 

providing real-time monitoring of the performance of the application. Any size 

application, from a tiny website to massive distributed systems, can be loaded tested 

by it. In this project, Locust will be used to simulate load to test the implemented 

system’s performance and compare it with other state-of-the-art autoscaling policies.  
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3.2 Design and Architecture 

The proposed system architecture is designed to provide efficient scaling capabilities 

to any cloud native application. The architecture consists of three main components, 

namely the Application block, the Autoscaling-Controller (AC), and the Autoscaler. 

The block diagram is shown in Figure 3. 4 and the blocks are explained briefly below. 

 

Figure 3. 4 Designed component relationship 

 

• Application: The Application block is responsible for handling external 

requests to the deployed application. It comprises of an application and an 

ingress controller, which acts as a load balancer to route incoming 

requests to the appropriate microservice (Densify). 

• Autoscaling-Controller (AC): It is the core component of this architecture, 

responsible for monitoring the incoming request rates and predicting the 

future request rate based on historical data. The AC comprises three sub-

components, namely the Monitor, Predictor, and Calculator. 

I. Monitor: The Monitor component is responsible for collecting, 

monitoring and exposing request rate metric data as time series in a 

time-series database. It continuously tracks the incoming request 

rates to the ingress controller and feeds the data to the time-series 

database.  

II. Predictor: This sub-component is a time-series forecasting machine 

learning model that parses data from the Monitor and predicts the 

future request rates for the next 1 minute. It utilizes advanced 

forecasting techniques to analyze the historical data and predict the 

future values. This predictor is an integral part of the autoscaling 

system as it predicts the future request rate and make the 
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autoscaler aware of the incoming load to get prepared for scaling 

which will help to have low latency as well as improved resource 

utilization while maintaining availability.  

III. Calculator: The Calculator calculates the targeted CPU utilization 

based on the current pods running related to the service and the 

predicted future request rates. It uses a sophisticated algorithm to 

balance resource utilization with application performance. This 

algorithm takes into account the current state of the controller, 

desired utilization of the resources and the predictions made by the 

Predictor.  

• Autoscaler: The final component of the system architecture is the 

Autoscaler, which is responsible for implementing the scaling decisions 

made by the AC. Using an event-driven approach, the Autoscaler 

automatically scales the ingress controller up or down based on the 

targeted CPU utilization calculated by the Calculator.  

The proposed system architecture aims to provide an efficient and effective approach 

to scaling any kind of applications as an ingress controller is efficient to be used 

controlling traffic to microservices as well as serverless applications. By leveraging 

the Autoscaling-Controller, the system can dynamically adjust to changing traffic 

loads, ensuring that the application is always available and responsive to incoming 

requests. 
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Chapter 4: Implementation 

In the previous chapter, the architectural design of the system model was explained, 

while in this chapter, the step-by-step process to implement the designed 

architecture is illustrated. 

The implemented architecture of the system is shown in Figure 4. 1.  

 

Figure 4. 1 Architectural diagram of the implemented model 

 

The implementation process can be broken down into the following major stages. 

4.1 Training the prediction model  

A time series forecasting transformer model was developed using darts library. Dart 

is a python library which has a vast range of models for time series data processing 

and forecasting. The prediction model was developed for forecasting incoming future 

request rates. For training the model trace data from Alibaba cloud was used. The 

trace data is publicly available and releases real time metric data of microservices 

collected over 12 hours of period in 2021(Alibaba, 2021). 
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The detailed workflow of training the transformer forecasting model is described 

below step by step.  

• Data Selection and Downloading: Data for training was downloaded. The trace 

data 2022 was not available for download at the time the process started. Among 

four different tables available in the trace data MS_MCR_RT_Table was selected 

as the prediction model is designed to predict request rates and this table 

contains the microservice call rate and response information. It has 24 tar files 

each containing data of 30 minutes. The table has five attributes namely 

timestamp, msname, msinstanceid, metrics and value.  

1. Timestamp: Timestamp of metrics recorded. For twelve hours range from 0 

to (12 * 60 * 60 * 1000).  

2. msname: Name of the microservices the metric is recorded for. 

3. msinstanceid: The container id of the microservice. One microservice can 

have multiple containers.  

4. metrics: Call rates with different communication paradigms and its 

corresponding response time.  

5. value: The value of the metrics in number of calls per second. 

• Data Preprocessing: For training data need to be processed. The downloaded 

files were untared and read first and then converted to a dataframe using pandas 

library. From the dataframe at first the timestamp, msname, metric and value 

columns were selected. From there the data was sorted for only one specific 

microservice. Then in the dataframe only the timestamp and value columns were 

selected. The dataframe then were converted to a time series data.  

• Training the model: The preprocessed dataset was split to train and validate the 

model in 70/30 ratio.  

The parameters that were used to train the TransformerModel class was taken 

from the official documentation of Darts. The parameters are listed below with the 

value used. 

• input_chunk_length: It defines the number of input time steps. It can be 

only an integer and was set to 12. 

• output_chunk_length: Number of time steps to get from the model. It is 

also an integer value. In this project the intention was to predict next 1 min 

of request rates. For that 4 future time steps were taken into account.  



Page 32 of 56 
 

• batch_size: Number of samples used in one iteration of the training 

process. A larger batch size can increase the speed of the training but at 

the same time demands more memory. Here the default batch size 32 was 

used.  

• n_epochs: It determines the number of times the algorithm will iterate 

through the entire dataset. It is set to 200 as per an example showed in 

Darts official website.  

• Model_name: The model name is given resource_transformer. 

• nr_epochs_val_period: This parameter specifies the number of n_epochs 

after which the validation loss will be evaluated.  

• d_model: It defines the number of expected features in the 

encoder/decoder inputs. It was set to 16.  

• nhead: It determines the frequency of applying the attention mechanism 

each time focusing on a different aspect of the input. This nhead was set to 

8, meaning that the computation involves 8 heads of size 

d_model/nhead=16/2=2 each. This configuration results in low-dimensional 

heads that are more suitable for learning from univariate time series.  

• num_encoder_layers: It specifies the number of layers in the encoder. It 

was set to 2 as per the example showed in the Darts documentation. 

• num_decoder_layers: Number of layers in the decoder. It was set to 2 as 

well.  

• dim_feedforward: After the attention mechanism the output is fed to a 

feedforward network. This parameter determines the dimension of the 

feedforward network. It depends on the complexity of the problem and the 

amount of training data available. In this project it was set to 128.  

• dropout: It was set as the default value 0.1 which means in each layer 

10% of the neurons will be set to zero randomly while training. This 

parameter helps to prevent overfitting. 

• force_reset: This parameter has a default value of “False,” but in this 

case, it has been set to “True” to force a reset of any previously existing 

models with the same name. 

Evaluating the trained model:  
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After training the model its performance was evaluated by the validation set in terms 

of mean absolute error (MAE), Root Mean Squared Error (RMSE), and Mean 

Absolute Percentage Error (MAPE).  

MAE measures the average absolute difference between the actual and the 

predicted value. It shows how close the predicted value is to the actual on average. 

Typically, a lower MAE value indicates a better model, but this depends on various 

factors. The trained model in this project showed a MAE value of 1.40 with the 

validation dataset which means the predicted value is 1.40 units off from the actual 

values.  

The square root of MSE is the RMSE value. It is also widely used for evaluating a 

model as it outputs the error in the same unit as the outcome variable which makes it 

easier to interpret (TrainDataHub, 2022). The RMSE value of 1.81 obtained from the 

trained model suggests that the average difference between the predicted and actual 

values is 1.81 units, which is not very high. 

MAPE shows the error in percentage making it easy to understand. A MAPE value of 

1.49 was found from the trained model which means the predicted value is on 

average 1.49% off from the actual data.  

Even though the evaluation metric were within an acceptable level the performance 

of the model can be improved by hyperparameter tuning.  

4.2  Building the environment 

The design of the proposed model adopts a cloud-native approach, taking advantage 

of the benefits offered by infrastructure-as-a-service (IaaS) resources in the cloud. 

For this project, the university's private openstack cloud platform, ALTO, was utilized 

as the cloud platform. To create a production-ready single master, multinode cluster 

in ALTO, the kubeadm tool was employed. As the proposed model does not account 

for cluster autoscaling, the lightweight kubeadm tool was deemed suitable for cluster 

creation. The cluster used in this project consisted of one master node with 16GB 

RAM, 8 vCPUs, and 160GB disk, and two worker nodes, each with 4GB RAM, 2 

vCPUs, and 40GB disk. 

4.3 Deploying and integrating different components  

In accordance with the designed architecture, a microservice app and a Nginx 

ingress controller were deployed to serve as the application block. Additionally, 
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Kube-prometheus-stack was deployed for monitoring purposes, while the trained 

model was transferred to the cloud instance to function as the predictor. 

• Sample App: A simple microservice app called Podinfo was deployed in the 

cluster. Podinfo is a small web app developed in Go, demonstrates the ideal 

techniques for operating microservices on Kubernetes, and is utilized for end-to-

end testing and workshops by CNCF initiatives (stefanprodan, 2021).  

 

Figure 4. 2 The screenshot of the sample application 

 

For traffic routing to the app nginx ingress controller was also deployed in a created 

namespace called ingress-nginx in the cluster. An ingress resource was  created 

then to integrate the app with the controller. After integrating the microservice app 

with the nginx ingress controller using an ingress resource, a load testing was 

conducted using locust to determine the maximum request rate that the controller 

can handle while maintaining application performance. The application deployment 

and ingress resource configuration file are mentioned in the (Appendix A: 

Configuration files) 

• Kube-prometheus-stack: Kube-prometheus-stack is a monitoring solution for 

Kubernetes and its workloads, which is open-source and maintained by the 

Prometheus community. This tool was deployed in the cluster, which included 

Prometheus and Grafana with Prometheus operator and exporter. In the model 

architecture Prometheus is responsible for gathering metrics from the ingress 

controller and storing them in its database. On the other hand, Grafana is used 

for visualizing these metrics. 
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• Trained forecasting model: The transformer model, which was trained, was 

retrieved in cluster to forecast the upcoming request rates for the next one 

minute. A Python script was created in the cluster to load the trained model, 

extract the request rates data of the past one hour from the Prometheus server, 

predict the next one minute of incoming request rates and save the predicted 

values to a predicted_values.csv file. To automate this process, a cron job was 

configured to run the script every minute. 

• Autoscaler: Keda was deployed in the cluster as the Autoscaler. As mentioned 

before ( KEDA) KEDA offers a wide range of scalers. Among them Kubernetes 

Workload scaler was deemed appropriate for our intended purpose, as it scales 

applications based on the current status of the running resources. A ScaledObject 

was created in the same namespace as the ingress controller as its seach scope 

is limited to the namespace where it is deployed. It was configured in a way using 

the podSelector attribute to scale up or down the resources related to the 

controller. The “value” field of the ScaledObject is the target relation between the 

scaled workload and the current no of pods running for the related deployment 

(Authors, 2014-2023). This field has been selected in the architectural design of 

the proposed model to dynamically adjust based on the calculated value, which 

takes into account the current resource usage and predicted workloads. The 

content of the scaledobject yaml file is provided in (Appendix A: Configuration 

files) 

4.4 Parameter calculation 

To calculate the parameter for the ‘value’ field another python script was written. 

The script first loads the YAML file containing the configuration for the Kubernetes 

ScaledObject. It then reads in a CSV file containing the predicted request rates of 

next 4 steps of 15s interval (1min). Based on the maximum predicted RPS 

(requests per second) value and the maximum RPS per pod (determined through 

load testing), the script calculates the number of pods required to handle the 

predicted request rate. It then queries the Prometheus monitoring system to get 

the current number of pods running for the application. Using the number of 

required pods and the current number of running pods, the script calculates the 

parameter of the ‘value’ field and sets the new value in the ScaledObject YAML 

file. Here the value is multiplied by the desired_utilization to avoid over or under 
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provisioning of resources. Finally, the script applies the updated ScaledObject 

YAML file to the Kubernetes cluster through the kubectl command line tool, which 

dynamically scales the nginx controller based on the predicted request rates. This 

script is meant to be run periodically (every min) through a cron job to ensure the 

application can handle the predicted workload while avoiding resource waste.  

Algorithm of the script is written bellow. 

Algorithm 1: Calculate the parameter for the ScaledObject value field 

input: predicted_values.csv= csv file containing the predicted values, Max RPS per 

pod based on load testing, desired_utilization_percentage 

Output: Parameter for scaledObject value field.  

1. Import necessary libraries; 

2. initialize max_rps_per_pod = 70 (based on load testing), 

desired_utilization_percentage =70; 

3. load scaledObject configuration file; 

4. df = Load the predicted_values.csv file;  

5. max_rps = max RPS value of the df; 

6. scaled_workload_pods = max_rps / max_rps_per_pod; 

7.  num_matching_pods= query request to Prometheus;  

8. value = (num_matching_pods / scaled_workload_pods) * 

desired_utilization_percentage / 100; 

9. write (value) to scaledObject file; 

10. configure the scaledObject using kubectl apply 

 

4.5  Visualization and Data Collection:  

Grafana was deployed in a Kubernetes cluster to visualize metrics such as call 

rate, number of pods related to the Nginx ingress, response rate, CPU utilization, and 

memory utilization. A dashboard was created to display these metrics. The data was 

downloaded from Grafana in the form of a CSV file. 
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Figure 4. 3 Screenshot of the Grafana dashboard 
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Chapter 5: Results and Discussion 

In this chapter there is a brief discussion on the testing experiments and its 

results, providing valuable insights into the system's performance and identifying 

potential areas for improvement. 

5.1 Testing in different configurations  

Once the system was implemented according to the designed model, load testing 

was conducted to observe its behavior. The purpose of load testing was to compare 

the outcomes imposing a sudden increase in traffic under different configurations of 

the autoscaling system and evaluate the performance of the system.  

The experiment involved replicating a sudden traffic surge of 500 users with a spawn 

rate of 20 to the application, all within the same cloud environment, utilizing four 

different configurations of the autoscaling system (Marie-Magdelaine & Ahmed, 

2020). A spawn rate of 20 means that every second, 20 users were added until the 

total number of users reached 1000.  

The metrics of CPU utilization, memory utilization, and response time were 

considered for evaluating the implemented system. 

• Configuration 1: Without any autoscaling policy.  

• Configuration 2: Autoscaling was done using HPA. A yaml file was written and 

applied to configure an HPA named hpanginx for autoscaling the nginx 

ingress controller using targeted CPU utilization percentage 70 in the 

Kubernetes cluster. The HPA configuration file content is provided in 

(Appendix A: Configuration files)     

• Configuration 3: KEDA was configured for autoscaling. KEDA’s Kubernetes 

workload scaler was configured by applying a scaledobject in the same 

namespace the nginx ingress controller was deployed. The value field of the 

scaledobject was filled with ‘0.877’. It was calculated with the formula 

mentioned in Parameter calculation) 

Value = no of matched_pods / scaled workload pod. 

Value = 1/ (80/70) = 0.877, scaled workload pod was calculated by dividing 

approximate request rate / approximate request rate which can be handled 

per pod measured from initial load testing.   
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• Configuration 4: KEDA was integrated with the other components of the 

designed model in a way that the target CPU utilization percentage changes 

with demand to scale up or down resources.  

 

 

Figure 5. 1 Resource Utilization over time for different configurations (low request 
rate) 

 

 

Figure 5. 2 No of pods and P99 latency over time for different configurations (low 
request rate) 
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Figure 5. 3 Request volume over time (low request rate)  
 

The graph of Figure 5. 1depicts the CPU and memory utilization trends over ten 

minutes period of time under the mentioned four different configurations. The number 

of existing pods at different time stamps along with P99 response time, which 

indicates the time taken for 99% of requests to be completed successfully are shown 

in Figure 5. 2.  

Regarding CPU utilization, the initial three setups (without autoscaling, with HPA, 

and with KEDA) exhibited similar patterns of increasing CPU usage with rising load, 

then stabilizing as the load steadies. However, they consumed less CPU than each 

other. When no autoscaling was configured, the system operated with only one 

deployed pod, which had the highest CPU usage among the four configurations but 

remained steady and consumed less memory. Since it was stable with one pod 

running and the request rate was within its capacity, the P99 latency also remained 

stable.  

With configured Horizontal Pod Autoscaler with target utilization percentage 70, 

the ingress controller was scaled up with an additional pod after 2 minutes when the 

request rate sharply increased, as seen in Figure 5. 3 .With the scaling up process, 

the CPU utilization increased and stabilized after a certain period of time. Similarly, 

the memory utilization also became stable after a slight increase and decrease within 

the same time period. However, in terms of response time, it showed the same trend 

as the first setup without autoscaling, where the response time stabilized after the 

first few minutes. 

While testing the system with KEDA integrated for autoscaling the graph shows this 

setup had the lowest CPU usage and the highest memory usage among the four 
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setups during testing. This can be attributed to the fact that the number of pods 

increased gradually to maintain the correlation between the number of running pods 

and the scaled workload, and eventually reached the maximum number of pods set 

at 100. As more pods were allocated over time, memory utilization increased. 

Consequently, the response time was also impacted, with the graph showing a high 

response time that decreased approximately after 8 minutes when the number of 

pods had reached the maximum level. 

The proposed model implemented in the system showed a different trend 

compared to the other three configurations. The autoscaler scaled up to 15 pods 

from 1 within a minute after the implemented calculator calculated the value field and 

configured the scaled object. In the first minute, the system showed a rising trend in  

CPU utilization possibly due to the transition period of no of pods increasing rapidly 

from 1 to 15 within a short period. This sharp rise was not seen in the other 

configurations specially to mention the 3rd one autoscaling with KEDA as the target 

relation ‘value’ was fixed and the pod was gradually increasing. The CPU utilization 

decreased after the second minute when the no of pods became stable. The number 

of pods again decreased to 2 after 7 minutes based on the target relation calculation, 

resulting in an increase in CPU utilization. The memory usage was high when there 

were 15 pods running and decreased after 7 minutes when the number of pods went 

down to 2. The response time showed a slight up and down trend as the scaled 

object was getting configured every minute, but it remained within an acceptable 

range of 16ms. 

 To conduct further investigation, a second round of experiment was carried 

out with a larger user group consisting of 1000 users with a spawn rate of 20. This 

time the experiment only focused on configuration with HPA and the proposed 

model. The simulated user request is shown in Figure 5. 4. 
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Figure 5. 4 No of users simulated by Locust 
 

Prior to running this experiment, the Kubernetes cluster was resized, resulting in an 

infrastructure that was able to handle more load. As a result, the request rate 

increased to above 300 requests per second (Figure 5. 7) and the maximum request 

rate handling capacity increased to 330 without any failure. The maximum capacity 

was reflected in the calculation sheet for accurate analysis.  

The results reflected in Figure 5. 5 showed a similar trend in terms of all metrics. The 

proposed model had less CPU and memory usage than the HPA initially, but after 

some time, it increased. However, the memory usage pattern was different, with the 

usage decreasing initially and then increasing, in contrast to the first experiment. The 

number of pods did not exhibit a significant increase within a short period exhibited in 

Figure 5. 6, as was observed in the first experiment where it jumped to 15 replicas 

within a minute. This could be attributed to the maximum capacity per pod being set 

lower (70) in the first experiment. In terms of latency like last time it was also within 

an acceptable range. 
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Figure 5. 5 Resource utilization over time of configuration 2 and 4 

 

 
Figure 5. 6 No of pods and latency over time of configuration 2 and 4 

 

 
Figure 5. 7 Request volume over time (high request rate) 

 

 Based on the results found it is clear that autoscaling has a great impact on system 

performance. It helps to maintain a stable response time while effectively utilizing 

resources. Among the three autoscaling configured test scenarios (HPA, KEDA and 

proposed model) HPA worked the best in terms of all the metrics considered for 

evaluation even though KEDA showed less CPU utilization than HPA but had 
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unstable response time which is very important to consider. On the other hand, the 

implemented proposed model showed promise, displaying a trend of changing 

utilization levels while maintaining a stable response time. Although it did not surpass 

HPA in any of the performance metrics, it exhibited the potential to improve resource 

utilization on average over an extended period of operation. However, further 

experimentation and refinement are necessary to optimize the proposed model and 

make a more comprehensive comparison with other autoscaling mechanisms. 
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Chapter 6: Conclusion 

The recent Covid-19 pandemic has accelerated the adoption of cloud computing, 

as it plays a crucial role in digital transformation. The quarterly earnings report of 

technology company Microsoft demonstrated the significant digital transformation 

that occurred in a short period of time just a few months after the pandemic 

started(Microsoft, 2020). In this context, resource management in cloud computing 

has become an increasingly important research area, as it directly affects the cost, 

efficiency, and performance of cloud services. Machine learning models have been 

proposed and implemented to improve resource utilization in cloud computing.to 

address this issue. The goal of this project was to add to this field of study by 

designing and implementing an autoscaling strategy that makes use of a forecasting 

time series transformer model. The findings from the project shows little improvement 

in CPU consumption which is an important metric for cloud service providers as well 

as users in terms of cost but the metrics of memory usage was slightly higher 

compared to other configurations. These findings show that additional study in this 

field is worthwhile and point to the potential of machine learning models specially a 

transformer model for resource management in cloud computing. To address the 

research question, it can be concluded that the proposed model has demonstrated 

the potential to enhance resource utilization, but additional observation and 

experimentation are required to optimize the system. This study has provided a 

foundation or starting point for further research and development in the field of 

resource utilization and management in cloud computing utilizing an ingress 

controller and a transformer machine learning model.  

6.1 Limitations and Future Works 

Future works can address several limitations identified in this study. 

The current study utilized a prediction model with default parameters, and the 

potential for further improvement is evident through hyperparameter tuning. Future 

studies could focus on optimizing the model parameters to achieve more accurate 

predictions and enhance system performance. It is worth noting that the absence of 

workload trends in the dataset could be seen as a positive aspect for the model, as it 

was still able to make accurate predictions without relying on trend information. 
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Another drawback of the study is that the proposed model was only evaluated on a 

simple microservice app. While this was adequate to show the model's efficiency, 

further research might examine how it can be used to more complex applications, 

including multi-tier applications, in a bigger production environment. This might make 

it easier to spot any model flaws and gauge how it behaves in more complicated 

settings. Further improvements to the existing strategy might also come from 

investigating the incorporation of different machine learning models and creating a 

hybrid approach for scaling policy. 
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Appendices:  

Appendix A: Configuration files 

• Sample App: The deployment file of the sample application is as follows. 

apiVersion: apps/v1 

kind: Deployment 

metadata: 

  name: podinfo 

spec: 

  selector: 

    matchLabels: 

      app: podinfo 

  template: 

    metadata: 

      labels: 

        app: podinfo 

    spec: 

      containers: 

      - name: podinfo 

        image: stefanprodan/podinfo 

        ports: 

        - containerPort: 9898 

--- 

apiVersion: v1 

kind: Service 

metadata: 

  name: podinfo 

  labels: 

    app: podinfo 

spec: 

  type: ClusterIP 

  selector: 

    app: podinfo 

  ports: 

    - protocol: TCP 

      name: web 

      port: 8080 

      targetPort: 9898 

 

• Ingress resource: As mentioned in section (Deploying and integrating different 

components) an ingress resource was created to integrate the application with 

the ingress controller. The yaml file was written as follows: 

apiVersion: networking.k8s.io/v1  

kind: Ingress  

metadata:  

  name: podinfo  

spec:  

  ingressClassName: nginx  

  rules:  

    - host: "sampleapp.com"  

      http:  

        paths:  
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          - backend:  

              service:  

                name: podinfo  

                port:  

                  number: 8080 

 
• HPA configuration: For evaluating the performance of the implemented model 

and comparing it with state-of-art methods. HPA was configured. The yaml file 

consists of the following code.  

 
apiVersion: autoscaling/v1 

kind: HorizontalPodAutoscaler 

metadata: 

  name: hpanginx 

  namespace: ingress-nginx 

spec: 

  scaleTargetRef: 

    apiVersion: apps/v1 

    kind: Deployment 

    name: ingress-nginx-controller 

  minReplicas: 1 

  maxReplicas: 100 

  targetCPUUtilizationPercentage: 70 

 
• KEDA Scaledobject: As per section (Deploying and integrating different 

components) the KEDA scaledobject yaml file was written as follows: 

 

apiVersion: keda.sh/v1alpha1 

kind: ScaledObject 

metadata: 

  name: ingress-nginx-workload 

  namespace: ingress-nginx 

spec: 

  scaleTargetRef: 

    name: ingress-nginx-controller 

  triggers: 

  - type: kubernetes-workload 

    metadata: 

      podSelector: 'app.kubernetes.io/name=ingress-nginx' 

      value: “0.877” 
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Appendix B: Training and predicting 

• Training the model: The code for training the transformer model for predicting 

future workload: 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from darts import TimeSeries 

from darts.dataprocessing.transformers import Scaler 

from darts.models import TransformerModel, ExponentialSmoothing 

from darts.metrics import mape 

from darts.utils.statistics import check_seasonality, plot_acf 

# Load the Alibaba Cluster Traces 2021 dataset 

df_res_0 = pd.read_csv('MSRTQps_0.csv') 

df_res_1 = pd.read_csv('MSRTQps_1.csv') 

df_res_2 = pd.read_csv('MSRTQps_2.csv') 

df_res_3 = pd.read_csv('MSRTQps_3.csv') 

df_res_4 = pd.read_csv('MSRTQps_4.csv') 

df_res_5 = pd.read_csv('MSRTQps_5.csv') 

df_res_6 = pd.read_csv('MSRTQps_6.csv') 

df_res_7 = pd.read_csv('MSRTQps_7.csv') 

df_res_8 = pd.read_csv('MSRTQps_8.csv') 

df_res_9 = pd.read_csv('MSRTQps_9.csv') 

df_res_10 = pd.read_csv('MSRTQps_10.csv') 

df_res_11 = pd.read_csv('MSRTQps_11.csv') 

df_res_12 = pd.read_csv('MSRTQps_12.csv') 

df_res_13 = pd.read_csv('MSRTQps_13.csv') 

df_res_14 = pd.read_csv('MSRTQps_14.csv') 

df_res_15 = pd.read_csv('MSRTQps_15.csv') 

df_res_16 = pd.read_csv('MSRTQps_16.csv') 

df_res_17 = pd.read_csv('MSRTQps_17.csv') 

df_res_18 = pd.read_csv('MSRTQps_18.csv') 

df_res_19 = pd.read_csv('MSRTQps_19.csv') 

df_res_20 = pd.read_csv('MSRTQps_20.csv') 

df_res_21 = pd.read_csv('MSRTQps_21.csv') 

df_res_22 = pd.read_csv('MSRTQps_22.csv') 

df_res_23 = pd.read_csv('MSRTQps_23.csv') 

# Concatenate the dataframes 

df_res = pd.concat([df_res_0, df_res_1, df_res_2, df_res_3, df_res_4, 

df_res_5, df_res_6, df_res_7, df_res_8, df_res_9, df_res_10, df_res_11,  

df_res_12, df_res_13, df_res_14, df_res_15, df_res_16, df_res_17, 

df_res_18, df_res_19, df_res_20, df_res_21, df_res_22, df_res_23]) 

# Select relevant columns  

df = df_res[['msname','timestamp', 'metric', 'value']] 

df = df.sort_values(by='timestamp') 

df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms') 

#select only one microservice 
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msname = 

'6190227e8489cba622c6675f26dbf94a0407dc21594d0dcd6776c46975b7e225' 

df = df.loc[df['msname'] == msname] 

df = df.set_index('timestamp').groupby('metric').resample('15s').mean() 

df=df.reset_index() 

df.dropna(inplace= True) 

metric = 'providerRPC_MCR' 

df = df.loc[df['metric'] == metric] 

#Keep only the target column 

df = df[['timestamp', 'value']] 

# Split the data into training and validation sets 

train, val = train_test_split(df, test_size=0.30, shuffle=False) 

# Create the time series objects 

train_series = TimeSeries.from_dataframe(train, 'timestamp', ['value']) 

val_series = TimeSeries.from_dataframe(val, 'timestamp',['value']) 

df_series = TimeSeries.from_dataframe(df, 'timestamp',['value']) 

 

# Scale the data 

scaler = Scaler() 

train_series_scaled = scaler.fit_transform(train_series) 

val_series_scaled = scaler.fit_transform(val_series) 

df_series_scaled = scaler.transform(df_series) 

 

# Create and train the model 

 

model = TransformerModel( 

    input_chunk_length=12, 

    output_chunk_length=4, 

    batch_size=32, 

    n_epochs=200, 

    model_name="resource_transformer", 

    nr_epochs_val_period=10, 

    d_model=16, 

    nhead=8, 

    num_encoder_layers=2, 

    num_decoder_layers=2, 

    dim_feedforward=128, 

    dropout=0.1, 

    activation="relu", 

    random_state=42, 

    save_checkpoints=True, 

    force_reset=True, 

) 

model.fit(series=train_series_scaled, val_series=val_series_scaled, 

verbose=True) 

# Predict 

prediction = model.predict(n=len(val_series_scaled)) 

prediction_unscaled = scaler.inverse_transform(prediction) 
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# Evaluate the performance using MAPE 

mape_error = mape(val_series, prediction_unscaled) 

print(f"MAPE error: {mape_error:.2f}") 

from darts.metrics import mae 

# Calculate MAE on the test set 

val_mae_error = mae(val_series, prediction_unscaled) 

print(f"MAE error on validation set: {val_mae_error:.2f}") 

 

from darts.metrics import rmse 

 

# Calculate RMSE on the validation set 

rmse_error = rmse(df_series, prediction_unscaled) 

print(f"RMSE error: {rmse_error:.2f}") 

from darts.metrics import smape 

 

# Calculate SMAPE on the validation set 

smape_error = smape(prediction_unscaled, df_series) 

print(f"SMAPE error: {smape_error:.2f}") 

 

 

• Prediction of workload: The model was used to predict data based on previous 

one hour of data scraped from prometheus. The script is as follows. 

import requests 

from datetime import datetime, timedelta 

import pandas as pd 

import numpy as np 

 

from darts import TimeSeries 

from darts.dataprocessing.transformers import Scaler 

from darts.models import TransformerModel, ExponentialSmoothing 

 

PROMETHEUS_URL = 'http://10.108.86.201:9090/api/v1/query_range' 

 

# Set the start time and end time for the query 

end_time = datetime.now() 

start_time = end_time - timedelta(hours=1) 

 

# Construct the PromQL query 

query = 

'sum(irate(nginx_ingress_controller_requests{controller_pod=~"ingress-

nginx-controller-.*",controller_namespace=~"ingress-

nginx",ingress=~"podinfo-ingress”}-[1m]))' 

 

# Make the query request to Prometheus 

url = 

f'{PROMETHEUS_URL}?query={query}&start={int(start_time.timestamp())}&en

d={int(end_time.timestamp())}&step=15s' 

#print(f'Request URL: {url}') 

response = requests.get(url) 

#print(f'Response JSON: {response.json()}') 

 

# Parse the response data into a tabular format 

data = response.json()['data']['result'] 
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rows = [] 

for result in data: 

    values = result['values'] 

    for value in values: 

        time = datetime.fromtimestamp(value[0]).strftime('%m/%d/%Y 

%H:%M') 

        rps = value[1] 

        rows.append((time, rps)) 

 

# Create a pandas DataFrame 

df = pd.DataFrame(rows, columns=['Time', 'RPS']) 

 

df["RPS"] = pd.to_numeric(df["RPS"], downcast="float") 

 

df = df.groupby(['Time']).mean() 

df.dropna(inplace= True) 

df=df.reset_index() 

# Print the DataFrame 

print(df) 

 

 

# Create the time series objects 

df_series = TimeSeries.from_dataframe(df, 'Time',['RPS']) 

 

# Scale the data 

scaler = Scaler() 

df_series_scaled = scaler.transform(df_series) 

 

import joblib 

# Load the trained model from the joblib file 

model = joblib.load('transformer_model.joblib') 

 

prediction= model.predict(n=4, df_series) 

prediction_unscaled = scaler.inverse_transform(prediction) 

print(prediction_unscaled) 

 

#save the predicted data 

df_pred=prediction_unscaled.pd_dataframe(copy=True, 

suppress_warnings=False) 

df_pred.to_csv('predicted_values.csv') 

 
 

 

 

  



Page 55 of 56 
 

Appendix C: Target Relation Calculation 

• Calculation Script: The following script calculates the parameter for the 
“value” field of the scaledobject based on the predicted value and current pod 
status. 
 

import pandas as pd 

import requests 

from datetime import datetime, timedelta 

import yaml 

import subprocess 

 

# Load the YAML file 

with open("scaledobject-podinfo.yaml", "r") as f: 

    scaledobject = yaml.safe_load(f) 

 

# Load the CSV file 

df = pd.read_csv('predicted_values.csv') 

 

# The maximum RPS value in the 'RPS' column of the CSV file 

max_rps = df['RPS'].max() 

# Max RPS per pod based on load testing 

max_rps_per_pod = 330 

 

# Calculate the number of pods required to handle the predicted request 

rate 

num_pods_required = max_rps / max_rps_per_pod 

 

# Set the desired utilization percentage based on workload and cluster 

capacity 

desired_utilization_percentage = 70 

 

# Get the current number of pods running 

PROMETHEUS_URL = 'http://10.108.86.201:9090/api/v1/query' 

 

# Construct the PromQL query to get the number of pods running nginx 

container 

query = 'sum(kube_pod_info{pod=~"ingress-nginx-controller-.*"})' 

 

# Make the query request to Prometheus 

url = f'{PROMETHEUS_URL}?query={query}' 

response = requests.get(url) 

 

# Extract the current number of pods running the container from the 

response 

data = response.json()['data']['result'] 

num_matching_pods = int(data[0]['value'][1]) 

 

# Calculate the value for the KEDA 'value' field 

scaled_workload_pods = num_pods_required 

value = (num_matching_pods / scaled_workload_pods) * 

desired_utilization_percentage / 100 

 

# Set the new value in the scaledobject YAML 

scaledobject['spec']['triggers'][0]['metadata']['value'] = str(value) 

 

# Write the updated scaledobject YAML file 
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with open("scaledobject-podinfo.yaml", "w") as f: 

    yaml.dump(scaledobject, f) 

 

# Apply the updated scaledobject YAML file 

subprocess.run(["kubectl", "apply", "-f", "scaledobject-podinfo.yaml"]) 
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