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Abstract

Since the recent rise of European electricity prices, the field of electricity
price forecasting (EPF) has gained increased popularity. With the renew-
able energy transition, the complexity of EPF has become more challenging
due to the highly volatile nature of renewable energy sources. Additionally,
the limited data covering the period with abnormally high prices, make
EPF even more daunting. Accurate forecasts are therefore crucial in order
to efficiently allocate energy resources. In this thesis, we introduce and in-
vestigate a novel approach to reduce the complexity of day-ahead EPF and
better understand market coupling. Unlike univariate EPF, where features
such as load, demand and weather forecasts are counted for, our approach
is strictly based on multivariate electricity price time series from European
electricity markets. We utilized an Long Short-Term Memory (LSTM) that
successfully was capable of explaining electricity prices with varying ac-
curacy throughout Europe. We found that the electricity market of Nor-
way 1 (NO1) was the simplest to forecast, whereas the electricity markets
of Denmark and Netherlands were the most difficult. Our LSTM yielded
promising results and significantly outperformed a benchmark model us-
ing the same modeling approach. Nevertheless, multivariate price time
series for EPF cannot be seen as the superior approach as its forecasts were
lackluster in comparison to its counterpart. Moreover, using Local Inter-
pretable Model Agnostic Explanations (LIME) we were able to quantify
the importance of European electricity markets and analyze their intercon-
nectivity. As expected, our results show that Germany and Great Britain are
among the most influential. However, the electricity markets of Serbia and
Croatia appear to have a strong connection with the high electricity prices.
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Chapter 1

Introduction and Overview

Electricity has steadily since the 18th century become one of the most
important innovations of all time (Austin, 2021). The highly digital and
technologically advanced world we know today, could not have been
achieved without the contribution of electricity.

Since the first humans were alive 2.4 million years ago (Little, 2021) and
up until the 18th century, the world had steadily been changing, becom-
ing more and more advanced as the millenniums went by. However, this
constant advancement was nothing like what was to become after the dis-
covery of electricity, which is of no coincidence. Once the true possibilities
of electricity were discovered, the world quickly and drastically changed.

Whether you are switching your lights on in your apartment, starting
your car or cooking, electricity is very likely to be the source of energy.
We are constantly surrounded by electricity which is an integral part of
our everyday lives and it allows us to more efficiently perform everything
from basic, to more advanced tasks. Facilities such as schools and hospitals
are entirely reliant on constant access to electricity in order to operate
effectively. Electricity is without a doubt what keeps the world digital and
innovative.

Given our heavy dependence on electricity, experiencing shortages
or even more severe, electric power outages, can be detrimental to our
societies and welfare. Modern day economies are reliant on access to cheap
power in order to function properly. It is therefore crucial to be able to
delegate generated electricity where the demand is high at any time during
the day, and to do this both reliably and efficiently.

The European electricity markets experienced significant changes since
their deregulation in the 1990s. Prior to the deregulation, the power sector
was traditionally monopolistic and government controlled. Before the new
regulations that liberalized the electricity sector took place, the electricity
sector was suffering from an increasing dissatisfaction in performance.
Most notably, the electric capacity was often exceeding the demand which
resulted in an inefficient system (Bye & Hope, 2005). Electricity markets
were therefore introduced to optimize efficiency. Additionally, a liberalized
electricity market where different market participants can place bids and
offers should lead to increased reliability and reduced costs (Jamasb &
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Pollitt, 2005). Norway was one of the first countries in Europe to deregulate
its electricity sector and the first to provide universal market access, with
several countries following shortly after (Norwegian Ministry of Petroleum
and Energy, 2021). In the context of energy science, universal market
access refers to the ability of all market participants to access and trade
in electricity markets, which is essential for well-functioning markets as it
provides competition and transparency.

Electricity markets play a vital role in the balancing of power generation
and demand. Given that there are no easy and efficient ways to store
electricity for longer periods of time at this moment, the supply and
demand of electricity must always be at an exact equilibrium1 (Foroni et
al., 2023). To ensure that power generation and consumption are always
matched and in balance, electricity is traded in wholesale markets for
a given time horizon ranging from short-term to long-term. The day-
ahead market, regarded as the backbone of the European spot market and
constitutes the largest market based on traded volume, takes place each day
all year around. Up until a specific deadline, usually at 12:00 pm, electricity
for each hour of the following day is traded.

Electricity is a complex commodity that presents several challenges
due to its unique properties. The characteristics of always needing a
balance between supply and demand, being non-storable and highly
inelastic makes electricity subject to high volatility, sudden price spikes and
seasonality. The volatility can partly be explained by the energy transition
to renewable energy sources in today’s power systems which are incredibly
weather dependant. Additionally, the seasonality occurs based on the
demand of electricity which often peaks during morning and midday
hours. Moreover, households often consume more electricity during the
winter season to heat their homes. In order to have a well grounded and
predictable electricity market for those involved, modeling and forecasting
electricity spot prices has gained increased research interest.

Electricity Price Forecasting (EPF) aims to provide reliable and accurate
predictions of the electricity price. Most of the research is dedicated
towards predicting the day-ahead market (Jedrzejewski et al., 2022), which
requires models to forecast the 24 hourly prices for the following day, based
on the same data. Accurate forecasts are essential for reaching the energy
transition (Tschora et al., 2022). More recently, EPF has become increasingly
challenging due to the current European energy crisis which has resulted
in extraordinarily high electricity prices throughout Europe. Russia has
historically been an integral gas supplier to continental Europe. However,
after the invasion of Ukraine, its gas exports to Europe have significantly
been reduced (Council of the EU, 2023). The Russian invasion of Ukraine
further strengthened the severity of the energy crisis by disrupting the
European energy markets. Electricity markets are intrinsically coupled
with economical and political issues in Europe and generally around the
world. Since the electricity markets became deregulated, security of supply

1Although electricity is a non-storable commodity, the EU funded stoRE research project
aims to solve this issue.
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has never been a more important and discussed issue in Europe.
Meanwhile, the popularity of machine learning (ML) is growing by the

years as computational power and data storage have improved. ML has
successfully been applied to several complex problems in fields ranging
from finance (Rasekhschaffe & Jones, 2019) to healthcare (Davenport &
Kalakota, 2019). Their ability to model non-linearity and extract meaningful
information from complex domains have made them advantageous for EPF
where statistical methods were superior at the start of the previous decade.
However, as ML models are black boxes, their interpretability is limited.
Understanding why a model makes its predictions is crucial for the field of
EPF with these abnormal electricity prices.

1.1 Motivation and Contributions

Electricity prices throughout Europe are all coupled as countries exchange
power between themselves. Consequentially, forecasting electricity prices
quickly becomes a complex non-linear problem that is dependent on a
country’s generation and consumption, but similarly the wants and needs
of its neighboring countries. Due to the nature of the underlying problem,
ML techniques have successfully been applied to the field. Nevertheless,
the recent surge in the complexity of EPF has resulted in a reduced level
of ML model interpretability. Therefore, to reduce complexity and better
understand market coupling, we are interested in the following research
question: is it possible to accurately forecast day-ahead electricity prices for
a given region based only on previous price time series of other regions?

The majority of the EPF literature has been focused on univariate time
series analyses. These works comprise electricity prices for a single region
and data such as generation by type, consumption and weather forecasts.
To the best of our knowledge, no one has addressed multivariate time series
analyses, where only price time series from different regions are used to
make the final prediction. There are several reasons why our multivariate
approach could be valuable. First of all, access to regions’ historical data
is not necessarily easy, but that is not the main reason for our work. As
we are interested in how electricity markets are coupled, we have to look
directly at the electricity prices in order to truly understand the price
coupling between different regions. This could perhaps have been achieved
using the univariate modeling approach, however the relationship between
historical data and electricity prices might have long delays. For instance,
today’s water levels at the hydro reservoirs in Norway affect electricity
prices for various weeks in the future. Thus, multivariate price time series
modeling should better represent the simultaneous interactions between
electricity markets. Fundamentally, all historical information of each region
is already contained in the electricity prices.

This served as motivation for this thesis which is a two-part investiga-
tion. In this thesis, we first investigate the applicability of Long Short-Term
Memory (LSTM) artificial neural networks in the field of EPF. LSTMs have
shown promising results with sequential time series data and have success-
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fully been applied to EPF (Zihan Chang & Chen, 2019). As the electricity
power market is a complex system depending on many features, our main
goal was to forecast day-ahead prices of European electricity markets based
on the multivariate approach. Further on, most work in EPF is focused on
Germany, however, our thesis is focused on Norway and specifically Nor-
way bidding zone 1 (NO1), which serves the southern part of Norway. In
the second part of our investigation, we wanted to analyze how the entire
European electricity market was coupled, and whether there were any un-
derlying contexts between the electricity prices from different regions. By
training an ML model on price time series from different regions and apply-
ing that to forecast a region out of sample, we may be able to achieve more
reliable forecasts and thus, better understand how the European electricity
markets are coupled.

Moreover, understanding why a model makes its predictions is increas-
ingly relevant, especially when working in a highly volatile market such as
today’s electricity market. Explainable artificial intelligence (XAI) will as-
sist us in understanding what is being captured in a model. Adding to that,
XAI allows us to gain insight into which features are more influential than
others. In our case, XAI will serve as a tool to explain which electricity re-
gions are the most influential in the European electricity exchange market.
The goal is to disentangle the main drivers of electricity prices in European
markets.

To summarize, our contributions are fourfold. Firstly, we present a
novel approach for EPF based on multivariate time series analyses. Fea-
tures strongly influencing electricity prices, such as gas prices, renew-
able energy generation and load are not needed to train the ML model,
given that they are already weighted into the electricity price time series.
Secondly, we introduce an LSTM capable of estimating electricity prices
based on our novel approach. Thirdly, we provide the readers with insights
into how the Norwegian power market works, how prices are determ-
ined and settled and how electricity markets are interconnected. Lastly, we
quantify the importance of different European electricity markets such that
we can disentangle drivers for European electricity prices. XAI will serve
as a useful tool for the latter.

The rest of the thesis is structured as follows: In Chapter 2 the theoretical
background, covering the Norwegian electricity market and the LSTM
architecture, is presented. Additionally, an up-to-date literature review
of the EPF field is included. Following, in Chapter 3 we describe our
data and our entire modeling approach from data processing to model
implementation. The chapter finishes with an explanation of how we will
be evaluating our models. The main results of the ML models are presented
and analyzed in Chapter 4 where we also quantify the importance of
European electricity markets. Lastly, Chapter 5 concludes the thesis with a
discussion of our main findings and our approach. We additionally provide
a suggestion on what direction future works should be headed.

8



Chapter 2

Background and Related Work

In this chapter, the most relevant theoretical background will be covered.
Starting with the Norwegian electricity market, we will walk through the
process of how the market is structured, how prices are settled and what
characterizes a well-functioning market. Following that is an overview
of the main concepts linked to neural networks that are advantageous
to be familiar with. Wrapping up the background section is a thorough
explanation of how LSTMs are capable of learning from long-time series
data. The chapter finishes with a section detailing the most relevant related
works and current benchmark solutions in regard to EPF.

2.1 The Norwegian Electricity Market

As power markets are inherently different based on their location, regula-
tions and sheer size, providing a general overview of power markets would
be vague. We have therefore decided to limit the background of this thesis
to the Norwegian power market which consists of unique characteristics
while at the same time being representative of a typical European power
market. Additionally, the Norwegian power market is an important mar-
ket for the Nordic countries.

The Norwegian power market, as mentioned in Chapter 1, was
liberalized with the introduction of the Energy Act of 1990 (Bye & Hope,
2005). A monopolistic operation of the power market, where power
producers set the price for customers, was no longer optimal for the
current time which lead to the power market becoming more accessible
for several market participants. Competition between power suppliers
meant that Norwegian consumers had the option to choose their power
supplier based on the ones with the most competitive prices. Increasing
competition is vital, regardless of sector, in order to achieve lower prices
and higher quality of services (Council of Economic Advisers, 2016). With
the deregulation of the power market, electrical power went from being
directly decided by power producers to being determined by supply and
demand.

Supply and demand are integral in order to understand how the power
market works. In Norway and several other connecting countries, the
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power market is structured such that electricity will always be transported
to areas with greater demand for electricity. In other words, power will
flow to where its value is the greatest, which is enabled with the electricity
grid and interconnectors (Ministry of Petroleum and Energy, 2016). For
instance, if two regions in Norway are connected and one of them requires
a lot more power than the other region, then the power demanding region
will generally have higher power prices. Additionally, if the region with
lower demand has a surplus of power, that power will flow to the other
region as long as there is demand and the electricity grid is capable of
transporting the power. This means that in regions with higher demand,
prices will generally be higher, and regions with lower demand will have
the opposite. However, this is strongly dependent on whether the regions
have a surplus of power. If that is the case, then demand can still be
high, but prices can also be low. We now enter an important principle
in how prices are determined. As long as there is surplus and access to
power, prices can be kept low. It is only when there is deficit of power
that electricity prices will increase. In well-functioning markets, when a
commodity’s demand increases, its price will likewise increase.

The above-mentioned example of two regions in Norway is actually
a realistic representation of how power is distributed in the country. As
Norway is an elongated country, its nature is vastly varying from north
to south. Since Norway’s main power source comes from hydropower
plants, that again are weather dependant, its power system also becomes
weather dependant. The weather is often very different based on where
you are located. As a consequence of the varying landscape, weather
and transmission constraints, Norway is divided into five electricity price
regions (NO1-NO5) where three of which are located in the south and NO1
is the main region which includes Oslo. In Figure 2.1 the five bidding
zones (BZNs) are depicted. Since production and consumption happen
at different places in the country, and the electricity grid has limited
transmission capacity, areas with surpluses and deficits of electricity may
arise (Statnett, 2021). More specifically, NO3 and NO4, the northernmost
regions, are the BZNs in Norway with a surplus of electric power.
Consequentially, these two BZNs have historically enjoyed lower electricity
prices than the BZNs further south. This is especially true at the current
time.

The reasoning for the lower electricity prices in NO3 and NO4 can
be explained by several factors, many of which we already explained at
the start of this chapter. First of all, and most importantly, is the low
demand in comparison to the southbound regions. Secondly, many of the
largest hydropower plants are located in the north, in order to fully take
advantage of the steep landscape which is suitable for creating dams. The
larger the height difference from the dam down to the turbine, the more
electricity can be generated. Moreover, the limited transmission capacity
in the electricity grid plays an important part. There are no continuous
420 kV transmission lines ranging across the country. 420 kV transmission
lines are the largest and can carry the most amount of power in the entire
electricity grid. They are capable of transferring large amounts of energy,
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Figure 2.1: Overview of the five BZNs in Norway. Image taken from
(Statnett, 2021).

but as can be seen in Figure 2.2, there is a break in the continuity near
the NO5 and NO3 border. This works as a bottleneck given that there is
no free flow of electricity from the northern regions to the south via the
420 kV transmission lines. However, this one missing line is not the sole
reason for the price difference in the north and south. The total amount
of transmission lines is not sufficient at the current moment. Compared to
Sweden, Norway’s transmission grid is clearly insufficient. If there was one
BZN throughout the entire country, the price would have been the same
everywhere, but this would require a massive upgrade of the electricity
grid in order for electricity to freely flow across the country (Statnett, 2021).

It is worth mentioning that once power has been produced by
power producers and supplied to the electricity grid, there is no way
to continuously track that specific amount of electricity while it flows
through the grid (Norwegian Ministry of Petroleum and Energy, 2021). In
other words, electricity is indistinguishable. When industries and people
consume electricity provided to them by their power supplier, they cannot
know where that electricity was produced or how far it has traveled.
Power producers are therefore paid for the amount they produce, while
consumers are billed the amount they consume.

2.1.1 The Wholesale Market

The Nord Pool1 power exchange was established in 1996 following the
liberalization of the energy sector in the Nordic countries (Ministry of
Petroleum and Energy, 2016). The power exchange, which was the first
to open for cross-country power trade, is the leading power exchange in
the Nordic region. Additionally, it is integrated with the European power

1https://www.nordpoolgroup.com/en/
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Figure 2.2: The transmission grid of the Nordic countries. The green lines
represent 420 kV transmission lines. Both the black and pink lines are
interconnectors. Image taken from (VG, 2023).

market via cross-border physical interconnectors and financial market
integration. In Norway, there are interconnectors connecting the country to
the Nordic countries and more recently, new interconnectors to Germany,
United Kingdom and the Netherlands have been built and are operational.

As with most major decisions, there are both positives and negatives
of trading power between countries. As previously highlighted, the
Norwegian power system is greatly hydropower plant oriented, which
makes it weather dependant. In Norway’s neighboring countries, the
reality is vastly different. Denmark, being a relatively flat country, is not
suitable for hydropower plants, but benefits greatly from wind power.
In Sweden and Finland, the usage of thermal power plants is popular.
These differences enable countries coupled together to take advantage of
several sources of power. When it is windy in Denmark and wind farms
are producing electricity close to free of charge, it is often advantageous
for neighboring countries to import excess electricity. Similarly, when the
snow melting season begins in Norway, and the water level in the dams
rise, it is beneficial to export excess electricity (The Norwegian Energy
Regulatory Authority, 2023). The higher the water level in the dams, the
higher the possible supply is. Besides, by importing cheap electricity, the
power producers in Norway are able to save their water for later use, when
its value may be greater. This principle is known as the water value and
refers to the alternative value of the water when used at a later point.
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To summarize, having interconnectors between the countries leads to
power being consumed where it is most needed, provided the transmission
capacity is sufficient, thus ensuring optimal use of resources and capacity.
Additionally, it enables societies to benefit from security of supply at
overall lower costs. However, the major downside is how prices in
exporting regions can become higher, given that the supply is flowing
elsewhere.

The wholesale electricity market is divided into two major parts that
complement each other. First of all, the workhorse of the European power
market, known as the day-ahead market, works as an auction between
market participants. Since power production and consumption need to be
in balance, the day-ahead market is available every day where participants
can trade electricity for the following day. The day-ahead market is
available in several exchanges and in Europe, Nord Pool and EPEX Spot2

are the most popular. In the Nord Pool power exchange, electricity is traded
every day between 08:00 and 12:00 CET. During this time window, power
producers enter how much power they can produce for each hour of the
next day, and at what price. On the other hand, power suppliers, that often
trade electricity for everyday people, make bids by highlighting how much
electricity they need every hour for the next day.

Once the auction ends, the electricity price for each hour of the
following day is calculated using sophisticated algorithms that balance the
available offers with current bids. All the European power exchanges are
coupled together via the Single Day-Ahead Coupling (SDAC) to ensure
that all the BZNs have a specific market clearing price (MCP) (Kühling et
al., 2021).

The MCP is important to understand as it refers to the price where
demand and supply are at an equilibrium. The 24 hourly prices obtained
for the day-ahead market follow a standard supply-and-demand curve and
the MCP is denoted as the intersection between these two curves. The
cost of producing electricity greatly depends on the power source. The
variable costs of producing electricity are lowest with renewable energy
sources, while fossil fuels are the most expensive. The difference in variable
costs means that power producers offer their electricity at different prices,
in order to make a profit. Renewable power producers can offer their
electricity cheaply and still make a profit, while fossil fuel producers need
to put a higher price on their electricity to make a profit. While prices
for the day-ahead market are being calculated, demand is matched with
supply by always choosing the cheapest power source available until all
demand is met. For instance, say we would like to buy 100 shares of Apple.
Accidentally, we place our bid at double the price of a single share. Luckily,
mechanisms would prevent us from paying double the price for our shares.
In reality, our bids would be matched with the lowest asks until our order
is fulfilled, or no shares are left to sell. In this example, the order book, a list
of buy and sell orders, was "eaten up" using a bottom-up approach. This
exact principle is used when prices are settled in the day-ahead market.

2https://www.epexspot.com/en
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Figure 2.3: A representation of the merit order curve with demand (power
volume required) along the x-axis and the marginal cost for producing
power along the y-axis. Image taken from (Bahar & Sauvage, 2013).

The cheapest energy sources will always be used until demand is met.
As we highlighted, renewable energy sources are offered at the cheapest
price and will therefore always be taken into account at the start. Further
on, if all demand is not met with the available renewable sources, other
power sources, which are offered at higher prices, need to be taken into
calculation. This continues until all demand is met and at that exact point,
the MCP is determined. Therefore, the MCP can be referred to as the
most expensive power source offered in order to serve demand. Every
power producer whose offering price is below or equal to the MCP will
supply electricity for that specific hour (Yan & Chowdhury, 2015). Figure
2.3 illustrates how the MCP is determined, which is also known as the
merit-order principle (Trebbien et al., 2023). Additionally, the large profits
for renewable power producers are further highlighted.

In order to ensure fairness in the markets, every power producer whose
price was offered at a lower rate than the MCP will be paid the MCP
(Yan & Chowdhury, 2015). Simply put, all power producers, regardless of
the price they offer, will be paid the same if their power is used to serve
demand. Renewable power producers are therefore percentage-wise the
most profitable. As the day-ahead market allows you to trade power for
each hour of the following day, the MCP is therefore determined each hour
of a day.

To calculate how much electricity is needed for the following day’s
24 hours can be cumbersome. Sudden increases in demand and likewise,
sudden decreases in expected supply may occasionally arise. There are
several situations in which supply may be inadequate. First of all, power
plants may experience trouble producing the required amount of electricity
for numerous reasons. There may be sudden changes in weather forecasts,
or the transmission grid may become defective at places. Lastly, social
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events that require more electricity may also happen. In these types of
situations, it is necessary to quickly have access to more electricity. The
intraday market helps secure the balance between supply and demand
by allowing participants to trade electricity close to delivery (Kühling et
al., 2021). The intraday market is only available after the MCP has been
calculated after the day-ahead auction closes. It offers physical electricity to
be delivered at 15 minutes, 30 minutes or one hour after it is being traded.
Flexibility is achieved with the intraday market, but the volumes traded are
far lower than those of the day-ahead market. As a consequence, the prices
in the intraday market are closely linked to the hourly prices calculated in
the day-ahead market.

As previously mentioned, the Norwegian wholesale market is integ-
rated with the Nordic market, which again is integrated with the greater
European electricity market. Furthermore, all power exchanges in Europe
are coupled together to create a single pan-European cross-zonal day-
ahead electricity market (ENTSO-E, 2022). SDAC ensures that all power
exchanges offer the same day-ahead market clearing prices for all the BZNs
integrated into the European electricity market. Furthermore, an integrated
day-ahead market leads to a more efficient and more competitive market,
while also increasing overall liquidity. Moreover, SDAC utilizes different
power sources across country borders more effectively (ENTSO-E, 2022).

The MCPs of the different BZNs are calculated with a common
price coupling algorithm, EUPHEMIA (NEMO Committee, 2020). The
sophisticated algorithm is the main contributor to achieving a balance
between supply and demand and takes into account several key features
related to price settlement. For instance, grid constraints and capacities set
by different transmission system operators (TSOs) such as Statnett, and all
the bids and offers during the day-ahead auction are used to calculate the
joint MCP.

2.2 Main Concepts about Neural Networks

Intelligence, and more specifically human intelligence, allows us to think,
learn and react to situations. It is what makes us capable of solving
problems and learning from experience. Artificial intelligence (AI), one
of the newer fields combining science and engineering, aims to quantify
human behavior and thought processes by building intelligent entities. One
of the main tools used to create these intelligent entities is artificial neural
networks (ANNs).

The concepts of ANNs were introduced in the 1940s (McCulloch & Pitts,
1943), but the first practical implementation happened during the late 1950s
when Rosenblatt introduced the well-known perceptron (Rosenblatt, 1958).
Neural networks were introduced as tools to better understand and model
complex data, but given the limited resources available at the time, such
as data storage and processing power, the field of AI did not get off to
a flying start. It was not until the mid-2000s that AI experienced a major
boost in popularity across sectors, mostly because of the technological
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Figure 2.4: A typical architecture of a basic neural network consisting of
one hidden layer.

advancements in computational power, data storage and the introduction
of deep learning (LeCun et al., 2015).

ANNs replicate how the human brain is able to process information. In
the same way as the human brain is built of neurons connected with each
other via synapses, ANNs have a similar architecture. In Figure 2.4 the
architecture of a basic neural network is depicted. It consists of different
neurons connected together in different layers. Neural networks always
start with an input layer and end with an output layer. All layers in between
these two layers are called hidden layers and different transformations are
often applied to these.

The neurons of a neural network communicate with each other via
their connections. Firstly, each neuron is just a real number that can
activate if the linear combination of its inputs is greater than a threshold
value. If this is the case, the neuron can send information to nodes it is
connected to, which is how information flows through neural networks
(Russell & Norvig, 2009). Moreover, the strength of the connections, known
as edges, is dependant on each edge’s associated weight. The weights
between the nodes either increase or decrease the strength of a signal,
which plays a crucial part when neural networks are trained for specific
tasks. Additionally, before a signal is sent to a connected node, the linear
combination of a neuron’s input is sent through an activation function.
Activation functions are what differentiates ANNs from regular linear
regression models. Without activation functions, each node in ANNs
could be seen as a single linear regression model and thus, the neural
networks would become giant linear regression models. Consequently,
activation functions are what allow ANNs to become powerful tools
for understanding complex data and if needed, forecasting it. Activation
functions introduce the concept of non-linearity which is of the utmost
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importance given that most data cannot be modeled linearly. On top of
this, most of the relationships in the real world, whether they are in finance,
astronomy or biology, are non-linear. Since ANNs are able to capture these
relationships, they become useful for modeling real-world problems.

As stated, AI and ANNs aim to mimic how the brain functions, but
also how it is able to learn from experience. ANNs learn by repeating
similar tasks just like humans would. In simple terms, input data is fed
into ANNs. The data then flows through the entire network via the edges
of the nodes with linear combinations and activation functions applied
throughout the process. The output of the network is then measured
against ground truth data which equals the network’s error, also known
as loss. This type of ML, where models learn by comparing predictions
against actual output is known as supervised learning. Several methods
for calculating the loss have been proposed, but the most popular ones
are Mean Square Error (MSE) and Cross-Entropy loss (Christiansen et
al., 2014). Once the loss has been calculated, it is time to tune the edges
between nodes by either increasing or decreasing their weight. This
process is known as backpropagation and eventually leads to lower loss
values, which again leads to more accurate forecasts. In other words,
ANNs are able to learn from experience and errors they make by simply
changing how connections between nodes are structured. Loss functions
are minimized using gradient descent optimization algorithms (Baldi,
1995). It is optimization algorithms such as gradient decent, that minimize
the difference between the predicted output and the actual output. This is
achieved by iteratively computing the gradient of the loss function with
respect to the model’s weights and biases. Simply put, in ML gradients
refer to the partial derivatives of the loss function pointing in the direction
of maximum increase for a given function. Since we want to minimize the
difference between predicted values and actual values, the model’s weight
and biases have to be adjusted in the direction of the negative gradient.
This process is repeated until the loss function converges, leading to the
optimal weights and biases.

2.2.1 Neural Network Architectures

ANNs come in various architectures ranging from shallow to deep and
comprehensive. However, even with all the changes in architecture, ANNs
can primarily be divided into two main categories. Firstly, there are the
feed-forward networks where the information only flows one way. Simply
put, all edges point in the same direction which leaves us with a directed
acyclic graph. No loops are therefore present in the network, and all nodes
receive inputs from nodes in the preceding layers (Russell & Norvig,
2009). These types of networks are usually effective at processing non-
time-related data because they do not have an internal state able to process
previous outputs.

On the other hand, the second architecture, recurrent neural networks
(RNNs), contain feedback loops throughout the network. This means that
the flow of information not only flows forward, but it can flow to the same

17



node several times. Since RNNs feed their outputs back into their inputs,
and decisions are based on the current and previous inputs, these types
of networks are able to capture different states. As a consequence, RNNs
are able to exhibit temporal behaviors, unlike feed-forward networks.
This makes them valuable for solving tasks where the data is sequential
(Sherstinsky, 2020). RNNs are therefore widely applied in natural language
processing tasks, such as next-word prediction and sentence generation,
but also in time series problems. Generally, if features of a dataset are time
dependant and follow each other in a particular order, RNNs can be useful
for solving a vast number of problems. Given that RNNs have a temporal
behavior, they inherently have a kind of memory, which again mimics the
human brain.

Even though RNNs are able to make decisions based on previous
inputs, they are highly prone to the vanishing and exploding gradient
problem when time steps become too large (Sherstinsky, 2020). The
more times an RNN is unfolded, the more unstable it becomes. During
training, when the aim is to minimize the loss function by calculating
the gradients of the parameters, the networks tend to become unstable
because the gradients either become too small or too large. As RNNs
leverage backpropagation through time and weights are shared within
layers of the network, gradients will only become smaller or larger as time
passes (Werbos, 1990). At each time step the states from previous steps
will continuously become less significant with regard to the gradients. In
simpler terms, RNNs suffer from short-term memory where information
at the start of a sequence often is disregarded. There comes a point where
the gradients propagating through the network become either too small or
too large and the network is then unable to properly learn. In the case of
vanishing gradients, gradients become so small that the weights between
nodes are barely changed. Consequentially, the loss function converges
very slowly which leads to slow model training. In the other case, gradients
become very large and explode, resulting in weights that end up containing
NaN-values (Not-a-Number). The loss function will most likely never
converge to a global maximum because the steps taken to minimize the loss
function become too large. These issues are more or less the sole reasons
why RNNs are not as widely applied in the current day of time for complex
sequential data analysis.

2.2.2 Long Short-Term Memory

Luckily, research aimed towards solving the issue of vanishing or explod-
ing gradients in RNNs has been conducted with very promising findings.
A different type of RNN was developed in 1997 to improve and minimize
the problems linked with vanilla RNNs. The solution was a novel neural
network named Long Short-Term Memory (LSTM) which is capable of stor-
ing long-term dependencies by the introduction of constant error carousels
(Hochreiter & Schmidhuber, 1997). LSTMs were mainly introduced to solve
the issue of short-term memory for vanilla RNNs and these issues were
solved by internal mechanisms called gates that can regulate the flow of
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Figure 2.5: The architecture of an LSTM cell with its operators. Image taken
from (Phi, 2018). Edits to original image were done.

information through a network. The gates enable LSTMs to process long
sequences of data and decide what data is important to keep and what can
be disregarded.

In Figure 2.5 an LSTM cell with all its internal operators is depicted.
A thorough walkthrough of all its operators is key in order to grasp how
LSTMs function and why they are reliable tools for time series prediction.
First of all, as stated, the core concepts of LSTMs are their internal gates
and cell states. The cell state, which is represented as the top line in Figure
2.5, works as the LSTM’s memory. The cell state is able to keep relevant
information from a sequence of data and can also be referred to as long-
term memory. The short-term memory represents the lower line in the
figure, which is known as the hidden state. Under ways during model
training, new information is added or removed from the cell state via the
other gates based on certain criteria. As can be seen from the figure, LSTM
cells consist of three gates which are the forget gate, input gate and output
gate. Each one of these gates is a different neural network that serves the
purpose of deciding what information is allowed in the cell state (Phi,
2018).

Starting with the forget gate, its main purpose is to decide what
information should be kept or discarded. The gate takes in two inputs
which are information from the current input and the information from
the previous hidden state (Staudemeyer & Morris, 2019). To simplify, the
sum of the current input and the short-term memory is calculated and sent
through a sigmoid activation function. The sigmoid function shrinks its
inputs between the range of zero and one. After the activation function
has been applied, the output is then multiplied with the current long-term
memory. Since the sigmoid function shrinks its inputs between zero and
one and is then multiplied with the cell state, one can think of the entire
forget gate as the percentage of long-term memory to remember. As per
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Equation 2.1, showcasing the sigmoid function, large positive values will
be closer to one, whereas large negative values will be closer to zero. For
instance, if the sigmoid function outputs the value of 0.60, 60% of the long-
term memory will be kept, as 0.60 is multiplied with the current value of
the long-term memory. On the opposite side, if the output of the activation
function is zero, zero percent of the long-term memory will be kept.

S(x) =
1

1 + e−x (2.1)

Once the percentage of long-term memory to remember has been
calculated, it is time to move over to the input gate which is made up of two
different neural networks. The rightmost network in Figure 2.5 calculates
the potential long-term memory by combining the current input with
the short-term memory which is sent through a tanh activation function
which squishes the input between the values negative one and one. The
other network also combines and multiplies the input and the short-term
memory by their respective weights. Its main function is to decide what
percentage of the potential memory to remember by the usage of the
sigmoid activation function (Starmer, 2022). Once the potential long-term
memory has been multiplied with the percentage of potential long-term
memory to remember, its value is added to the cell state. Overall, the input
gate determines how one should update the cell state or the long-term
memory.

Finally, the last step of the LSTM updates the short-term memory.
Just like the input gate, the output gate consists of two neural networks.
However, this time the neural network with the tanh activation function
calculates the potential short-term memory, while the other with the
sigmoid activation function calculates the percentage of the potential
short-term memory to remember (Starmer, 2022). The outputs of the two
neural networks are multiplied together and represent the new short-term
memory. Additionally, this is also the output of the entire LSTM. For longer
sequences of data, the output of an LSTM cell will be the input for another
cell which is known as the next time step.

To wrap it all up, LSTMs are great tools for capturing temporal
dimensions which makes them suitable for data with strong memory.
Furthermore, their ability to handle N-dimensional time series, makes them
a valuable tool for multivariate time series forecasting.

2.3 Related Work

Electricity price forecasting (EPF) dates back to the early 2000s, a few years
after the liberation of the European power market (Bunn, 2000; Nogales et
al., 2002; Szkuta et al., 1999). During the 15-year period from 2000 to 2014,
the field grew steadily with an increasing number of research papers being
published each year (Weron, 2014). From 2014 to today’s date, EPF has
become an integral part of ensuring stability, efficiency and predictability
for consumers, companies and power producers worldwide. A literature

20



review of the entire EPF field is out of the scope of this thesis. The field
of EPF contains vastly different methods ranging from short-term to long-
term forecasting. Given that EPF has to be tailored towards specific markets
and that this thesis’s main purpose is to predict day-ahead prices, the
literature review will be limited to forecasting day-ahead prices in Europe.

The field of EPF can generally be divided into three different categories
with respect to the methodology used. These are statistical, deep learning
and hybrid methods (Lago et al., 2021). Starting off with the statistical
ones, these are mainly linear regression models that represent the output
variable as a linear combination of its input features. Typically, the model
architecture ranges from univariate to multivariate, where the latter is
more applied and generally the one with the most accurate predictions
(Lago et al., 2021). However, in (Ziel & Weron, 2018), the authors conduct
an empirical study that tries to address whether the optimal structure
from EPF is univariate or multivariate. 58 models were compared on 12
datasets across Europe. These were compared without the use of exogenous
variables, such as weather conditions, fuel prices and renewable energy
production. Exogenous variables simply refers to external factors that
influence electricity prices. Although multivariate architectures ever so
slightly averaged more accurate predictions, the authors concluded that
multivariate architectures did not uniformly outperform its counterpart.

Auto-regressive linear regression models where only past data is used
to predict the 24-hourly prices in the day-ahead market have additionally
gained popularity among the statistical approaches. More specifically, the
well-known ARIMA model has found its way to the field of EPF. Although
not the first to implement ARIMA to forecast day-ahead prices, in (Jakaša
et al., 2011), the auto-regressive model is applied to the German electricity
market during the 2001–2011 period with satisfactory results.

According to (Lago et al., 2021), the introduction of linear regression
models with a large number of features that utilize regularization tech-
niques has been a great success in statistical EPF. If the number of features
is large, promising results have been achieved by incorporating feature se-
lection methods such as the least absolute shrinkage and selection operator
(LASSO). The authors of (Ziel, 2016) also consider an auto-regressive model
but include LASSO in order to capture intraday dependencies such as the
time-varying cross-hour dependencies. Their model is additionally able to
explain a great amount of variety in the data which again helps explain
intraday behavior of electricity prices.

Moving over, the deep learning (DL) and machine learning (ML)
approaches, which are more in line with what is to be expected of
this thesis, have seen increased research interest since 2016. During the
period 2017 to 2019, a total of 28 research papers where ML methods
were applied, were published (Lago et al., 2021). Amongst these were
(Wang et al., 2017) which was also the first paper published using deep
learning. However, papers using shallow neural networks had already
been published such as (Voronin & Partanen, 2013). In the first DL paper,
the authors presented a novel deep learning architecture using stacked
denoising autoencoders (SDA) to predict the day-ahead market with data
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from Nebraska, Arkansas, Louisiana, Texas, and Indiana hubs in the U.S.
consisting of electricity prices, observed load and forecast load. Their
dataset covers the period from January 2012 to November 2014, where the
last three months were used to evaluate their model. Additionally, four
other data-driven approaches such as shallow neural networks, support
vector machines, multivariate adaptive regression splines and LASSO were
used for comparison in order to validate their results. Furthermore, the
performance of their approach is also validated on four metrics and the
authors state that their model could be used to accurately predict electricity
prices. However, further research aimed towards optimizing the structure
of their model should be conducted.

In 2018, a comprehensive comparison of traditional algorithms was
conducted in (Lago et al., 2018). It was the first paper to create a large-scale
benchmark of new and existing models. The paper’s main purpose was to
provide a framework for EPF. The applicability of DL in EPF was still in its
early days with limited literature. Therefore, to fill this gap, four DL models
were proposed and compared to 27 common approaches consisting of both
statistical and ML approaches. Their four models were a two-layered deep
neural network (DNN), an LSTM, a Gated Recurrent Unit (GRU) and lastly,
a convolutional neural network (CNN). These were all applied to the EPEX-
Belgium market and the DNN, the LSTM and the GRU outperformed the
other 27 approaches in a statistically significant matter. Additionally, the
DNN outperformed the other DL approaches which are hypothesized to be
because of the low amount of data. Furthermore, the consensus that deep
learning approaches are more accurate than statistical ones, was first stated
in the mentioned paper. In spite of that, the statement cannot be generalized
given that the researchers only tested their models on one dataset.

Following the first benchmark paper was (Ugurlu et al., 2018), who
performed EPF of the Turkish day-ahead market using data from January
2013 to December 2016. The authors also applied an RNN, however, it
differs from (Lago et al., 2018) in the number of features utilized and
that they proposed deep RNNs in contrast to shallow RNNs presented
in (Lago et al., 2018). Their models were a novel multi-layered GRU and
a multi-layered LSTM. Like previous papers, their models were tested
and compared against both statistical and ML approaches. (Lago et al.,
2018) stated that deep learning approaches generally were more accurate,
and the results achieved in this paper are in line with that statement.
Moreover, their GRU and LSTM both achieved lower errors than DNN
which contradicts the findings of (Lago et al., 2018). An explanation of the
contradiction may be linked to the market specifics, where each market has
its own characteristics.

LSTMs used for EPF continued to gain interest in 2019 with (Zihan
Chang & Chen, 2019) where a novel hybrid model based on wavelet
transform and Adam-optimized LSTM (WT-Adam-LSTM) was proposed.
Wavelet transform was used to decompose electricity prices series into
a set of better-performing constitutive series. In other words, a more
stable variance in the data was achieved by wavelet transform. Their
model was trained and applied to the French electricity market, as well
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as the New South Wales market in Australia. Four cases, to validate
their proposed model, were studied. Among these, the authors found that
the Adam optimizer outperforms similar optimizing algorithms when it
comes to EPF. Additionally, their hybrid model was compared to other
hybrid statistical ARIMA models which were significantly outperformed
on both datasets. It is concluded that their hybrid model exhibits better
performance than that of existing models.

In 2021, the second major review paper of the EPF field (Lago et al.,
2021), covering the period from the first review paper (Weron, 2014), was
published. It is a comprehensive review of the current state-of-the-art
algorithms, best practices and also includes an open-access benchmark.
Their contributions are threefold. First, they analyzed the existing literature
and selected two models which arguably could be considered state-of-
the-art. These were the Lasso Estimated AutoRegressive (LEAR) model
introduced in (Uniejewski et al., 2016), and the DNN from (Lago et al.,
2018). These models were made available as part of an open-source python
library, EPFTOOLBOX3. Second, five open-access benchmark datasets from
markets across the globe, spanning six years each, were presented. These
include markets such as Nord Pool, the French (EPEX-FR), Belgian (EPEX-
BE), German (EPEX-DE) and the Pennsylvania–New Jersey–Maryland
(PJM) market in the U.S. They consist of recent market data in order
to include the effects of integrating renewable energy sources to power
markets. Lastly, best practice guidelines for EPF were provided such that
new research studies could become more reproducible and sound. A
thorough discussion of which evaluation metrics work best and why, was
also presented such that model evaluations in future works could become
easier to perform. Moreover, the review paper highlights the importance of
including ensembles in the context of EPF, further validating the findings of
(Nowotarski et al., 2014), who stated that a combination of models trained
on different calibration window lengths, led to more reliable and accurate
forecasts.

2.3.1 Electricity Price Forecasting using XAI

During the last few years, increased efforts toward understanding ML
models’ outputs have been made (Tjoa & Guan, 2021). As ML approaches
inherently are black-box models, scientific insights become limited. Under-
standing why ML models make the predictions they make has received
significant attention in automated decision-making applications. In energy
science, understanding which features drive electricity prices the most has
always been a research question of interest. More recently, since the start
of the European energy crisis, this research question has been further so-
lidified. Thus far, ML has mainly been used to strictly forecast electricity
prices, however, attempts at model explanations have gained increased re-
search interest in EPF (Machlev et al., 2022).

EPF of the European electricity market was performed in (Tschora et al.,

3https://github.com/jeslago/epftoolbox
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2022). More specifically, three datasets from the benchmark EPFTOOLBOX,
created by (Lago et al., 2021) were used: France (EPEX-FR), Belgium (EPEX-
BE) and Germany (EPEX-DE). Furthermore, they extended the benchmark
by considering and incorporating unused predictive features such as price
histories of neighboring countries and gas prices. Moreover, attempts at
making their models more generalized were made by including recent
data, from ENTSO-E Transparency Platform4, such as the COVID-19 period
and data covering the European energy crisis. Additionally, four ML
approaches, support vector regressors (SVRs), random forest regressors
(RFRs), DNNs and CNNs were applied to their datasets and compared
against the two state-of-the-art models, LEAR and DNN from (Lago et al.,
2018). Lastly, SHapley Additive exPlanations (SHAP) were used in their
analysis to assess the importance of features in the prediction process. The
paper marks the first that actively attempted to achieve accurate forecasts
and provide explanations of model predictions. Based on their experiments
and results, two key takeaways stand out. First, including more features in
the datasets significantly improved model performance. However, based
on SHAP values, feature contributions were strongly market specific,
which makes perfect sense as the three considered markets are inherently
different. Second, the authors conclude that SVRs and DNNs extract the
most meaningful information which further verifies earlier statements.

In (Trebbien et al., 2023), an XAI ML model tailored to the German
day-ahead market is presented. Just like (Tschora et al., 2022), SHAP
values were used to disentangle the main drivers for the electricity prices.
Simply put, SHAP values showed which features lead to higher or lower
electricity prices. Their dataset was directly collected from the ENTSO-
E Transparency Platform and includes data from the years 2017 to 2019.
Additionally, power system features, such as day-ahead forecasts of load,
solar generation, wind generation, the day-ahead total generation and
imports and exports were collected. Furthermore, fuel prices such as oil
and natural gas prices were included. The authors’ model was a gradient-
boosted tree (GBT) which achieved substantially more precise predictions
of the electricity price than those of a benchmark model based on the merit
order principle. Their model was able to explain 80% of the variability in
the price time series, relative to the merit order approach which was able to
explain 66%. To conclude, their analysis confirms that higher load leads to
higher prices, whereas higher generation of power from renewable energy
sources, such as wind or solar, leads to lower prices. Residual load was
the main contributor to the electricity price according to their model which
reflects reality. Lastly, export and import between neighboring countries
was the fifth most important feature in regard to the price.

4https://transparency.entsoe.eu/
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Chapter 3

Data and Methodology

This chapter covers all data-related topics ranging from dataset description
to data processing. The main assumptions and techniques applied are
highlighted and thoroughly justified. Thereafter, our methodology is
presented which includes implementation details of our ML model. The
chapter closes with an introduction to the evaluation metrics we will use.

3.1 Data Description

The dataset used for this thesis was directly collected from the ENTSO-
E Transparency Platform1, which makes pan-European electricity prices
available at all time frames. The dataset consists of hourly electricity prices
from day-ahead markets from BZNs spread throughout Europe. The price
series included in the dataset dates back to the 12th of December 2014 and
includes all dates up to the 1st of January 2023.

In total, the original dataset consists of 57 different BZNs, thus leading
to 57 different numerical features. Furthermore, given that hourly entries
are included, the size of the dataset quickly becomes comprehensive. The
total amount of rows in the dataset is equal to 70633 which again amounts
to 4096714 entries. Even though the dataset consists of 57 different features,
they all represent the same entity, which of course is the electricity prices.
In order to keep the dataset uncomplicated, all prices are continuous
and given in €/MWh and not in each country’s local currency, which
is consistent with the unit of measurement used in EPF research. Given
that the dataset covers the period between 2014 to 2023 and the surge in
electricity prices was apparent in late 2021, there is a predominance of
lower electricity prices which skews the distributions of the data. Figure
3.1 provides a clear visualization of how prices prior to late 2021 have been
stably low.

The dataset is free of measurement uncertainties as it represents the
agreed market prices of electricity in the European exchange markets.
Nevertheless, there are still issues that need to be addressed and taken into
account in order to achieve reliable ML model predictions.

1https://newtransparency.entsoe.eu/
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Figure 3.1: Electricity prices of the NO1 and NO4 Norwegian BZNs. See
Figure 2.1 for their exact geographical locations.

3.1.1 Challenges with the Dataset

One of the main challenges with the dataset was the sheer number of
missing (NaN) values spread across most of the features. Out of the 57
features, only one was perfectly represented, covering all hours from the
12th of December 2014 to the 1st of January 2023. Numerous tools and
proposals for handling NaN values have already been researched and
presented (Emmanuel et al., 2021). Finding the most optimal technique to
handle NaN values in the dataset is a comprehensive research question in
and of itself, which was not the aim of this thesis. In total, 20% of the data,
or 849638 entries, were invalid NaN values, where the longest continuous
sequence was 70609 rows long. The missing data is to be excepted as there
are BZNs that have only been introduced recently. This naturally poses a
complicated problem in designing ML models that rely on time-ordered
data in equivalent time ranges. Most ML models, including LSTMs, are not
capable of processing these values.

The NaN values were spread and occurred across the entire dataset as
can be seen in Figure 3.4. The blue lines indicate NaN values, whereas the
yellow color represents actual values. One can clearly see how most of the
features contain NaN values, especially the Italian price regions. Moreover,
a given time series may include several sequences of NaN values and not
only one. The easiest option would have been to drop all dates consisting
of at least one NaN value, however this would of course leave us with only
one valid feature, as previously mentioned. Dropping these NaN values
was therefore not an option.

Additionally, as the amount of high electricity prices is limited in
comparison to ordinary prices in the dataset, ML models may struggle to
produce reliable and consistent predictions. However, the price imbalance
is necessary as we are trying to predict electricity prices in unprecedented
times. Electricity prices have historically been in the 0.30 to 0.40 kroner
per kWh range in Norway, which equates to 26.40 to 35.20 €/MWh using
today’s currency rate. These price levels have historically been considered
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relatively low. In order to reflect reality, we consider prices above 61.60
€/MWh (0.70 kr/kWh) to be extraordinarily high. This threshold is
additionally consistent with the Norwegian electricity subsidy scheme that
was introduced by the Norwegian government in order to compensate
households and the agricultural sector against high electricity bills.

3.1.2 Data Analysis

As this thesis is invested in how electricity prices are coupled, especially
during the current European energy crisis, a simple correlation plot
provides useful information. In Figure 3.2 a historical plot from 2015 to the
end of 2022, showing the four-month rolling Pearson correlation r of NO1
against NO2, NO4 and Germany (DE), is provided. A distinct difference
can be spotted in the correlations from 2021 onwards. In the case of NO2 the
difference is minimal which makes sense, as NO2 has always been closely
coupled with NO1. On the other side, the relationship between NO1 and
NO4 and DE from 2021 are opposite. Whereas NO4 historically has been
relatively correlated with NO1, the relationship between the BZNs was
significantly reduced around the same time the European energy crises
began and prices quickly rose. The two northern BZNs of Norway have
been relatively unaffected by the ongoing crisis throughout Europe, which
explains the sudden decrease in correlation with NO1. The effect was the
opposite for the German BZN. After the energy crisis, the German BZN
became closely coupled with NO1, which is also a phenomenon with other
BZNs affected by the energy crisis.

In Figure 3.3 the kernel density estimations of two time periods is
presented. Each line represents the five-month rolling correlations of NO1

Figure 3.2: Historical correlation of NO1 with NO2, NO4 and DE.
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Figure 3.3: Kernel density estimations of the Pearson correlation coefficients
r of all BZNs correlated by NO1 for the period before July 2021 (blue) and
period after July 2021 (orange).

correlated by all other BZNs of the dataset during different time periods.
The plots were achieved by calculating the mean of NO1 correlated by
all other BZNs for each hour of the dataset. This resulted in a single
correlation coefficient for all hours from 2015 to 2022. The blue, leftmost
line represents the histogram of all correlation coefficients from 2015 to the
end of June 2021, while the orange line consists of correlation coefficients
from July 2021 to the end of 2022. It is interesting to see how the correlation
distributions differ between the two periods. The blue line covers a wider
range of correlation coefficients, whereas the orange line is more shallow
with more concentrated coefficients. Additionally, the mode of the blue line
is around the 0.40 correlation range, while the orange one is shifted further
to the right, exceeding a value of 0.60. Consequentially, this tells us that the
electricity markets in Europe generally became more correlated after the
European energy crisis occurred.

To further analyze how the correlation between BZNs has developed
throughout the years, we calculated the Pearson correlation between all
BZNs for the years 2019 to 2022. The following Figures A.1, A.2, A.3 and
A.4 in Appendix A all depict the covariance matrices for the years 2019,
2020, 2021 and 2022 respectively. Whereas most of the BZNs, with the
exception of a few, seem to have a positive moderate correlation in 2019, we
can notice the shift toward more correlated markets as the years went by.
The electricity markets are highly efficient and prone to volatility. During
2020, which was heavily influenced by the COVID-19 pandemic, markets
became slightly more correlated in comparison to 2019. However, there is a
distinct difference in 2021 from the two previous years. With the exception
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of a handful of BZNs, NO3, NO4, SE1 and SE2, all other European BZNs
became extremely correlated as the European energy crisis occurred. The
remaining BZNs, which decorrelated with the rest of the markets, are
to no surprise, zones that were not affected by the European energy
crisis. In Figure 3.2, as previously mentioned, the northernmost BZN in
Norway, NO4, became decorrelated with NO1 during 2021. Furthermore,
SE1 and SE2, the two Swedish BZNs located in northern Sweden, likewise
decorrelated with the southern BZNs SE3 and SE4, and thus the rest of
Europe.

As the energy crisis continued throughout 2022, the closely coupled
markets in 2021 were still a reality. However, even though record electricity
prices were set across Europe, the closely coupled markets peaked in
2021. The following year was characterized by slightly smaller correlation
coefficients between markets, albeit still highly correlated. In Figure A.4,
the dark red shade, representing a high positive correlation, is marginally
decreased in comparison to 2021.

Even though several markets were highly coupled with correlations
close to one, we felt that it was not justifiable to drop a BZN based on
this criterion alone. None of the BZNs had a correlation of one throughout
the entire 2015–2022 period. Markets couple and decouple throughout time
which was highlighted in Figure 3.2, where NO1 and NO2 experienced
periods with decoupling, although still remaining highly correlated. We
felt that valuable information might be lost if a BZN is dropped based on
its correlation to other BZNs. Additionally, we wanted our data to reflect
and preserve as much information about the European electricity markets.
However, in order to minimize the effect of many highly correlated and
similar BZNs we added a penalty term to the loss function of our LSTM
that can shrink some of the coefficients whose importance is negligible.
Furthermore, this constraint limits the potential for the LSTM predictions
to solely duplicate the prices of correlated BZNs. Lasso regularization (L1)
has successfully been applied to EPF in (Ziel, 2016) and simply eliminates
unnecessary or redundant features from a model with aims at reducing
the model’s variance. High variance or overfitting occurs when a model
is not capable of generalizing and instead captures random noise in the
data. Overfitted models tend to memorize the training data instead of
learning the underlying patterns, leading to poor performance on new
unseen data. To validate our claim on whether valuable information was
lost by fully dropping a feature, the statistical dimensionality reduction
technique, Principal Component Analysis (PCA) was performed with its
result showcased in Section 4.1.1.

3.2 Data Processing

As previously mentioned, the dataset was fairly clean with the exception
of all the NaN values. As seen in Figure 3.4, it is evident that for all features
the earlier periods are invalid NaN values. For this sole reason, the new
dataset was set to start on the 1st of January 2015 and the entire month of
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December 2014 was disregarded. Additionally, in order to keep the length
of the dataset consistent, the two dates in 2023 were also disregarded. That
is, the new dataset covered all hours between the first hour of 2015 and the
last hour of 2022. Based on the same figure, the BZN of Montenegro (ME),
only included invalid data, apart from a 24 hour recording. This feature
was therefore dropped. Furthermore, a total of 18 features were dropped,
including the Montenegro BZN, as their ratio of NaN values was too high.
Hence, the dataset utilized for the training of our models comprised of 39
features and one target feature, giving rise to a total of 40 features.

Figure 3.4: Visualization of the amount and location of all the NaN values in
the dataset. The dark blue color represents NaN values, whereas the yellow
color represent normal values. A full lookup table of the BZNs can be found
in Table A.1.
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Additionally, Germany has historically shared its BZN with both
Austria and Luxembourg (Trebbien et al., 2023). This BZN was split
in two on the 1st of October 2018, where one BZN covered Germany
and Luxembourg and another Austria. Because of the BZN restructuring,
the dataset includes three features which are the Germany, Austria and
Luxembourg (DE-AT-LU) BZN, covering dates up until the 1st of October
2018, the new Germany and Luxembourg (DE-LU) BZN and the new
Austria (AT) BZN from the 1st of October 2018 to the last hour of 2022.
DE-AT-LU and DE-LU were therefore concatenated into a single feature
covering all dates and named Germany. The same process was also applied
to the Austrian BZN that now consisted of the DE-AT-LU and AT time
series.

Several attractive methods for dealing with the NaN values were
available, each with its own advantages and disadvantages. Firstly, there
was a possibility to both do a backwards or forward fill, changing all
NaN sequences with the last valid observation. However, as electricity
prices are inherently seasonal, performing a backwards or forward fill
would somewhat eliminate this seasonality for certain parts of the dataset,
which was not a favorable scenario. Instead, we used linear interpolation
to interject the NaN values between two valid observations. Forward
interpolation was mainly used, however this technique is limited as series
starting with NaN values will not be interjected. Therefore, we applied
a combination of both forward interpolation and backward interpolation
where it was needed. Nonetheless, if any time series either start or end with
an invalid value, interpolation will default to forward or backward filling
the first valid observation. Hence, certain BZNs may have longer sequences
where the prices are constant with zero rate of increase or decrease. This
is the case for the BZNs of Bulgaria (BG), Serbia (RS), Great Britain (GB)
and Hungary (HR). Although our approach may have slightly reduced
the stochastic nature of the non-stationary time series, we considered it
justifiable due to the minor impact on the data.

As all features of the dataset were of the same type and scale, no general
standardization or normalization techniques were applied. However, we
winsorized the features in order to limit the most extreme prices in the
dataset. It is worth noting that our goal was to be able to predict the recent
high electricity prices and most of these would be considered outliers
based on the earlier low electricity prices. Therefore, it was crucial to
process these with care. Important information was contained in the high
electricity prices, but a few values were considered extremely high. For
instance, Bulgaria experienced a price of 6101.78 €/MWh on the 23rd
of February 2017. Subsequently, approximately 2.70% of the data include
prices passing the 1000 €/MWh range. Features were therefore winsorized
only if their prices exceeded a set threshold value of 45 standard deviations.
Values greater than the threshold were shrunken to the greatest value not
exceeding the threshold. The value of 45 standard deviations was chosen
as it was found to be the most effective at reducing the impact of the worst
outliers while retaining as much of the original data as possible.

The data was further divided into train, validation and test sets based
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on the timestamps. The training set was composed of all timestamps up
until the last hour of 2020. The validation set followed after, covering all
hours of 2021 and lastly, the test set consisted of all the hours of 2022.
Each of these three subsets was further divided into matrices containing the
feature values (X), and a single feature containing the output variable (y),
which in this case was the NO1 BZN. The data was divided sequentially for
several reasons. First of all, it was necessary to have a sort of continuity of
the price time series which is why we did not want to stochastically select
dates from the entire range of dates. Secondly, our aim was to forecast the
high electricity prices of 2022 based on historically lower prices, which is
why our data had to be split according to years.

While analyzing the data we came across a few inconsistencies. We
initially thought all prices were given in Euros, but this was not the case.
Further investigating this issue lead to four features standing out and these
were Bulgaria (BG), Romania (RO), Poland (PL) and Great Britain (GB).
As the data was collected from the ENTSO-E Transparency Platform2, we
validated our findings by double checking if the mentioned regions were
given in other currencies throughout the time period 2015 to the end of
2022. As this was the case and all regions were reported in their local
currency, that is, Bulgarian lev, Romanian leu, Polish złoty and British
pounds, they had to be converted to Euros. All inconsistent dates were
converted to Euros by using the daily Euro exchange rate for each date.
Specifically, the time series of Bulgaria required conversion for all dates
prior to the 22nd of January 2022, while for the Romanian time series,
dates prior to the 17th of June 2021 were converted. In addition, for the
Polish time series, the dates between the 2nd of March 2017 and the 20th of
November 2019 were converted from the Polish złoty to the Euro. Finally,
the BZN of GB was reported in Euros from the 1st of January 2021. Thus, its
previous dates were originally reported in pounds and had to be converted
to the correct currency.

One last step was still required before the data could be fed as input
to the LSTM model. Unlike ordinary ANNs, LSTMs require the shape of
the input data to be of three dimensions with the following structure:
batch size, timesteps and input dimensions. The timesteps explain how
many previous steps the output should be dependent on, while the input
dimensions refer to the number of features in the input data. The three
subsets therefore had to be reshaped from a regular 2D shape to a 3D shape.
This was achieved by applying a rolling window throughout the subsets
which simultaneously processed batches of 24 hours. Subsequently, a lag
of one day had to be applied to the input features in relation to the target
value. This was necessary to mimic the behavior of the electricity markets,
where the prediction for the following day is based on the information
available from the previous day. We modeled our data such that all 24 hours
of a day were dependant on the previous day’s hours. Hence, the timesteps
of our data were equal to 24. Consequentially, as the batches of 24 rows in
the subsets are processed, a new dimension will be added. To demonstrate

2https://newtransparency.entsoe.eu/
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the difference, the original training set had dimensions of (52608, 39),
where the first dimension indicates the total number of hours and the
last dimension specifies the total number of features. The transformed
three dimensional training set was equal to (2191, 24, 39), where the first
dimension now indicates the total number of days. The second dimension
indicates the number of timesteps, comprising each hour, while the last
dimension remains unchanged.

3.3 Methods

This thesis aims to explore and answer whether LSTMs are capable of
accurately forecasting day-ahead electricity prices for a given European
region based on multivariate price time series from other influential
European BZNs. In this section, we first provide insight into our model
architecture and finish the section with an explanation of how the model
was evaluated.

3.3.1 LSTM Model

Once the data had been pre-processed and transformed into the correct
format, it can be used to train our LSTM model to make predictions.
The model architecture follows a straightforward vanilla LSTM approach
with an LSTM layer as the input layer, followed by a single dense
hidden layer (n1), and lastly a single dense layer as the output layer.
The model was implemented in PYTHON using the functions from the
TENSORFLOW.KERAS3 library. The input LSTM layer consists of ten units
with a rectified linear unit (ReLU) as the activation function and L1
regularization set to 0.01. Moreover, the input layer expects data in a
specific format, as earlier mentioned. Hence, the input shape of the layer
is a three-dimensional shape reflecting the batch size, the number of
timesteps to process and the number of features in the dataset. Following is
the hidden layer consisting of 20 neurons with the ReLU activation function
and lastly is the output layer with a single neuron representing a full day
of 24 hours. Table 3.1 highlights the main model architecture that was
chosen based on grid search hyperparameter tuning. Although random
search, which allows for a wider search space by randomly sampling
hyperparameters from a continuous or discrete distribution, is favored over
grid search, we applied the latter. This was due to the fact that it is easier to
compare the performance of different hyperparameters using grid search.
Additionally, we already had a well-defined search space which allowed
for a more exhaustive approach.

In the day-ahead auction, wholesale sellers and buyers submit bids for a
given hour for the following day. The 24 hourly prices for the following day
d are simultaneously calculated, hence the entire day and not only a single
hour is calculated at once. In Figure 3.5 this process is presented. Therefore,
in order to correctly model the day-ahead market our LSTM model has to

3https://www.tensorflow.org/api_docs/python/tf/keras
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Table 3.1: Optimal hyperparameters for the LSTM model based on grid
search.

Hyperparameter Value
Activation function ReLU
Dropout No
Recurrent dropout No
Regularization L1 (0.01)
LSTM units 10
Dense n1 20
Batch size 8
Optimizer Adam
Learning rate 0.01

replicate this property, as this is a faithful replication of the market function
as described in Section 2.1.1. We also considered the option of altering our
model and data such that each hour of the following day d was dependent
on the previous hour. Hence, we would simply be predicting a given hour
based on previous hours regardless of the day. However, this approach was
not applied as it directly contradicts how the day-ahead market operates.
The electricity prices of each hour of a day d should all be disclosed at
once, and not sequentially. Thus, in order to include market integration,
we attempted to adhere to the structure of the electricity price markets to
the greatest extent possible.

LSTM models are generally classified into four different architectures:
one-to-one, one-to-many, many-to-one and many-to-many depending on
the problem one wants to solve. Our task is a typical many-to-many
sequential problem where we based on multivariate price time series are
predicting the 24 next steps in a given sequence. In addition, given the
characteristics of our LSTM model, it can be referred to as a multivariate
multi-step LSTM model following a univariate framework for EPF.

Further, our model was optimized using the adaptive momentum
estimation (Adam) (Kingma & Ba, 2014) optimizer with a learning rate
set to 0.01. Moreover, the loss function was set as the mean absolute error
(MAE) which is widely regarded as one of the better-suited loss functions
when working with EPF (Lago et al., 2021). Generally, absolute errors that

Figure 3.5: Visualization of the day-ahead auction. Bids for each hour of the
following day d are made during the present day d − 1. Image taken from
(Lago et al., 2021).
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predict the mean of a distribution are preferred over squared errors in
EPF for a number of reasons. First, given that electricity price forecasts
are used for decision-making purposes, such as bidding in the day-ahead
auction or hedging strategies, the magnitude of the forecast errors is more
informative. Second, squared errors are prone to be overly sensitive to
large errors and less sensitive to small errors because they are prone to
place more weight on large errors compared to smaller ones. This is an
undesirable characteristic given that large financial implications may occur
with suboptimal predictions. Lastly, MAE is more robust to outliers which
our dataset is heavily influenced by. Ultimately, MAE is more capable of
capturing the characteristics of electricity prices such as seasonality, high
volatility and non-linearity. The smaller the value of the loss function,
the closer the predicted values are to the actual values. Lastly, the cost of
purchasing electricity is linear, absolute metrics are therefore the best to
quantify the risk associated with forecasting errors (Lago et al., 2021).

The model was trained for 50 epochs with a batch size of eight on
both a local Intel Iris Plus Graphics 640 1536 MB GPU with 8GB RAM
and an external cluster, eX34 with efficient GPU capabilities provided by
SimulaMet5. As a precaution against overfitting we applied early stopping
which stops model training whenever the loss was not decreasing for a
given number of epochs.

3.3.2 Model Explanation

As ANNs are black-box models, their predictions become difficult to
explain. RNNs and LSTMs that include feedback loops in the architecture
make these black-box solutions increasingly difficult to interpret. In order
to efficiently provide trustworthy model explanations, our model was
interpreted using Local Interpretable Model Agnostic Explanations (LIME)
(Ribeiro et al., 2016) after training. LIME was applied because of its
simplicity. It is model agnostic, meaning it can be applied by any type
of ML model regardless of the architecture. Moreover, LIME can provide
valuable insights into the decision-making process of complex models by
identifying biases in model predictions.

LIME explains predictions of complex black-box ML models by creating
simpler, more interpretable models that are trained to approximate the
behavior of the original model in a local region of a given feature space.
For instance, linear models can be used to approximate the behavior of
the original black-box model in a local region around a given data point.
The simple model approximates and explains each individual prediction
of the test subset. In our case, the values returned by LIME show the local
feature importance, which is the features that were the main contributors to
a single prediction. Positive values indicate features positively influencing
the price of a region, whereas negative values indicate the opposite. In other
words, an increase in a positively contributing feature will likewise increase

4https://www.ex3.simula.no/
5https://www.simulamet.no/
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the value of the target feature, meaning LIME also shows which features
are positively correlated and negatively correlated. Similar to (Trebbien et
al., 2023), we quantify a global feature importance from all the local LIME
approximations by calculating the mean importance value for each feature
during the 2022 period6.

3.3.3 Evaluation Metrics

In order to evaluate our model in a clear and precise fashion, we followed
the guidelines presented in (Lago et al., 2021). There are usually four
metrics used to measure the accuracy of EPF and these are the MAE,
the root mean squared error (RMSE), the mean absolute percentage
error (MAPE) and lastly, the symmetric mean absolute percentage error
(sMAPE):
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where pd,h and p̂d,h denotes the ground truth and forecast electricity price
on day d and hour h respectively. Lastly, Nd represents the number of days
in the test dataset. Each of these evaluation metrics has their strengths and
weaknesses.

The MAE, as previously touched upon, was one of the criteria used
to evaluate our model. Again, the smaller the value of the metric, the
more accurate the forecasts of the model are. Its equation is presented
in Equation 3.1 and again, as the underlying risk associated with EPF is
linearly dependent on the price and on the forecasting errors, absolute or
linear evaluation metrics are the most informative. Quadratic evaluation
metrics such as RMSE are however informative in the sense that it is easy
to interpret the magnitude of the error. Moreover, as RMSE penalizes large
errors more heavily, it becomes a useful and desirable metric in problems
where large errors are more costly than small errors, such as in EPF.
For instance, if a forecasting model consistently underestimates electricity
prices during peak demand periods, RMSE may be a valuable evaluation
metric. Furthermore, as RMSE is easy to interpret, it will be used in this
thesis.

6Although similar, this paper calculated SHAP values and also normalized them by the
highest value.
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Although MAPE has consistently been used in the EPF literature, we
have decided to look past this evaluation metric because of the findings
listed in (Lago et al., 2021). According to (Lago et al., 2021) MAPE
was unreliable as it completely disagreed with other evaluation metrics.
Whereas the other metrics somewhat agreed on what the best models were,
MAPE was far off, therefore it is disregarded in this thesis. Nevertheless, a
variation of MAPE, sMAPE, has consistently been able to reliably evaluate
EPF models and will be incorporated. sMAPE has the benefit that it
is symmetrical and treats over-estimation and under-estimation errors
equally, which is convenient in the context of EPF as both errors can have
significant financial impacts.

Finally, drawing conclusions from non-stationary price time series can
be cumbersome, especially between different BZNs and datasets. The
field of EPF is dependent on having a general framework available that
researchers can use to easily evaluate and compare their models. Hence,
relative mean absolute error (rMAE) was introduced as an evaluation
metric that is capable of providing relative measurements such that models
can be validated on several datasets without losing context. The evaluation
metric is defined in Equation 3.5 where the numerator, MAE, is divided by
the MAE of a naive forecast. This is useful because the metric provides a
measure of the accuracy of a given forecast relative to the magnitude of the
actual price. Electricity prices vary over time, as we have seen in Figure 3.1.
rMAE will therefore be used such that it easily can be compared against the
results of other research papers.
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In addition to the four EPF evaluation metrics, we will evaluate our
model with a baseline persistence model that simply assumes that today’s
electricity price will be equal to the mean of the previous day. In order to
make the persistence model a bit more sophisticated the standard deviation
of each previous day will randomly either be added or subtracted from
today’s day. In Equation 3.6, pd denotes the price for all hours of day d,
while pd−1 and σd−1 denotes the mean price and the standard deviation of
the previous 24 hours respectively. As electricity prices are non-stationary
time series, meaning they include trends and seasonality, the persistence
model will be a drastic simplification of the EPF problem.

pd = pd−1 ± σd−1 (3.6)
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Chapter 4

Results

This chapter presents the key findings of our research. We start off by
covering the results gathered from our multivariate price time series LSTM
model applied to the energy markets. Thereafter, a thorough comparison
against another state-of-the-art EPF model will be conducted. Although
the aim of the thesis is not to outperform the current state-of-the-art but
rather to investigate an alternative approach, it will be useful to observe
where this approach ranks and whether it holds any merit. Lastly, the main
drivers of European electricity prices will be disentangled.

4.1 EPF with Multivariate Time Series LSTM

Our LSTM model was validated on the four evaluation metrics listed in
Chapter 3. Combining forecasts in the field of ML has generally been
beneficial in order to achieve more robust and trustworthy predictions.
The case is no other in the field of EPF. According to (Lago et al., 2021),
ensemble models, which are combinations of different models’ forecasts,
are valuable. Therefore, we adapted an ensemble model by simply taking
the mean of the forecasts of five different runs.

Our developed ML model is capable of predicting NO1 day-ahead
prices with an average performance of MAE = 21.17. That is, our model’s
forecasts are on average off by ± 22.42 €/MWh. For comparison the ML
model developed in (Trebbien et al., 2023) achieved an MAE = 5.53, while
the review paper of (Lago et al., 2021) achieved an MAE of 1.712 on their
DNN model applied to the Nord Pool power market. Although our results
look far off at first glance, it is worth reiterating a key characteristic of the
electricity markets which is their inherent differences. As can be recalled
from Chapter 2, each electricity market has its unique characteristics that
ML models have to be designed and tailored towards. Therefore, it is not
a given that a well-performing ML model in a certain electricity market
will perform similarly in another. For instance, using an ML model tailored
towards the German electricity market to forecast Turkish day-ahead prices
will most likely yield unsatisfactory results given the market differences.
Likewise, blindly comparing the performance of EPF evaluation metrics
across datasets, electricity markets, research objectives and models, is a
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Table 4.1: Summary of the evaluation metrics for the LSTM model, the
benchmark DNN from (Lago et al., 2018) and the persistence model for
NO1. The LSTM model outperforms both the DNN and persistence model
on every metric and is highlighted by the gray shading.

rMAE [€/MWh] MAE [€/MWh] RMSE [€/MWh] sMAPE [%]
LSTM 1.04 21.17 25.78 12.64
DNN (Lago et al., 2018) 1.46 29.71 35.63 17.87
Persistence 1.93 40.05 64.78 25.70

naive and sub-optimal approach. Moreover, the timespans of price data
covered in this thesis and the two aforementioned publications differ. Our
inclusion of the most recent years, particularly after the start of the energy
crisis, weaken the performance metrics of the LSTM output.

In order to achieve a fairer and significant comparison between state-of-
the-art models we implemented the DNN from (Lago et al., 2018), which
still is considered a benchmark EPF model. For the sake of achieving the
fairest comparison between the two models, we placed great emphasis
on using the exact same data and hyperparameters, with the exception of
model architectures. Therefore, even though vanilla DNNs usually process
2D data, the same data processing steps listed for the LSTM in Chapter
3 were implemented. That is, the input data to the DNN were of three
dimensions: batch size, timesteps and number of features.

Similarly, the results gathered from the DNN were a combination of
five different model runs. All results for both the LSTM and the benchmark
DNN are listed in Table 4.1. For all metrics, the lower the value the better
the performance is. The gray color in each of the evaluation metric columns
represent the best performance and one can clearly see how the LSTM
outperforms the benchmark DNN on the multivariate price time series
dataset. The results may not come as a surprise given that LSTMs generally
are better suited tools for processing data with temporal dimensions.
However, it is interesting to see how the performance of the benchmark
DNN model significantly decreases from an MAE of 1.712 in (Lago et al.,
2021) to 29.71 for our use case. On the contrary, the performance gain on
both models from ordinary MAE to rMAE is vastly greater. The LSTM
model explains the price with an average rMAE of 1.04 €/MWh which is
considered promising.

Even though our proposed LSTM model outperformed the benchmark
DNN for this particular use case, we further validated whether our model
was superior in a statistically significant way. A Diebold-Mariano (DM)
(Diebold & Mariano, 2002) test was conducted to assess the statistical
significance of the differences in forecasting accuracy. The test is model-
free, meaning it compares the forecasts of models and not the models
themselves. They simply calculate z-scores, which represent the number
of standard deviations an observed data point is above or below the mean
of a distribution.

DM =
√

N
µ̂

σ̂
(4.1)
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Equation 4.1 represents how DM is calculated. N denotes the number
of days in the out-of-sample test dataset, while µ̂ and σ̂ denotes the
sample mean and sample standard deviation respectively. Forecasts are
compared with the null hypothesis that the difference between the forecasts
is insignificant. In our case the acceptance level was set to 5%. That is,
p-values greater than 0.05 meant that the null hypothesis could not be
disregarded, and the difference between forecasts was not significant. On
the other hand, forecasts of models with p-values lower than 0.05 were
considered to be significantly better than their counterparts.

The DM test was jointly performed for all the 24 hours of each day
(multivariate) in the test dataset instead of 24 independent tests for each
hour (univariate). Thus, a single p-value was calculated for all days used
for forecasting which makes plotting convenient. In our case, three of the
best performing LSTM and DNN models, based on MAE, were used to
perform a multivariate DM test. In Figure 4.1 the result is depicted. The
closer the p-values are to zero, the more significant the difference between
the forecasts of a model on the x-axis and a model on the y-axis is. The
x-axis represents the better performing model, while the y-axis represent
the worse. For instance, the forecasts of LSTM1 are statistically better than
all other models given by the five green squares. Likewise, the forecasts
of DNN1 are statistically better than the two other DNNs, but none of the
LSTM models, marked by the black squares. The DM test shows how the
forecasts of LSTMs are better than the DNNs for our EPF problem, which
is consistent with the evaluation metrics.

Figure 4.1: Diebold-Mariano test between the three best performing LSTM
and DNN models with a 5% acceptance level. Low p-values (dark green)
equals statistically better forecasts. Higher p-values equals worse forecasts.
p-values greater than 0.10 (black) are disregarded.
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This thesis’ focus centers around NO1, however we were interested in
how the LSTM performed when predicting other regions. Therefore, to get
an overview of which regions are easier to predict than others, we forecast
all BZNs in the dataset1. The same process presented in Chapter 3 was
applied for each of the features and Table 4.2 presents all the results from
the experiment. Although the LSTM is trained from scratch for each BZN,
the results illustrate the generalizability of our implementation. The metrics
highlighted by the gray color represent the best score achieved. Further
on, the rightmost table represents how the baseline persistence model
performed. The regions highlighted in boldface were predicted better than
the LSTM model.

For the LSTM model several regions stand out. First off is the forecasts
of IT-Centre-South which percentage-wise were the best with an average
error of 9.47%. Likewise, the forecasts of Portugal (PT) outperformed the
rest of the BZNs in regards to MAE and RMSE. With an average MAE
and RMSE of 23.87 and 29.66 respectively, PT was one of the easier BZNs
to forecast. However, in the case of sMAPE, PT was far from the best
with slightly dissatisfying results. Moreover, Denmark 1 (DK1), Denmark
2 (DK2), Netherlands (NL) and the two northern Norwegian BZNs seem to
be increasingly difficult for the LSTM to forecast accurately. It is especially
interesting to compare the forecasts of NO3 and NO4 to the rest of the
Norwegian BZNs. Whereas NO1 was the easiest to forecast of the five, NO3
and NO4, which decoupled from the rest of Norway and Europe, are two
of the most difficult regions to forecast. However, the forecasts of NO2 and
NO5, which are highly coupled with NO1, were significantly worse than
that of NO1 and especially NO2. Regarding the Swedish BZNs, the results
are the opposite of Norway. The two southern BZNs, SE4 and SE3, achieved
the worst results, whereas the northern regions were easier to predict.

Moving over to the persistence model, there is a clear trend that the
results are worse than the more sophisticated LSTM. Ideally, all BZNs
should have been forecast worse than the LSTM, but that was not the case.
Seven out of 39 BZNs were more accurately predicted using the simple
persistence model and these are highlighted in boldface text. Given that
a simple assumption such that tomorrow’s price is equal to the mean ±
the standard deviation of the current day, is capable of outperforming
an LSTM on a few regions, speaks to the complexity of EPF, especially
during the current European electricity crisis. Additionally, it provides
good evidence that although markets may be coupled, they can be very
different and exhibit vastly unique characteristics. Some of the worse
predicted BZNs using the LSTM were on the contrary accurately predicted
using persistence modeling. The difference in forecast accuracy for NO3
and NO4 between the LSTM and persistence model is remarkable. NO4
was also among the most accurately predicted regions with a MAE and
RMSE of 12.09 and 37.26 respectively. It seems plausible that the persistence
model is effective whenever prices are stagnant without extreme price

1With the exception of Great Britain as its entire validation and testing period consisted
of interpolated data.
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Table 4.2: MAE, RMSE, and sMAPE for all BZNs not dropped from the
original dataset. The best values for each evaluation metric is highlighted
by the gray color. The leftmost table represents the LSTM results, whereas
the rightmost the persistence model. Instances where the persistence model
was superior to its counterpart is highlighted in boldface. A full lookup
table of the BZNs can be found in Table A.1.

LSTM
BZN MAE RMSE sMAPE [%]
AT 49.97 63.58 21.75
BE 42.40 57.46 21.13
BG 69.99 86.55 31.23
CH 61.54 73.76 25.28
CZ 42.39 53.50 19.28
DE 60.78 75.56 31.34
DK1 95.38 121.99 56.79
DK2 83.88 113.53 51.79
EE 69.76 95.42 45.58
ES 26.69 39.23 19.56
FI 55.72 74.95 49.56
FR 56.74 88.25 21.49
GR 47.15 66.47 18.32
HR 62.13 78.36 25.19
HU 44.49 57.58 17.89
IT-Centre-North 40.73 58.13 12.65
IT-Centre-South 27.95 39.81 9.47
IT-North 73.74 100.42 24.51
IT-Sardinia 53.76 77.17 20.53
IT-Sicily 46.83 64.28 17.49
IT-South 88.85 115.62 32.49
LT 61.98 86.19 29.26
LV 37.55 55.38 17.63
NL 99.88 120.76 49.95
NO2 45.73 71.40 22.31
NO3 65.45 78.55 111.38
NO4 105.60 125.26 140.58
NO5 26.09 31.19 16.00
PL 46.73 61.60 32.31
PT 23.87 29.66 17.37
RO 41.11 53.03 17.57
RS 43.41 56.20 18.45
SE1 26.05 37.06 58.46
SE2 24.69 35.31 55.51
SE3 57.75 87.41 58.64
SE4 62.77 86.63 58.51
SI 32.78 44.53 13.42
SK 47.97 63.07 20.29

Persistence
BZN MAE RMSE sMAPE [%]
AT 68.99 94.92 30.17
BE 79.38 108.27 38.44
BG 90.04 122.32 40.42
CH 56.91 78.02 21.67
CZ 74.88 100.76 35.36
DE 83.08 111.60 46.02
DK1 76.73 103.06 46.79
DK2 88.39 119.32 56.86
EE 96.21 141.30 56.85
ES 40.16 54.85 27.80
FI 91.71 132.77 74.74
FR 69.71 101.99 27.75
GR 80.31 113.79 29.73
HR 75.29 102.92 31.20
HU 78.76 107.38 33.61
IT-Centre-North 63.68 85.86 21.81
IT-Centre-South 64.89 87.80 23.02
IT-North 63.31 86.86 21.26
IT-Sardinia 74.61 113.26 28.59
IT-Sicily 68.37 91.95 26.80
IT-South 62.76 84.55 22.80
LT 94.36 143.40 48.61
LV 90.80 134.93 47.00
NL 80.34 109.27 40.20
NO2 46.96 72.62 26.37
NO3 20.69 44.91 45.51
NO4 12.09 37.26 35.97
NO5 37.87 61.60 24.08
PL 56.57 82.42 34.60
PT 37.99 51.01 27.15
RO 92.76 126.40 39.83
RS 71.65 98.51 28.94
SE1 30.90 53.93 61.38
SE2 35.52 63.89 64.62
SE3 87.83 125.92 84.25
SE4 95.36 134.68 82.79
SI 73.16 97.43 30.10
SK 83.47 112.84 36.27

spikes and fluctuations, which likely is the case for the good predictions
of NO3 and NO4. Recalling back to Figure 3.1, we can observe how the
prices of NO4 after 2021 do not fluctuate nearly as much as NO1. This
assumption additionally holds weight as the BZN of Portugal (PT) was one
of the more accurately predicted using the persistence model. Although the
prices of PT fluctuated a lot more than NO3 and NO4, the volatility was far
off what most of Europe experienced. Additionally, Sweden’s two southern
regions achieved some of the most underwhelming results. Analyzing the
Swedish prices showed a clear trend of very fluctuating prices with large
price spikes within a day, which most likely is the reason for the forecasting
errors. On the other hand, the prices of Sweden 1 (SE1) and Sweden 2 (SE2)
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were significantly less volatile during the 2022 period than their southern
counterparts. We highlight that the northern Swedish BZNs achieved far
more accurate predictions than the southern ones.

4.1.1 Principal Component Analysis

PCA was applied and tested on our dataset. European electricity markets
being coupled together adds to the complexity of our dataset as certain
regions heavily influence others and vice versa. Seeing as several BZNs
are highly correlated, reducing the overall complexity while maintaining
as much of the data variability as possible may yield more accurate
predictions of our LSTM model.

It is considered good practice to standardize the data before applying
PCA in order to make sure the principal components reflect the true
underlying structure of the data. Our dataset was therefore normalized
between the range of zero and one. Thereafter, PCA with 95% variance,
i.e. 95% of the variance in the original dataset is captured, was performed,
resulting in 12 principal components. The principal components are linear
combinations of the original features that capture the most variance. In
other words, the first principal component is the linear combination that
explains the most variance of the original data, whereas the second is
a linear combination that explains the most variance of the remaining
variables and so on.

PCA reduced the amount of features in the dataset by 69% as the
original dataset used for training consisted of 39 features. The loadings
of each principal component, which represent the contribution of each
original feature to the principal component, were analyzed. No clear
pattern could be observed from the loadings. There was not a single feature
that contributed heavily to the overall variance of the dataset. All features
more or less contributed evenly.

After applying PCA we trained our LSTM using the 12 principle
components to predict NO1 and the results were very underwhelming.
Whereas we originally achieved acceptable predictions, as can be seen in
Table 4.1, the forecasts using PCA were far off and achieved an average
MAE equal to 136.20 after five runs. Since the forecasts were worse and
the loadings randomly distributed, PCA was disregarded as it was not
sufficient for our use-case. The dimensionality reduction was not capable
of capturing essential signals in the data. Thus, it was clear that the prices
of the original BZNs contained far too valuable information and their
structure was too complex to be captured by simple linear combinations.

4.2 Interpreting Market Coupling using LIME

One of the aims of the thesis was to disentangle the main drivers of the ab-
normal European electricity prices. XAI was therefore implemented using
LIME to decipher model predictions. The feature importance approximated
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Figure 4.2: Feature importance for NO1 using LIME on the one year test
subset. The most relevant BZNs are listed along the x-axis and their values
along the y-axis. Green bars highlight BZNs positively contributing to
predictions, whereas red highlight the opposite.

by LIME reveals which features have the strongest influence on the prices
for a given region.

In Figure 4.2 the cumulative feature importance of NO1 in 2022 is
depicted. Understandably, NO2 and NO5, the two most correlated BZNs
are two of the main drivers for the electricity prices. Interesting is the
moderate importance of the Serbian (RS) and Croatian (HR) features. Given
that NO1 does not share any direct interconnectors to neither Serbia nor
Croatia, this result is unexpected and will further be discussed in Chapter
5. On the other side, the features contributing most negatively to the
prices of NO1 were NO3, DE and NO4. Again as expected, NO3 and
NO4 which decoupled from NO1 during the middle of 2021, were the
most negatively contributing features. However, it is quite unexpected
seeing DE negatively influencing the electricity prices as Germany trades
significant amounts of electricity with Norway. One would perhaps think
that with the opening of NordLink2, the subsea interconnector between
southern Norway and Germany, DE should have a more important role
in determining Norwegian electricity prices.

The feature importance of other important European electricity markets
was additionally calculated and compared. More specifically, the results of
Germany, Netherlands, Austria, France (FR), Sweden 1 and Denmark 2 are
highlighted in Figure 4.3. From the six plots, we can see a clear difference
in the number of BZNs that affected the forecasts in comparison to NO1
and SE1. Whereas all 39 features contributed to some degree to the prices
of NO1 and SE1, a more concentrated group of BZNs contributed to the
other European markets. Moreover, the feature importance values for NO1
and FR are significantly greater than those contributing to the prices in

2https://www.statnett.no/en/our-projects/interconnectors/nordlink/
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the other BZNs. While most of the BZNs have feature importance values
ranging between two and four, both NO1 and FR have values above seven,
meaning these were more influential. In the case of all the regions, just like
NO1, the Serbian and Croatian BZNs seem to play an important role as
they are among the more important features.

Including RS and HR, the German BZN seem to be highly coupled with
NL, AT, GB and the Czech Republic (CZ). As Austria and Germany shared
their bidding zone for several years, this result does not come as a surprise.
Analyzing the Austrian BZN, we can see also see that its neighboring
BZNs DE, IT-North and CZ are influential to the high prices. France is
in addition coupled with its neighboring countries Switzerland (CH) and
Belgium (BE).

For the two other Scandinavian regions we can also see a strong
dependency on RS and HR, which has shown to be valuable features
for the European electricity prices. Additionally, the Scandinavian regions
including NO1 have an inverse relationship with DE. Whenever prices
in DE decrease, they increase for the Scandinavian countries. We further
see that several BZNs contribute negatively to the prices of SE1 and DK2
in comparison to the other plots. For SE1 there is additionally a strong
relationship with the three southern Norwegian BZNs. On the other hand,
the two northernmost Norwegian BZNs that geographically are closest to
SE1, have a negative interaction. SE1 is additionally the BZN with the most
balanced amount of positively and negatively influencing features.

It is plausible that this interaction is given by how the two countries
trade electricity as electricity prices and trades are closely related. Although
generalizing electricity markets should be done with care given their
complexity, in a well functioning electricity market, exporting electricity
usually leads to higher prices for the exporting region, whereas importing
leads to lower prices in the importing region due to a further source of
electricity. Thus SE1 might find it attractive to export their power plant
electricity to NO4 when there is demand for it, resulting in lower prices for
NO4 and slightly higher for SE1.

Lastly, in DK2 its neighboring DK1 region is the most important, while
the two Italian IT-North and IT-Sardinia are the most negative. Whereas
NO5 and NO2 are significant contributors to the higher prices, NO1 is
not. Although this behavior is counter intuitive as NO1, NO2 and NO5
are very similar, we have to remember that we are creating global feature
importances from local explanations. From Figure 3.2, we recall that NO1
and NO2 decouple several times with the last time being in 2022. It might
be the case that during certain dates in 2022, DK2 was heavily influenced
by NO2 and NO5 and not by NO1.

Summarizing, RS and HR seem to be key features with strong influ-
ence on several European electricity markets. Additionally, GB positively
influences all BZNs showcased in the feature importance plots. Moreover,
DE was also a contributing factor in all plots, however its contribution was
both positive and negative. The influence GB and DE have over European
electricity prices from the plots is not surprising. Great Britain and Ger-
many are among the largest electricity markets in Europe, consequentially
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making them important in shaping the nature of the European energy mar-
ket. Thus, our plots and LIME are capable of understanding the state of the
energy markets. Furthermore, we hypothesize that the importance of GB
and DE on European electricity prices also is contributed to the phase-out
of nuclear power in Germany and the transition away from fossil fuels in
Great Britain. The shift toward renewable energy sources, in addition to
the European electricity crisis, has disrupted energy markets and perhaps
strengthened the importance of GB and DE.

(a) Germany (DE) (b) Netherlands (NL)

(c) Austria (AT) (d) France (FR)

(e) Sweden 1 (SE1) (f) Denmark 2 (DK2)

Figure 4.3: Feature importances for selected European BZNs using LIME
on the one year test subset. The most relevant BZNs are listed along the x-
axis and their values along the y-axis. Green bars highlight BZNs positively
contributing predictions, whereas red highlight the opposite.
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Chapter 5

Discussion and Conclusion

This final chapter starts off with a thorough discussion of the main
findings of the thesis. Further on, a discussion of the strengths and crucial
limitations of the thesis will be provided. We will close the thesis with a
conclusion and suggestion on what future work and steps should be taken
moving forward regarding multivariate EPF.

5.1 Discussion

To our knowledge, this is the first line of work aiming to forecast day-ahead
electricity prices using multivariate price time series. Whereas several
studies in EPF target single electricity markets, our thesis is based on
multiple markets. We validate our approach on all BZNs in the open-
access dataset to provide a well-balanced perspective regarding its validity.
Furthermore, the modeling complexity using our approach is drastically
reduced in comparison to ordinarily EPF. Our multivariate EPF approach
with LIME allows us to analyze how electricity markets are interconnected
and influence each other through the SDAC described in Section 2.1.1.

5.1.1 Findings

Our results show that NO1 was the most accurately predicted BZN across
three out of four evaluation metrics with an average rMAE of 1.04,
MAE of 21.17, RMSE of 25.78 and sMAPE of 12.64% using our novel
modeling approach. While these results are lackluster in terms of other
state-of-the-art methods, we reiterate the significant difference between
our multivariate time series approach and other standard univariate time
series approaches that take into account weather forecasts, load and
demand. Accurate comparisons with other benchmark results are therefore
not straightforward. Additionally, the European EPF literature is fairly
concentrated around a handful of important electricity markets such as
Germany and France. The literature on forecasting spot day-ahead prices
for Norwegian BZNs is sparse, making comparisons even more difficult.
That said, we found that our model, in the case of multivariate EPF, was
capable of explaining electricity prices with greater precision than the
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benchmark DNN from (Lago et al., 2018). The DNN was outperformed
when transforming the data to 3D to match that of the LSTM, but also
without the transformation. The DM test in Figure 4.1 showed us that
the forecasting differences were statistically significant and not due to
randomness.

Our findings are in alignment with the findings of (Ugurlu et al.,
2018). They came to the conclusion that models capable of processing
data with temporal dimensions, such as LSTMs, are better suited tools
for EPF as they yield more precise forecasts. However, it should be noted
that their results regarding RNNs contradict the findings of (Lago et al.,
2018) which achieved more accurate forecasts using DNNs. The two papers
studied different electricity markets, making both findings hard to dismiss.
However, as we know that electricity markets have unique characteristics,
it could be the case that for some markets a given model is preferred. In
our case, using LSTMs with multivariate price time series was the superior
option.

We also found that the LSTM in most cases, which was expected, was
capable of forecasting electricity prices with greater precision than the
baseline persistence model. As we saw, BZNs such as DK1, DK2, NL, but
also the isolated NO4 BZN, seem to be the most difficult for our LSTM to
forecast. While no definite answer for why this is could be formulated, we
have tried to justify our reasoning. First of all, various factors determine
electricity prices. Since the European energy crisis, there has been a deficit
of power and we saw in Figure 3.3 how markets became tightly coupled.
The NO4 BZN was one of the exceptions where the market decoupled from
the rest of Norway and Europe. Prior to the price increases in 2021, all five
Norwegian BZNs were closely coupled with similar prices as illustrated in
Figures A.1 and A.2. During model training, the LSTM is likely learning to
replicate the prices of the four other Norwegian BZNs. Thus, because of the
vastly different landscape in the test subset contrary to the train subset, the
LSTM is not capable of generalizing and predicts NO4 to be similar to the
southern BZNs.

In contrast, the below-average forecasts of DK1, DK2 and NL can only
be hypothesized. By incorporating domain knowledge we can perhaps
explain why this is. Denmark and the Netherlands are similar in several
regards. First off, they are both flat low-lying countries located near the
North Sea, making them highly suitable for both offshore and onshore
wind power. Consequentially, a significant portion of the power generation
in both countries stems from wind power. We conjecture that the poor
forecasts are a result of the countries heavy reliance on highly volatile wind
power, making the prices difficult to predict.

We further need to highlight the difficult landscape regarding EPF in
recent years. Most research cited throughout this thesis has had the benefit
of forecasting electricity prices in a stable market, mostly without persistent
price spikes. Again, introducing uncertainty between model comparisons.
Today’s electricity situation in Europe is incomparable to what it was like
during the 2010s. Thus, research prior to the European electricity crisis
has usually trained and tested their models on similar market conditions,
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whereas the same cannot be said for this thesis. We trained our model on
prices prior to 2021, which historically are considered low, and aimed at
forecasting prices many fold larger than what the model was trained to do.
This certainly affected our forecasting precision, making our model look
more lackluster than it is. Additionally, since our model was not trained
on 2021 and 2022 data, it has limited knowledge of the extraordinary
market coupling that started during the European electricity crisis. Thus,
the underlying relationships between BZNs in the test dataset were most
likely not optimally captured. The most optimal approach in ML is of
course to train and test models on similar conditions, but this would have
required significantly more data with abnormal prices, which was not
possible. We optimistically believe that the more data with higher prices
become available, the easier it will be to more accurately forecast current
market conditions using our approach.

Recalling back to the feature importance plots depicted in Figure 4.3 we
mentioned the unusual importance of the RS and HR BZNs for most of the
regions. We cannot exclude the fact that a significant portion of their price
time series was linearly interpolated adding a certain bias to the data. In
Figure 3.4, we see how the start of both time series are missing crucial data.
It might be the case that the LSTM is sensitive to longer abrupt sequences of
linear data, thus leading it to allocate greater emphasis on the interpolated
data and skewing the importance of the feature. While we do believe
the regions included underlying patterns about the European electricity
markets that the model was capable of identifying, we are hesitant to fully
conclude that these regions were superior contributors.

5.1.2 Limitations

It is important we acknowledge the limitations of this thesis, which may
have affected the results acquired. First of all, the data preprocessing
steps were crucial in order to most accurately present the reality of the
European electricity markets. As we have shown, prices for several hours
and dates were missing for many of the regions. To counteract this issue we
interpolated the data using linear interpolation, meaning all missing dates
in a given interval will have a constant change of rate. This is without a
doubt not the most sophisticated way of interpolating time series data and
moreover, it is not of stochastic nature, which electricity prices inherently
are. Furthermore, the seasonal trends and volatility spikes that make
electricity prices fluctuate will be lost in the interpolated range. We could
perhaps have interpolated the missing dates in a stochastic manner, where
uncertainty and variability of prices were taken into account, however,
given the long interval length of some of the missing periods we felt that
the benefits of stochastic interpolation would not outweigh the simplicity
and efficiency of linear interpolation. When the missing dates exceed
several days, the advantage of stochastic interpolation loses its value as
the introduced variability more or less becomes random. However, it could
perhaps be an interesting addition to implement Brownian Bridges where
the missing values were limited to just a couple of days or even just a few
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hours to maintain the statistical properties of the time series. That said, the
aim of the thesis was to investigate a novel approach for modeling EPF and
not to find the most appropriate interpolation technique.

LIME, which was introduced to explain model predictions, also in-
cludes a mention-worthy limitation. The explanations of LIME are sup-
posed to provide local explanations for a given data point. From this, we
quantified a global feature importance by aggregating each local explana-
tion and taking the mean of each observation. As LIME is not constructed
for this use case, the results may not be completely accurate. That said, it
does provide a clear overview and trend of which features are the main
contributors.

Lastly, the generalizability of our LSTM model is not strong. Training
the model to forecast a certain region and thereafter using the pre-trained
model to forecast another out-of-sample BZN will not yield accurate
results. However, given that all BZNs have their own unique characteristics
we felt that optimizing the model towards generalizability would not be
useful. In addition, we struggle to find a scenario where one would want
to forecast a specific region where the model has been trained and tailored
towards another region. Having a universal EPF model tailored towards
the entire European electricity market would be out of scope for this thesis.
Additionally, the signal-to-noise ratio for this specific task is very low,
making it difficult to generalize. Generalizability was therefore not the
main concern of the thesis, albeit regularization made the results more
promising.

5.2 Conclusions and Future Work

To conclude, this thesis instigated the applicability of multivariate price
time series to forecast European day-ahead markets. We introduced a
novel approach using an LSTM that was successfully able of estimating
spot day-ahead prices based only on multivariate price time series from
different European BZNs. With varying accuracy and conviction, we have
demonstrated the usefulness of said approach in regards to simplifying
the complexity of EPF modeling and improving market coupling analyses.
Our main LSTM tailored toward NO1 was capable of explaining electricity
prices with an MAE of 21.17, meaning its forecast on average were 21.17
€/MWh off the actual prices. Although the results were promising for
certain BZNs and different markets are characterized by unique properties,
the errors achieved in comparison to univariate modeling are too high.
We cannot therefore conclude that multivariate price time series perform
better than ordinary univariate EPF. Thus, multivariate EPF should not be
seen as a replacement for univariate EPF. Granted that features such as
load and demand are weighted into the price time series, their standalone
importance cannot be dismissed.

Moreover, we have analyzed how dependencies and dynamics between
European electricity markets in the latter part of the 2010s have changed.
Through the use of LIME, it was revealed that the contribution of Germany
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and Great Britain to electricity prices was of significant importance. Our
thesis also confirmed that closely related BZNs, connected either via inter-
connectors or shared borders, have a greater influence in determining a
given region’s prices than others, as could be expected.

We believe this thesis is a solid starting ground for further research.
Several open-ended questions still remain, one of which being the reason-
ing behind the lackluster DK1, DK2 and NL forecasts. While our conjecture
might not be incorrect, this is definitely a line of study for further research.
In addition, significant gains in performance might be achieved by intro-
ducing logarithmic returns. Electricity prices are inherently non-stationary
and exhibit highly variable price movements. Hence, the high variance and
volatility can be limited by modeling electricity prices using logarithmic
returns. Finally, investigating the impact of including or excluding certain
BZNs may result in deeper understanding of the complexity of electricity
markets.
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Appendix A

Correlation Heatmaps and
European Bidding Zones

In this appendix we show correlation heatmaps of European electricity
markets for the 2019 to 2022 period. Note that all BZNs are not represented
in all four plots. During certain periods Pearson correlation coefficients
may be undefined if the standard deviation between features is zero. This
was the case for some of the BZNs which is why all are not represented
in the plots. For all plots the BZNs of IT-GR, IT-North-SI, IT-North-
CH, IT-Brindisi, IT-Foggia, IT-Priolo, IT-North-AT, IT-North-FR and ME
were dropped. Moreover, in Figure A.1 UA-IPS, UA-BEI, IT-Calabria and
NO2NSL were dropped, whereas IT-Calabria and NO2NSL were dropped
in Figure A.2.

Finally, the appendix also includes a complete overview of all BZNs in
the original dataset described in Section 3.1. Table A.1 provides information
regarding the codes of all BZNs and their corresponding geographical
location.
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Table A.1: Bidding zone abbreviations and corresponding regions.

Code Bidding Zone
AT Austria
BE Belgium
BG Bulgaria
CH Switzerland
CZ Czech Republic

DE-AT-LU Germany + Austria + Luxembourg
DE-LU Germany + Luxembourg

DK1 Denmark 1
DK2 Denmark 2
EE Estonia
ES Spain
FI Finland
FR France
GB Great Britain
GR Greece
HR Croatia
HU Hungary

IT-Calabria Italy Calabria
IT-GR Italy + Greece

IT-North Italy North
IT-North-AT Italy + Austria (North)
IT-North-FR Italy + France (North)
IT-North-SI Italy + Slovenia (North)

IT-North-CH Italy + Switzerland (North)
IT-Centre-North Italy Centre-North
IT-Centre-South Italy Centre-South

IT-Sardinia Italy Sardinia
IT-Sicily Italy Sicily
IT-South Italy South

IT-Brindisi Italy Brindisi (Eliminated)
IT-Foggia Italy Foggia (Eliminated)
IT-Priolo Italy Priolo (Eliminated)

IT-Rossano Italy Rossano (Eliminated)
IT-SACOAC Italy
IT-SACODC Italy

LT Lithuania
LV Latvia
ME Montenegro
NL Netherlands

NO1 Norway 1
NO2 Norway 2

NO2NSL Norway 2 + North Sea Link to Great Britain
NO3 Norway 3
NO4 Norway 4
NO5 Norway 5
PL Poland
PT Portugal
RS Serbia
RO Romania
SE1 Sweden 1
SE2 Sweden 2
SE3 Sweden 3
SE4 Sweden 4
SI Slovenia
SK Slovakia

UA-BEI Ukraine (Burshtyn Energy Island, synch ENTSO-E)
UA-IPS Ukraine (Integrated Power System, synch Russia)
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