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Abstract: The accurate prediction of residential heat load is crucial for effective heating system de-

sign, energy management and cost optimization. In order to further improve the prediction accu-

racy of the model, this study introduced principal component analysis (PCA), the minimum sum of 

squares of the combined prediction errors (minSSE), genetic algorithm (GA) and firefly algorithm 

(FA) into back propagation (BP) and ELMAN neural networks, and established three kinds of com-

bined prediction models. The proposed methodologies are evaluated using real-world data col-

lected from residential buildings over a period of one year. Obtained results of the PCA-BP-

ELMAN, FA-ELMAN, GA-BP models are compared with the neural network before optimization. 

The experimental results show that the combined prediction models have higher prediction accu-

racy. The Mean Absolute Percentage Error (MAPE) evaluation indices of the three combined models 

are distributed between 5.95% and 7.05%. The FA-ELMAN model is the combination model with 

the highest prediction accuracy, and its MAPE is 5.95%, which is 2.25% lower than the MAPE of an 

individual neural network. This research contributes to the field by providing a comprehensive and 

effective framework for residential heat load prediction, which can be valuable for building energy 

management and optimization. 

Keywords: heat load prediction; combined models; principal component analysis; genetic algo-

rithm; firefly algorithm 

 

1. Introduction 

Currently, the proportion of energy consumption in the construction sector in our 

country's total energy consumption has reached 30%, and the energy consumption gen-

erated by heating accounts for 25% of the total energy consumption in buildings [1]. As 

of 2020, the national coverage of centralized heating has reached 12.266 billion square 

meters. However, the increase in carbon emissions and pollutant emissions caused by fuel 

combustion has resulted in serious environmental problems. In order to alleviate the en-

ergy crisis and improve environmental pollution, the government has implemented nu-

merous measures in energy conservation and emission reduction. In our country, heating 

systems are mainly regulated through manual experience. However, due to the charac-

teristics of centralized heating systems such as significant time delays, strong non-linear-

ity, high energy consumption, and multiple influencing factors, the traditional inefficient 

heating regulation model has created issues such as significant heat waste and uneven 

distribution of heating. In practice, the energy consumption in heating processes still can-

not meet the heating needs of users. Therefore, it is necessary to incorporate heat load 

forecasting into the heating system to guide heating operations. By utilizing a heat load 

prediction model, the heating system can adjust in advance based on the predicted load. 
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Building an accurate, efficient, and reliable heat load prediction model is crucial in ensur-

ing the centralized heating system can meet heating demands effectively and on demand. 

The commonly used heat load predicting models include data-driven model and 

mechanism model. By using building energy simulation software such as EnergyPlus and 

TRNSYS to evaluate building heat load, mechanism model requires a complex calculation 

process and usually takes a long time to get the result, so it is not suitable for real-time 

energy consumption prediction [2, 3]. However, the data-driven model can produce pre-

diction results in a relatively short time, which is suitable for real-time energy consump-

tion prediction and rapid decision making. Common data-driven models used in various 

fields include statistical analysis techniques, machine learning algorithms, and deep learn-

ing architectures. Statistical methods tend to overfit when handling diverse influencing 

factors, leading to poor predictive performance of the models [4-7]. With the wide appli-

cation of artificial intelligence algorithm in the prediction field [8-11], more and more 

scholars have started researching load predicting methods founded on machine learning 

[12-14]. Some commonly used approaches in machine learning include artificial neural 

networks (ANN) [15], support vector machine [16], extreme learning machine [17], ran-

dom forest (RF) [18] and regression tree [19]. Park et al. [20] separately used partial least 

squares, neural networks, and support rector regression (SVR) to establish load forecast-

ing models for district heating, and the research results showed that SVR had the lowest 

average relative error. Meng et al. [21] built an ELMAN neural network prediction model, 

and on this basis proposed a DR control strategy for office buildings. Wang et al. [22] 

implemented 12 models for single-building heat load predicting, discussing the impact of 

prediction level and input uncertainty on load forecasting accuracy. Introducing these 

models for heat load forecasting has provided good predictive results, demonstrating that 

an individual model based on machine learning can derive feasible computational rules 

from a significant volume of historical operational data. 

Several researchers have adopted hybrid methods that combine an optimization al-

gorithm with a machine learning model [23]. In an improved model, various parameters 

can be optimized, such as weights, bias, and others [24]. The combination models can be 

divided into two classifications. The initial classification is the ensemble models that com-

bine multiple individual models [25]. These models are trained on the same dataset using 

different individual models. The predictions from each individual model are then com-

bined to generate an optimal output. The second category is the improved models that 

combine an individual model with optimization methods. For example, Fan et al. [18] de-

veloped an integrated model for predicting commercial building loads. They used a ge-

netic algorithm (GA) to optimize the weights of the eight prediction models and combined 

the results to obtain the final prediction. The experimental results showed that the ensem-

ble model outperformed typical individual models in terms of prediction accuracy. Qi et 

al. [26] introduced GA into back propagation (BP) neural network to establish a heat load 

prediction model. Meanwhile, the date type was quantified when selecting input varia-

bles, which ensured the prediction accuracy. Principal component analysis (PCA) was 

used to obtain reasonable model inputs and build a prediction model [27]. Zhao et al. [28] 

proposed a convolutional neural network (CNN) hybrid short-term heat load prediction 

model based on the adaptive T-distribution satin Bowerbird algorithm. Compared with 

other prediction models, The Mean Absolute Percentage Error (MAPE) and Root Mean 

Square Error (RMSE) of the mixed model decreased by 18.08% and 16.26% respectively. 

Song et al. [25] proposed a heat load prediction model based on convolution neural net-

work-long short-term memory (CNN-LSTM), which obtains a more accurate dynamic 

heat load model. Al-shammari et al. [29] proposed a SVR regional heating system thermal 

load prediction model based on the firefly algorithm (FA). 

In the field of heat load prediction, the innovation of this research lies in combining 

optimization algorithm with machine learning model to improve the accuracy and relia-

bility of heat load prediction by comparing the predicting performance of different com-

bination models. The heat load prediction models of PCA-BP-ELMAN, FA-ELMAN and 
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GA-BP were established respectively. We used the real heat load data and MATLAB plat-

form for experimental simulation. By comparing and analyzing the performance of differ-

ent combined prediction models, we explore the effectiveness and applicability of the 

combination of optimization algorithm and machine learning model in heat load predic-

tion, and determine the best combined model to provide more accurate and reliable heat 

load prediction. 

2. Methods 

The research framework, depicted in Figure 1, encompasses key components such as 

data collection, data preprocessing, feature selection, implementation and prediction of 

classical individual machine learning models, as well as the implementation and predic-

tion of combined models. To evaluate model performance, four evaluation indicators are 

employed to identify an individual model with superior predictive capabilities. Building 

upon this, PCA, minSSE algorithm, GA, and FA are incorporated into multiple efficient 

individual models for heat load prediction, resulting in the creation of three combined 

models. These models are assessed using the generated dataset and compared with both 

the pre-optimized prediction model and different combined models to validate the supe-

rior prediction accuracy of the combined models. Furthermore, the study investigates the 

optimization effects of various combination methods. 

 

Figure 1. Research framework of this study. 

2.1. Optimization algorithm 

2.1.1. Principal component analysis 

The heating load is influenced by various factors, including meteorological, system, 

social, and building factors [30]. However, considering all these factors comprehensively 

when calculating it can lead to increased complexity and difficulty in problem-solving. 

PCA offers a solution by reducing multiple initial indicators that affect the problem to a 

few major components that are most effective. This simplifies the problem analysis [31, 

32]. The main steps of this method include: 
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(1). The n samples with m influencing factors are subjected to data standardization, 

then: 

𝑥𝑗̅ =
1

𝑛
∑ 𝑥𝑖𝑗
𝑛
𝑖=1 , (j = 1,2, … ,m), (1) 

𝑠𝑗 = √
1

𝑛−1
∑ (𝑥𝑖𝑗 − 𝑥𝑗̅)

2𝑛
𝑖=1 , (j = 1,2, … ,m), (2) 

𝑥𝑖𝑗̃ =
𝑥𝑖𝑗−𝑥𝑗̅̅ ̅

𝑠𝑗
, (i = 1,2, … , n; j = 1,2, … ,m), (3) 

where m is the number of influence factors; n is the number of influence factor samples; xij 

is the ith index of the jth influence factor, and 𝑥j̅ is the sample mean of the jth influence 

factor. sj is the sample standard deviation of the jth influence factor. 𝑥ij̃ is a standardized 

indicator. 

(2). The eigenvalues and eigenvectors of the correlation coefficient matrix 𝑅 =

(𝑟𝑖𝑗)𝑚×𝑚 are calculated, where rij represents the correlation coefficient between the ith and 

jth influencing factors. A higher value indicates a stronger correlation between the two 

factors. To calculate the correlation coefficient, use the equation (4) and sort the eigenval-

ues in descending order, λ1, λ2, …, λm. From these feature vectors, m new index vectors 

can be formed, as shown in equation (5): 

𝑟𝑖𝑗 =
∑ 𝑥𝑘𝑖̃×𝑥𝑘𝑗̃
𝑛
𝑘=1

𝑛−1
, (i, j = 1,2, … ,m), (4) 

where 𝑥kĩ is the kth standardized index of the ith influence factor; 𝑥kj̃is the kth standardized 

index of the jth influence factor. 

{
 
 

 
 
𝐹1 = 𝑢11𝑥1̃ + 𝑢21𝑥2̃ +⋯+ 𝑢𝑚1𝑥𝑚̃
𝐹2 = 𝑢12𝑥1̃ + 𝑢22𝑥2̃ +⋯+ 𝑢𝑚2𝑥𝑚̃

.

.

.
𝐹𝑚 = 𝑢1𝑚𝑥1̃ + 𝑢2𝑚𝑥2̃ +⋯+ 𝑢𝑚𝑚𝑥𝑚̃

, (5) 

where Fm is the mth principal component; 𝑥1̃、𝑥2̃、…、𝑥m̃ is the impact factor vector 

after standardization; uj is the eigenvector corresponding to λj, uj = (u1j, u2j, …, umj), j = 1, 

2, …, m. 

(3). The contribution rate is calculated and the principal component is extracted. 

𝑏𝑗 =
𝜆𝑖

∑ 𝜆𝑘
𝑚
𝑘=1

, (j = 1,2, … ,m), (6) 

𝛼𝑝 =
∑ 𝜆𝑘
𝑝
𝑘=1

∑ 𝜆𝑘
𝑚
𝑘=1

, (7) 

where the information contribution rate of bj as the main component Fj; The cumulative 

contribution rate of αp as the main component is taken as αp >90%. 

2.1.2. The minSSE algorithm 

The model is built by assigning distinct weight coefficients to the predictions gener-

ated by multiple individual models. Subsequently, a new predicted value is derived 

through the employment of the weighted average method. The main focus of the com-

bined model lies in identifying the weight coefficient for each model, and there exist nu-

merous calculation methods that can be utilized for this purpose. This study utilizes the 

minSSE algorithm, which aims to minimize the sum of squares of the combined prediction 

error. By applying this algorithm, the optimal weight coefficient can be determined. 
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Define the actual value at time t as xt, t = 1, 2, …, p; Define the prediction of the ith 

model as xit, i = 1, 2, …, n; t= 1, 2, …, p; Let {l1, l2, …, ln} denote the weight coefficients of the 

n models, and these coefficients must satisfy the following requirements.  

∑ li
n
i=1 = 1, i = 1,2, … , n, (8) 

𝑥t̂ as the predicted value of the combined model at time t is calculated as follows: 

xt̂ = ∑ lixit
n
i=1 , i = 1,2, … , n, (9) 

The calculation process of minSSE algorithm is as follows: 

(1). The prediction error of the combined prediction model at time t is calculated.  

𝑒t = 𝑥t − xt̂ = ∑ 𝑙i𝑒it
𝑛
𝑖=1 , (10) 

Where eit = xt-xit was defined as the prediction error of the ith individual model at time 

t. 

(2). The combined prediction errors, denoted as et, are squared and then summed to 

calculate the value of J. 

𝐽 = ∑ 𝑒𝑡
2𝑝

𝑡=1 = ∑ ∑ ∑ 𝑙𝑖𝑒𝑖𝑡𝑙𝑗𝑒𝑗𝑡
𝑛
𝑗=1

𝑛
𝑖=1

𝑝
𝑡=1 ,  

= [𝑙1𝑙2… 𝑙𝑛]

[
 
 
 
 
∑ 𝑒1𝑡

2𝑝
𝑡=1 ∑ 𝑒1𝑡𝑒2𝑡

𝑝
𝑡=1 𝐾 ∑ 𝑒1𝑡𝑒𝑛𝑡

𝑝
𝑡=1

∑ 𝑒2𝑡𝑒1𝑡
𝑝
𝑡=1 ∑ 𝑒2𝑡

2𝑝
𝑡=1 𝐾 ∑ 𝑒2𝑡𝑒𝑛𝑡

𝑝
𝑡=1

𝑀 𝑀 𝐾 𝑀
∑ 𝑒𝑛𝑡𝑒1𝑡
𝑝
𝑡=1 ∑ 𝑒𝑛𝑡𝑒2𝑡

𝑝
𝑡=1 𝐾 ∑ 𝑒𝑛𝑡

2𝑝
𝑡=1 ]

 
 
 
 

[

𝑙1
𝑙2
𝑀
𝑙𝑛

], (11) 

Let L=[

𝑙1
𝑙2
𝑀
𝑙𝑛

],E=

[
 
 
 
 
∑ 𝑒1𝑡

2𝑝
𝑡=1 ∑ 𝑒1𝑡𝑒2𝑡

𝑝
𝑡=1 𝐾 ∑ 𝑒1𝑡𝑒𝑛𝑡

𝑝
𝑡=1

∑ 𝑒2𝑡𝑒1𝑡
𝑝
𝑡=1 ∑ 𝑒2𝑡

2𝑝
𝑡=1 𝐾 ∑ 𝑒2𝑡𝑒𝑛𝑡

𝑝
𝑡=1

𝑀 𝑀 𝐾 𝑀
∑ 𝑒𝑛𝑡𝑒1𝑡
𝑝
𝑡=1 ∑ 𝑒𝑛𝑡𝑒2𝑡

𝑝
𝑡=1 𝐾 ∑ 𝑒𝑛𝑡

2𝑝
𝑡=1 ]

 
 
 
 

,J=LTEL 

(3). Let H=[1KK1]T; The following optimization model is constructed with the mini-

mum sum of squares of prediction errors as the optimal criterion. 

𝑚𝑖𝑛𝐽 = 𝐿𝑇𝐸𝐿, (12) 

s.t.{𝐻
𝑇𝐿 = 1
𝐿 ≥ 0

 

(4). The Lagrange multiplier method is used to solve the model, and the optimal com-

binatorial weight vector L and the minimum sum of square of combinatorial prediction 

error J are obtained.  

𝐿 =
𝐸−1𝐻

𝐻𝑇𝐸−1𝐻
, (13) 

𝐽 =
1

𝐻𝑇𝐸−1𝐻
, (14) 

(5). Based on the weight coefficients assigned to each individual model, the predicted 

value of the combined model is calculated.  

2.1.3. The genetic algorithm 

The steps involved in the GA primarily consist of population initialization, fitness 

function, selection, crossover, and mutation [33]. The following sections outline each step-

in detail: 

(1). Population initialization: 

To facilitate computer recognition and storage, each individual in the population is 

encoded using a binary array. Each individual represents a real string consisting of four 

components: input layer and hidden layer link weight, hidden layer weight, hidden layer 

and output layer weight, output layer weight. 
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(2). Fitness function: 

The fitness function is determined by the sum of squared errors between the pre-

dicted output value and the expected output value of the network. The calculation equa-

tion is as follows: 

𝐹 =
1

∑ |𝑦𝑘−𝑥𝑘|
𝑛
𝑘=1

, (15) 

where n is the number of output nodes; yk is the expected value of the kth node of the BP 

neural network. xk is the predicted value of the kth node. 

(3). Selection: 

The roulette method, which employs a selection strategy based on the proportion of 

fitness values, is utilized for determining the selection probability (P) of each individual 

(i). This probability is calculated as follows: 

𝑝 =
𝑓𝑖

∑ 𝑓𝑗
𝑁
𝑗=1

, (16) 

where fi is the fitness of individual Xi; N is the number of population individuals. 

(4). Cross: 

The process involves randomly selecting an individual chromosome from a set of 

chromosomes and crossing it over with another chromosome, employing a specific 

method to generate a novel individual. 

(5). Mutation: 

The jth gene is selected for mutation in individual ith. At a particular locus, the gene is 

substituted with an allele, leading to the creation of a new individual. 

2.1.4. The firefly algorithm 

FA is a biologically-inspired optimization algorithm that utilizes group search. 

Within a specified range, fireflies emit light randomly, and their attractiveness is directly 

proportional to the intensity of their light emissions. During the process of movement and 

aggregation, each firefly's flight position changes based on the luminosity of the brightest 

individual in the current time zone. Ultimately, all fireflies converge towards the brightest 

individual. 

The brightness function varying with distance in Gaussian form is defined as: 

𝐼 = 𝐼0𝑒
−𝛾𝑑2 , (17) 

where I0 is the maximum brightness of fireflies; d is the distance between two fireflies; γ 

is the absorption coefficient of light intensity. 

The attractiveness function β(d) of a firefly at a distance reference point d is defined 

as: 

𝛽(𝑑) = 𝛽0𝑒
−𝛾𝑑2, (18) 

where β0 is the attraction of fireflies at the light source. 

For two fireflies located in wi and wj, the distance between them is expressed as: 

𝑑𝑖𝑗 = ‖𝑤𝑖 −𝑤𝑗‖ = √∑ (𝑤𝑖,𝑘 − 𝑤𝑗,𝑘)
𝑛
𝑘=1 , (19) 

where n is the dimension of the target problem; wi, k are the coordinates of the ith firefly 

on the k dimension; wj, k is the coordinates of the jth firefly on the k dimension. 

When firefly i is attracted to another firefly j, which is brighter, the movement pattern 

is: 

𝑤𝑖 = 𝑤𝑖 + 𝛽0𝑒
−𝛾𝑑𝑖𝑗

2

(𝑤𝑗 − 𝑤𝑖) + 𝛼𝜀𝑖, (20) 
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where α is the step factor; εi is the vector of random numbers derived based on a Uni-

form distribution or Gaussian distribution. 

2.2. Construction of models 

2.2.1. Construction of individual models 

(1). SVR is a machine learning technique that is based on statistical learning theory 

and the principle of minimizing structural risk. Its primary objective is to prevent overfit-

ting and ensure that the model can generalize and approximate accurately. SVR is partic-

ularly effective for identifying non-linear relationships between the dependent variable 

and multiple influencing factors, especially when working with limited sample sizes [34-

36]. The essence is to project the training samples onto a high-dimensional plane and iden-

tify an appropriate hyperplane that can effectively separate the samples. 

(2). Elman neural network is a recurrent neural network composed of four layers. The 

input layer is responsible for signal transmission, while the output layer performs linear 

weighting. The hidden layer units are capable of employing either linear or non-linear 

transfer functions. The context layer is utilized to store the previous moment's output val-

ues of the hidden layer units and subsequently feed them back to the network's input [37]. 

(3). LSTM is an improvement of recurrent neural networks (RNNs) that addresses 

the issue of long-term dependencies. It not only maintains the connectivity among hidden 

layer nodes in RNNs but also introduces the concept of filtering past states [38, 39]. The 

results of long time series training with good continuity are better than those of ordinary 

RNNs models [40, 41]. The key of LSTM is the cell state, which carries pertinent infor-

mation outward. The cell state undergoes updates through the forget gate, input gate, and 

output gate. 

(4). Based on LSTM, bidirectional long short-term memory (Bi-LSTM) transforms the 

single-direction LSTM layer into both Backward and Forward layers. The Forward layer 

processes the sequential information at the current time step, while the Backward layer 

reads the same sequence in reverse, incorporating the inverse order information. The final 

output combines the respective outputs from the Backward and Forward layers at each 

time step. In LSTM, the hidden output signals can be transmitted not only to neighboring 

grids but also to the next layer's grids. During the training process, the two state neurons 

do not interact, allowing for the expansion of the network into a typical feed-forward neu-

ral network. Building upon this, the adjustment of network weights is achieved through 

both forward and backward propagation methods [42, 43]. 

(5). RF is an improved algorithm of ensemble learning. It involves randomly sam-

pling a training set of m samples, with replacement, from the original dataset. The size of 

the sample matches that of the original dataset. Then, it constructs m decision trees 
{ℎ(𝑥, 𝜃𝑛), 𝑛 = 1,2, … ,𝑚} (where 𝜃𝑛 is an independently and identically distributed ran-

dom vector). The final output 𝑦̂(𝑥) of RF regression is obtained by averaging the outputs 

of the m decision trees. 

(6). BP neural network structure mainly consists of three layers: the input layer, the 

output layer, and the hidden layer. These layers are fully interconnected, and there is no 

coupling between neurons within the same layer. The network's functionality is achieved 

through forward signal propagation and backward error propagation [44, 45]. 

2.2.2. Construction of combined models 

In order to improve the accuracy of artificial neural network in building energy pre-

diction, the following three problems need to be solved: First, it is easy to fall into the local 

optimal problem in the training stage; Secondly, the problem of input selection; Finally, 

the question of hyperparameter setting [46]. To solve the above problems, different opti-

mization algorithms are introduced into building energy consumption prediction. The 

following is the construction process of the combined models. 

(1). PCA-BP-ELMAN 
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The parameters of the input layer were optimized using PCA, and the optimal weight 

coefficient of the model was obtained through the minSSE algorithm, which utilized the 

predicted and actual values of the BP and ELMAN neural network models. The PCA-BP-

ELMAN model was then constructed based on these weight coefficients for prediction. 

The specific calculation process is depicted in Figure 2. 

 

Figure 2. A flowchart of the PCA-BP-ELMAN model. 

(2). FA-ELMAN 

The optimal firefly individual is selected by changing the position and brightness of 

fireflies, followed by the optimal replacement of initial weights and bias [47]. Then the 

nonlinear relationship between each input parameter and the hourly heat load is estab-

lished by ELMAN neural network, so as to enable accurate prediction. The ELMAN neu-

ral network is optimized by using FA, as shown in Figure 3. 
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Figure 3. A flowchart of the FA-ELMAN model. 

(3). GA-BP 

GA is a methodology that simulates natural biological evolution and proves to be 

effective in solving complex problems, including nonlinear and global optimization [48]. 

In this study, GA is used to optimize the weights and bias of the BP neural network. Sub-

sequently, the optimized weights and bias are employed to train the network and obtain 

the optimal solution. The specific calculation process is depicted in Figure 4. 

 

Figure 4. A flowchart of the GA-BP model. 
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2.3. Data processing and analysis 

2.3.1. Data collecting and preprocessing 

Weifang City is located in the western part of the Shandong Peninsula and serves as 

a central city within the cluster. Geographically, it spans from 118°10' to 120°01' east lon-

gitude and 35°41' to 37°26' north latitude. The city covers a total land area of 1,616,723.99 

hectares. Weifang experiences specific climatic conditions characterized by high winter 

temperatures, relatively abundant precipitation, and reduced sunlight. Overall, the cli-

mate is favorable. During the spring season, temperatures rise, precipitation increases, 

and sunlight is abundant, often leading to frequent meteorological disasters. In summer, 

the temperature becomes pleasant, with higher precipitation but less sunlight. Neverthe-

less, the climate remains suitable. In autumn, temperatures remain high, precipitation de-

creases slightly, and sunlight diminishes further. Weifang was selected as the research 

area for forecasting the heat supply load. 

The data utilized in this study were obtained from two sources - the China Meteoro-

logical Data Network and the Weifang thermal data visualization monitoring platform. 

The dataset used for analysis was collected from a specific community. The type of enclo-

sure structure is an ordinary external wall, the thickness of the wall is 240 mm, and the 

heat transfer coefficient is 2.03 W/m2/°C. The research focused on the complete heating 

season, with the query time range set from November 15, 2021, to March 15, 2022. To 

ensure data accuracy, a query interval of 3 minutes was used. Historical operating data 

and heat loads were sampled at 1-hour intervals. 

Since there are instances of abnormal and missing data, it is essential to apply proper 

data preprocessing techniques. For missing data, interpolation methods are used to fill in 

the gaps. Regarding abnormal data, the 3σ criterion is initially used to identify outliers, 

and then interpolation methods are employed to determine appropriate replacements. 

When long-term repetitions or omissions are detected, these occurrences are regarded as 

anomalies in the data collection process and are subsequently eliminated 

2.3.2. Feature selection 

The heating load is affected by many factors such as meteorological factors, system 

factors, social factors and building factors. Temperature, relative humidity, wind speed, 

solar radiation and other meteorological factors will affect the heating load. With the in-

crease of temperature, the value of heating load gradually decreases, and with the de-

crease of temperature, the value of heating load gradually increases. When the tempera-

ture is unchanged, with the reduction of relative humidity, the evaporation of sweat is 

enhanced, the human body will feel cold, and the heating load will increase. As the wind 

speed increases, the heating load will also increase. Solar radiation also has a certain in-

fluence on the heating load, when the solar radiation is small, the heating load is larger, 

but its influence on the heat load is small. The influence of some characteristics of the 

heating network itself on the heat load is mainly reflected in the supply water tempera-

ture, return water temperature, circulation flow and so on. Social factors such as residents' 

heating habits, local policies, number of inhabitants and development of the population 

will affect the change of heating load, and building factors such as its structure, function, 

geographical location, number of flats, the size of the heated volume and the quality of 

thermal insulation will also affect the heating load [30]. However, the influence of social 

factors on the heat load makes its change relatively slow, so it cannot be taken into account 

in the short-term heat load prediction, and once the building is formed, the influence of 

its own factors on the heat load can also be ignored. 

To sum up, the preliminary analysis of the factors affecting heating load and the re-

lated literature review [49-51], Eight characteristics, including supply water temperature 

at time t-1, return water temperature at time t-1, heat load at time t-1, circulation flow at 

time t-1, solar radiation at time t-1, outdoor temperature at time t, wind speed at time t, 
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and relative humidity at time t, were determined as input variables of the prediction 

model, and heat load at time t, were determined as output variables. 

2.4. Evaluation indices 

The four selected accuracy evaluation indices for assessing the precision of the pre-

diction model are as follows: Mean Square Error (MSE), RMSE, Mean Absolute Error 

(MAE), and MAPE [52]. 

MSE =
1

n
∑ (xi − yi)

2n
i=1 , (21) 

RMSE = √
1

n
∑ (xi − yi)

2n
i=1 , (22) 

MAE =
1

n
∑ |xi − yi|
n
i=1 , (23) 

MAPE =
100%

n
∑ |

xi−yi

yi
|n

i=1 , (24) 

where n—the number of samples; 𝑥i—the ith simulated value, GJ/h; 𝑦i—the ith actual 

measured value, GJ/h; 𝑥̅—the mean of the simulated values, GJ/h; 𝑦̅—the mean value of 

the measured value, GJ/h. 

For the same dataset, smaller values of MSE, RMSE, MAE, and MAPE indicate re-

duced discrepancies between the predicted and actual values, implying a higher level of 

precision in the model. 

3. Results 

3.1. Comparisons of individual models 

Using MATLAB as the calculation platform, the heat and meteorological data of a 

community in Weifang from November 15, 2021, to March 15, 2022 were used as training 

data to train the model. On this basis, the optimal input parameters of each model were 

selected as follows: (1). SVR: The kernel function is RBF, the loss function p=0.4, the pen-

alty factor C=1000, and the kernel parameter γ=0.01; (2). ELMAN: the number of neurons 

in the input layer is 8, the number of neurons in the output layer is 1, the number of neu-

rons in the hidden layer is 8, the maximum number of iterations is 1000, the learning rate 

is 0.01, and the minimum error of the training target is 10-5; (3). LSTM and Bi-LSTM: The 

optimization method was adam algorithm, the maximum number of iterations was 300, 

the initial learning rate was 0.1, and the learning rate dropped to 0.1*0.1 after 50 training 

sessions. The optimized neural network was trained using trainNet function. The model 

data is in a period of 24 hours, and the input data formats are batch_size:24, time_step:1, 

iput_size:8; (4) RF: The number of decision trees is 500, the minimum number of leaves of 

each decision tree is 3, and the regRF_train function is called to train the model; (5). BP: 

Set the maximum number of iterations to 1000, the learning rate to 0.01 and the BP neural 

network structure to 8-14-1. 

To assess the accuracy of these models, MSE, RMSE, MAE, and MAPE were used as 

evaluation indices, and their corresponding error indicators are presented in Table 1. The 

results in Table 1 indicate that the MAPE values for the RF, SVR, LSTM, and Bi-LSTM 

models are all greater than 15%. Moreover, as shown in Figure 5, these four models exhibit 

a significant deviation between the predicted and actual values, consistently overestimat-

ing the heat load. Consequently, these models demonstrate poor prediction performance 

and are not recommended for heat load prediction. Conversely, the BP and ELMAN neu-

ral network prediction models display lower evaluation indices with MAPE values less 

than 10%, MSE values below 0.1 GJ2/h2, RMSE values less than 0.3 GJ/h, and MAE values 

less than 0.2 GJ/h. Additionally, the predicted values from these two models exhibit min-

imal deviation from the actual values. Therefore, these models exhibit good prediction 



Buildings 2023, 13, x FOR PEER REVIEW 12 of 23 
 

performance and are suitable for heat load prediction. Furthermore, in comparison to the 

other four models with inadequate prediction performance, the BP and ELMAN neural 

network models demonstrate a maximum reduction in MAPE of 20.5% and 19.75%, re-

spectively. 

Table 1. Prediction results of the individual models. 

Model MSE (GJ2/h2) RMSE (GJ/h) MAE (GJ/h) MAPE (%) 

BP 0.052 0.229 0.169 7.45 

ELMAN 0.061 0.246 0.184 8.20 

RF 0.162 0.403 0.351 16.25 

SVR 0.435 0.660 0.601 27.95 

LSTM 0.202 0.450 0.412 19.03 

Bi-LSTM 0.187 0.432 0.392 18.02 

 

Figure 5. Comparison of the performance between proposed and individual models. 

3.2. Results of combined models 

(1). PCA-BP-ELMAN 

To effectively reduce redundancy and correlation in the initial characteristic variable 

data for heat load prediction, dimensionality reduction processing was performed using 

SPSS software. The results, summarized in Table 2, showed that the first four principal 

components accounted for a cumulative contribution rate of 90.610%. This indicates that 

these principal components effectively captured and represented the majority of infor-

mation contained in the initial eight feature variables. As a result, principal components 

Y1 to Y4 were selected as the input data for further analysis. 

Table 2. Contribution rate of each component. 

Component Characteristic value Rate of contribution Accumulating contribution rate 

(%) (%) 

1 3.655 45.684 

23.406 

11.710 

9.810 

5.312 

45.684 

69.090 

80.800 

90.610 

95.922 

2 1.872 

3 0.937 

4 0.785 

5 0.425 
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6 0.168 2.102 98.024 

7 0.118 1.479 99.503 

8 0.040 0.497 100.000 

Table 3 presents the linear relationship between each principal component and its 

respective variable. In particular, principal component Y1, which accounts for a contribu-

tion rate of 45.684%, is largely associated with return water temperature, circulation flow 

rate, historical heat load, and outdoor temperature. Principal component Y2 is primarily 

linked to relative humidity and solar radiation. Additionally, principal components Y3 

and Y4 are mainly influenced by wind speed and water supply temperature, respectively. 

Table 3. Principal component coefficient. 

Characteristic 

variable 

Y1 Y2 Y3 Y4 

TS(t-1) .334 .088 .576 -.564 

TR(t-1) .482 .174 -.022 -.086 

F(t-1) .410 .164 -.455 .371 

S(t-1) -.167 .603 -.198 -.251 

T(t) -.451 .171 -.115 -.172 

W(t) -.091 .360 .631 .660 

H(t) .084 -.620 .082 .093 

Q(t-1) -.491 .169 -.061 .021 

Each model in this study was trained using data that underwent PCA dimensionality 

reduction. The initial parameters for both the BP and ELMAN neural networks were set 

as follows: the transfer function was chosen as tansing, the training was conducted for 

1000 iterations, the target error was defined as 10-5, the learning rate was set to 0.001, and 

the normalization range was [-1, 1]. The minSSE algorithm was employed to obtain the 

optimal weight coefficients for each model, based on the predicted and actual values. Ta-

ble 4 presents these weight coefficients, which range between 0 and 1, and their sum totals 

to 1. 

Table 4. Weighting coefficients of individual models. 

Model PCA-BP PCA-ELAMN 

PCA-BP-ELMAN 0.52 0.48 

Each individual model is used to predict the heat load, resulting in forecasted out-

comes. These prediction results are then combined and weighted to calculate the final 

prediction results, which represent the prediction of the PCA-BP-ELMAN model. The re-

spective evaluation indicators can be observed in Table 5, and a comparison between the 

predicted and actual results is presented in Figure 6. 

Table 5. Prediction results of the PCA-BP-ELMAN model. 

Model MSE (GJ2/h2) RMSE (GJ/h) MAE (GJ/h) MAPE (%) 

PCA-BP-ELMAN 0.062 0.248 0.151 6.29 
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Figure 6. Comparison between the actual data of heat load and results of a one-hour- ahead heat 

load prediction using the PCA-BP-ELMAN method. 

(2). FA-ELMAN 

The initial parameters for the firefly algorithm are set as follows: a population size of 

50, a maximum iteration limit of 30, a critical error threshold of 0.01, a maximum attraction 

value (β0) of 2, a light intensity absorption coefficient (γ) of 1, and a step factor (α) of 0.02. 

Similarly, the initial parameter settings for the ELMAN neural network are the same as 

described in the PCA-BP-ELMAN section. The respective evaluation indicators can be ob-

served in Table 6, and a comparison between the predicted and actual results is presented 

in Figure 7. 

Table 6. Prediction results of the FA-ELMAN model. 

Model MSE (GJ2/h2) RMSE (GJ/h) MAE (GJ/h) MAPE (%) 

FA-ELMAN 0.050 0.214 0.142 5.95 
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Figure 7. Comparison between the actual data of heat load and results of a one-hour- ahead heat 

load prediction using the FA-ELMAN method. 

(3). GA-BP 

The initial parameters for the genetic algorithm are set as follows: the number of it-

erations is 30, the population size is 10, the crossover probability is 0.8, and the mutation 

probability is 0.2. The initial parameter setting for the BP neural network section is the 

same as described in the PCA-BP-ELMAN method. The respective evaluation indicators 

can be observed in Table 7, and a comparison between the predicted and actual results is 

presented in Figure 8. 

Table 7. Prediction results of the GA-BP model. 

Model MSE (GJ2/h2) RMSE (GJ/h) MAE (GJ/h) MAPE (%) 

GA-BP 0.049 0.222 0.161 7.05 
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Figure 8. Comparison between the actual data of heat load and results of a one-hour- ahead heat 

load prediction using the GA-BP method. 

3.3. Comparisons of individual and combined models 

In order to visually and effectively analyze and compare the optimization effects of 

different combined prediction models, namely the BP and ELMAN neural network mod-

els, column charts and dot plots are utilized to assess the MSE, RMSE, MAE, and MAPE. 

These charts serve as clear and intuitive representations of the performance of the various 

models. 

Figure 9 presents a comparison of evaluation errors between the BP model, ELMAN 

neural network model, and three combined prediction models. It is evident from the fig-

ure that the ELMAN neural network model exhibits the highest error index among the 

various prediction models, while the FA-ELMAN model shows the lowest error index. 

Additionally, the MSE, RMSE, MAE, and MAPE values of the three combined models 

consistently prove to be smaller than those of the traditional BP and ELMAN neural net-

work models. This confirms the effectiveness of each employed optimization algorithm. 

Moreover, it is noteworthy that the model optimized by the FA algorithm demonstrates 

the most substantial reduction in each index, followed by the PCA-minSSE algorithm. 

Conversely, the model optimized by the GA algorithm displays the smallest reduction in 

each index. These findings suggest that the predictive performance of the three combined 

prediction models follows the order of FA-ELMAN, PCA-BP-ELMAN, and GA-BP, from 

high to low. 

 

Figure 9. Comparison performance of BP, ELMAN, combined models. 

The error index of the FA-ELMAN combined prediction model (MSE=0.046 GJ2/h2, 

RMSE=0.214 GJ/h, MAE=0.142 GJ/h, MAPE=5.95%) was compared to that of the traditional 

ELMAN neural network model (MSE=0.060 GJ2/h2, RMSE=0.246 GJ/h, MAE=0.184 GJ/h, 

MAPE=8.20%). The results showed that the FA-ELMAN combined prediction model 

achieved significant improvements. Specifically, the MSE decreased by 0.014 GJ2/h2, the 

RMSE decreased by 0.032 GJ/h, the MAE decreased by 0.042 GJ/h, and the MAPE de-

creased by 2.25%. 
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4. Discussion 

Accurate and reasonable heat load prediction models serve as a robust foundation 

for ensuring on-demand heating in centralized heating systems. In this study, we leverage 

winter heat load data from a residential building in Weifang City and integrate it with 

hourly meteorological data. This study primarily proposes three combined prediction 

models and examines the effectiveness of optimizing the combination of load prediction 

models, which improves the accuracy of heat load prediction. Nevertheless, further re-

search can be undertaken in the following areas: 

(1). Due to data availability limitations, we can only use limited historical data for 

model training and validation. Therefore, further research may consider using longer time 

ranges of data as well as more frequent sampling to improve the generalization ability of 

the model. 

(2). The influence of indoor temperature and wind direction on heat load is disre-

garded due to limited data availability. Additionally, factors such as day-night variations, 

seasonal changes, and other potential influences are ignored to simplify the prediction 

model, owing to the complexity of its design. To address these limitations, future studies 

should expand the range of collected data by enhancing monitoring conditions. Further-

more, the use of sophisticated methods can help effectively handle day-night and seasonal 

changes, thereby enabling a more comprehensive exploration of their impact. 

(3). In order to develop a predictive model that can be broadly applied to common 

building types, we focus our research on a specific type of building structure, namely res-

idential buildings with standard building materials and insulation. However, it is worth 

mentioning that the principles and methods used in our study can potentially be applied 

to other types of buildings as well. We acknowledge that the building structure and its 

thermal properties play a crucial role in heat load estimation. In future research, we rec-

ognize the importance of investigating how different types of building structures, materi-

als, and insulation systems impact heat load prediction. This will further enhance the ap-

plicability and accuracy of our predictive models across diverse building types. 

(4). The predictive models developed during this study demonstrated excellent pre-

diction performance in simulation experiments. However, they have not yet undergone 

practical testing by heating supply companies. If future research allows for continuous 

adjustments of the models based on real-time conditions during practical experiments, it 

could truly enable on-demand heating. 

(5). Due to space constraints, we have not been able to cover the findings of all coun-

tries in detail in the introductory chapter. However, in our future research, we will com-

prehensively analyze the research status and results of heat load forecasting in various 

countries and regions from an international perspective. 

(6). In order to enhance the rationality of experimental design, PCA, as a feature se-

lection method, was introduced into FA-ELAMN and GA-BP models. The respective eval-

uation indicators can be observed in Table 8, and a comparison between the predicted and 

actual results is presented in Figure 10. According to Table 8, after PCA method was in-

troduced into the models, the value of MAPE decreased by 0.31% and 0.35% respectively. 

Therefore, by introducing PCA into GA-BP and FA-ELMAN models, the prediction accu-

racy of the new combined models has been improved slightly. 

Table 8. Prediction results of the PCA-GA-BP and PCA-FA-ELMAN models. 

Model MSE (GJ2/h2) RMSE (GJ/h) MAE (GJ/h) MAPE (%) 

PCA-GA-BP 0.061 0.246 0.159 6.74 

PCA-FA-ELMAN 0.043 0.208 0.133 5.60 
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Figure 10. Comparison between the actual data of heat load and results of a one-hour- ahead heat 

load prediction using the PCA-GA-BP and PCA-FA-ELMAN methods. 

5. Conclusions 

PCA-BP-ELMAN, FA-ELMAN, and GA-BP are established to apply heat load pre-

diction. This study aimed to compare the prediction accuracy of these three combined 

models. The main conclusions are as follows: 

(1). To assess the prediction performance of six commonly used individual models, 

we selected eight initial characteristics: water supply temperature, return water tempera-

ture, circulation flow, solar radiation, heat load, outdoor temperature, wind speed, and 

relative humidity at time t-1. The results indicated that the BP and ELMAN neural net-

work prediction models had a MAPE of less than 10% and a MSE of less than 0.1 GJ2/h2. 

Furthermore, the RMSE and MAE were both less than 0.3 GJ/h and 0.2 GJ/h respectively, 

suggesting that these models demonstrate high prediction accuracy. 

(2). The dimensionality of the characteristic variables that impact heating load is re-

duced from 8 to 4 using PCA, and the input parameters of the neural network are opti-

mized accordingly. In predicting heat load, the most significant principal components are 

return water temperature, circulation flow, historical heat load, and outdoor temperature. 

Following these are relative humidity, solar radiation, water supply temperature, and 

wind speed. 

(3). The application of PCA-minSSE, FA, and GA algorithms in heat load prediction 

has been shown to improve the accuracy of the prediction model. The models with the 

highest prediction performance, ranked from high to low, are FA-ELMAN, PCA-BP-

ELMAN, and GA-BP. When compared to individual neural network models with supe-

rior prediction performance, the combined model exhibits a decrease in MAPE of 2.25%. 
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Nomenclature 

bj information contribution rate of principal component Fj 

dij the distance between any two fireflies i and j 

et the prediction error of the combined prediction model at time t 

eit the prediction error of the ith individual model at time t. 

fi the fitness of individual Xi 

F the fitness of individual 

Fm the mth principal component 

F(t-1) circulation flow at time t-1, m3/h 

H let H=[1KK1]T 

H(t) relative humidity at time t, % 

I0 the maximum brightness of fireflies 

J the sum of squares of combined prediction errors 

li the weight coefficient 

m the number of influence factors 

n the number of influence factor samples 

N the number of population individuals 

P the selection probability 

Q(t-1) heat load at time t-1, GJ/h 

rij the correlation coefficient 

R the correlation coefficient matrix 

sj the sample standard deviation of the jth influence factor 

S(t-1) solar radiation at t-1 time, W/m2 

T(t) outside temperature at time t, °C 

TR(t-1) return water temperature at time t-1, °C 

TS(t-1) water supply temperature at time t-1, °C 

uj the eigenvector 

wi the pattern of movement for the reference firefly i 

wi, k the coordinates of the ith firefly on the k dimension 

wj, k the coordinates of the jth firefly on the k dimension 

Wt wind speed at time t, m/s 

𝑥̅ the mean of the simulated values 

xi the ith simulated value 
𝑥j̅ the sample mean of the jth influence factor 

xt the actual value of the heat load at time t 

𝑥t̂ the combined predicted value of heat load at time t 

xij the ith index of the jth influence factor 

xit the heat load prediction of the ith model at time t 
𝑥ij̃ a standardized indicator 

𝑥kĩ the kth standardized index of the ith influence factor 
𝑥kj̃ the kth standardized index of the jth influence factor 

𝑦̅ the mean value of the measured value 

yi the ith actual measured value 

Abbreviation 
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Bi-LSTM bidirectional long short-term memory 

BP back propagation 

CNN convolutional neural network 

FA firefly algorithm 

GA genetic algorithm 

LSTM long short-term memory 

minSSE the minimum sum of squares of the combined prediction errors 

MAE Mean Absolute Error, GJ/h 

MAPE Mean Absolute Percentage Error, % 

MSE Mean Square Error, GJ2/h2 

PCA principal component analysis 

RF Random Forest 

RMSE Root Mean Square Error, GJ/h 

RNNs recurrent neural networks 

SVR support rector regression 

Greek Symbols 

α the step factor 

αp the cumulative contribution rate 

β0 the attraction of fireflies at the light source 

β(d) the attractiveness function 

γ the absorption coefficient of light intensity 

εi the vector of random numbers 

λj the eigenvalues 

Subscripts 

i represents the ith 

j represents the jth 

k represents the kth 

t time 
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