
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022 2751

ICRAN: Intelligent Control for Self-Driving RAN
Based on Deep Reinforcement Learning

Azza H. Ahmed , Member, IEEE, and Ahmed Elmokashfi

Abstract—Mobile networks are increasingly expected to sup-
port use cases with diverse performance expectations at a very
high level of reliability. These expectations imply the need for
approaches that timely detect and correct performance problems.
However, current approaches often focus on optimizing a single
performance metric. Here, we aim to address this gap by propos-
ing a novel control framework that maximizes radio resources
utilization and minimizes performance degradation in the most
challenging part of cellular architecture that is the radio access
network (RAN). We devise a method called Intelligent Control
for Self-driving RAN (ICRAN) which involves two deep rein-
forcement learning based approaches that control the RAN in a
centralized and a distributed way, respectively. ICRAN defines
a dual-objective optimization goals that are achieved through
a set of diverse control actions. Using extensive discrete event
simulations, we confirm that ICRAN succeeds in achieving its
design goals, showing a greater edge over competing approaches.
We believe that ICRAN is implementable and can serve as
an important point on the way to realizing self-driving mobile
networks.

Index Terms—Self-driving network, slicing, RAN, resource
allocation, performance optimization, deep reinforcement learn-
ing, ns-3 simulation, DDPG.

I. INTRODUCTION

THE FIFTH generation mobile network, 5G, has trans-
formed the mobile network into a multi-service

architecture that supports diverse use cases with varying
requirements [1]. 5G virtualizes network resources and chains
them into end-to-end network slices that are adapted to use
cases’ requirements. This flexibility makes mobile networks
increasingly complex to manage [2]. Furthermore, several
envisioned use cases like public safety communication and
industrial control have stringent performance expectations.
Hence, multi-slice 5G and 6G networks must be capable
of quickly detecting and correcting performance degradation.
Current mobile networks resort to pre-configured priorities,
over-provisioning and at best implementing traditional closed
loop control systems with a limited scope like in the case of
self-organizing networks (SON) [3]. The need for intelligent

Manuscript received 4 May 2022; revised 4 July 2022; accepted 13
July 2022. Date of publication 18 July 2022; date of current version
12 October 2022. The associate editor coordinating the review of this article
and approving it for publication was M. Tornatore. (Corresponding author:
Azza H. Ahmed.)

Azza H. Ahmed is with the Center for Resilient Networks and Applications,
Simula Metropolitan Center for Digital Engineering, 0167 Oslo, Norway,
and also with the Center for Resilient Networks and Applications, Oslo
Metropolitan University, 0176 Oslo, Norway (e-mail: azza@simula.no).

Ahmed Elmokashfi is with the Center for Resilient Networks and
Applications, Oslo Metropolitan University, 0176 Oslo, Norway.

Digital Object Identifier 10.1109/TNSM.2022.3191746

automation has motivated the academia and industry to argue
for building “autonomous” or “self-driving” networks, where
network management and control decisions are made in real-
time and in an automated fashion [4]. For instance, the Open
Radio Access Network (O-RAN) architecture, which aims to
realize the RAN as a set of visual network functions on com-
modity hardware, has identified supporting intelligent RAN
control as a key design goal [5]. Despite all these effort,
building “self-driving” mobile networks that are practically
deployable has largely remained unrealized.

A major challenge in this respect, having in mind the scale
of mobile networks, involves devising a control architecture
that balances complexity and overhead. Further, there is a
lack of unified control approaches that can deliver on multiple
objectives (e.g., maximize resource utilization while ensuring
an acceptable level of performance). More specifically, the
existing proposals focused on tracking and optimizing a single
metric like coverage [6], power management [7], throughput [8]
and resource sharing [9] at a time. It flows directly from this
limited focus that current approaches resort to often applying a
single control action, e.g., adjusting base station transmit power.
However, a multi-slice network is by definition a multi-service
network. Hence, tracking a single metric is bound to assure
quality for a subset of the services that run on the network. A
viable approach to realizing self-driving mobile networks must
be able assure quality for all running slices according to their
priority and service level agreements (SLAs). Achieving this
requires choosing and mixing diverse control actions, e.g.,
simultaneously adjusting coverage and optimizing resource
allocation. Here, we aim to bridge this gap by proposing a
machine learning based approach to manage resource utilization
and performance in the RAN. We focus on the RAN, because
its performance and reliability heavily impact users’ quality
of experience [10]. Our approach tracks and optimizes diverse
use cases. To this end, it employs several different control
actions.

We propose, ICRAN, an intelligent control scheme for a
multi-slice RAN. ICRAN leverages deep reinforcement learn-
ing (DRL) to derive strategies for maximizing resource utiliza-
tion and minimizing SLA violations under different network
conditions. Reinforcement learning is a machine learning (ML)
approach where intelligent agent/agents interpret and interact
with their environment and learn how to achieve certain objec-
tives via cycles of trial and error based learning. We introduce
both a centralized and distributed control schemes. In the for-
mer, a single controller optimizes the configurations of all base
stations, while each base station has own controller in the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9605-4043
https://orcid.org/0000-0001-9964-214X

2752 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

latter. Following an initial training phase, the controller con-
tinuously monitors the state of the network and immediately
reacts to performance degradation by executing actions that
extend coverage and regulate resource usage. We implement
ICRAN using the OpenAI Gym framework [11] and the ns-3
simulator [12]. Our evaluations show that ICRAN converges
quickly to strategies that help maximizing radio resource uti-
lization and minimizing SLA violations for the entire network.
ICRAN outperforms approaches that leverage DRL, imple-
ment adaptive priority-based resource management as well
as those resorting to heuristics to react to network changes.
The benefit from ICRAN spans regimes where the network is
lightly loaded, running at its capacity, and is heavily loaded.
For example, ICRAN utilizes 97% of available radio resources
when the network is loaded at 200% that is 7% higher than the
next best method. At the same time, it reduces the number of
SLA violations for slices with stringent requirements, that is
achieved by the next best method, by up to a factor of three.
This work is the first to apply deep reinforcement learning
to collectively solving multiple RAN control problems. The
previous work has mainly focused on optimizing for a single
control problem.

A. Contributions

The main contributions of this paper are summarized in the
following:

1) We propose ICRAN a novel control framework based
on DRL that is capable of maximizing resource uti-
lization and minimizing SLA violations in a multi-slice
RAN. ICRAN introduces a novel reward function and an
action space with diverse actions which allows for opti-
mizing multiple objectives collectively, namely antenna
tilt, traffic load balancing, and resource allocation.

2) We investigate two different control architectures for our
framework; centralized and distributed control. In the
centralized framework, we formulate the problem as a
single-agent DRL whereas, the distributed problem is
solved via a multi-agent DRL.

3) Finally, we validate the performance of our proposed
framework through extensive simulations using ns-3.
The experiment results show that our method outper-
forms the state-of-the-art methods in radio resources
management. Moreover, the advantage of our method
persists under different networking conditions such as
high congestion and radio failure.

B. Paper Structure

The remainder of the paper is organized as follows. The next
section gives the background of this work, while Section III
covers related research on RAN slicing and the applica-
tion of DRL in mobile networks. In Section IV, we discuss
the overall system model from a high-level perspective. We
describe in Section V the scheduling algorithm with slicing
constraints that we consider. Then, we proceed to elaborate
our DRL problem formulation and the algorithms we develop
to solve the problem. We present our experimental setup in
Section VI and we evaluate the performance of ICRAN and
compare it with some baselines and state-of-the-art methods

in Section VII. In Section VIII, we discuss our findings,
the implementation considerations and the limitations of this
work and how to address them in the future. Finally, a brief
concluding remarks are provided in Section IX.

II. BACKGROUND

Unlike the previous generations of mobile networks, 5G
is designed to support a wide range of services with diverse
requirements. These requirements span a wide range in terms
of expected throughout, latency, reliability, mobility and num-
ber of devices [13]. A single static network architecture,
however, can not cater for this diversity. This motivated a pivot
towards realizing multiple isolated logical networks, with dif-
ferent configurations, over the same physical infrastructure,
i.e., network slicing [14], [15], [16], [17]. Recent advances in
defining network elements and network configurations in soft-
ware have made this pivot possible. Key technologies in this
respect are software defined networking (SDN), network func-
tion virtualization (NFV) and cloud-native network functions
(CNFs). SDN decouples the network data and control planes
and centralizes network control which allows for a full network
programmability [18]. NFV transfers network functions like
routers and firewalls from specialized physical implementa-
tions (i.e., a hardware box with tailored software) to software
implementations that can run as virtual machines on a general
purpose computers. VNFs can be chained to form an end-
to-end network architecture [19]. Finally, CNF is a natural
evolution of VNF that shrinks them to run as containers and
optimizes them to run in the cloud [20]. SDN and NFV/CNF
complement each other towards building an end-to-end soft-
ware defined and programmable network architectures. In the
Long-Term Evolution (LTE) mobile core network, the data
and control plane functions are realized by dedicated hard-
ware that implements each specialized function. However, the
5G core is designed to be “cloud-native”, in the sense that
the functions that handle the control and data planes, e.g.,
UPF and AMF, could be deployed as VNFs/containers on
a cloud infrastructure. The use of NFV and SDN has been
started from core and networking middleboxes and extended
to RAN functions. The development of open and intelligent
RAN (O-RAN) has received great attention [21]. O-RAN is
proposed to enhance the RAN performance through virtual-
ized network elements and open interfaces that incorporate
intelligence into the RAN. O-RAN introduces programmable
components that can run optimization routines with closed-
loop control and orchestrate the RAN. Specifically, the O-RAN
has logical controllers that monitor the status of the network
(e.g., number of users, load, throughput, resource utilization)
and process this data leveraging AI/ML algorithms to deter-
mine and apply control policies and actions on the RAN, for
example, network and RAN slicing, load balancing, handovers
and scheduling [5].

III. RELATED WORK

A. RAN Slicing

End-to-end slicing involves virtualizing the RAN, the trans-
port and the core. The former is specific to mobile networks

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2753

while the latter two are common across different types of
networks, e.g., data centers. Further, RAN slicing requires an
efficient approach to resource management given the limited
nature of the virtualized-resource in question, i.e., radio spec-
trum. To this end, there are several proposals which we discuss
next.

Various traditional algorithms have been proposed for tack-
ling the resource scheduling and allocation problems in the
RAN. Nojima et al. [22] presented three resource allocation
methods for RAN slicing by slightly modifying the con-
ventional MAC scheduling algorithms: 1) a static allocation
method, which allocates Resource Blocks (RBs), that is the
smallest units of resources in frequency and time that can
be allocated to a user, in a fixed manner regardless of the
channel conditions of users in each slice, 2) a round-robin
allocation algorithm, which allocates RBs to each slice sequen-
tially and based on the channel conditions of users in each
slice, 3) a per-user priority algorithm that allocates RBs to
users based on their priority within their respective slice. Their
experiments showed that the priority-based algorithm achieved
higher throughput compared to that resulted by the static and
round-robin algorithms. However, all these methods do not
consider satisfaction of the slice requirements when allocat-
ing RBs to a slice. Thus, Shrivastava et al. [23] proposed
a method that allocates RBs to slices taking into account the
desired SLA. This approach allows for a flexible assignment of
RBs, which allocates temporarily unused RBs to slices in need
with the possibility of allocating more RBs than necessary. To
address this, Bakri et al. [24] proposed a data-driven mech-
anism for sharing RAN physical resources among different
network slices based on optimal value for RBs. The proposed
algorithm calculates the optimal value for the radio resources
based on the Channel Quality Indicator (CQI) reports col-
lected by the base stations. The algorithm is running at the
slice orchestrator level which adapts to two slices with dif-
ferent quality of service (QoS) requirements, specifically ultra
reliable and low latency communications (URLLC) slice and
enhanced Mobile Broadband (eMBB) slice. To reduce the
overhead of sending the CQI values between the base station
and the slice orchestrator, the authors presented a machine
learning model to predict the user equipment (UE) channel
stability. If the channel quality is relatively stable, the CQI
values do not vary much in time. Therefore, frequent CQI
reports will not affect the performance of the slicing algorithm.
Unlike our work, the proposed method calculates the required
radio resources based on only one key performance indica-
tor (KPI), i.e., either latency or throughput and thus cannot
directly support other types of slices. Moreover, their results
showed that there is a threshold on the number of users in
each slice when the SLA is violated without considering how
to minimize those SLA violations.

Aligned with the recent advances in DRL, Mei et al. [8]
presented a hierarchical framework based on integrating
the deep deterministic policy gradient (DDPG) and double
deep-Q-network algorithm to solve RAN slicing problem.
Specifically, this framework consists of two controllers: an
upper-level controller which adjusts the slice configuration
to improve QoS performance at a coarse granularity and a

lower-level controller that schedules network resources and
power allocation to active UEs in each network slice at a fine
granularity. Their results showed that RBs in RAN slices can
be managed efficiently using the DDPG for RB allocation.
However, in this method, if the number of slices is differ-
ent from the number of slices during training, RB allocation
to slices is impossible. Therefore, RB allocation indepen-
dent of the number of slices was proposed in [25], where
Liu et al. presented a method called DeepSlicing which tackles
the problem of resource allocation in multi-slicing networks in
two stages. The first stage allocates resources to users within
a slice through DRL that learns the optimal policy in each
network slice to maximize the overall utilities of users in the
slice while satisfying the users’ SLA. The second stage coordi-
nates the resource allocation across the network slices. Similar
to our work, this work leverages the DRL advances in RAN
resource management. However, our work goes beyond the
efficient resources allocation solution to explore a large action
space containing other possible actions such as antenna tilt
optimization and load balancing between the base station to
achieve near-zero violations of slices’ SLA. To address the
problem of the long training time needed by DRL methods,
Abouaomar et al. [26] proposed a federated DRL mechanism
to collaboratively train a DRL model for bandwidth allocation
in RAN slicing. Their simulation results have shown that the
model trained using federated learning is more robust against
environment changes compared to models trained separately
by each mobile virtual network operator.

B. Deep Reinforcement Learning in Mobile Networks

The advances in DRL have led to outstanding success in
various domains. DRL has been recently proposed for solv-
ing many wireless communication problems. Several surveys
summarized these works. For example, Luong et al. [27]
provided a comprehensive overview of deep reinforcement
learning application in communications and networking such
as dynamic network access, data rate control, wireless caching,
data offloading, network security and connectivity preser-
vation. Compared to [27] which focused on single agent
problems, Feriani and Hossain [28] presented an overview of
both single-agent and multi-agent reinforcement learning as
key enabling technologies of future wireless networks. They
highlighted the potential for applying cooperative multi-agent
reinforcement learning to different domains such as mobile
edge computing (MEC), unmanned aerial vehicles (UAV)
networks and massive MIMO. Other surveys reviewed the
application of deep reinforcement learning algorithms in spe-
cific domains such as Internet of Things (IoT) [29], URLLC in
6G networks [30], vehicular networks in 6G [31] and mobile
edge caching [32]. Recently, Seid et al. [33] proposed a multi-
UAV enabled IoT edge approach for dynamic task offloading
and resource allocation leveraging multi-agent DRL methods.
They aimed to minimize the overall network computation cost
while ensuring the QoS requirements of IoT devices or UEs
in the IoT network.

In general, the previous proposals can be divided into two
groups based on the action space. The first applies deep

2754 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Q-learning to problems with a discrete action space, while
the second applies actor-critic methods to problems with a
continuous action space. Further, almost all existing work
revolves around executing a single principal action. For exam-
ple, Nasir and Guo [7] proposed a power allocation scheme
based on deep Q-learning model (DQN). Each transmitter
collects channel state information and QoS information from
several neighbors and adapts its own transmit power accord-
ingly. Also, Li et al. [34] used DQN method to tackle the
resource allocation multi-user computation offloading in wire-
less MEC. Recently, Ren et al. [35] addressed the problem of
dynamic resource allocation for MEC slicing system using
DDPG algorithm. They formulated the resource allocation
problem as Markov decision process (MDP) in which, the
wireless resources and computing resources are configured
dynamically according to the requirements of different types
of slices to maximize the network operator revenue. Similarly,
Seid et al. [36] leveraged DDPG algorithm to optimize the
computational costs and resource allocation to satisfy the QoS
of Edge IoT devices. They proposed a collaborative framework
where each agent learns from the previous offloading experi-
ences and dynamically associates the nearest computational
node with the UAV network. We refer the reader to the afore-
mentioned surveys and the references for a comprehensive
overview of previous efforts.

In this paper, we propose ICRAN as a control approach for
performance optimization based on DRL in a multi-slice RAN.
We present two variants of ICRAN: single agent and multi-
agent. ICRAN uses an actor-critic method due to its continuous
action space. This work is, to the best of our knowledge,
the first work to date that presents a DRL-based approach
that both maximizes radio resource utilization and minimizes
SLA violations simultaneously. Also, our work is the first, in
this application area, to propose the use of three inherently
different categories of actions.

IV. SYSTEM MODEL

In this section, we present the problem statement, the system
and traffic models, and our control approach.

A. Problem Definition and System Architecture

Network performance optimization represents one of the
major challenges for mobile network operators, especially in
RAN [37]. Near-future mobile networks are going to sup-
port users with different service requirements by leveraging
network slicing. Therefore, an efficient scheduling mechanism
is essential for allocating available resources to these different
types of services. Since traffic is dynamic, a static resource
allocation is bound to fall short in maximizing resource uti-
lization while maintaining the SLA. Hence, there is a need
for an adaptive control mechanism that steers the network
in response to traffic demand variations and anomalies. This
paper proposes a DRL-based framework, ICRAN, that maxi-
mizes resource utilization and minimizes SLA violations in a
multi-slice RAN.

We investigate RAN control in LTE cellular network con-
sisting of M eNBs that serve N users, who connect to

Fig. 1. The LTE reference architecture that we use in our framework.

three different slices with diverse service requirements (see
Figure 1). The number of users that connect to the three slices
is NS1, NS2 and NS3, respectively. The core network con-
tains the serving gateway (SGW), packet data network (PDN)
gateway (PGW), and the mobility management entity (MME).
Among other functions, the MME is responsible for paging
procedures of UEs upon arrival. When a new UE arrives to
the network, a logical channel is established between the UE
and eNB called a radio bearer, which also connects the UE
to IP-based networks through the evolved packet core (EPC).
The radio bearer is associated with QoS parameters based on
the application it serves. A key parameter in the respect is the
QoS Class Identifier (QCI).

We choose to focus on LTE because realistic 5G simula-
tion models are still under development. For example, the
current models do not support handovers yet [38], which is
an essential feature in mobile networks and in our framework.
Nevertheless, we believe that this choice has no impact on
the generalizability of our results to 5G networks, because we
are not making any assumption that is only limited to LTE.
Our simulation implements all the 4G core network compo-
nents (PGW, SGW, PDN, MME and EPC), UE, MAC layer, as
well as all higher protocol such as Radio Link Control (RLC),
Packet Data Convergence Protocol (PDCP), Radio Resource
Control (RRC) which closely resemble that of 5G. Unlike
4G, 5G base stations (i.e., gNBs) and UEs might support
multiple numerologies, however this feature does not affect
the functionality of ICRAN.

In our system model, we assume a DownLink (DL) dom-
inated traffic model, in agreement with today’s traffic pat-
terns [39]. Generally speaking, LTE supports two traffic
patterns:

• Guaranteed Bit-Rate (GBR): GBR traffic requires a con-
stant throughput, irrespective of the required resources it
takes to fulfill it. Voice-over-IP (VoIP) is an example of
an application that expects a GBR.

• Non-guaranteed Bit-Rate (Non-GBR): this traffic pattern
does not have rigid throughput requirements and can
use any unused resources left by guaranteed services.
Applications like Web browsing can be considered as a
non-GBR service. Based on the users’ channel conditions
and scheduler decision, the throughput is determined.

LTE introduced several QCIs to tag different traffic pat-
terns, which have been used by various works to realize the
slicing [40], [41], [42]. Here, we leverage QCI values to define
three slices that we summarize in Table I. The first slice rep-
resents the GBR service which has the strictest SLA both in

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2755

TABLE I
SLICES DEFINITION

terms of throughput and delay requirements. Both Slice 2 and
Slice 3 are non-GBR services, however, Slice 2 has a mini-
mum throughput that the network should provide. Finally, Slice
3 is the best-effort slice that uses the remaining resources.
We assume that every user is a member of only one of the
three slices. This is a reasonable assumption for the majority
of users.

B. Control Frameworks and Levers

We propose two different control architectures for ICRAN.
1) Centralized ICRAN (ICRAN-C): In this architecture, we

consider a single centralized controller (agent) that can fully
observe the network information and reconfigure the entire
network accordingly. Even though a centralized decision-
making may be the best in performance, it is usually imprac-
tical due to the potential signaling overhead. Furthermore,
in practical implementations, a centralized solution can be
slow. It is difficult for a centralized algorithm to quickly
find an optimal solution because the search space increases
exponentially as the size of the network increases [43].

2) Distributed ICRAN (ICRAN-D): To avoid the pitfalls of
centralized control, a partially centralized or a fully decen-
tralized control architecture is needed. Here, each eNB takes
its own decisions without considering other eNBs’ state and
decision, or with little information about all or some eNBs,
for example neighbouring eNBs. Having a fully independent
decentralized architecture, may result in conflicting strategies
as each eNB is essentially trying to find its own optimal
solution [43]. Therefore, in this architecture we assume the
existence of a communication channel between the eNBs to
exchange the information needed to find the optimal solution.
We can utilize the existing X2 interface (or Xn interface in 5G
stand-alone) between the eNBs (or gNBs in 5G) to exchange
information needed for RAN control.

As control is essentially the act of adapting the state of a
system in response to internal and external stimuli, a controller
needs levers to adjust the state of the system. Here, we exploit
three primitives that are available in today’s networks, which
we describe next.

1) Optimize antenna tilt: There are some parameters that
can be used to optimize the network coverage and capac-
ity. Antenna tilt is one of these parameters that can be
easily modified in an automatic way in order to optimize
the network coverage. Antenna tilt can be defined as
the inclination angle between the antenna’s main beam
and the horizontal plane [6]. The optimal antenna tilt
value for a cell depends on the tilt values of its neigh-
bors; too much downtilt can result in coverage holes,
while too little downtilt will lead to interference with

Fig. 2. Our RAN slicing model.

neighboring cells. We assume that only one cell can
update its antenna tilt at each time step. This makes it
easier to identify the impact of that change on coverage
and performance.

2) Performance triggered handovers: In conventional LTE
networks, handovers are mainly event-triggered. UEs
measure their signal quality and report it back to
the serving eNB, which uses these reports to initiate
handovers when needed. Besides this, we redefine han-
dover to include performance triggered handovers. For
instance, the intelligent controller can shift users to a
nearby eNB to enhance their performance. If the serving
eNB is becoming overloaded, some UEs, despite good
coverage, will need to switch to other eNBs for a better
service and a lower delay.

3) Optimize EPS bearer rate: Evolved Packet System (EPS)
bearer is defined with certain data rate according to
the QoS parameters: GBR, Maximum Bit Rate (MBR),
Aggregated Maximum Bit Rate (AMBR) and QCI. For
GBR type applications (e.g., VoIP) which requires a con-
stant data rate, the data rate is controlled via the GBR
parameter. For non-GBR applications, such as video
and best effort Internet (BE), which require a variable
amount of bandwidth, the traffic is controlled by the
aggregated maximum data rate (AMBR). Utilizing these
data rates parameters, we can optimize the resources
allocated in terms of deciding the optimum bearer rates
for different users dynamically according to their QoS
requirements.

V. APPROACH TO INTELLIGENT RAN CONTROL

In this section, we present the underlying network slicing
scheme, the formulation of ICRAN as a deep reinforcement
learning problem and its two architectures: ICRAN-C and
ICRAN-D.

A. RAN Slicing Model

The allocation of radio resources to slices according to their
requirements is a fundamental part of network slicing that is

2756 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

usually executed at RAN. In line with the works [22], [23]
discussed in Section III-A, we build our adaptive RAN slic-
ing scheme (see Figure 2) by modifying the existing MAC
scheduler and implementing a hierarchy of schedulers. Note
that the LTE MAC scheduler is responsible for allocating
radio resources to UEs. The frame structure of the downlink
air interface contains ten subframes of 1ms each, which is
also the transmission time interval (TTI). Besides the slice
scheduler, our slicing model comprises a slicing orchestrator
that determines the assignment of RBs to slices and instruct
the scheduler to execute that based on the operator policy. It
informs the scheduler of which slice to schedule at the current
subframe based on the QCI value. If the scheduled slice has
no data to transfer, the slice with the highest priority and data
waiting to be transferred will be scheduled. The slice sched-
uler determines the slice priority based on the QoS constraints
provided by the EPS bearer, which is associated with the QCI.
Furthermore, the slice scheduler receives a set containing the
buffer status of all UEs for each slice to determine the amount
of data to be transferred. Within each slice, RBs are assigned
to UEs using a conventional MAC scheduler that implements
the proportional fair scheduling algorithm [44]. Our control
algorithm extends this slicing scheme by adding a layer that
manipulates coverage and resource allocation in response to
network dynamics and performance degradation.

B. DRL Problem Formulation

We use deep reinforcement learning as a candidate solution
for our problem, because DRL can accommodate the com-
plexity of network dynamics. The future mobile networks are
large-scale and complex in the sense of supporting diverse
use cases which results in large state and action spaces, and
the conventional control methods may not be able to find
the optimal decision in reasonable time. Thus, we present the
ICRAN framework based on DRL environment that comprises
the real-time state of all eNBs and UEs in our slicing network.
The ICRAN agent (or a set of agents) monitors the status of
the eNBs including the attached UEs and network performance
indicators. Based on the obtained information, the agent makes
a decision whether to increase the antenna coverage, distribute
the traffic loads or adjust the data rate for a specific slice to
maximize the overall network performance and minimize SLA
violations. The decisions are made at each control interval. The
value of the control interval depends on time needed to exe-
cute the actions in the environment. The environment returns
a reward, which is calculated depending on the QoS and the
network efficiency, and then a new decision process will be
activated. In this work, we formulate this problem in two dif-
ferent architectures based on the control level: 1) single agent
DRL (i.e., centralized control) and 2) multi-agent DRL (i.e.,
decentralized control).

Formally, our centralized control problem is MDP, which
is modeled as a 4-tuple 〈S ,A, r ,P〉, where S is the state
space, A denotes the action space, r represents the reward
function and P is the state transition probability for state
s and action a. The state space involves the state of M
eNBs and all users connected to them. The agent relies on

the policy π to select actions for RAN control to maximize
the reward. The task of DRL is to find the optimal policy
π∗ : S → P(A) that maximize the expected return. The return
from a state s is defined as the sum of discounted future reward
Rt =

∑T
i=t γ

i−tr(si , ai) with a discounting factor γ ∈ [0, 1].
A deterministic policy returns actions to be taken in each per-
ceived state, while the stochastic policy returns a distribution
over actions. We define the Q-function, which measures the
expected accumulated rewards under policy π as shown below:

Qπ(st , at) = Eri≥t ,si>t∼E,ai>t∼π[Rt | st , at] (1)

According to the Bellman equation, the relation between the
Q-function and the immediate reward can be formulated as:

Qπ(st , at) = Ert ,st+1∼E[r(st , at)

+ γEat+1∼π[Q
π(st+1, at+1)]

]
(2)

We elaborate on the algorithm we choose to maximize this
Q-function later in this sequel.

For the decentralized architecture, we extend the MDP for-
mulation to the multi-agent setting taking into account the
communication between agents [45]. We define our problem
as a partially observable Markov game (POMG) for M agents
comprising of a set of states S that contains the possible
information of all agents, a set of actions A and a set of obser-
vations O for each agent. At each time step t, each agent takes
an action a(t) based on state s(t), moves to new state s(t + 1),
receives a new observation o(t + 1), and finally receives an
immediate reward r. Similar to the MDP model, the agent
in POMG also aims to find the optimal policy in order to
maximize its expected long-term discounted reward.

Next, we elaborate on the details of our formulation.
1) State Space: The RAN controller works as an agent

interacting with the network environment at every time step t.
The state of the i-th eNB at time step t, si (t), is given by:

si (t) = [DT (t),Th(t),UES1(t),UES2(t),UES3(t)] (3)

where DT(t), Th(t) are the antenna downtilt and average
throughput for the eNB respectively. UES1,UES2,UES3 are
three vectors representing the identifiers for the UEs attached
to eNB from three slices S1,S2,S3. For each UE in one of
these three list, we use the Flow Monitor module in ns-3 to
track its throughput and end-to-end delay at each time step.

2) Action Space: The action space is a vector A represent-
ing our control levers: antenna tilt optimization, traffic load
balancing and traffic shaping.

• Antenna tilt optimization. For each antenna this action
is defined by three discrete variables: [a−λ, a0, a+λ]
down-tilt, no change, up-tilt the current down-tilt of mag-
nitude λ. The minimum downtilt angle is 1◦ and the
maximum is 14◦. These are chosen to avoid excessive
uptilt/downtilt [46].

• Handover: This action handovers a specific user from a
specific slice from the current eNB to a nearby eNB.
eNBs in LTE are interconnected with the X2 interface.
If two eNBs are served by the same MME, a handover
from the source to the target eNB will take place over the
X2 interface. Only one UE at a time is requested to be

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2757

handed over. To maximize chances of handover success,
the choice of the UE depends on the UE measurement
report which contains RSRP and RSRQ values. The eNB
evaluates neighboring eNBs as potential handover targets
for this specific UE. The action space related to actions
that optimize the traffic load for eNBs, consists of three
discrete actions: [aH (UES1), aH (UES2), aH (UES3)] which
represent the handover of UEs from slices S1,S2, and S3,
respectively.

• Adjust the EPC data rate for best-effort users. To mini-
mize the SLA violations for high priority UEs, we can
reduce the aggregated maximum bit rate (AMBR) for
best-effort UEs. This action is represented by [rS3] which
is a continuous value for AMBR. We can change the rate
for only one user from UES3 at time t.

This results in a hybrid (parameterized) action space; discrete
actions and continuous actions. To unify the action space, we
relax the discrete actions into a continuous space using the
method defined in [47]. We consider the following parame-
terized action space: the discrete actions are selected from a
finite set Ad = {a1, a2, . . . , ak}, and each a ∈ Ad has a set
of real valued continuous parameters Xa ⊆ R. Hence, a com-
plete action is represented as a tuple (a, x), where a ∈ Ad is
the chosen discrete action and x ∈ Xa is the chosen parameter
to execute with action a. The whole action space A is then the
union of each discrete action with all possible parameters for
that action:

A =
⋃

a∈Ad

{(a, x)|x ∈ Xa} (4)

Our DRL approach outputs a value for each of the discrete
actions, concatenated with all continuous parameters, and the
discrete action is chosen to be the one with the maximum
output value.

Note that the previous work only considered a single cate-
gory of actions, which resulted in limiting them to solving a
single control problem.

3) Reward Function: The reward function is defined to
guide the agent/agents to make desirable decisions in order
to realize the objective of the system. Here our objective is
twofold: network throughput maximization and SLA violations
minimization. In response to the first objective, we include the
instantaneous sum of the throughput for all M eNBs as the first
term in Eq. (6). To achieve the second objective, we penal-
ize the agent for any SLA violation for UEs in the system as
defined below in Eq. (5) and presented as second term in the
reward function.

pn(t) =

{
0, if dn(t) ≤ Dn ∧ tn (t) ≥ Tn

−1, otherwise (5)

where dn(t), tn (t) represent the end-to-end delay and
throughput for UE n ∈ [1..N] respectively. Dn ,Tn are the
violation threshold of latency and throughput defined for each
slice in Table I. For example, if the end-to-end delay for a VoIP
UE is above 100ms at time t, we consider this as a violation.

To this end, we set the reward at each time step t as

log

M∑

i=1

Thi (t) + σ

N∑

n=1

pn(t) (6)

Algorithm 1 ICRAN-C Training Based on DDPG
1: Randomly initialize actor network μ and critic network Q

with parameters θμ and θQ respectively.
2: Initialize target actor network μt and target critic network

Qt with parameters θμt = θμ and θQt = θQ , respectively.
3: Initialize a replay buffer R with a capacity C and threshold

T .
4: for episode = 1, . . . ,K do
5: Receive initial observation state s0
6: for t = 1, . . . ,T do
7: Select action at = μ(st) + η according to the

current policy θμ and exploration noise η.
8: Execute action at and observer reward rt and new

state st+1

9: if SizeofR > T then
10: Sample a random minibatch of N transitions:

N = R.sample(< si , ai , ri , si+1 >)

11: Set yi = ri + γQ
′
(si+1, μ

′
(si+1|θμ′

)|θQ ′
)

12: Update critic Q by minimizing loss function:

L =
1

N

∑

i

(yi −Q(si , ai |θQ))2

13: Update the actor μ by applying policy gradient:

∇θμJ ≈
1

N

∑

i

∇aQ(s , a|θQ)|s=si ,a=μ(si)∇θμμ(s |θμ)|si

14: Update target networks:

θQ
′ ← τθQ + (1− τ)θQ

′

θμ
′ ← τθμ + (1− τ)θμ

′

15: end if
16: end for
17: end for

We use both log function and σ, which is a positive weight,
to balance between the two objectives.

C. ICRAN-C via Single-Agent DRL

In the single-agent DRL setting, owing to our continuous
action space, we choose the widely used DDPG algorithm
to find the optimal policy. DDPG is specifically adapted for
problems with a continuous action space [48], unlike the DQN,
which only works in environments with a discrete action space.
DDPG is a model free algorithm because the agent cannot
predict the future states of the environment without taking the
action. Besides, it is an off-policy method because the pol-
icy used to improve the Q-function approximation is different
from the behavior policy, used to explore the environment.

We list in Algorithm 1 the DDPG algorithm we use for
training the agent. DDPG follows a critic-actor approach [49],
in which an actor algorithm tries to output the best action and
a critic tries to predict the value function for this action. The
DDPG algorithm maintains a parameterized actor function μ to
specify the current policy by deterministically mapping states

2758 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

to a specific action. The critic Q is learned using the Bellman
equation. First, we initialize all of the critic Q and the actor
networks μ with random values of θμ and θQ respectively.
Then, we start our iterative training process (Line 4). The critic
network is trained to simulate the real Q-table using neural
networks. The actor network is trained to generate a deter-
ministic policy instead of the policy gradient which chooses a
random action from a determined distribution. For computing
optimization, the algorithm is learning in minibatches, rather
than online, therefore we initialize a replay buffer R with fixed
size in Line 3. Moreover, the replay buffer is used to store the
transitions that are sampled from the environment according to
the exploration policy and the tuple <si , ai , ri , si+1> in Line
10. When the replay buffer is full the oldest samples are dis-
carded. Within each time step t, we select an action according
to the policy μ with a certain random noise (η) and we execute
it as an exploration to find the best solution(Line 7). We store
the transition in the replay buffer R (Line 10) accordingly. Note
that in the forward pass, we compute a loss function (Line 12)
to update the critic by minimizing such loss over the chosen
random transition i chosen from the replay buffer R. We also,
update the policy μ using policy gradient (Line 13), through
the soft-update of the policy and critic parameters θQ and θμ

respectively (Line 14).

D. ICRAN-D via Multi-Agent DRL

Multi-Agent Reinforcement Learning (MARL) involves
using several agents at the same time. The simplest approach
in multi-agent settings is to use agents that learn and act inde-
pendent of each other. We attempted this approach, by having
an agent per eNB, but it did not perform well and was gen-
erally unstable. This happened because each agent’s policy
changes during training, resulting in a non-stationary envi-
ronment. In other words, a policy change by an agent will
influence the policy of the other agents and hence the lack
of coordination will lead to conflicting policies. For exam-
ple, handover actions produce ping pong effects and antenna
tilt optimization actions produce coverage holes. Accordingly,
we need to enable the agents to communicate their actions
to each other. We have therefore formulated our distributed
control problem as a cooperative multi-agent DRL problem,
where the agents interact with each other, and their reward
depends on their joint behavior. Knowing the actions taken
by all agents makes the environment stationary even when
policies change.

The training of multiple agents has long been a computa-
tional challenge. Since the complexity in the state and action
space grows exponentially with the number of agents, even
modern deep learning approaches may reach their limits [43].
If the training of agents is applied in a centralized manner, all
information such as actions, observations and rewards from
all gents should be sent to a centralized unit. In contrast to
the centralized scheme, the training can also be handled in a
distributed fashion where each agent performs local updates
on and develops an individual policy without utilizing foreign
information and this approach is infeasible in our work due to
the non-stationarity problem. Therefore, we recognize another

Algorithm 2 ICRAN-D Training Based on MADDPG
Algorithm for M eNBs

1: Initialize a replay buffer R with a capacity C and threshold
T .

2: for episode = 1, . . . ,K do
3: Initialize a random process N for action exploration
4: Receive initial observation state x
5: for t = 1, . . .,max-episode-length do
6: for each eNB i Select action ai = μ(si) + η

according to the current policy θμ and exploration
noise η.

7: Execute actions a = (a1, . . . , aM) and observe
reward r and new state x ′

8: Store (x , a, r , x ′) in replay buffer R
9: x ← x ′

10: for eNB i = 1, . . . ,M do
11: Sample a random minibatch of N transitions:

N = R.sample(< x j , aj , r j , x
′j >)

12: Set y j = r
j
i + γQ

μ′
i (x

′j , a
′
1, . . .,

a
′
M)|

a
′
k=μ

′
k (s

j
k)

13: Update critic Q by minimizing loss function:

L =
1

N

∑

j

(y j −Q
μ
i (x

j , a
j
1, . . . , a

j
M))2

14: Update the actor μ by applying policy gradient:

∇θμJ ≈
1

N

∑

i

∇aQ(s , a|θQ)|s=si ,a=μ(si)∇θμμ(s |θμ)|si

15: end for
16: Update target networks for each eNB i :

θ
′
i ← τθi + (1− τ)θ

′
i

17: end for
18: end for

training scheme adopted by [50], [51]; a centralized training
and a decentralized execution. This approach assumes the exis-
tence of a centralized controller that collects extra information
about the agents to ease training but not used during the normal
operation of the system.

To realize the multi-agent proposal, we adopt the Multi-
agent DDPG framework (MADDPG) that was proposed by
OpenAI in [50]. MADDPG extends DDPG into a multi-agent
policy gradient algorithm where decentralized agents learn a
centralized critic based on the observations and actions of all
agents. Each agent has local information and local policies
to train, but the centralized critic advises the agents on how
to update their policies. The critic is augmented with extra
information about the policies of other agents which loosen
the non-stationarity of the environment. After the training is
completed, the centralized critic is no longer needed; only
the local actors are used in the testing phase. Here in algo-
rithm 2, we consider a system with M agents, which represents
eNBs, with policies parameterized by θ = {θ1, . . . , θM },

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2759

and let π = {π1, . . . , πM } be the set of agents’ policies.
Qπ
i (x , a1, . . . , aM) is a centralized Q-function that takes as

input the actions of all agents, a1, . . . , aM , in addition to some
state information x, and outputs the Q-value for agent i. In our
problem, x consists of the state space of either all eNBs or only
the neighbouring eNBs (agents) to reduce the communication
overhead. The first lines in the algorithms (1-7) are for param-
eters initialization and exploration. MADDPG uses a replay
buffer to store the agent transitions (x , a, r , x ′) (Line 8). Then,
a batch of these transitions is sampled from the experience
replay to train agent i (Line 11). Line 13 is used to update an
agent’s centralized critic by minimizing the loss function. Note
that the centralized critic uses joint information to update its
parameters. Similar to DDPG in algorithm 1, MADDPG uses
the deterministic policy gradient to update each of the agent’s
i actor parameters (Line 14). We take the gradient with respect
to the actor’s parameters using a centralized critic as guidance
as shown below:

∇θi J (θi) = Es∼pµ,ai∼πi
[∇θi logπi (ai |si)Qπ

i (x , a1, . . . , aM)]

(7)

The most important thing to notice is that even though the
actor only has local observations and actions, the use of a cen-
tralized critic during the training phase provides information
about the optimality of the agent’s actions for the entire
system.

E. Complexity Analysis

The complexity and implementation overhead should be
kept low. This overhead may arise due to excessive signal-
ing associated with exchange of data between ICRAN and
the environment. In ICRAN-C, we assume that the network
state is fully observable by the agent. During every step exe-
cution ICRAN-C collects the current state of all M eNBs
in the network which results in communication overhead of
O(M). In contrast, in ICRAN-D which is based on multi-
agent DRL, we assume that the agents are communicating
with each other to reach the final goal simultaneously. We pro-
pose two ways of coordination between the multiple agents;
1) exchanging information with all eNBs in the system; thus
the signaling overhead for each agent isO(M−1). 2) exchang-
ing information with nearby Ḿ eNBs (Ḿ << M), here the
signaling overhead for each agent is O(Ḿ − 1). In addition
to the eNB information such as antenna tilt and transmitted
power, the exchanging information also contains a list of UEs’
performance (i.e., throughput and delay) and their slicing pro-
file. Hence, the size of the message between the eNB and the
DRL agent in both ICRAN-C and ICRAN-D is O(P) where
P represents the number of UEs associated with an eNB. This
corresponds to a few megabytes of data for an eNB serving a
million UEs.

VI. EXPERIMENTAL SETUP

For our experiments, we used the well known ns-3 network
simulator. For the reinforcement learning we used OpenAI
Gym, which is a toolkit for developing RL algorithms. To inte-
grate our network environment with Gym, we used ns3-Gym

Fig. 3. Experimental Setup.

framework [52] which simplifies exchanging observations,
actions and rewards between the RL agent and the network
environment (See Figure 3). We implement two different
architectures for ICRAN as shown in Figure 4.

A. Network Environment

We evaluated our proposed framework in an environment
consisting of 19 eNBs shown in Figure 4. We divided users
evenly amongst the three slices in use: VoIP, video and best-
effort. Further, we simulated VoIP using an ON/OFF model;
ON is the time when users are speaking and OFF is the time
when the users are not. We set the On-Time and Off-Time to
0.352 seconds and 0.650 seconds, respectively, to ensure a bit
rate of 64 Kbps. The video traffic was simulated using Evalvid
module1 which streams video frames. Finally, we setup the
best-effort application using the UDP echo module in ns-3.
The VoIP traffic was mapped to QCI 1, the video traffic was
mapped to QCI 7 and the best-effort traffic was mapped to
QCI 9 and each user received traffic from only one applica-
tion. Users exchange traffic with end points outside the mobile
networks (i.e., the remote hosts in Figure 1).

The arrival of users of each slice S followed a Poisson pro-
cess with an arrival rate of λ = 5 users/S/eNB throughout the
coverage area of the cell. 50% of the users were stationary,
25% were vehicular users moving with an average speed of
30 km/h and the rest 25% were walking at 0.8 m/s. Table II
summarizes the simulation parameters.

B. Simulation Scenarios

For our evaluation, we considered two specific scenarios
that capture extreme network conditions to help assessing the
effectiveness of the proposed control mechanism.

1) Network Congestion: When the required resources by
all the slices are less than the resources provided by the

1https://gitlab.com/gercom/evalvid-ns3

2760 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 4. High-Level architecture for ICRAN including the network topology: a) ICRAN-C: a centralized single-agent receives a state from each eNB and
chooses an action to perform to get the reward. b) ICRAN-D: partially decentralized multi agents controllers; each agent is associated with an eNB with some
communication between the agents.

TABLE II
SIMULATION PARAMETERS

network, the decision making by the controller is easy.
Therefore, we choose high network loads scenarios that require
from the controller to obtain a complete image of the network
and make intelligent decisions to achieve high end-to-end
performance while minimizing SLA violations.

2) Network Failure: In this scenario, we generate some
cell faults during the simulation to evaluate whether the
proposed control mechanism can adapt quickly to the
changes. Specifically, we randomly assign faults like excessive
uptilt/downtilt to one cell. Excessive uptilt/downtilt is sim-
ulated using extreme values for the antenna downtilt which
are [0, 1]◦ for excessive antenna uptilt and [16, 15, 14]◦ for
excessive antenna downtilt.

C. Reinforcement Learning Setup

In this experiment, inspired by the work in [48], we
used fully connected neural networks to implement the actor
and critic of DDPG and MADDPG that we describe in
Algorithms 1 and 2. For the actor network, we use one input
layer, two hidden layers and one output layer. The neuron
numbers for these layers are 16, 64, 32, 8, respectively. The
critic network comprises a one input layer, one hidden layer
and one output layer with neuron numbers of 24, 64, 1, respec-
tively. For the single agent training, we set the learning rate of
actor and critic in Algorithm 1 to 0.0001 and 0.001, respec-
tively. While for multi-agent training, we use learning rate of

TABLE III
HYPER-PARAMETERS FOR ICRAN

0.0005 and 0.001 for actor and critic networks in Algorithm 2.
Additionally, for both the DDPG and MADDPG algorithms,
we sample after every other 100 timesteps, and sample a batch
size of 32 by episode using replay buffer size of 10000. We
set τ , soft update of target, to 0.01, and the discount fac-
tor γ to 0.99 , which places more focus on the immediate
reward. To balance the two components of the reward func-
tion we use σ = 1.25. In order to find suitable values for the
hyper-parameters, we start with the original values proposed in
[48], [50]. Then through extensive simulations and grid search,
we adjusted some of the values based on the performance
of the algorithms. All these parameters are summarized in
Table III.

VII. PERFORMANCE EVALUATION

A. Overview of the Evaluation

ICRAN is evaluated based on whether it achieves a network
performance that satisfies the SLA requirements for slices
while maximizing radio resource utilization. We conduct four
stages of evaluation. The first stage looks at the training phase
of ICRAN and its convergence performance (Section VII-B).
The second stage investigates the decisions taken by the
ICRAN agent to minimize the number of SLA violations after
training and why ICRAN outperforms other decision-making
approaches (Section VII-C). In the third stage, we compare
ICRAN to some baselines and state-of-the-art methods in
terms of physical resources utilization and SLA satisfaction
(Section VII-D and Section VII-E). Finally, we study the
generalized performance of ICRAN in terms of throughput and

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2761

Fig. 5. The average accumulated reward that is achieved by ICRAN-C,
Greedy and Random approaches. The envelope shows standard deviation.

delay under different levels of network load (Section VII-E).
Every scenario in this section is simulated 50 times.

B. Training Performance

We compare the average reward and convergence
performance of the ICRAN-C to those of a random and a
greedy methods. The random method selects actions in the
action space in a uniformly random fashion. The greedy algo-
rithm picks the best action without taking into consideration
the long-term effect of that decision. It essentially measures
the immediate impact of taking an action on throughput and
SLA violations. Then updates a state action table to track
how effective an action is. To add some randomness, which
allows the algorithm to explore the action space, we use
an epsilon-greedy algorithm which adds randomness when
deciding between actions. The algorithm chooses the action
randomly with a probability ε which will make the algorithm
explores other actions as well. Most of the time, the algorithm
selects the best action which result in a high reward with
probability 1 − ε. We try different values for ε and choose
0.1, which results in the best reward. Figure 5 shows that
the ICRAN-C achieves a significantly higher reward than the
other two alternatives. Reaching this reward level happens rel-
atively fast, after 500 training episodes. We also note, unlike
for the other two strategies, that the achieved reward exhibits
low variability.

In Figure 6, we plot the average reward for the ICRAN-D.
Here, we compare two learning methods. In the first method,
the centralized critic uses information from all agents (red
curve), while in the second learning method it uses only
information from adjacent agents (blue curve). We observe
a negligible difference between the two training approaches
in our simulation scenario which has 19 eNB. However, we
believe a larger network topology can capture the difference
between the two learning methods. There are two differences
between ICRAN-D and ICRAN-C. The former takes 4x the
time the latter takes to converge. This difference holds, even
if we change the learning rate. Further, the average reward of
ICRAN-D is slightly lower but clearly higher than the greedy
and random strategies.

Fig. 6. The average reward of ICRAN-D for two different learning methods
in the training. Method 1: Critic network of any agent receives all policy
information of all agents in the system. Method 2: Critic network of any
agent only receives policy information of nearby agents in the system. The
envelope shows the standard deviation.

C. Why Does ICRAN Outperform Other Methods?

ICRAN clearly achieves a higher reward compared to the
greedy approach, which resembles the way a human operator
would behave. Thus, it is important to understand the strategies
that ICRAN follows to achieve this. To this end, we explore
the way ICRAN and the greedy approaches behave under three
different scenarios. A scenario is a single simulation snapshot,
that is one realization, that lasts 20 time steps. Considering a
single realization helps in gauging the impact of each action.
The three scenarios are an overloaded network, a failure of an
eNB in an overloaded network and a network that is loaded
slightly below its full capacity. For each scenario, we track
the actions that different approaches take and their impact on
reducing SLA violations.

For Snapshot 1 (see Figure 7a), which represents a network
congestion scenario with a network load level of 120%.
ICRAN-C (blue curve) is able to reduce the SLA violations
from 63 to 30, while the greedy algorithm (red curve) ends up
with 49 violations. As expected, there is a mismatch between
the actions taken by the two approaches. We observe that,
unlike the greedy approach, some of the actions that ICRAN-C
takes do not result in an immediate reduction in SLA viola-
tions. However, these actions lead to a significant drop in SLA
violations in the following time steps. An example of this is
the consecutive antenna tilt optimization, handover and data
rate adjustment actions that are executed at time steps 7, 8
and 9. In the second snapshot in Figure 7b, we simulate the
same network load level, i.e., 120% and at time step = 10 we
introduce a failure in one eNB. The number of SLA violations
jumps following the failure. The greedy algorithm handles this
situation by following a sequence of handover actions to move
the UEs attached to the failed eNB to nearby eNBs. This
strategy minimizes the SLA violations by one at each time
step. However, the ICRAN-C alternates between antenna tilt
optimization and handover actions. We can observe that data
rate adjustments actions are unlikely taken by ICRAN-C in
this situation. ICRAN-C’s strategy is to increase the coverage
of the nearby eNBs’ by adjusting their antenna tilt and at the

2762 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 7. Action strategies taken by ICRAN-C(blue) and the greedy algorithm (red) under three testing scenarios.

same time rely on the automatic handover that the LTE system
provides. This strategy helps ICRAN-C to mitigate the fail-
ure in a few time steps. Finally, the third scenario, which we
depict in Figure 7c, corresponds to a network that is loaded at
90%. Accordingly, an optimal control algorithm must be able
to ensure zero SLA violations. ICRAN-C indeed manages to
achieve that, while the greedy algorithm fails. The main reason
is that the greedy algorithm chooses to take the same action
sequentially through time steps as long as the SLA violations
decrease. This strategy leads to a slow decrease or increase in
the number of SLA violations.

Takeaways: ICRAN outperforms the greedy approach in
minimizing SLA violations. It achieves this by executing con-
trol actions that do not only focus on the immediate reduction
of SLA violations. Another aspect to ICRAN is its alterna-
tion between available control actions. This strengthens the
case for multi-action control strategies that prioritize long term
reward. Note that the greedy strategy resembles the manual
troubleshooting that is common in today’s networks.

D. Resource Utilization Efficiency

Having seen that ICRAN converges to finding optimal con-
trol sequences, we now turn to evaluating ICRAN in practice.
We check whether ICRAN can lead to an efficient resource uti-
lization in comparison to two default approaches that resort to
resource reservation and over provisioning. The first approach,
which we call Static Slicing allocates 50%, 40% and 10% of
the RBs to S1,S2 and S3, respectively. The traditional LTE
scheduler is then used to assign RBs within each slice. The
second approach, Dynamic Slicing, besides assigns RBs to
slices, it adaptively reassign RBs that are not used by a higher
priority slice to a lower priority one. Note that ICRAN com-
bines dynamic slicing and DRL (see Section V). Moreover,
we compare ICRAN against two recent works from state-
of-the-art. We choose these methods because they employ
diverse approaches and have shown excellent performance in
RAN resources management among network slices. The first
work is DeepSlicing [25] that leverages a DRL algorithm,
namely DDPG, to allocate the radio resources to users within
a slice. For each slice there is a DRL agent that learns the
optimal policy of allocating resources to users by observing
the users’ utility. The agent is penalized if the minimum utility
requirement of users is not satisfied. Coordination of physical

resources among network slices is formulated as a quadratic
optimization problem aiming to maximize the sum-utility of
all network slices. We implement and simulate DeepSlicing in
our ns3 environment setup in Section VI; we implement three
DDPG agents; each for each slice to allocate the resources
to users in the network slice, i.e., action space. The reward
function is penalizing the DDPG agent if the minimum utility
requirement of the users is not satisfied. On the top of the
DDPG agents, we solve the slices coordinating problem as a
quadratic programming using the optimization tool CVXPY2

which is an open source Python-embedded library for convex
optimization problems. We train the three DDPG agents on one
eNB until convergence, and then use them in all eNBs during
inference. The second work is TNSM-21 [24] which is a data-
driven resource management method to support RAN slicing.
Based on monitoring RAN information namely, CQI reports
collected from the base stations, they calculate the amount of
physical resources to allocate per slice to meet the target KPIs.
Similar to our proposed slicing model in Section IV, in this
work the authors presented a slice orchestrator that is responsi-
ble for managing slices. Based on the UE channel quality from
the CQI report, the slice orchestrator translates the CQI to the
maximum data rate per RB based on [53]. Two different algo-
rithms are being proposed for the calculation of the number of
RBs per slice based on the slice requirements. For guaranteed
latency slice, the number of RBs are calculated based on the
queue model M/M/1/K to estimate the latency of the pack-
ets. Beside, the average packet size of the latency-constrained
application and the maximum data rate provided by one RB,
we can calculate the number of RB for this slice. For through-
put guaranteed slice, the number of RBs is equal to (or greater
than) the aggregate data rate needed by the slice for all users.
We implement this algorithm in our slice orchestrator without
implementing CQI overhead optimization method defined in
this work. We frequently monitor the CQI value for users and
map it to the maximum data rate for RB. However, we add
additional case to the algorithm to cover the third best-effort
slice, which assigns the remaining resource blocks to this slice.

Figure 8 shows the fraction of utilized RBs by each
approach under different levels of network load. Both static
and dynamic slicing achieve lower RBs utilization compared

2https://www.cvxpy.org/

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2763

Fig. 8. Resource blocks utilization under different levels of network load.

with other methods. As expected dynamic slicing outperforms
static slicing, which fails to fully utilize available resources
even at lower levels of load due to its rigidity. TNSM-21 shows
improvement in RBs utilization efficiency over dynamic slic-
ing because it allocates only the required number of RBs that
satisfy the slice requirements. However, because the RBs are
reserved, they are not actually used until needed, thus there
is room for improvement. DeepSlicing outperforms all meth-
ods at low network loads, i.e., 50%, 75% and 100% because
it optimizes the RBs between the slices besides the resources
allocation to individual users within the slice. The difference
between DeepSlicing and ICRAN is marginal though. In a
highly congested network, i.e., 200% load, ICRAN-C results
in 97% median RBs utilization efficiency, which is higher than
DeepSlicing’s. This is because ICRAN-C attempts to perform
a network-wide optimization rather than local optimization.
DeepSlicing outperforms ICRAN-D, as the latter lacks the
overall view of the network compared to ICRAN-C.

Takeaways: The DRL-based methods clearly outperforms
the other non-DRL method. DeepSlicing and ICRAN-C
demonstrate a comparable efficiency with DeepSlicing leading
at lower network load (i.e., 100% or less) values and ICRAN-C
leading at extreme levels of load, which is more challenging.

E. Minimization of SLA Violations

We took a closer look at the performance of ICRAN in
minimizing the number of SLA violations. The two panels in
Figure 9 show the number of SLA violations for the top two
slices in terms of priority (Slice1, Slice2) achieved by differ-
ent methods for different levels of network congestion. The
basic slicing methods, i.e., static and dynamic demonstrate a
poor performance in minimizing the number of SLA violations
because they do not consider satisfaction of the slice require-
ments, when allocating RBs to a slice. However, we observe
that DRL-based methods, namely ICRAN-C, ICRAN-D and
DeepSlicing outperform TNSM-21 for both slices because this
approach does not leverage any domain knowledge about the
nature of the available actions, the system’s state transition
dynamics, and its reward function. Therefore, TNSM-21 can
only allocate the minimum resources calculated by the algo-
rithm and serve accordingly a specific number of users in
Slice1 and Slice2. Overall, ICRAN-C and ICRAN-D consis-
tently outperform DeepSlicing. This difference becomes more
remarkable as the network load increases. For example, when
the network is 200% loaded, DeepSlicing results in 64% and
59% higher SLA violations in Slice1 compared to ICRAN-C

Fig. 9. Number of SLA violations, when using ICRAN-C, ICRAN-
D, DeepSlicing and TNSM-21, as network load varies for (a) Slice1 and
(b) Slice2.

and ICRAN-D, respectively. The is because of the large action
space for ICRAN. While ICRAN is giving priority to Slice1,
DeepSlicing is treating both slices equally based on their
defined SLA. However, ICRAN-C outperforms ICRAN-D in
reducing the number of SLA violations, this is mainly due
to the design of ICRAN-C which has a full observability of
the network, while ICRAN-D has a partial observability where
agents have access only to information of nearby eNBs. While
the difference is generally small, both approaches respect the
priority of slices. We note the trade-off between achieving
efficient resource utilization and the minimization of SLA vio-
lations. ICRAN succeeds in achieving both, while DeepSlicing
focuses on the former, hence its slightly better performance
in RB utilization when the network is lightly to moderately
loaded. However, this better performance does not translate to
the best performance in terms of reducing SLA violations.

Takeaways: ICRAN outperforms the other methods in min-
imizing the number of SLA violations in Slice1 and Slice2
and considers the priority of the slices in allocating resources.
The remarkable SLA violations reduction of ICRAN can be
attributed to, (i) ICRAN incorporates the violation of slices’
SLA into the reward function, (ii) ICRAN optimizes for the
overall network which allows to utilize the physical resources
efficiently to minimize the number of SLA violations for the
whole network, and (iii) the larger action space that allows
for quickly finding a sequence of actions that strike a bal-
ance between quality assurance and resource utilization. This
confirms the need for a multi-objective reward function and a
larger action space.

F. Network Performance

We now proceed to quantify the throughput and delay expe-
rienced by users in different slices, when using ICRAN, static

2764 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 10. Network performance under different levels of network load.

slicing, dynamic slicing, DeepSlicing and TNSM-21 as the
network load increases. Figure 10 shows the average user
throughput and average packet delay per slice for different
levels of network load along with the standard deviation. All
methods try to maintain a constant throughput for the VOIP
slice. However, ICRAN ensures both the highest throughput
of 0.143Mbps(±0.01) and lowest delay of 72ms(±9) when
the network load is 200% (see Figures 10a and 10d).

In the case of video traffic, as the network load increases, the
average user throughput for all methods falls (see Figure 10b).
For high network loads, ICRAN-C outperforms all approaches,
while DeepSlicing achieves a slightly higher throughput than
ICRAN-C when the number of users per slice is low. For
example, when the network load is 200%, ICRAN-C outper-
forms DeepSlicing by 20% in throughput. In contrast, when
the network load is 50%, Deepslicing results in 7% higher
throughput than ICRAN-C and 15% than ICRAN-D. This is
because DeepSlicing’s agent is awarded based on the maxi-
mum throughput per base station. The agent observes only the
corresponding base station and cannot recognize the state of
other base stations to take further actions when the network
is congested. TNSM-21 exhibits the same results as dynamic
slicing with little improvement. When looking at delay both
ICRAN approaches clearly outperform the other four methods
(see Figure 10e). When the network load is 200%, ICRAN
results in an average delay that is 200%, 116%, 100% and
79% lower than that of static slicing, dynamic slicing, TNSM-
21 and DeepSlicing, respectively. This is due to the reward
function defined in ICRAN which directly optimizes for both
throughput and delay.

Finally, for the best effort traffic, the average through-
put decreases linearly, for all methods, as the network load
increases from 50% to 125% (Figure 10c). ICRAN achieves
a higher throughput for load levels lower than 125%. The
throughput drops to a minimal level for load levels higher

than 125%. For ICRAN, this is expected, since it reduces the
data rate for best effort UEs to minimize the SLA violations
for high priority slices. TNSM-21 achieves lower through-
put regardless of the network load level, because the method
is designed to allocate RBs to throughput-constrained and
delay-constrained slices. The remaining RBs are allocated to
best-effort UEs. There are no differences in delay between
ICRAN and the other methods when the network is not loaded,
we however record a slight difference, in favor of ICRAN, as
the load increases (see Figure 10f). We also note that the ben-
efit from using ICRAN is not limited to high load cases. It
consistently delivers a better performance at all levels of load.

Takeaways: ICRAN demonstrates its superiority in network
performance in terms of throughput and delay for the different
slices. For VOIP traffic, all methods try to maintain a con-
stant throughput, however, both ICRAN approaches achieve
approximately 71%, 22%, 24% and 16% higher throughput
compared with static slicing, dynamic slicing, TNNSM-21 and
DeepSlicing when the network is overloaded. Also, ICRAN
ensures the minimum delay in VOIP slice. In video slice,
DeepSlicing shows a slight improvement in throughput over
ICRAN when the number of users is low. This is due to
DeepSlicing reward function that maximize for throughput at
the base station. However, when the number of user increases,
ICRAN performs better. For the delay, ICRAN results in
the minimum delay under different network loads. ICRAN
exhibits the same behavior for best-effort traffic.

VIII. DISCUSSION

Self-driving RAN: We have demonstrated that it is possi-
ble to develop a multi-objective automated control mechanism
for managing the performance in a multi-slice RAN. In the
course of this work, we have identified a number of key
insights that we believe are pertinent to efforts that aim to

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2765

realize a fully self-driving RAN. First, the key insight behind
ICRAN is that the success in achieving the control objec-
tives is due to the collective behaviour of all eNBs in the
network. This is evident when comparing ICRAN to slicing
methods and other recent works. We accordingly believe that
control strategies that depend on the joint decision instead of
the independent decisions of system components will be key
to realizing self-driving RANs. Second, ensuring an optimal
or near optimal network-wide control requires strategies that
look beyond the immediate reward. Considering several time
steps ahead helps avoiding actions that only result in local
optimization but lead to service degradation in other parts
of the network. Accordingly, heuristics and threshold-based
control approaches will always likely fail in ensuring such
optimality. Third, the success of ICRAN can also be attributed
to the design of the reward function and the use of three dif-
ferent types of actions, which are both novel. Our reward
function is able to guide the agent to the optimal decision
through exploration and exploitation of various actions from
different categories. The key takeaway point here is that a
multi-objective control requires a diverse set of actions and
reward functions that reflect that.

Implementation Consideration: Although, simulations con-
firm the effectiveness of ICRAN, it must be also practi-
cally implementable. In general, DRL does not make strong
assumptions about the target system, however, we have some
simulation-based assumptions, which we need to address in
the real implementation. For example, we need to define
the communication channels between the eNBs and the cen-
tralized agent in case of ICRAN-C and between the agents
in ICRAN-D. Such channels and the respective protocols
can be implemented as application level services to avoid
the need for adding them to the standards. We believe
that the O-RAN architecture, due to its flexibility, can ease
the task of implementing such protocols [54]. Furthermore,
ICRAN assumes the availability of detailed telemetry to
track the state of the network. Such telemetry does not
exist today but new approaches to telemetry like in-band
telemetry seem promising since they balance overhead and
utility [55].

Limitations and the way ahead: Even though ICRAN
has succeeded in achieving its aim to optimize the overall
network performance while satisfying the QoS requirements
in multi-slice RAN, we highlight a number of limitations and
enhancements that we plan to address in the future work. First,
to support the increasing heterogeneous services and complex
networks, we need to include other types of traffic with dif-
ferent patterns such as IoT. Second, we need to investigate
the impact of the control interval on ICRAN decisions. We
examine values of 1 sec, 5 secs and 10 secs, and decide to
use 10 secs since this matches the time needed for performing
our control actions. Shorter timings yielded poor performance
results. Another issue is that our topology is relatively small,
which may raise concerns about whether ICRAN can scale
to much bigger networks. We believe that our preliminary
results which have shown minimal differences between fully
and partial observability distributed learning approaches are
promising.

IX. CONCLUSION

In this paper, we have presented ICRAN, a novel control
framework for optimizing resources utilization while minimiz-
ing SLA violations in a multi-slice RAN. Inspired by the
remarkable achievements of deep reinforcement learning in
solving complex control problems in highly dynamic envi-
ronments such as mobile network, ICRAN comprises two
DRL-based architectures: centralized ICRAN and distributed
ICRAN. Through extensive simulations using ns-3, we have
confirmed the substantial advantages granted by ICRAN over
other slicing schemes and recent works in terms of resources
utilization and QoS assurance. ICRAN is, to the best of our
knowledge, the only framework that simultaneously addresses
multiple RAN problems.

REFERENCES

[1] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Commun. Mag., vol. 55,
no. 5, pp. 94–100, May 2017.

[2] “Network Automation: Efficiency, Resilience, and the Pathway to
5G.” MIT. [Online]. Available: https://www.technologyreview.com/s/
613533/network-automation-efficiency-resilience-and-the-pathway-to-
5g/ (Accessed: Nov. 10, 2021).

[3] A. G. Spilling, A. R. Nix, M. A. Beach, and T. J. Harrold, “Self-
organisation in future mobile communications,” Electron. Commun. Eng.
J., vol. 12, no. 3, pp. 133–147, 2000.

[4] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” 2017, arXiv:1710.11583.

[5] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia,
“Intelligence and learning in O-RAN for data-driven NextG cellular
networks,” IEEE Commun. Mag., vol. 59, no. 10, pp. 21–27, Oct. 2021.

[6] F. Vannella, G. Iakovidis, E. Al Hakim, E. Aumayr, and S. Feghhi,
“Remote electrical tilt optimization via safe reinforcement learning,” in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2021, pp. 1–7.

[7] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for
dynamic power allocation in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2239–2250, Oct. 2019.

[8] J. Mei, X. Wang, K. Zheng, G. Boudreau, A. B. Sediq, and
H. Abou-Zeid, “Intelligent radio access network slicing for service pro-
visioning in 6G: A hierarchical deep reinforcement learning approach,”
IEEE Trans. Commun., vol. 69, no. 9, pp. 6063–6078, Sep. 2021.

[9] Y. Kim and H. Lim, “Multi-agent reinforcement learning-based resource
management for end-to-end network slicing,” IEEE Access, vol. 9,
pp. 56178–56190, 2021.

[10] A. P. Iyer, L. E. Li, and I. Stoica, “Automating diagnosis of cellular
radio access network problems,” in Proc. 23rd Annu. Int. Conf. Mobile
Comput. Netw., 2017, pp. 79–87.

[11] G. Brockman et al., “OpenAI gym,” 2016, arXiv:1606.01540.
[12] “ns-3 Network Simulator.” [Online]. Available: https://www.nsnam.org/

(Accessed: Nov. 10, 2021).
[13] M. Iwamura, “NGMN view on 5G architecture,” in Proc. IEEE 81st

Veh. Technol. Conf. (VTC Spring), 2015, pp. 1–5.
[14] M. Richart, J. Baliosian, J. Serrat, and J.-L. Gorricho, “Resource slic-

ing in virtual wireless networks: A survey,” IEEE Trans. Netw. Service
Manag., vol. 13, no. 3, pp. 462–476, Sep. 2016.

[15] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 2429–2453, 3rd Quart., 2018.

[16] S. Wijethilaka and M. Liyanage, “Survey on network slicing for Internet
of Things realization in 5G networks,” IEEE Commun. Surveys Tuts.,
vol. 23, no. 2, pp. 957–994, 2nd Quart., 2021.

[17] Y. Wu, H.-N. Dai, H. Wang, Z. Xiong, and S. Guo, “A survey of
intelligent network slicing management for industrial IoT: Integrated
approaches for smart transportation, smart energy, and smart factory,”
IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 1175–1211, 2nd Quart.,
2022.

[18] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

2766 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

[19] ETSI NFV, “Network functions virtualization: An introduction, bene-
fits, enablers, challenges & call for action,” Darmstadt, Germany, SDN
OpenFlow World Congr., White Paper, 2012.

[20] T. Taleb, A. Ksentini, and B. Sericola, “On service resilience in cloud-
native 5G mobile systems,” IEEE J. Sel. Areas Commun., vol. 34, no. 3,
pp. 483–496, Mar. 2016.

[21] “O-RAN: Towards an open and smart RAN,” Alfter, Germany, O-RAN
Alliance, White Paper, Oct. 2018.

[22] D. Nojima et al., “Resource isolation in RAN part while utilizing ordi-
nary scheduling algorithm for network slicing,” in Proc. IEEE 87th Veh.
Technol. Conf. (VTC Spring), 2018, pp. 1–5.

[23] R. Shrivastava, K. Samdanis, and A. Bakry, “On policy based RAN
slicing for emerging 5G TDD networks,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), 2018, pp. 1–6.

[24] S. Bakri, P. A. Frangoudis, A. Ksentini, and M. Bouaziz, “Data-driven
RAN slicing mechanisms for 5G and beyond,” IEEE Trans. Netw.
Service Manag., vol. 18, no. 4, pp. 4654–4668, Dec. 2021.

[25] Q. Liu, T. Han, N. Zhang, and Y. Wang, “DeepSlicing: Deep reinforce-
ment learning assisted resource allocation for network slicing,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1–6.

[26] A. Abouaomar, A. Taik, A. Filali, and S. Cherkaoui, “Federated learning
for RAN slicing in beyond 5G networks,” 2022, arXiv:2206.11328.

[27] N. C. Luong et al., “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133–3174, 4th Quart., 2019.

[28] A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement
learning for AI-enabled wireless networks: A tutorial,” IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1226–1252, 2nd Quart., 2021.

[29] L. Lei, Y. Tan, K. Zheng, S. Liu, K. Zhang, and X. Shen, “Deep
reinforcement learning for autonomous Internet of Things: Model, appli-
cations and challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 1722–1760, 3rd Quart., 2020.

[30] C. She et al., “A tutorial on ultrareliable and low-latency communica-
tions in 6G: Integrating domain knowledge into deep learning,” Proc.
IEEE, vol. 109, no. 3, pp. 204–246, Mar. 2021.

[31] F. Tang, Y. Kawamoto, N. Kato, and J. Liu, “Future intelligent and
secure vehicular network toward 6G: Machine-learning approaches,”
Proc. IEEE, vol. 108, no. 2, pp. 292–307, Feb. 2020.

[32] H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, “Deep reinforce-
ment learning for mobile edge caching: Review, new features, and open
issues,” IEEE Netw., vol. 32, no. 6, pp. 50–57, Nov./Dec. 2018.

[33] A. M. Seid, G. O. Boateng, B. Mareri, G. Sun, and W. Jiang, “Multi-
agent DRL for task offloading and resource allocation in multi-UAV
enabled IoT edge network,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 4, pp. 4531–4547, Dec. 2021.

[34] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for MEC,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), 2018, pp. 1–6.

[35] Y. Ren, A. Guo, C. Song, and Y. Xing, “Dynamic resource alloca-
tion scheme and deep deterministic policy gradient-based mobile edge
computing slices system,” IEEE Access, vol. 9, pp. 86062–86073, 2021.

[36] A. M. Seid, G. O. Boateng, S. Anokye, T. Kwantwi, G. Sun, and G. Liu,
“Collaborative computation offloading and resource allocation in multi-
UAV-assisted IoT networks: A deep reinforcement learning approach,”
IEEE Internet Things J., vol. 8, no. 15, pp. 12203–12218, Aug. 2021.

[37] J. Pérez-Romero, O. Sallent, R. Ferrús, and R. Agustí, “Knowledge-
based 5G radio access network planning and optimization,” in Proc. Int.
Symp. Wireless Commun. Syst. (ISWCS), 2016, pp. 359–365.

[38] “5G-Lena Module.” [Online]. Available: https://5g-lena.cttc.es
(Accessed Nov. 15, 2021).

[39] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, “Large-scale mea-
surement and characterization of cellular machine-to-machine traffic,”
IEEE/ACM Trans. Netw., vol. 21, no. 6, pp. 1960–1973, Dec. 2013.

[40] A. Aghmadi, I. Bouksim, A. Kobbane, and T. Taleb, “A MTC traffic gen-
eration and QCI priority-first scheduling algorithm over LTE,” in Proc.
Int. Conf. Wireless Netw. Mobile Commun. (WINCOM), 2015, pp. 1–6.

[41] P. H. A. Rezende and E. R. M. Madeira, “An adaptive network slicing
for LTE radio access networks,” in Proc. Wireless Days (WD), 2018,
pp. 68–73.

[42] H.-S. Chuang, S.-L. Hsieh, and C.-F. Wu, “A channel-aware down-
link scheduling scheme for real-time services in long-term evolution
systems,” in Engineering Innovation and Design. Boca Raton, FL, USA:
CRC Press, 2019, pp. 337–343.

[43] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning:
A survey,” Artif. Intell. Rev., vol. 55, pp. 895–943, Apr. 2021.

[44] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda,
“Downlink packet scheduling in LTE cellular networks: Key design
issues and a survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 2,
pp. 678–700, 2nd Quart., 2012.

[45] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Machine Learning Proceedings. Amsterdam, The
Netherlands: Elsevier, 1994, pp. 157–163.

[46] A. Gómez-Andrades, P. Muñoz, E. J. Khatib, I. de-la Bandera, I. Serrano,
and R. Barco, “Methodology for the design and evaluation of self-
healing LTE networks,” IEEE Trans. Veh. Technol., vol. 65, no. 8,
pp. 6468–6486, Aug. 2016.

[47] M. Hausknecht, P. Mupparaju, S. Subramanian, S. Kalyanakrishnan, and
P. Stone, “Half field offense: An environment for multiagent learning
and ad hoc teamwork,” in Proc. AAMAS Adaptive Learn. Agents (ALA)
Workshop, 2016, pp. 1–7.

[48] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

[49] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Advances in Neural Information Processing Systems. Cambridge, MA,
USA: MIT Press, 2000, pp. 1057–1063.

[50] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,”
2017, arXiv:1706.02275.

[51] J. N. Foerster, Y. M. Assael, N. De Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” 2016,
arXiv:1605.06676.

[52] P. Gawłowicz and A. Zubow, “ns-3 meets OpenAI gym: The playground
for machine learning in networking research,” in Proc. 22nd Int. ACM
Conf. Model. Anal. Simul. Wireless Mobile Syst., 2019, pp. 113–120.

[53] LET; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
Layer Procedures, V.15.2.0, Release 15, 3GPP standard TS 36.213,
Oct. 2018.

[54] A. Garcia-Saavedra and X. Costa-Pérez, “O-RAN: Disrupting the vir-
tualized RAN ecosystem,” IEEE Commun. Stand. Mag., vol. 5, no. 4,
pp. 96–103, Dec. 2021.

[55] L. Tan et al., “In-band network telemetry: A survey,” Comput. Netw.,
vol. 186, Feb. 2021, Art. no. 107763.

Azza H. Ahmed (Member, IEEE) received the mas-
ter’s degree from the University of Nottingham in
2012. She is currently pursuing the Ph.D. degree
with the Simula Metropolitan Center for Digital
Engineering, Oslo, Norway. Her research interests
include communication networks management and
control, network performance optimization, network
automation, and machine learning to solve networks
problems.

Ahmed Elmokashfi received the Ph.D. degree
from the University of Oslo in 2011. He is a
Research Professor with the Simula Metropolitan
Center for Digital Engineering in Norway. He
is currently working as the Head of the Center
for Resilient Networks and Applications, which is
part of the Simula Metropolitan Center, which is
funded by the Norwegian Ministry of Transport
and Communication. In particular, he focused on
studying resilience, scalability, and evolution of the
Internet infrastructure; the measurement and quan-

tification of robustness in mobile broadband networks; and the understanding
of dynamical complex systems. Over the past few years, he has been lead-
ing and contributing to the development, operation and management of the
NorNet testbed infrastructure, which is a countrywide measurement setup for
monitoring the performance of mobile broadband networks in Norway. His
research interests lie in network measurements and performance.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

