
applied
sciences

Article

Pure Random Orthogonal Search (PROS): A Plain and Elegant
Parameterless Algorithm for Global Optimization

Vagelis Plevris 1,2,* , Nikolaos P. Bakas 3 and German Solorzano 2

����������
�������

Citation: Plevris, V.; Bakas, N.P.;

Solorzano, G. Pure Random

Orthogonal Search (PROS): A Plain

and Elegant Parameterless Algorithm

for Global Optimization. Appl. Sci.

2021, 11, 5053. https://doi.org/

10.3390/app11115053

Academic Editor: Federico Divina

Received: 11 May 2021

Accepted: 26 May 2021

Published: 29 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil and Architectural Engineering, Qatar University, Doha P.O. Box 2713, Qatar
2 Department of Civil Engineering and Energy Technology, OsloMet—Oslo Metropolitan University,

Pilestredet 35, 0166 Oslo, Norway; germanso@oslomet.no
3 Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi

Street, Nicosia 2121, Cyprus; n.bakas@cyi.ac.cy
* Correspondence: vplevris@qu.edu.qa; Tel.: +974-44034185

Featured Application: The proposed optimization method is a general tool which can have nu-
merous applications in various mathematical, engineering and technological fields. Due to its
simplicity and straight-forward implementation, it can easily be applied by non-experts to ob-
tain optimized results.

Abstract: A new, fast, elegant, and simple stochastic optimization search method is proposed, which
exhibits surprisingly good performance and robustness considering its simplicity. We name the
algorithm pure random orthogonal search (PROS). The method does not use any assumptions, does
not have any parameters to adjust, and uses basic calculations to evolve a single candidate solution.
The idea is that a single decision variable is randomly changed at every iteration and the candidate
solution is updated only when an improvement is observed; therefore, moving orthogonally towards
the optimal solution. Due to its simplicity, PROS can be easily implemented with basic programming
skills and any non-expert in optimization can use it to solve problems and start exploring the
fascinating optimization world. In the present work, PROS is explained in detail and is used to
optimize 12 multi-dimensional test functions with various levels of complexity. The performance is
compared with the pure random search strategy and other three well-established algorithms: genetic
algorithms (GA), particle swarm optimization (PSO), and differential evolution (DE). The results
indicate that, despite its simplicity, the proposed PROS method exhibits very good performance
with fast convergence rates and quick execution time. The method can serve as a simple alternative
to established and more complex optimizers. Additionally, it could also be used as a benchmark
for other metaheuristic optimization algorithms as one of the simplest, yet powerful, optimizers.
The algorithm is provided with its full source code in MATLAB for anybody interested to use,
test or explore.

Keywords: optimization; no free lunch; Occam’s razor; orthogonal search; search problems; PROS

1. Introduction

Optimization problems of all sorts arise in quantitative disciplines, ranging from
computer science and engineering to operations research and economics. Thus, the de-
velopment of solution methods has been of interest in mathematics for many centuries.
The goal of optimization methods is to find an optimal (globally optimal) or near-optimal
solution with low computational effort. We can distinguish between two different types
of optimization methods: deterministic or exact methods that can guarantee finding the
global optimal solution and heuristic methods where there is no such guarantee and a local
optimal is usually obtained instead. The deterministic approach has a solid mathematical
formulation, provides exact solutions, and can be used to solve optimization problems
where the computational effort grows polynomially with respect to the problem size. The

Appl. Sci. 2021, 11, 5053. https://doi.org/10.3390/app11115053 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7377-781X
https://orcid.org/0000-0002-7297-0693
https://orcid.org/0000-0003-0409-5636
https://doi.org/10.3390/app11115053
https://doi.org/10.3390/app11115053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11115053
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11115053?type=check_update&version=2

Appl. Sci. 2021, 11, 5053 2 of 28

situation is different if the problem is NP-hard as the required computational effort grows
exponentially. In this case, the optimization problems can become intractable or impractical
to solve using deterministic methods. Heuristic optimization methods, on the other hand,
can overcome such problems as they have shown good performance for many NP-complete
problems and complex optimization tasks of practical relevance.

The terms heuristic or metaheuristic are commonly associated with random search al-
gorithms. Random search algorithms refer to a set of optimization methods that implement
some kind of randomness or probability (typically in the form of a pseudo-random number)
in the definition of the iterative search strategy. This family of methods includes genetic
algorithms (GA) [1–3], particle swarm optimization (PSO) [4–6], differential evolution
(DE) [7–10], ant colony optimization (ACO) [4,11], harmony search (HS) [12,13], simulated
annealing [14], tabu search [15], and many others.

The introduced randomness in random search algorithms possesses several advan-
tages that add robustness to the solution strategy. It can significantly increase the solution’s
convergence speed and make the method less sensitive to modeling errors. Furthermore, it
may enable the method to escape a local optimum and push the search towards the global
solution. Therefore, random search algorithms are very useful for ill-structured global opti-
mization problems where the objective function may be nonconvex, nondifferentiable, and
possibly, discontinuous over a continuous, discrete, or mixed continuous-discrete domain.
Nevertheless, they offer no guarantee that a global optimal solution will be obtained.

Although numerous heuristic optimization methods have been proposed thus far in
the literature, surprisingly, new methods are still being proposed almost every day. These
new methods may differ from existing ones, but the major question is whether they make
a real difference or a significant improvement. Often, a newly proposed optimization
algorithm is simply a replica of an existing method with a few extra parameters or rules
that are supposed to improve or “optimize” its performance. However, adding more
complexity is not always a good idea as the fine-tuning of the newly introduced parameters
ends up being another optimization problem by itself.

In the present paper, we introduce a new optimization method: pure random orthog-
onal search (PROS), which is simple, elegant, fast, easy to understand and implement,
and truly parameterless. The performance of the new proposed strategy is investigated in
comparison to pure random search (PRS) as well as three other established and well-known
optimization methods, namely genetic algorithm (GA), particle swarm optimization (PSO),
and differential evolution (DE). Due to the simplicity and the lack of parameters of PROS,
this method can set a benchmark for other optimization algorithms that have a higher
degree of complexity and require the definition of one or more parameters.

The remainder of the paper is organized as follows. The optimization concept,
the no free lunch theorem in optimization and the concept of simplicity are presented
in Sections 1.1 and 1.2. The formulation of the optimization problem is presented in
Section 2.1. Section 2.2 describes the simple PRS approach while in Section 2.3 there
is a description of the proposed PROS optimization algorithm. Section 2.4 describes the
methodology and the objective functions used in the study. The results are presented in
Section 3 followed by a discussion and the conclusions. Appendix A contains the acronyms,
notation, and symbols used in the study. Appendix B provides further detailed information
about the 12 objective functions considered.

1.1. No Free Lunch Theorem in Optimization

In optimization, the no free lunch (NFL) theorem [16,17] is an impossibility theorem
stating that, for certain types of mathematical problems, the computational cost of finding
a solution, averaged over all problems in the class, is the same for any solution method.
In other words, some methods tend to work well in some problems, and other methods
work well in other problems, but in general one cannot say that method A is better than
B when all problems are considered altogether. Wolpert and Macready [16] demonstrate
the danger of comparing algorithms by their performance on a small sample of problems

Appl. Sci. 2021, 11, 5053 3 of 28

and they indicate the importance of incorporating problem-specific knowledge into the
behavior of the algorithm. They proved that for all possible domains (all possible problem
instances drawn from a uniform probability distribution), the average performance for two
algorithms A and B is the same.

A conventional, but not entirely accurate, interpretation of NFL is that “a general-
purpose universal optimization strategy is theoretically impossible, and the only way one
strategy can outperform another is if it is specialized to the specific problem under consid-
eration” [18]. In other words, “no search algorithm, no matter how sophisticated, should
a priori be expected to give better performance than any other”. If no prior assumptions
about the optimization problem can be made, no optimization strategy can be expected
to perform better than any other strategy (including pure random searching). A general-
purpose universal optimization strategy is theoretically impossible, and the only way one
strategy can outperform another is to be specialized for the specific problem at hand.

This is in full accordance with the enormous number of optimization methods pro-
posed in the literature every year. Tens or hundreds of new heuristic or other methods
are proposed by researchers, either inspired by nature or by human imagination, and
it is extremely difficult to try them all or even simply keep track of them. It is obvious
that if a single method were globally and clearly better than the alternatives, without any
doubt, gradually all researchers would adopt it to get better results and the other methods
would be soon completely abandoned. Merely the fact that so many methods are still being
developed and used today proves that there is no overall “best” method for all problems
and all cases. The method one uses appears to be a matter of personal preference and taste,
rather than a decision based on scientific findings and facts, although many researchers
still claim that their own method is “the best”.

1.2. Occam’s Razor and Simplicity in Optimization

Occam’s razor is a problem-solving principle stating that “other things being equal,
simpler explanations are generally better than more complex ones”, an idea originally
attributed to William of Ockham, an English Franciscan philosopher who lived in the 14th
century. He used a preference for simplicity to defend the idea of divine miracles. In other
words, “The simplest solution is most likely the right one if results match”. Alternatively,
“When presented with competing hypotheses that make the same predictions, one should
select the solution with the fewest assumptions”. In science, Occam’s razor is used as
an abductive heuristic in the development of theoretical models. Simpler theories are in
general preferable to more complex ones because they are more testable and easier for
people to understand, remember and use.

How does that apply to optimization algorithms? We will investigate this through
an example. Expert A proposes an elegant, simple and clever optimization algorithm OA.
Then researcher B in an effort to make a contribution of his/her own, takes this algorithm
and proposes a new version that is usually named as “Improved OA” (IOA) or similarly
“Enhanced AO”, “Better AO”, “Modified AO”, etc. To make this “improvement”, B has no
hesitation to add a number of extra parameters to the original algorithm, essentially adding
extra complexity to it. In the work published by B, it is “proven” that IOA works better
than the original OA in the problems examined. However, in the end, only rarely is IOA
acknowledged and recognized as generally better than OA by the scientific community
as a whole. Why is that? Assuming that B is not trying to cheat and truly believes in the
superiority of IOA over OA, there are three main reasons that this can happen:

• Test problems bias. IOA has better performance than OA in the test examples pub-
lished by B, but not in other problems. In other words, there is some bias as the
problems chosen and presented are in favor of IOA in comparison to OA.

• Parameter bias. The extra parameters introduced in IOA work good for some prob-
lems, such as the ones chosen and presented by B, but not in others. And of course,
extra knowledge and experience is needed in order to find the right values of the extra
parameters for every single problem.

Appl. Sci. 2021, 11, 5053 4 of 28

• Author bias. A combination of the two above-mentioned points. Author B knows the
IOA better than anyone else and has also experience in optimization problems. As a
result, B can fine-tune the algorithm in such a way that he/she can achieve optimal
performance, but the same is not true for other users of the algorithm facing different
optimization problems. Thus, the “improved” algorithm works good only if it can be
fine-tuned by an expert, such as B.

In some extreme cases, we have seen authors adding so much complexity and so many
extra parameters to an algorithm that literally a new optimization problem needs to be
solved in order to fine-tune the parameters of the optimization method to achieve good
results. As such, the question is always if it is worth it to add complexity to a method that
simply works well. In the opinion of the authors, adding some complexity is not bad in
itself, but it should always be justified by managing to achieve clearly better results in the
majority of the problems, while also keeping things clear, simple and elegant.

2. Materials and Methods
2.1. Formulation of the Optimization Problem

A typical optimization problem without additional constraints (other than the decision
variables bounds) can be formulated as follows:

min
x∈Ω

f (x) (1)

where x is a vector of decision variables, x = {x1, . . . , xD} (candidate solution in the search
space), f : RD → R is a scalar-valued function called objective (or cost) function to be
minimized, while D is the dimensionality of the optimization problem. In the present
work, the search space Ω ⊂ RD is defined by the lower bound and upper bound vectors as
Ω = [lb, ub], i.e., lbi ≤ xi ≤ ubi for every i ∈ {1, . . . , D}. Truly unconstrained optimization
corresponds to the case where Ω = RD.

In this work, we focus on problems without constraints. Real life problems rarely have
to do with unconstrained optimization as they usually involve several constraints. There
are various methods that can be used for handling constrained problems with heuristic
algorithms, such as methods based on preserving the feasibility of the solutions, methods
based on penalty functions, and others [19,20]. Similar constraint handling techniques can
be also easily used with the proposed PROS method.

2.2. Pure Random Search

Pure random search [21] (PRS) can be considered as the simplest and most obvious
random search method, also known as “blind search” [22]. The method, first defined by
Brooks [23], simply searches for candidate solutions at random within the search space by
sampling repeatedly from the feasible region Ω, typically according to a uniform sampling
distribution. The method in its simplest form maintains and generates a single point at each
iteration and it does not adapt the current sampling strategy to information that has been
previously gathered during the search. It can be proven that PRS converges on the global
optimum with probability one [22], yet the convergence speed is very slow. In addition,
the expected number of function evaluations for PRS to find the optimal solution within a
given value (ε) increases exponentially with the dimensionality (D) of the problem, which
makes it useless in problems with high dimensionality. The method has major difficulties
navigating towards an optimum solution, especially in search spaces with a high number
of dimensions. Improvements of the basic method have been suggested [24] together with
more sophisticated versions of it, such as pure adaptive search [21], where each iteration
“adapts” to the current level set by restricting its search domain to improving points, or
localized random search [21].

The single-point PRS algorithm can be described as follows:

• Initialize x with a random position in the search space (feasible region Ω), i.e.,
lbi ≤ xi ≤ ubi for every i ∈ {1, . . . , D}

Appl. Sci. 2021, 11, 5053 5 of 28

• Until a termination criterion is met (e.g., number of iterations performed, or adequate
fitness reached), repeat the following:

◦ Sample a new position y randomly in the search space, using uniform distribu-
tion

◦ If f (y) < f (x) then move to the new position by setting x = y

• At the end, x holds the best-found position and f (x) is the best objective function
value found.

2.3. Pure Random Orthogonal Search

The proposed method, pure random orthogonal search (PROS) is similar to PRS, but
instead of searching in the search space with a new solution that is completely different and
independent from the previous solution (i.e., all D positions of the new vector of decision
variables are changed in each iteration), it changes only one variable of the current solution
at a time. In other words, in each iteration, the new candidate solution is different from the
previous solution in only one design variable (one dimension), randomly.

The PROS algorithm can be described as follows:

• Initialize x with a random position in the search space (feasible region Ω), i.e.,
lbi ≤ xi ≤ ubi for every i ∈ {1, . . . , D}

• Until a termination criterion is met, repeat the following:

◦ Set y = x
◦ Sample a random integer j ∈ {1, . . . , D}
◦ Sample a random number r in the range [lbj, ubj] using uniform distribution
◦ Set yj = r
◦ If f (y) < f (x) then move to the new position by setting x = y

• At the end, x holds the best-found position and f (x) is the best solution.

Figure 1 shows a flowchart of the algorithm. It has to be noted that PROS is not a
population-based method as it works with a single solution during the search. The same
solution is updated, one variable at a time, until a termination criterion is met. The method
is simple, elegant, fast, and easy to understand and implement in any computer language.

Figure 2 shows the search path of the PROS algorithm for two examples in 2D. The
functions F01-Sphere function (sphere_func) in [−100, 100]2 and F10-Rastrigin’s function
(rastrigin_func) in [−5.12, 5.12]2 have been used as example cases. The functions are
described in detail in Appendix B, together with the other functions used in the study.

Table 1 shows the first five steps of the PROS algorithm in an example case where the
F01-Sphere function (sphere_func) in five dimensions is optimized in the region [−100,
100]5. For each candidate solution yi at step i, the bold cell in brackets ([]) represents the
j-th element that is different than the corresponding element of the current solution xi.

Appl. Sci. 2021, 11, 5053 6 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 28

Figure 1. Flowchart of the PROS algorithm.

Figure 2 shows the search path of the PROS algorithm for two examples in 2D. The

functions F01-Sphere function (sphere_func) in [−100, 100]2 and F10-Rastrigin’s function

(rastrigin_func) in [−5.12, 5.12]2 have been used as example cases. The functions are de-

scribed in detail in Appendix B, together with the other functions used in the study.

(a) (b)

Figure 2. Search path of the PROS algorithm in two 2D problem examples: (a) F01-Sphere function (sphere_func) in [–100,

100]2; (b) F10-Rastrigin’s function (rastrigin_func) in [−5.12, 5.12]2.

Table 1 shows the first five steps of the PROS algorithm in an example case where

the F01-Sphere function (sphere_func) in five dimensions is optimized in the region [−100,

fe = 0

fe > MaxFE

Start

Dimensions = D
Objective function = f(x)

Domain = Ω

Initialize the design vector x with a
random position in the search space

i.e. lbi xi ubi for every i D}

YES

Finish

y = x
j = random integer D}

r = random number in the range [lbj, ubj]
yj = r

fe = fe + 1

NO

x = y

NO

f(y) < f(x)

x* = x
fmin = f(x*)

Figure 1. Flowchart of the PROS algorithm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 28

Figure 1. Flowchart of the PROS algorithm.

Figure 2 shows the search path of the PROS algorithm for two examples in 2D. The

functions F01-Sphere function (sphere_func) in [−100, 100]2 and F10-Rastrigin’s function

(rastrigin_func) in [−5.12, 5.12]2 have been used as example cases. The functions are de-

scribed in detail in Appendix B, together with the other functions used in the study.

(a) (b)

Figure 2. Search path of the PROS algorithm in two 2D problem examples: (a) F01-Sphere function (sphere_func) in [–100,

100]2; (b) F10-Rastrigin’s function (rastrigin_func) in [−5.12, 5.12]2.

Table 1 shows the first five steps of the PROS algorithm in an example case where

the F01-Sphere function (sphere_func) in five dimensions is optimized in the region [−100,

fe = 0

fe > MaxFE

Start

Dimensions = D
Objective function = f(x)

Domain = Ω

Initialize the design vector x with a
random position in the search space

i.e. lbi xi ubi for every i D}

YES

Finish

y = x
j = random integer D}

r = random number in the range [lbj, ubj]
yj = r

fe = fe + 1

NO

x = y

NO

f(y) < f(x)

x* = x
fmin = f(x*)

Figure 2. Search path of the PROS algorithm in two 2D problem examples: (a) F01-Sphere function (sphere_func)
in [−100, 100]2; (b) F10-Rastrigin’s function (rastrigin_func) in [−5.12, 5.12]2.

Appl. Sci. 2021, 11, 5053 7 of 28

Table 1. Example case: the 5 first steps of the PROS algorithm for the F01-Sphere function (sphere_func) in [–100, 100]2.

Step xi/yi
Design Vector Obj. Value Notes

1 2 3 4 5

1
x1 −34.32 −5.13 −58.68 1.29 −22.26 5.15·103 No improvement

keep x1 for Step 2 (x2 = x1)y1 (j = 4) −34.32 −5.13 −58.68 [14.73] −22.26 5.36·103

2
x2 −34.32 −5.13 −58.68 1.29 −22.26 5.15·103 Improvement

keep y2 for Step 3 (x3 = y2)y2 (j = 3) −34.32 −5.13 [35.52] 1.29 −22.26 2.96·103

3
x3 −34.32 −5.13 35.52 1.29 −22.26 2.96·103 No improvement

keep x3 for Step 4 (x4 = x3)y3 (j = 5) −34.32 −5.13 35.52 1.29 [−43.44] 4.36·103

4
x4 −34.32 −5.13 35.52 1.29 −22.26 2.96·103 Improvement

keep y4 for Step 5 (x5=y4)y4 (j = 1) [11.97] −5.13 35.52 1.29 −22.26 1.93·103

5
x5 11.97 −5.13 35.52 1.29 −22.26 1.93·103 No improvement

keep x5 for Step 6 (x6=x5)y5 (j = 5) 11.97 −5.13 35.52 1.29 [−88.95] 9.35·103

2.4. Methodology of the Study and Objective Functions Used

We compare the PROS algorithm with the simplistic PRS approach and three other
well-known algorithms, namely GA [1–3], PSO [4–6], and DE [7–10] in 12 mathematical test
functions. All test functions are multi-dimensional and can be defined with any number of
dimensions. We use a set of four different numbers of dimensions (D) in our study: (i) D =
5, (ii) D = 10, (iii) D = 30, (iv) D = 50. When D = 5 is used, the design vector of each problem
has 5 elements, i.e., x = [x1, x2, x3, x4, x5] and the optimization problem is relatively simple.
This is not the case with higher values of D where the problem gets significantly harder.
For example, in the case D = 50, each design vector has 50 elements to adjust (x1 to x50).
The five algorithms used are the following:

1. Genetic algorithm (GA);
2. Particle swarm optimization (PSO);
3. Differential evolution (DE);
4. Pure random search (PRS);
5. Pure random orthogonal search (PROS).

PRS and PROS use a single point for their search, while GA, PSO, and DE use a
population of agents (or particles) at each generation (iteration). In order to compare
the algorithms fairly we will use the maximum function evaluations as the convergence
criterion for all cases, i.e., all algorithms will stop after a certain number of function
evaluations is completed. GA and PSO are based on their MATLAB implementations and
are executed using the MATLAB commands ga and particleswarm, respectively, using their
default parameters. DE, PRS, and PROS were programmed in MATLAB from scratch.
For DE, a DE/rand/1/bin scheme is used with differential weight F = 0.6 and crossover
probability CR = 0.8.

Each optimization problem is run 10 times. The total number of optimization problems
solved is 5 (methods) * 4 (different dimensions) * 12 (Problems) * 10 (Runs) = 2400. To
maintain a consistency for all problems and all the different cases, in population-based
algorithms (GA, PSO, DE), the population size is set to NP = 10·D and the maximum
number of iterations (or generations) is set to MaxIter = 20·D − 50. Although some specific
problems would actually require more iterations, we decided not to make exceptions to this
rule, to keep things consistent and we kept these values that work well for most problems.
Then the max. number of function evaluations can be calculated as MaxFE = NP·MaxIter.
Table 2 shows the population size, max. number of generations/iterations and the max.
number of function evaluations for each category of problems, based on the number of
dimensions. For example, when we investigate the performance of the five algorithms in
30 dimensions (D = 30), the population size used in the three population-based methods
(GA, PSO and DE) is 300, while the maximum number of generations (or iterations) for

Appl. Sci. 2021, 11, 5053 8 of 28

population-based methods is set to 550. Equivalently, for the two methods that are not
population-based (PRS and PROS), the convergence criterion has to do with the maximum
number of objective function evaluations MaxFE which is set to 165,000.

Table 2. Optimization parameters and convergence criteria used for each category of problems based
on the number of dimensions.

No of Dimensions, D D = 5 D = 10 D = 30 D = 50

Population size NP
NP = 10·D 50 100 300 500

Max. Generations/Iterations
MaxIter

MaxIter = 20·D − 50
50 150 550 950

Max. Obj. function evaluations
MaxFE

MaxFE = NP·MaxIter
2500 15,000 165,000 475,000

2.5. Objective Functions

We used 12 mathematical objective functions of different levels of complexity in our
study. All functions are defined in multiple dimensions and are to be minimized, with
the minimum value being zero. The objective functions together with their search range,
the optimum value f (x*), the location of the optimum x* in the design space and some
other properties are presented in Table 3. More details on the functions can be found in
Appendix B, where the functions are plotted for the two-dimensional case (D = 2). The
aim of every optimization algorithm used in the study is to find the design vector x* that
minimizes the value of f, for each function f i (I = 1,2, . . . ,12).

Table 3. The 12 objective functions used in the study.

ID Name and Code Name Search Range Minimum Properties

F01 Sphere function
sphere_func [−100, 100]D f 01(x*) = 0

at x* = {0, 0, . . . , 0}

Unimodal
Highly symmetric, in particular
rotationally invariant

F02 Ellipsoid function
ellipsoid_func [−100, 100]D f 02(x*) = 0

at x* = {0, 0, . . . , 0}
Unimodal
Symmetric

F03
Sum of Different Powers
function
sumpow_func

[−10, 10]D f 03(x*) = 0
at x* = {0, 0, . . . , 0}

Unimodal

F04 Quintic function
quintic_func [−20, 20]D

f 04(x*) = 0
at x* = {−1, -1, . . . , −1} or x* =
{2, 2, . . . , 2}

Has two global optima

F05 Drop-Wave function
drop_wave_func [−5.12, 5.12]D f 05(x*) = 0

at x* = {0, 0, . . . , 0}
Multi-modal
Highly complex

F06 Weierstrass function
weierstrass_func [−0.5, 0.5]D f 06(x*) = 0

at x* = {0, 0, . . . , 0}

Multi-modal
Continuous everywhere but only
differentiable on a set of points

F07 Alpine 1 function
alpine1_func [−10, 10]D f 07(x*) = 0

at x* = {0, 0, . . . , 0}
Multi-modal

F08 Ackley’s function
ackley_func [−32.768, 32.768]D f 08(x*) = 0

at x* = {0, 0, . . . , 0}

Multi-modal
Having many local optima with the global
optima located in a very small basin

F09 Griewank’s function
griewank_func [−100, 100]D f 09(x*) = 0

at x* = {0, 0, . . . , 0}
Multi-modal
With many regularly distributed local optima

F10 Rastrigin’s function
rastrigin_func [−5.12, 5.12]D f 10(x*) = 0

at x* = {0, 0, . . . , 0}
Multi-modal
With many regularly distributed local optima

F11 HappyCat function
happycat_func [−20, 20]D f 11(x*) = 0

at x* = {−1, −1, . . . , −1}

Multi-modal
Global optimum located in curved
narrow valley

F12 HGBat function
hgbat_func [−15, 15]D f 12(x*) = 0

at x* = {−1, −1, . . . , −1}

Multi-modal
Global optima located in curved
narrow valley

Appl. Sci. 2021, 11, 5053 9 of 28

The 12 functions exhibit different computational complexities. Some are very easy to
calculate, while others are much harder. Figure 3 shows the computational time needed for
the calculation of the values of the objective functions 100,000 times, for a vector of 5, 10,
30 or 50 variables (D = 5, 10, 30, 50). All calculations were done in MATLAB with a 64-bit
computer running Windows 10, equipped with an Intel i9-8950HK CPU @ 2.90GHz and 32
GB RAM. In the D = 5 and D = 10 cases, most functions take 0.1 to 0.7 s to calculate. The
exception is function F06 which is much harder and requires 5.9 s and 11 s to calculate, for
D = 5 and D = 10, respectively. Note that the vertical axis of each diagram is in logarithmic
scale, for better clarity of the results. It appears that some functions become much harder
to calculate as the dimensionality increases (for example functions F03, F04, F06, partly
F08) while for others this is not the case.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 28

The 12 functions exhibit different computational complexities. Some are very easy to

calculate, while others are much harder. Figure 3 shows the computational time needed

for the calculation of the values of the objective functions 100,000 times, for a vector of 5,

10, 30 or 50 variables (D = 5, 10, 30, 50). All calculations were done in MATLAB with a 64-

bit computer running Windows 10, equipped with an Intel i9-8950HK CPU @ 2.90GHz

and 32 GB RAM. In the D = 5 and D = 10 cases, most functions take 0.1 to 0.7 s to calculate.

The exception is function F06 which is much harder and requires 5.9 s and 11 s to calculate,

for D = 5 and D = 10, respectively. Note that the vertical axis of each diagram is in loga-

rithmic scale, for better clarity of the results. It appears that some functions become much

harder to calculate as the dimensionality increases (for example functions F03, F04, F06,

partly F08) while for others this is not the case.

Figure 3. Time needed for the calculation of each objective function 100,000 times, for a random

vector of 5, 10, 30 or 50 variables (D = 5, 10, 30, 50). The y-axis is in logarithmic scale.

3. Results

3.1. Objective Function Values

In all 12 test examples, the minimum (target) value of the objective function is zero,

as shown in Table 3. The results of the PROS algorithm in terms of minimum objective

value achieved, are presented in Table 4 (as the average of 10 runs).

Figure 3. Time needed for the calculation of each objective function 100,000 times, for a random vector of 5, 10, 30 or 50
variables (D = 5, 10, 30, 50). The y-axis is in logarithmic scale.

3. Results
3.1. Objective Function Values

In all 12 test examples, the minimum (target) value of the objective function is zero, as
shown in Table 3. The results of the PROS algorithm in terms of minimum objective value
achieved, are presented in Table 4 (as the average of 10 runs).

Appl. Sci. 2021, 11, 5053 10 of 28

Table 4. Best results * of the PROS algorithm for all 12 objective functions, for D = 5, 10, 30, 50
dimensions (averages of 10 runs). The target (optimum) value is zero in all the cases considered.

ID Function Name D = 5 D = 10 D = 30 D = 50

F01 Sphere 4.99E-01 9.56E-02 2.17E-02 9.25E-03
F02 Ellipsoid 9.78E-01 6.72E-01 2.92E-01 3.77E-01

F03 Sum of Dif.
Powers 8.07E-04 5.58E-05 5.35E-06 2.80E-06

F04 Quintic 8.56E-01 6.61E-01 5.40E-01 5.18E-01
F05 Drop-Wave 2.63E-01 5.48E-01 9.10E-01 9.74E-01
F06 Weierstrass 3.66E-01 3.62E-01 4.25E-01 5.36E-01
F07 Alpine 1 4.99E-03 3.16E-03 2.36E-03 2.46E-03
F08 Ackley’s 7.92E-01 1.72E-01 3.99E-02 1.87E-02
F09 Griewank’s 5.34E-02 4.13E-02 2.51E-02 1.13E-02
F10 Rastrigin’s 3.44E-01 4.94E-02 1.03E-02 5.74E-03
F11 HappyCat 4.71E-01 4.25E-01 5.63E-01 6.92E-01
F12 HGBat 4.40E-01 4.61E-01 6.51E-01 5.97E-01

* Average value (in 10 runs) of the obj. function at the end of the optimization process.

The corresponding results of the other four algorithms, together with PROS, for
number of dimensions D = 5, D = 10, D = 30, and D = 50 are presented in Table 5, Table 6,
Table 7, and Table 8, respectively. Final values greater than one (i.e., not excellent solutions)
are highlighted with bold font in the tables. Although it can be proved that the PRS
algorithm will converge to the optimum solution at the end, it is obvious that convergence
speed is very slow and, as a result the PRS algorithm, fails to give good solutions in almost
all problems examined, given the allowed number of function evaluations. All PRS values
are bold in the tables with the exception of the ones for problem F05. GA and PSO show
good performance in general with the exception of a few cases, while the performance of
DE is not so good, especially for higher numbers of dimensions (D = 30 or D = 50).

Table 5. Best results * for all 5 optimizers and all 12 objective functions, for 5 dimensions (D = 5,
averages of 10 runs). The target (optimum) value is zero in all cases considered.

ID Function
Name GA PSO DE PRS PROS

F01 Sphere 6.99E-04 9.04E-04 2.34E-01 8.30E+02 4.99E-01
F02 Ellipsoid 2.12E-03 5.58E-03 5.26E-01 1.56E+03 9.78E-01

F03 Sum of Dif.
Powers 6.38E-06 1.85E-08 3.11E-05 2.15E+01 8.07E-04

F04 Quintic 2.49E-01 1.95E-01 4.03E+00 2.33E+03 8.56E-01

F05 Drop-
Wave 1.56E-01 6.38E-02 9.55E-02 4.20E-01 2.63E-01

F06 Weierstrass 2.21E-01 4.50E-02 5.27E-01 3.87E+00 3.66E-01
F07 Alpine 1 6.18E-03 2.39E-03 3.65E-01 1.93E+00 4.99E-03
F08 Ackley’s 1.89E-01 9.54E-02 6.52E-01 1.19E+01 7.92E-01
F09 Griewank’s 1.96E-02 1.46E-01 2.60E-01 1.00E+00 5.34E-02
F10 Rastrigin’s 5.20E-01 3.70E+00 7.59E+00 2.08E+01 3.44E-01
F11 HappyCat 5.31E-01 1.92E-01 3.89E-01 5.41E+00 4.71E-01
F12 HGBat 5.46E-01 2.40E-01 2.97E-01 1.81E+01 4.40E-01

* Average value (in 10 runs) of the obj. function at the end of the optimization process, for each algorithm.

Appl. Sci. 2021, 11, 5053 11 of 28

Table 6. Best results * for all 5 optimizers and all 12 objective functions, for 10 dimensions (D = 10,
averages of 10 runs). The target (optimum) value is zero in all cases considered.

ID Function
Name GA PSO DE PRS PROS

F01 Sphere 6.93E-06 4.41E-11 1.02E-01 4.83E+03 9.56E-02
F02 Ellipsoid 5.89E-05 3.83E-10 4.03E-01 1.83E+04 6.72E-01

F03 Sum of Dif.
Powers 4.22E-08 7.75E-23 1.57E-06 2.04E+03 5.58E-05

F04 Quintic 2.42E-02 3.52E-05 1.04E+01 4.95E+04 6.61E-01

F05 Drop-
Wave 3.45E-01 1.24E-01 1.73E-01 7.85E-01 5.48E-01

F06 Weierstrass 1.24E-01 9.90E-05 8.30E-01 1.03E+01 3.62E-01
F07 Alpine 1 1.10E-03 4.56E-07 1.68E+00 7.33E+00 3.16E-03
F08 Ackley’s 1.94E-03 1.98E-06 2.66E-01 1.70E+01 1.72E-01
F09 Griewank’s 1.06E-02 1.48E-01 4.83E-01 2.11E+00 4.13E-02
F10 Rastrigin’s 1.96E-04 8.12E+00 3.61E+01 6.62E+01 4.94E-02
F11 HappyCat 7.92E-01 1.86E-01 3.98E-01 1.14E+01 4.25E-01
F12 HGBat 8.00E-01 3.00E-01 3.09E-01 1.02E+02 4.61E-01

* Average value (in 10 runs) of the obj. function at the end of the optimization process, for each algorithm.

Table 7. Best results * for all 5 optimizers and all 12 objective functions, for 30 dimensions (D = 30,
averages of 10 runs). The target (optimum) value is zero in all cases considered.

ID Function
Name GA PSO DE PRS PROS

F01 Sphere 7.50E-07 4.03E-26 3.70E+02 3.58E+04 2.17E-02
F02 Ellipsoid 2.25E-05 1.15E-24 2.80E+03 4.57E+05 2.92E-01

F03 Sum of Dif.
Powers 1.50E-12 1.54E-52 3.50E+03 2.46E+15 5.35E-06

F04 Quintic 1.80E-02 4.43E-14 2.73E+03 1.92E+06 5.40E-01

F05 Drop-
Wave 7.29E-01 3.76E-01 8.71E-01 9.63E-01 9.10E-01

F06 Weierstrass 3.63E-01 1.55E-01 2.06E+01 4.06E+01 4.25E-01
F07 Alpine 1 3.37E-04 7.42E-15 2.54E+01 3.86E+01 2.36E-03
F08 Ackley’s 6.89E-04 4.37E-14 6.08E+00 1.94E+01 3.99E-02
F09 Griewank’s 1.23E-03 6.39E-03 1.07E+00 1.01E+01 2.51E-02
F10 Rastrigin’s 1.99E-01 4.56E+01 2.34E+02 3.14E+02 1.03E-02
F11 HappyCat 9.79E-01 3.39E-01 9.38E-01 2.88E+01 5.63E-01
F12 HGBat 9.55E-01 4.95E-01 7.12E+00 8.32E+02 6.51E-01

* Average value (in 10 runs) of the obj. function at the end of the optimization process, for each algorithm.

The PROS algorithm shows a very good performance in the test functions examined.
It clearly outperforms PRS which is very poor and although PROS is so simple in its
formulation, the algorithm gives very competitive and even better results in comparison
to the other established algorithms, i.e., GA, PSO and DE. In many cases, PROS outper-
forms some, or all, of the other algorithms. Surprisingly, the algorithm shows very good
performance (compared to the others) in difficult cases with a large number of dimensions
(D = 30 or D = 50).

As expected, PRS exhibits the poorest performance with very large values of the
objective function in some cases. Figure 4 shows the best results (final values of the
objective values) for each algorithm, for the different cases (as averages of 10 runs). PRS
has been excluded from this comparison because its final objective function values are very
large, and it would distort the diagram significantly. For better presentation of the results,
the y-axis has been limited to the value of 1 in all cases. Since the target (optimum) value
of each of the 12 functions used is zero, the lower bar height is better in this comparison.

Appl. Sci. 2021, 11, 5053 12 of 28

Table 8. Best results * for all 5 optimizers and all 12 objective functions, for 50 dimensions (D = 50,
averages of 10 runs). The target (optimum) value is zero in all cases considered.

ID Function Name GA PSO DE PRS PROS

F01 Sphere 1.03E-06 2.04E-34 1.03E+04 8.00E+04 9.25E-03
F02 Ellipsoid 3.50E-05 1.19E-32 1.46E+05 1.77E+06 3.77E-01

F03 Sum of Dif.
Powers 8.98E-13 3.65E-60 6.01E+14 1.50E+30 2.80E-06

F04 Quintic 1.87E-02 3.42E-15 4.79E+05 5.92E+06 5.18E-01
F05 Drop-Wave 8.36E-01 6.09E-01 9.68E-01 9.82E-01 9.74E-01
F06 Weierstrass 4.66E-01 2.08E+00 5.39E+01 7.30E+01 5.36E-01
F07 Alpine 1 3.84E-04 1.99E-14 6.33E+01 7.97E+01 2.46E-03
F08 Ackley’s 5.50E-04 1.16E-01 1.53E+01 2.01E+01 1.87E-02
F09 Griewank’s 4.44E-08 2.47E-03 3.59E+00 2.04E+01 1.13E-02
F10 Rastrigin’s 1.25E-04 9.60E+01 5.02E+02 5.99E+02 5.74E-03
F11 HappyCat 1.08E+00 5.01E-01 8.57E+00 3.89E+01 6.92E-01
F12 HGBat 1.06E+00 6.04E-01 2.46E+02 1.75E+03 5.97E-01

* Average value (in 10 runs) of the obj. function at the end of the optimization process, for each algorithm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 28

As expected, PRS exhibits the poorest performance with very large values of the ob-

jective function in some cases. Figure 4 shows the best results (final values of the objective

values) for each algorithm, for the different cases (as averages of 10 runs). PRS has been

excluded from this comparison because its final objective function values are very large,

and it would distort the diagram significantly. For better presentation of the results, the

y-axis has been limited to the value of 1 in all cases. Since the target (optimum) value of

each of the 12 functions used is zero, the lower bar height is better in this comparison.

Figure 4. Best results (final values of the objective functions) for the various optimizers for D = 5, 10, 30, and 50, for all 12

objective functions (averages of 10 runs)—lower is better.

3.2. Convergence History for Each Algorithm

The convergence histories of each algorithm, on each problem and for the number of

dimensions D = 5, D = 10, D = 30, and D = 50 are presented in Figure 5, Figure 6, Figure 7

and Figure 8, respectively, as averages of 10 runs. The PROS algorithm is shown with a

green line. It is clearly shown that the PRS algorithm (purple line) exhibits very slow con-

vergence in all cases. Again, the convergence rate of PROS is fast compared to the other

algorithms, with few exceptions.

Figure 4. Best results (final values of the objective functions) for the various optimizers for D = 5, 10, 30, and 50, for all 12
objective functions (averages of 10 runs)—lower is better.

Appl. Sci. 2021, 11, 5053 13 of 28

3.2. Convergence History for Each Algorithm

The convergence histories of each algorithm, on each problem and for the number of
dimensions D = 5, D = 10, D = 30, and D = 50 are presented in Figures 5–8, respectively, as
averages of 10 runs. The PROS algorithm is shown with a green line. It is clearly shown
that the PRS algorithm (purple line) exhibits very slow convergence in all cases. Again, the
convergence rate of PROS is fast compared to the other algorithms, with few exceptions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 28

Figure 5. Convergence history of the various optimizers for 5 dimensions (D = 5), for all 12 objective functions (average of

10 runs).
Figure 5. Convergence history of the various optimizers for 5 dimensions (D = 5), for all 12 objective functions (average of
10 runs).

Appl. Sci. 2021, 11, 5053 14 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 28

Figure 6. Convergence history of the various optimizers for 10 dimensions (D = 10), for all 12 objective functions (average

of 10 runs).

Figure 6. Convergence history of the various optimizers for 10 dimensions (D = 10), for all 12 objective functions (average
of 10 runs).

Appl. Sci. 2021, 11, 5053 15 of 28Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 28

Figure 7. Convergence history of the various optimizers for 30 dimensions (D = 30), for all 12 objective functions (average

of 10 runs).

Figure 7. Convergence history of the various optimizers for 30 dimensions (D = 30), for all 12 objective functions (average
of 10 runs).

Appl. Sci. 2021, 11, 5053 16 of 28Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 28

Figure 8. Convergence history of the various optimizers for 50 dimensions (D = 50), for all 12 objective functions (average

of 10 runs).

3.3. Computational Efficiency

The time for the 10 runs of the optimization procedure was recorded for each algo-

rithm, each function (F01–F12), and each number of dimensions (D = 5, 10, 30, 50). Some

objective functions are harder to calculate and the corresponding optimization problem

also becomes harder and more time consuming. Figure 9 shows the time needed for the

optimization of each function, for each method, and for D = 5, 10, 30, 50. It is obvious that

problem F06 is much harder than the other problems, because of the complexity of this

objective function. The time in Figure 9 is in logarithmic scale.

Figure 8. Convergence history of the various optimizers for 50 dimensions (D = 50), for all 12 objective functions (average
of 10 runs).

3.3. Computational Efficiency

The time for the 10 runs of the optimization procedure was recorded for each algorithm,
each function (F01–F12), and each number of dimensions (D = 5, 10, 30, 50). Some objective
functions are harder to calculate and the corresponding optimization problem also becomes
harder and more time consuming. Figure 9 shows the time needed for the optimization of
each function, for each method, and for D = 5, 10, 30, 50. It is obvious that problem F06 is
much harder than the other problems, because of the complexity of this objective function.
The time in Figure 9 is in logarithmic scale.

Appl. Sci. 2021, 11, 5053 17 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 28

Figure 9. Time needed for the various optimizers, for all 12 objective functions and D = 5, 10, 30, and 50. The y-axis is in

logarithmic scale.

The computational time needed by PROS is much smaller than the one needed by

GA, PSO, or DE in most of the cases, with the exception of function F06. In addition, it is

slightly larger than the one of the PRS method, which, however, shows very poor perfor-

mance in terms of the final optimum achieved. The PROS method is much faster than all

three established optimization algorithms (based on the same number of function evalu-

ations) in almost all the problems, with only very few exceptions.

3.4. Conditions under Which PROS Can be Trapped in A Local Optimum

Given the formulation of the algorithm, it is obvious that a candidate solution can

only move strictly orthogonally in the search space. No diagonal or other kind of move-

ment is allowed, which can lead to the candidate solution being trapped in a local opti-

mum under specific conditions. This behavior was not exhibited in any of the test exam-

ples examined. However, theoretically there are specific cases where it can happen if there

is no improvement in the value of the objective function in any orthogonal direction.

Figure 9. Time needed for the various optimizers, for all 12 objective functions and D = 5, 10, 30, and 50. The y-axis is in
logarithmic scale.

The computational time needed by PROS is much smaller than the one needed by GA,
PSO, or DE in most of the cases, with the exception of function F06. In addition, it is slightly
larger than the one of the PRS method, which, however, shows very poor performance
in terms of the final optimum achieved. The PROS method is much faster than all three
established optimization algorithms (based on the same number of function evaluations)
in almost all the problems, with only very few exceptions.

3.4. Conditions under Which PROS Can Be Trapped in A Local Optimum

Given the formulation of the algorithm, it is obvious that a candidate solution can only
move strictly orthogonally in the search space. No diagonal or other kind of movement
is allowed, which can lead to the candidate solution being trapped in a local optimum
under specific conditions. This behavior was not exhibited in any of the test examples
examined. However, theoretically there are specific cases where it can happen if there is no
improvement in the value of the objective function in any orthogonal direction. Below we

Appl. Sci. 2021, 11, 5053 18 of 28

examine such a special case in a two-dimensional problem, where the aim is to minimize
the simple two-variable function f (x):

f (x) = f (x1, x2) = x1 + x2 − 3x1x2 + 1
x1, x2 ∈ [0, 1]

(2)

We assume that at a specific point of the search, the current candidate solution lies on
the origin of axes, i.e., the point x1 = 0, x2 = 0. The values of the objective function at the
four corners of the [0, 1]2 square are the following:

• f (0, 0) = 1 (current solution)
• f (1, 0) = f (0, 1) = 2
• f (1, 1) = 0 (global minimum)

The function is plotted in Figure 10 in 3D (as a surface) and 2D (using contour lines).
If the current point is (0, 0) then PROS will be permanently trapped at this position. Indeed,
it is f (x1,0) > f (0,0) for every x1 ∈ [0, 1], while f (0, x2) > f (0,0) for every x2 ∈ [0, 1]. The
current point (0, 0) is a local minimum and, in addition, any change in only one of the
x1 or x2 variables cannot lead to a better value of the objective function (f). There is no
improvement in f in any of the orthogonal x1 or x2 directions considered on their own. To
find a better value of the objective function, the optimizer would need to move diagonally,
but such a movement is not allowed in PROS.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 28

Below we examine such a special case in a two-dimensional problem, where the aim is to

minimize the simple two-variable function f(x):

1 2 1 2 1 2

1 2

() (,) 3 1

, [0,1]

f f x x x x x x

x x

= = + − +



x
 (2)

We assume that at a specific point of the search, the current candidate solution lies

on the origin of axes, i.e., the point x1 = 0, x2 = 0. The values of the objective function at the

four corners of the [0, 1]2 square are the following:

• f(0, 0) = 1 (current solution)

• f(1, 0) = f(0, 1) = 2

• f(1, 1) = 0 (global minimum)

The function is plotted in Figure 10 in 3D (as a surface) and 2D (using contour lines).

If the current point is (0, 0) then PROS will be permanently trapped at this position. In-

deed, it is f(x1,0) > f(0,0) for every x1 ∈ [0, 1], while f(0, x2) > f(0,0) for every x2 ∈ [0, 1]. The

current point (0, 0) is a local minimum and, in addition, any change in only one of the x1

or x2 variables cannot lead to a better value of the objective function (f). There is no im-

provement in f in any of the orthogonal x1 or x2 directions considered on their own. To

find a better value of the objective function, the optimizer would need to move diagonally,

but such a movement is not allowed in PROS.

(a) (b)

Figure 10. The objective function f(x1,x2) = x1+x2-3∙x1∙x2+1, plotted in [0, 1]2. PROS is trapped at the local minimum (0, 0)

since there is no improvement in f in any of the x1 or x2 directions on their own: (a); 3D surface plot and (b) 2D contour

plot.

4. Discussion

In the results section we saw that PROS exhibits very good performance with fast

convergence rates and very good final optima, and it is significantly faster than GA, PSO

and DE when compared based on the same number of objective function evaluations. In

this section we discuss the advantages and disadvantages of PROS and possible applica-

tions.

4.1. Advantages and Drawbacks of PROS

The advantages of PROS can be summarized as follows: (i) generality—the algorithm

can be applied to virtually any function or engineering problem; (ii) no user-defined pa-

rameters—unlike other methods that use parameters such as population size, step size

and others, PROS does not have even a single parameter to adjust. This makes the algo-

rithm easy to implement as it can be easily used by non-experts or people who have

Figure 10. The objective function f (x1,x2) = x1 + x2 − 3·x1·x2 + 1, plotted in [0, 1]2. PROS is trapped at the local minimum (0, 0)
since there is no improvement in f in any of the x1 or x2 directions on their own: (a); 3D surface plot and (b) 2D contour plot.

4. Discussion

In the results section we saw that PROS exhibits very good performance with fast
convergence rates and very good final optima, and it is significantly faster than GA, PSO
and DE when compared based on the same number of objective function evaluations. In this
section we discuss the advantages and disadvantages of PROS and possible applications.

4.1. Advantages and Drawbacks of PROS

The advantages of PROS can be summarized as follows: (i) generality—the algorithm
can be applied to virtually any function or engineering problem; (ii) no user-defined
parameters—unlike other methods that use parameters such as population size, step size
and others, PROS does not have even a single parameter to adjust. This makes the algorithm
easy to implement as it can be easily used by non-experts or people who have limited
knowledge of the nature of the problem at hand; (iii) easy to program—the method is
very easy to code in any programming language. This can significantly reduce the labor
cost of an optimization process and it is an appealing feature to both practitioners and

Appl. Sci. 2021, 11, 5053 19 of 28

theoreticians; (iv) Good convergence rate—the convergence rate of the algorithm is good,
showing superior performance when compared to established algorithms in some of the
optimization problems; (v) Excellent computational efficiency—due to its simplicity, the
implementation of the algorithm is very fast, outperforming the ones of other established
algorithms. This means that using PROS one can achieve a larger number of iterations
(obj. fun. evaluations) at the same time, in comparison to the other algorithms, when time
is the basis of comparison (instead of the number of obj. fun. evaluations as we have
done here); (vi) A tool for measuring performance—since PROS is so simple and it has no
parameters to adjust, then, according to Occam’s razor, any optimization algorithm which
is more complex should exhibit clearly superior performance compared to PROS, in most
problems. In other words, PROS can serve as a simple comparison tool for measuring the
performance of new optimization algorithms in the future.

Local search can be considered a drawback of the method. In many cases, the algo-
rithm appears to converge fast in the beginning, compared to the other algorithms, but not
so fast later on. It appears that it has good global search capabilities but somehow limited
local search capabilities at the vicinity of the optimum. Another drawback is the possibility
of the algorithm being trapped in a local optimum under certain conditions, as discussed
in detail in Section 3.4.

4.2. PROS Applications

The proposed optimization algorithm is a powerful modelling and problem-solving
methodology, which has a broad range of applications in mathematics, management sci-
ence, industry, engineering and technology. Due to its simplicity and straight-forward
implementation on the computer, it can be easily applied by non-experts, to obtain opti-
mized results in any problem where parameters (design variables) need to be adjusted and
a measurable cost or performance function can be formulated.

5. Conclusions

The proposed PROS algorithm is a new, fast, simple and parameterless stochastic
optimization strategy that has shown surprisingly positive results despite its simplicity. A
total of 12 multi-dimensional mathematical test functions with various levels of complexity
have been used to thoroughly test the algorithm. The results indicate that the PROS
algorithm achieves significantly good performance and a relatively fast convergence speed
when compared with other well-established and more complex optimization methods,
such as GA, PSO and DE. In general, it appears that the PROS strategy exhibits good
exploration capabilities but shows some difficulties on the exploitation phase. However,
the main advantages of PROS are the following: (i) lack of user-defined parameters; (ii)
good computational efficiency; and (iii) its exceptional easiness of implementation.

The right usage and correct implementation of optimization algorithms often requires
a high level of expertise that can take a long time to be obtained. In contrast, the PROS
algorithm requires a minimum level of mathematical knowledge and programming skills
while still providing a clear, reliable, elegant and powerful search strategy. Therefore, it
can be easily implemented and used even by non-experts in optimization problems, in
various applied sciences fields. Additionally, the method can serve as a benchmarking tool
for evaluating the performance of other optimization methods. We can claim that if an
optimization algorithm “OA” is more complex than PROS but it exhibits poorer perfor-
mance in the same problem or in a series of selected problems, then according to Occam’s
razor it can be concluded that OA is not a good alternative since it adds unnecessary
complexity without significantly improving performance. Of course, complexity cannot
be measured directly or precisely, and it is not easy to be quantified in general. Yet, it still
makes sense to claim that in optimization algorithms complexity has to do with (a) the
number of parameters that need to be adjusted for the algorithm to work properly in a set
of problems; and (b) the difficulty of implementation of the algorithm on a computer code.

Appl. Sci. 2021, 11, 5053 20 of 28

Given these criteria, PROS is certainly simpler and less complex than most well-known
state-of-the-art optimization methods, yet still effective.

Future Directions

The PROS algorithm was presented in this paper in its simplest form. Based on our
research, we believe that there are various ways to further improve the algorithm’s perfor-
mance by searching in a smarter way while keeping the basic search idea. Nevertheless,
by doing so, perhaps some extra parameters will need to be added. One idea is to include
more search directions when updating the candidate solution. Presently, the search is
only in orthogonal principal directions, i.e., the new position of the candidate solution
differs only in one of the design variables. Instead of that, the search could follow another,
possibly random direction in the design space in each iteration. Another idea is to use a
different method when sampling a new position. Based on the experience obtained during
the search, we can use another distribution that describes the problem more accurately
compared to the uniform distribution used in this work. Alternatively, one could employ a
population of agents instead of a single solution in each iteration, rendering the method
a population-based method, based on specific rules on how the population is updated in
each iteration.

Author Contributions: Conceptualization, N.P.B. and V.P.; methodology, V.P.; software, V.P. and
G.S., validation, V.P. and N.P.B.; formal analysis, V.P. and N.P.B.; investigation, V.P., N.P.B. and
G.S.; resources, V.P., N.P.B. and G.S.; data curation, V.P., N.P.B. and G.S.; writing—original draft
preparation, V.P., N.P.B. and G.S.; writing—review and editing, V.P.; visualization, V.P. and G.S.;
supervision, V.P.; project administration, V.P.; funding acquisition, V.P. and G.S. All authors have read
and agreed to the published version of the manuscript.

Funding: The APC was funded by Oslo Metropolitan University.

Informed Consent Statement: Not applicable.

Data Availability Statement: The full source code of the PROS algorithm as well as the ones of
the other optimization methods used in this study, are provided. The code is written in MATLAB
(R2020b) and it is available online on GitHub at https://github.com/vplevris/PROS (accessed on 20
May 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Nomenclature

Table A1. Acronyms.

Acronym Meaning

ACO Ant colony optimization
DE Differential evolution
GA Genetic algorithm
HS Harmony search
IOA Improved optimization algorithm
NFL No free lunch
OA Optimization algorithm
PROS Pure random orthogonal search
PRS Pura random search
PSO Particle swarm optimization

https://github.com/vplevris/PROS

Appl. Sci. 2021, 11, 5053 21 of 28

Table A2. Notation and symbols.

Symbol Meaning

f (x) Objective function

D Dimensionality of the optimization problem (no. of
dimensions)

Ω Search space
RD A real coordinate space of dimension D
x or y vector of decision variables

xi or yi
i-th decision variable, i-th element of the decision
variables’ vector

lb/ub Lower/upper bounds vector
lbi/ubi Lower/upper bound for the decision variable xi

x* Decision variables’ vector corresponding to the
optimum solution

f (x*) Optimum value of the function f
r Random number
NP Population size
MaxIter Maximum number of iterations (or generations)
OFE Maximum number of function evaluations
F Differential weight of the DE algorithm
CR Crossover probability of the DE algorithm

Appendix B. Objective Functions Used in the Study

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 28

Table A2. Notation and symbols.

Symbol Meaning

f(x) Objective function

D Dimensionality of the optimization problem (no. of dimensions)

Ω Search space

ℝD A real coordinate space of dimension D

x or y vector of decision variables

xi or yi i-th decision variable, i-th element of the decision variables’ vector

lb / ub Lower/upper bounds vector

lbi / ubi Lower/upper bound for the decision variable xi

x* Decision variables’ vector corresponding to the optimum solution

f(x*) Optimum value of the function f

r Random number

NP Population size

MaxIter Maximum number of iterations (or generations)

OFE Maximum number of function evaluations

F Differential weight of the DE algorithm

CR Crossover probability of the DE algorithm

ID Name and code name Search range Optimum Properties

F01 Sphere function

sphere_func

[−100, 100]D f01(x*) = 0

at x* = {0, 0, …, 0}

Unimodal;

Highly symmetric;

Rotationally invariant

2

01

1

()
D

i

i

f x
=

=x

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2

Figure A1. Sphere function in two dimensions. Figure A1. Sphere function in two dimensions.

Appl. Sci. 2021, 11, 5053 22 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 28

ID Name and code name Search range Optimum Properties

F02 Ellipsoid function

ellipsoid_func

[−100, 100]D f02(x*) = 0

at x* = {0, 0, …, 0}

Unimodal

Symmetric

2

02

1

()
D

i

i

f i x
=

= x

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2

Figure A2. Ellipsoid function in two dimensions.

ID Name and code name Search range Optimum Properties

F03 Sum of Different Powers

function

sumpow_func

[−10, 10]D f03(x*) = 0

at x* = {0, 0, …, 0}

Unimodal

1

03

1

()
D

i

i

i

f x
+

=

=x

(a) x ∈ [−1, 1]2 (b) x ∈ [−10, 10]2

Figure A3. Sum of different powers function in two dimensions.

Figure A2. Ellipsoid function in two dimensions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 28

ID Name and code name Search range Optimum Properties

F02 Ellipsoid function

ellipsoid_func

[−100, 100]D f02(x*) = 0

at x* = {0, 0, …, 0}

Unimodal

Symmetric

2

02

1

()
D

i

i

f i x
=

= x

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2

Figure A2. Ellipsoid function in two dimensions.

ID Name and code name Search range Optimum Properties

F03 Sum of Different Powers

function

sumpow_func

[−10, 10]D f03(x*) = 0

at x* = {0, 0, …, 0}

Unimodal

1

03

1

()
D

i

i

i

f x
+

=

=x

(a) x ∈ [−1, 1]2 (b) x ∈ [−10, 10]2

Figure A3. Sum of different powers function in two dimensions.

Figure A3. Sum of different powers function in two dimensions.

Appl. Sci. 2021, 11, 5053 23 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 28

ID Name and code name Search range Optimum Properties

F04 Quintic function

quintic_func

[−20, 20]D f04(x*) = 0

at x* = {−1, −1, …, −1}

and x* = {2, 2, …, 2}

Two global optima

5 4 3 2

04

1

() 3 4 2 10 4
D

i i i i i

i

f x x x x x
=

= − + + − −x

(a) x ∈ [−2, 2]2 (b) x ∈ [−20, 20]2

Figure A4. Quintic function in two dimensions.

ID Name and code name Search range Optimum Properties

F05 Drop-Wave function

drop_wave_func

[−5.12, 5.12]D f05(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

Highly complex

2 2

05

1 1

() 1 1 cos 12 0.5 2
D D

i i

i i

f x x
= =

    
= − + +          

 x

(a) x ∈ [−0.512, 0.512]2 (b) x ∈ [−5.12, 5.12]2

Figure A5. Drop-wave function in two dimensions.

Figure A4. Quintic function in two dimensions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 28

ID Name and code name Search range Optimum Properties

F04 Quintic function

quintic_func

[−20, 20]D f04(x*) = 0

at x* = {−1, −1, …, −1}

and x* = {2, 2, …, 2}

Two global optima

5 4 3 2

04

1

() 3 4 2 10 4
D

i i i i i

i

f x x x x x
=

= − + + − −x

(a) x ∈ [−2, 2]2 (b) x ∈ [−20, 20]2

Figure A4. Quintic function in two dimensions.

ID Name and code name Search range Optimum Properties

F05 Drop-Wave function

drop_wave_func

[−5.12, 5.12]D f05(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

Highly complex

2 2

05

1 1

() 1 1 cos 12 0.5 2
D D

i i

i i

f x x
= =

    
= − + +          

 x

(a) x ∈ [−0.512, 0.512]2 (b) x ∈ [−5.12, 5.12]2

Figure A5. Drop-wave function in two dimensions.

Figure A5. Drop-wave function in two dimensions.

Appl. Sci. 2021, 11, 5053 24 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 24 of 28

ID Name and code name Search range Optimum Properties

F06 Weierstrass function

weierstrass_func

[−0.5, 0.5]D f06(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

Continuous everywhere

but only differentiable on

a set of points

()()() ()()06

1 0 0

() cos 2 0.5 cos

0.5, 3, 20

D kmax kmax
k k k k

i

i k k

f a b x D a b

a b kmax

 
= = =

 
= + − 

 

= = =

  x

(a) x ∈ [−0.05, 0.05]2 (b) x ∈ [−0.5, 0.5]2

Figure A6. Weierstrass function in two dimensions.

ID Name and code name Search range Optimum Properties

F07 Alpine 1 function

alpine1_func

[−10, 10]D f07(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

()07

1

() sin 0.1
D

i i i

i

f x x x
=

= +x

(a) x ∈ [−1, 1]2 (b) x ∈ [−10, 10]2

Figure A7. Alpine 1 function in two dimensions.

Figure A6. Weierstrass function in two dimensions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 24 of 28

ID Name and code name Search range Optimum Properties

F06 Weierstrass function

weierstrass_func

[−0.5, 0.5]D f06(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

Continuous everywhere

but only differentiable on

a set of points

()()() ()()06

1 0 0

() cos 2 0.5 cos

0.5, 3, 20

D kmax kmax
k k k k

i

i k k

f a b x D a b

a b kmax

 
= = =

 
= + − 

 

= = =

  x

(a) x ∈ [−0.05, 0.05]2 (b) x ∈ [−0.5, 0.5]2

Figure A6. Weierstrass function in two dimensions.

ID Name and code name Search range Optimum Properties

F07 Alpine 1 function

alpine1_func

[−10, 10]D f07(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

()07

1

() sin 0.1
D

i i i

i

f x x x
=

= +x

(a) x ∈ [−1, 1]2 (b) x ∈ [−10, 10]2

Figure A7. Alpine 1 function in two dimensions. Figure A7. Alpine 1 function in two dimensions.

Appl. Sci. 2021, 11, 5053 25 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 28

ID Name and code name Search range Optimum Properties

F08 Ackley’s function

ackley_func

[−32.768, 32.768]D f08(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

Many local optima with

the global optimum in a

very small basin

()2

08

1 1

1 1
() 20exp 0.2 exp cos 2 20

D D

i i

i i

f x x e
D D


= =

   
= − − − + +       

 x

(a) x ∈ [−3.2768, 3.2768]2 (b) x ∈ [−32.768, 32.768]2

Figure A8. Ackley’s function in two dimensions.

ID Name and code name Search range Optimum Properties

F09 Griewank’s function

griewank_func

[−100, 100]D f09(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

With many regularly

distributed local optima

2

09

1 1

1
() cos 1

4000

DD
i

i

i i

x
f x

i= =

 
= − + 

 
 x

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2

Figure A9. Griewank’s function in two dimensions.

Figure A8. Ackley’s function in two dimensions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 28

ID Name and code name Search range Optimum Properties

F08 Ackley’s function

ackley_func

[−32.768, 32.768]D f08(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

Many local optima with

the global optimum in a

very small basin

()2

08

1 1

1 1
() 20exp 0.2 exp cos 2 20

D D

i i

i i

f x x e
D D


= =

   
= − − − + +       

 x

(a) x ∈ [−3.2768, 3.2768]2 (b) x ∈ [−32.768, 32.768]2

Figure A8. Ackley’s function in two dimensions.

ID Name and code name Search range Optimum Properties

F09 Griewank’s function

griewank_func

[−100, 100]D f09(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

With many regularly

distributed local optima

2

09

1 1

1
() cos 1

4000

DD
i

i

i i

x
f x

i= =

 
= − + 

 
 x

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2

Figure A9. Griewank’s function in two dimensions. Figure A9. Griewank’s function in two dimensions.

Appl. Sci. 2021, 11, 5053 26 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 26 of 28

ID Name and code name Search range Optimum Properties

F10 Rastrigin’s function

rastrigin_func

[−5.12, 5.12]D f10(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

With many regularly

distributed local optima

()()2

10

1

() 10cos 2 10
D

i i

i

f x x D
=

= − + x

(a) x ∈ [−0.512, 0.512]2 (b) x ∈ [−5.12, 5.12]2

Figure A10. Rastrigin’s function in two dimensions.

ID Name and code name Search range Optimum Properties

F11 HappyCat function

happycat_func

[−20, 20]D f11(x*) = 0

at x* = {−1, -−1, …, −1}

Multi-modal

Global optimum located

in curved narrow valley

1/4

2 2

11

1 1 1

() 0.5 / 0.5
D D D

i i i

i i i

f x D x x D
= = =

 
= − + + + 

 
  x

(a) x ∈ [−2, 2]2 (b) x ∈ [−20, 20]2

Figure A11. HappyCat function in two dimensions.

Figure A10. Rastrigin’s function in two dimensions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 26 of 28

ID Name and code name Search range Optimum Properties

F10 Rastrigin’s function

rastrigin_func

[−5.12, 5.12]D f10(x*) = 0

at x* = {0, 0, …, 0}

Multi-modal

With many regularly

distributed local optima

()()2

10

1

() 10cos 2 10
D

i i

i

f x x D
=

= − + x

(a) x ∈ [−0.512, 0.512]2 (b) x ∈ [−5.12, 5.12]2

Figure A10. Rastrigin’s function in two dimensions.

ID Name and code name Search range Optimum Properties

F11 HappyCat function

happycat_func

[−20, 20]D f11(x*) = 0

at x* = {−1, -−1, …, −1}

Multi-modal

Global optimum located

in curved narrow valley

1/4

2 2

11

1 1 1

() 0.5 / 0.5
D D D

i i i

i i i

f x D x x D
= = =

 
= − + + + 

 
  x

(a) x ∈ [−2, 2]2 (b) x ∈ [−20, 20]2

Figure A11. HappyCat function in two dimensions. Figure A11. HappyCat function in two dimensions.

Appl. Sci. 2021, 11, 5053 27 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 27 of 28

ID Name and code name Search range Optimum Properties

F12 HGBat function

hgbat_func

[−15, 15]D f12(x*) = 0

at x* = {−1, −1, …, -1}

Multi-modal

Global optima located in

curved narrow valley

1/2
2 2

2 2

12

1 1 1 1

() 0.5 / 0.5
D D D D

i i i i

i i i i

f x x x x D
= = = =

     
= − + + +     
     
   x

(a) x ∈ [−1.5, 1.5]2 (b) x ∈ [−15, 15]2

Figure A12. HGBat function in two dimensions.

References

1. Solorzano, G.; Plevris, V. Optimum Design of RC Footings with Genetic Algorithms According to ACI 318-19. Buildings 2020,

10, 1–17, doi:10.3390/buildings10060110.

2. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Longman Publishing Co.: Bos-

ton, MA, USA, 1989.

3. Holland, J. Adaptation in Natural and Artificial Systems; University of Michigan Press.: Ann Arbor, MI, USA, 1975.

4. Plevris, V.; Karlaftis, N.D.; Lagaros, N.D. A Swarm Intelligence Approach for. Emergency Infrastructure Inspection Scheduling.

In Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering; Gopalakrishnan, K.,

Peeta, S., Eds.; Springer: Heidelberg, Germany, 2010; pp. 201–230.

5. Plevris, V.; Papadrakakis, M. A Hybrid. Particle Swarm—Gradient Algorithm for Global Structural Optimization. Comput. Aided

Civ. Infrastruct. Eng. 2011, 26, 48–68, doi:10.1111/j.1467-8667.2010.00664.x.

6. Kennedy, J.; Eberhart, R. Particle Swarm Optimization In Proceedings of the IEEE International Conference on Neural Networks,

Piscataway, NJ, USA, 1995; pp. 1942–1948.

7. Georgioudakis, M.; Plevris, V. A Combined Modal Correlation Criterion for Structural Damage Identification with Noisy Modal

Data. Adv. Civ. Eng. 2018, 2018, 318067, doi:10.1155/2018/3183067.

8. Georgioudakis, M.; Plevris, V. On the Performance of Differential Evolution Variants in Constrained Structural Optimization.

Procedia Manuf. 2020, 44, 371–378, doi:10.1016/j.promfg.2020.02.281.

9. Georgioudakis, M.; Plevris, V. A Comparative Study of Differential Evolution Variants in Constrained Structural Optimization.

Front. Built Environ. 2020, 6, 1–14.

10. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces.

J. Glob. Optim. 1997, 11, 341–359, doi:10.1023/a:1008202821328.

11. Dorigo, M.; Maniezzo, V.; Colorni, A. The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Syst. Man

Cybern. B. 1996, 26, 2941.

12. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION 2001, 76,

60–68, doi:10.1177/003754970107600201.

13. Gao, X.Z.; Govindasamy, V.; Xu, H.; Wang, X.; Zenger, K. Harmony Search Method: Theory and Applications. Comput. Intell.

Neurosci. 2015, 2015, 258491, doi:10.1155/2015/258491.

14. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680, doi:10.1126/sci-

ence.220.4598.671.

15. Glover, F.; Taillard, E.; Taillard, E. A User's Guide to Tabu Search. Ann. Oper. Res. 1993, 41, 1–28, doi:10.1007/BF02078647.

Figure A12. HGBat function in two dimensions.

References
1. Solorzano, G.; Plevris, V. Optimum Design of RC Footings with Genetic Algorithms According to ACI 318-19. Buildings 2020,

10, 110. [CrossRef]
2. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Longman Publishing Co.: Boston,

MA, USA, 1989.
3. Holland, J. Adaptation in Natural and Artificial Systems; University of Michigan Press.: Ann Arbor, MI, USA, 1975.
4. Plevris, V.; Karlaftis, N.D.; Lagaros, N.D. A Swarm Intelligence Approach for. Emergency Infrastructure Inspection Scheduling.

In Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering; Gopalakrishnan, K.,
Peeta, S., Eds.; Springer: Heidelberg, Germany, 2010; pp. 201–230.

5. Plevris, V.; Papadrakakis, M. A Hybrid. Particle Swarm—Gradient Algorithm for Global Structural Optimization. Comput. Aided
Civ. Infrastruct. Eng. 2011, 26, 48–68. [CrossRef]

6. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks,
Piscataway, NJ, USA, 27 November–1 December 1995; pp. 1942–1948.

7. Georgioudakis, M.; Plevris, V. A Combined Modal Correlation Criterion for Structural Damage Identification with Noisy Modal
Data. Adv. Civ. Eng. 2018, 2018, 318067. [CrossRef]

8. Georgioudakis, M.; Plevris, V. On the Performance of Differential Evolution Variants in Constrained Structural Optimization.
Procedia Manuf. 2020, 44, 371–378. [CrossRef]

9. Georgioudakis, M.; Plevris, V. A Comparative Study of Differential Evolution Variants in Constrained Structural Optimization.
Front. Built Environ. 2020, 6, 1–14. [CrossRef]

10. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J.
Glob. Optim. 1997, 11, 341–359. [CrossRef]

11. Dorigo, M.; Maniezzo, V.; Colorni, A. The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Syst. Man
Cybern. B. 1996, 26, 2941. [CrossRef] [PubMed]

12. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION 2001, 76,
60–68. [CrossRef]

13. Gao, X.Z.; Govindasamy, V.; Xu, H.; Wang, X.; Zenger, K. Harmony Search Method: Theory and Applications. Comput. Intell.
Neurosci. 2015, 2015, 258491. [CrossRef] [PubMed]

http://doi.org/10.3390/buildings10060110
http://doi.org/10.1111/j.1467-8667.2010.00664.x
http://doi.org/10.1155/2018/3183067
http://doi.org/10.1016/j.promfg.2020.02.281
http://doi.org/10.3389/fbuil.2020.00102
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://doi.org/10.1177/003754970107600201
http://doi.org/10.1155/2015/258491
http://www.ncbi.nlm.nih.gov/pubmed/25945083

Appl. Sci. 2021, 11, 5053 28 of 28

14. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
15. Glover, F.; Taillard, E.; Taillard, E. A User’s Guide to Tabu Search. Ann. Oper. Res. 1993, 41, 1–28. [CrossRef]
16. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
17. Culberson, J.C. On the Futility of Blind. Search: An. Algorithmic View of “No Free Lunch”. Evol. Comput. 1998, 6, 109–127.

[CrossRef] [PubMed]
18. Ho, Y.C.; Pepyne, D.L. Simple Explanation of the No-Free-Lunch Theorem and Its Implications. J. Optim. Theory Appl. 2002, 115,

549–570. [CrossRef]
19. Koziel, S.; Michalewicz, Z. Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization. Evol.

Comput. 1999, 7, 19–44. [CrossRef] [PubMed]
20. Plevris, V. Innovative Computational Techniques for the Optimum Structural Design Considering Uncertainties; National Technical

University of Athens: Athens, Greece, 2009; p. 312.
21. Zabinsky, Z.B. Stochastic Adaptive Search for Global Optimization. In Nonconvex Optimization and Its Applications; Springer: New

York, USA, 2003; ISBN 978-1-4419-9182-9.
22. Spall, J.C. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control; Wiley: Hoboken, NJ, USA, 2003;

ISBN 9780471330523.
23. Brooks, S.H. A Discussion of Random Methods for Seeking Maxima. Oper. Res. 1958, 6, 244–251. [CrossRef]
24. Peng, J.-P.; Shi, D.-H. Improvement of Pure Random Search in Global Optimization. J. Shanghai Univ. 2000, 4, 92–95. [CrossRef]

http://doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://doi.org/10.1007/BF02078647
http://doi.org/10.1109/4235.585893
http://doi.org/10.1162/evco.1998.6.2.109
http://www.ncbi.nlm.nih.gov/pubmed/10021743
http://doi.org/10.1023/A:1021251113462
http://doi.org/10.1162/evco.1999.7.1.19
http://www.ncbi.nlm.nih.gov/pubmed/10199994
http://doi.org/10.1287/opre.6.2.244
http://doi.org/10.1007/s11741-000-0002-4

	Introduction
	No Free Lunch Theorem in Optimization
	Occam’s Razor and Simplicity in Optimization

	Materials and Methods
	Formulation of the Optimization Problem
	Pure Random Search
	Pure Random Orthogonal Search
	Methodology of the Study and Objective Functions Used
	Objective Functions

	Results
	Objective Function Values
	Convergence History for Each Algorithm
	Computational Efficiency
	Conditions under Which PROS Can Be Trapped in A Local Optimum

	Discussion
	Advantages and Drawbacks of PROS
	PROS Applications

	Conclusions
	Nomenclature
	Objective Functions Used in the Study
	References

