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Abstract 

Background: Modic Changes (MCs) in the vertebral bone marrow were related to back pain in some studies but 
have uncertain clinical relevance. Diffusion weighted MRI with apparent diffusion coefficient (ADC)‑measurements 
can add information on bone marrow lesions. However, few have studied ADC measurements in MCs. Further studies 
require reproducible and valid measurements. We expect valid ADC values to be higher in MC type 1 (oedema type) 
vs type 3 (sclerotic type) vs type 2 (fatty type). Accordingly, the purpose of this study was to evaluate ADC values in 
MCs for interobserver reproducibility and relation to MC type.

Methods: We used ADC maps (b 50, 400, 800 s/mm2) from 1.5 T lumbar spine MRI of 90 chronic low back pain 
patients with MCs in the AIM (Antibiotics In Modic changes)‑study. Two radiologists independently measured ADC in 
fixed‑sized regions of interests. Variables were MC‑ADC (ADC in MC), MC‑ADC% (0% = vertebral body, 100% = cere‑
brospinal fluid) and MC‑ADC‑ratio (MC‑ADC divided by vertebral body ADC). We calculated mean difference between 
observers ± limits of agreement (LoA) at separate endplates. The relation between ADC variables and MC type was 
assessed using linear mixed‑effects models and by calculating the area under the receiver operating characteristic 
curve (AUC).

Results: The 90 patients (mean age 44 years; 54 women) had 224 MCs Th12‑S1 comprising type 1 (n = 111), type 2 
(n = 91) and type 3 MC groups (n = 22). All ADC variables had higher predicted mean for type 1 vs 3 vs 2 (p < 0.001 to 
0.02): MC‑ADC  (10− 6  mm2/s) 1201/796/576, MC‑ADC% 36/21/14, and MC‑ADC‑ratio 5.9/4.2/3.1. MC‑ADC and MC‑
ADC% had moderate to high ability to discriminate between the MC type groups (AUC 0.73–0.91). MC‑ADC‑ratio had 
low to moderate ability (AUC 0.67–0.85). At L4‑S1, widest/narrowest LoA were for MC‑ADC 20 ± 407/12 ± 254, MC‑
ADC% 1.6 ± 18.8/1.4 ± 10.4, and MC‑ADC‑ratio 0.3 ± 4.3/0.2 ± 3.9. Difference between observers > 50% of their mean 
value was less frequent for MC‑ADC (9% of MCs) vs MC‑ADC% and MC‑ADC‑ratio (17–20%).

Conclusions: The MC‑ADC variable (highest mean ADC in the MC) had best interobserver reproducibility, discrimi‑
nated between MC type groups, and may be used in further research. ADC values differed between MC types as 
expected from previously reported MC histology.
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Background
Diffusion-weighted magnetic resonance imaging (DWI) 
is based on the random motion or “self-diffusion” of 
water molecules in a tissue, which depends on its his-
tology [1]. The apparent diffusion coefficient (ADC) 
is a measurement of the diffusion calculated from the 
DWI-images [1–3]. Thus, the ADC adds information on 
function (diffusion) not revealed by imaging of anatomy 
and histology. DWI was first successfully used to evalu-
ate brain tissue and is now also used in other soft tissue 
organs, especially for cancer imaging. In the vertebral 
bone marrow, DWI and ADC measurements are not 
part of standard clinical imaging protocols but have been 
applied to study inflammatory and infectious disorders 
and to differentiate benign from malignant compression 
fractures [3–9].

Modic changes (MCs) are magnetic resonance imag-
ing (MRI) findings of vertebral bone marrow changes 
extending from the endplate. They are divided into type 1 
(oedema type), 2 (fatty type) and 3 (sclerotic type) based 
upon T1- and T2-weighted images [10]. Type 1 MCs 
were related to back pain in some studies [11–13], but 
the clinical significance of MCs is uncertain [14]. There 
are limited data on ADC measurements in MCs [4–6, 
15], but ADC values have been used to help distinguish 
type 1 MCs from infectious spondylitis [4, 5] and inflam-
matory spondyloarthritis [6]. In patients with MCs, DWI 
represents a research tool and has yet no role in rou-
tine imaging. Further research on the relevance of ADC 
measurements in MCs requires reproducible and valid 
measurements. We expect valid ADC values to differ 
according to MC type, since the underlying histology dif-
fers [16]. The aim of this study was to evaluate ADC val-
ues in MCs for interobserver reproducibility and relation 
to MC type.

Methods
This cross-sectional study was based on baseline MRI 
of 90 consecutive patients aged 25–63 years (mean age 
44 years; 54 women) with chronic low back pain and MCs 
who were included in the Norwegian AIM (Antibiotics 
In Modic changes)-study, which comprised 180 patients. 
The current sample size (n = 90) was based on a power 
calculation (see below). Eligibility criteria and methodol-
ogy of the AIM-study are previously published [17, 18]. 
In short, all AIM patients had type 1 and/or type 2 MCs, 
with height ≥ 10% of vertebral body height and diam-
eter > 5 mm, at the level of a previous lumbar disc hernia-
tion [17]. The present analysis included any type of MC of 

that size at any level Th12-S1 with or without disc hernia-
tion. Patients with prior low back surgery, except surgery 
for disc herniation performed more than 1 year earlier, 
were excluded from the AIM-study. None had lum-
bar metal implants. All patients gave written informed 
consent prior to inclusion. The study was approved by 
the Regional Committees for Medical Research Ethics 
in South East Norway (ref. no. 2014/158). The current 
report follows guidelines for reporting reliability and 
agreement studies [19].

Images
The patients included in the present analysis under-
went MRI of the lumbar spine during the initial phase 
of AIM from 2015 to 2016 at five centres using identical 
protocols and 1.5 T scanners (Magnetom Avanto B19, 
Siemens Healthineers, Erlangen, Germany). This study 
applied sagittal ADC maps and T1- and T2-weighted 
non-fat saturated fast spin-echo images (‘T1/T2’). Gra-
dient-echo diffusion weighted echo-planar imaging 
with fat saturation was performed. The system software 
generated ADC maps based on b values of 50, 400 and 
800 s/mm2 (recommended by the vendor) and three 
orthogonal directions of diffusion sensitization (see 
protocol details in Table 1).

For T1/T2, slice thickness/ interslice gap was 
4 mm/0.4 mm, matrix 384 × 269, field of view 
300 mm × 300 mm, echo time (ms)/repetition time (ms) 
11/575 (T1) and 87/3700 (T2), and echo train length 5 
(T1) and 17 (T2). All images were stored and evaluated 
at a single centre using Agfa Impax 6.5 (Agfa Health-
Care, Mortsel, Belgium).

Evaluation
Two radiologists (A, B), with 6 (A) and more than 
10 years of experience (B), independently evaluated lev-
els Th12-S1 (12 endplates) using all sagittal slices. The 
observers were aware that patients had chronic low back 
pain but were otherwise blinded to clinical findings. They 
cross-navigated between the ADC map and the T1/T2 
images to ensure ADC was measured in an MC related 
area. MCs were defined based on T1/T2 images [10, 20] 
(Table 2). We excluded MCs with height < 10% of verte-
bral body height or diameter ≤ 5 mm according to one/
both radiologists.

For each MC, ADC was measured in the MC related 
area that was most intense on the ADC map, in nor-
mal vertebral body marrow, and in cerebrospinal fluid 
(CSF) using a circular region of interest (ROI) with 
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predefined size (Fig.  1, Table  2). To limit variation in 
ADC measurements, we did not use freely shaped 
ROIs. If the MC area had uniform intensity on the ADC 
map, ADC was measured in the area where the MC had 
largest height on T1/T2.

The following ADC variables were analysed (Table  2): 
(a) the MC related ADC value  (10− 6  mm2/s) (MC-ADC), 
(b) MC-ADC in percent (MC-ADC%) where 0% = ADC 
in normal vertebral body marrow and 100% = ADC in 
CSF, and (c) MC-ADC divided by the vertebral body 
ADC (MC-ADC-ratio).

Prior to any ADC measurements, as part of a previous 
study [20], MC type was independently assessed by three 
radiologists (B, C, D), each with more than 10 years’ spine 
MRI experience. MCs were classified in types 1, 2 and 3 
[10] (Table 2).

Mixed MC types were classified as primary (most 
extensive) type / and secondary type, i.e., MC types 1/2, 
1/3, 2/1, 3/1, 2/3 and 3/2. Finally, in the present study, 
MCs were grouped into a type 1 group (any MC con-
taining type 1), type 2 group (pure type 2 MCs) or type 3 
group (MC types 3, 3/2, and 2/3).

Conclusive MC type was based on the agreement of 
at least two of the three observers B, C, and D. If all 
three disagreed, MC type was decided in consensus 
with observer A. The conclusive value for ADC vari-
ables was the mean of the values reported by observ-
ers A and B. The height of the MC into the vertebral 
body was measured in mm in our previous study [20] 
and is reported here as the mean of the values reported 
by observers C and D.

Table 1 DWI with sagittal ADC maps of the lumbar spine

DWI Diffusion weighted imaging, ADC Apparent diffusion coefficient

Sagittal gradient-echo diffusion weighted echo-planar imaging (EPI) with 
fat saturation was performed on 1.5 T Magnetom Avanto scanners with B19 
software (Siemens Healthineers, Erlangen, Germany). The system software 
generated ADC maps based on the three tabled b values and an average 
measure for the three orthogonal directions of diffusion sensitization. The 
integrated spine array coil was used, and no surface coils

Repetition time (TR) 5500 ms

Echo time (TE) 104 ms

Echo‑planar imaging (EPI) factor 192

Number of acquisitions (averages) 3

Number of concatenations 1

Number of slices 17

Matrix (frequency x phase) 192 × 192

Field of view (FoV) 350 mm × 350 mm

Slice thickness 4.0 mm

Interslice gap 0.0 mm

Voxel size 1.8 mm × 1.8 mm × 4.0 mm

Receiver bandwidth 1628 Hz/pixel

Phase encoding direction Anterior to posterior

Saturation pulses Anterior, 30 mm

Acquisition time 3 min 48 s

Coverage From above Th12 to below S2

Phase oversampling 0%

Fat saturation technique Chemical shift‑selective pre‑pulse

Parallel acquisition techniques (PAT) 
mode

None

Distortion correction filters Yes

b values 50, 400, 800 s/mm2

Diffusion weightings (b values) 3

Diffusion encoding scheme Bipolar

Table 2 Description of magnetic resonance imaging variables

MC Modic change, ADC Apparent diffusion coefficient, ROI Region of interest, CSF Cerebrospinal fluid

MCs Signal changes in the vertebral bone marrow that extend from the endplate. Excluded are changes separated from the endplate, abut‑
ting the endplate with a smaller base than height, or extending through the endplate (Schmorl’s hernias).

MC type MC type 1 is hypointense on T1‑ and hyperintense on T2‑weigted images. Type 2 is hyperintense on T1 and hyper‑ or isointense on T2. 
Type 3 is hypointense on T1 and T2. Borderline type 1 vs 2 with near isointense T1 signal is rated as type 2.

MC‑ADC Highest mean ADC value in a 41.8  mm2 ROI in the vertebral body marrow at the endplate with MC on T1/T2. The ROI is placed in the 
most intense MC related region on the ADC map. If the MC region has uniform intensity on the ADC map, the ROI is placed in the MC 
area with largest height on T1/T2. ADC is not measured for MCs with height < 10% of vertebral body height or diameter ≤ 5 mm. A ROI 
of only 41.8  mm2 (diameter 7 mm) is used to accommodate small MCs.

CSF‑ADC Mean ADC value in the CSF in a 41.8  mm2 ROI at the level of the MC affected vertebral unit, measured in the midsagittal image, or the 
next image left or right, avoiding non‑CSF structures (like nerve roots seen on T1/T2). CSF‑ADC is measured in an area with uniform 
intensity and no pulsation artefacts, behind the lower half of the cranial vertebra of the vertebral unit (e.g., behind L3 if the MC is supe‑
rior or inferior to the L3/L4 disc) if possible, and otherwise behind the caudal vertebra of the unit or at the next vertebral unit caudally 
or cranially.

Body‑ADC Mean ADC value in a 94  mm2 ROI in normal (on T1/T2) vertebral body marrow near the MC. The ROI is placed close to the endplate in 
the central anteroposterior third of the normal opposite part (caudally or cranially) of the vertebral body with the MC. If the opposite 
part is not normal, and always when the MC is in S1, the ROI is placed in the nearest vertebra above, in its caudal part if possible, and 
otherwise in its cranial part. The measurement is first considered in the midsagittal image and then, if necessary, considered in the next 
image (left or right) before a new location may be considered. The larger 94  mm2 ROI is used to average more pixels without including 
the central vertebral vein in the ROI.

MC‑ADC‑ratio Calculated as MC‑ADC / Body‑ADC

MC‑ADC% Calculated as (MC‑ADC – Body‑ADC) × 100% / (CSF‑ADC – Body‑ADC)
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Pilot study
Prior to this study, observers A, B, and C performed a 
pilot study on 10 patients, to determine the ADC evalua-
tion criteria and align the measurements. The pilot study 
patients were not included in the present study.

Hypothesis
A priori, we hypothesized that ADC values were higher 
in the type 1 MC group vs the type 3 group and higher 
in the type 3 group vs the pure type 2 group. Ration-
ale: Compared to type 2 and 3, type 1 MCs are likely to 
contain more inflammatory oedema, favouring motion 
of water molecules and increasing the ADC value. Tra-
becular thickening / sclerosis restricts water motion, and 
less trabecular thickening in type 1 vs type 3 MCs [21] 
also suggests higher ADC values in type 1. The large 
hydrophobic fatty cells in type 2 MCs may restrict water 
motion / reduce ADC values more than does the fibro-
vascular granulation tissue with inflammatory cells in 
type 1 MCs [10, 16] and the trabecular thickening in type 

3 MCs [21]. In an MC containing type 1 but also type 2 
and/or 3, we expected type 1 to contribute the highest 
ADC value.

Statistical analyses
The reproducibility analysis was restricted to MCs 
extending from one of the four lowest endplates (L4-S1), 
because of low prevalence (< 10%) of MCs at the other 
endplates [22]. Interobserver reliability at each endplate 
was assessed by Cohen’s kappa (MC presence and type) 
and intraclass correlation coefficients (ICCs) (ADC vari-
ables). We used 2-way random effects, absolute-agree-
ment, average-measures ICCs. ADC variables were also 
analyzed using Bland Altman plots with mean of differ-
ences ±1.96 SD (limits of agreement, LoA) at each end-
plate and pooled across all four endplates L4-S1. We 
further calculated the proportion of differences exceed-
ing 50% of the observers’ mean value for each ADC vari-
able across L4-S1. We used 50% as cut-off because LoA 
were 5% ± 45% for ADC in vertebral bone marrow in 

Fig. 1 Measurements of ADC values. (a‑d) A 50‑year‑old woman with chronic low back pain. ADC maps (a, c) and corresponding T2 weighted fast 
spin echo images (b, d) showing MCs at the L4/L5 level. ADC measurements (Avg GY corresponding to mean  10−6  mm2/s) included (a) highest 
mean ADC value in the MC region (1655 in a 41.8  mm2 ROI) and (c) mean ADC in normal vertebral body marrow (215.9 in a 94  mm2 ROI) and in 
CSF (3125 in a 41.8  mm2 ROI). Midsagittal images were used for measurements in CSF at the level of the MC and close to the endplate in normal 
vertebral body marrow near the MC. ADC, apparent diffusion coefficient. MC, Modic change. ROI, region of interest. CSF, cerebrospinal fluid
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a prior intra rater study [23]. Interpretation of Cohen’s 
kappa: 0.00–0.20 poor; 0.21–0.40 fair; 0.41–0.60 moder-
ate; 0.61–0.80 good; 0.81–1.00 very good reliability [22]. 
ICC values were regarded to indicate poor (< 0.50), mod-
erate (0.50–0.75), good (0.76–0.90) or excellent (> 0.90) 
reliability [24].

The relation between each ADC variable and MC type 
group was analysed using conclusive ADC values from 
MCs extending from one of the 12 endplates Th12-S1. 
Linear mixed-effects models were conducted using the 
ADC variable as dependent variable, MC type group as 
fixed effect, and endplate and patient as random effects. 
In each MC type group, the model returned a predicted 
mean value of the ADC variable that had been adjusted 
for data dependency between MCs at different endplates 
within the same patient. We also assessed the ability of 
each ADC variable to discriminate between the MC type 
groups by calculating the area under the receiver operat-
ing characteristic curve (AUC). We graded the discrimi-
natory ability as low (AUC 0.5 to < 0.7), moderate (0.7 to 
< 0.9), or high (0.9–1.0) [25].

Mixed-effect models were conducted in R 4.0 (R 
Foundation, Vienna, Austria), using normality plots of 
standardized residuals and fitted values to assess model 
assumptions. All other analyses were performed using 
MedCalc 17.6 (MedCalc Software, Ostend, Belgium). 
Plots were made using Matlab 9.5 (Mathworks, Massa-
chusetts, United States) and MedCalc 17.6. The signifi-
cance level was 0.05.

Sample size
Previously reported ADC values (recalculated to 
 10− 6  mm2/s) were 624–1800 (SD 120–316) in type 1 MCs 
[4, 5] and 500 (SD 160) in type 2 MCs [4]. Assuming SD 
300 for ADC in both of two MC groups, 36 MCs in each 
group are sufficient to detect a mean ADC difference of 
200 between the groups (β = 0.2, two-sided α = 0.05). 

We needed 31 MCs at a given endplate to get a precision 
of ±0.10 (95% confidence level) for an ICC of 0.85. We 
expected 90 patients to have enough MCs to compare the 
ADC variables between the three MC type groups and to 
estimate their reliability.

Results
We included MCs from all 90 patients, 224 MCs in total 
(Table 3). These were 111 type 1 group MCs (any type 1), 
91 type 2 group MCs (pure type 2), and 22 type 3 group 
MCs (20 type 2/3, 2 type 3/2, 0 type 3). MC height was 
mean 10.7 mm (SD 3.6 mm) and was ≥7 mm in 85% of 
the MCs (191/224). For reproducibility analyses, 201 
MCs at L4-S1 were included.

Interobserver reproducibility
The interobserver reliability was very good (kappa 0.85–
0.96) for MC presence but varied from moderate to 
very good (kappa 0.41–0.81) for MC type group (Addi-
tional file 1, Table A1) and good to excellent (ICC 0.84–
0.98) for the three ADC variables (Table 4).

For MC-ADC, values  (10− 6  mm2/s) from both observ-
ers ranged from 108 to 2029 (mean 913) across the 201 
MCs L4-S1. Widest LoA were 20 ± 407 (at L4-L5 inferior 
to disc) and narrowest LoA were 12 ± 254 (at L5/S1 infe-
rior to disc) (Fig. 2).

MC-ADC% ranged from 6 to 76 (mean 25.6) and had 
widest and narrowest LoA of 1.6 ± 18.8 and 1.4 ± 10.4 
(Fig. 3).

MC-ADC-ratio ranged from 0.5 to 15.6 (mean 4.7) with 
widest and narrowest LoA 0.3 ± 4.3 and 0.2 ± 3.9 (Fig. 4).

Pooled LoA across L4-S1 were for MC-ADC 
 (10− 6  mm2/s) 7 ± 316, MC-ADC% 1.2 ± 13.8, and MC-
ADC-ratio 0.4 ± 4.0. The upper border of these LoA 
reached 35, 59, and 94% of the mean value for MC-
ADC (913), MC-ADC% (25.6) and MC-ADC-ratio (4.7), 
respectively, across all 201 MCs L4-S1.

Table 3 Distribution of Modic types across the lumbar spine

Tabled values are numbers (%)

Modic type Th12/L1 L1/L2 L2/L3 L3/L4 L4/L5 L5/S1 Total

Pure 1 0 0 0 1 3 11 15 (7)

1/2 0 0 2 4 19 20 45 (20)

1/3 0 0 0 0 7 7 14 (6)

2/1 0 0 3 0 8 25 36 (16)

3/1 0 0 1 0 0 0 1 (0.4)

Pure 2 2 2 4 3 35 45 91 (41)

2/3 0 0 1 0 7 12 20 (9)

3/2 0 0 0 0 0 2 2 (0.9)

Pure 3 0 0 0 0 0 0 0

Total 2 (0.9) 2 (0.9 11 (5) 8 (4) 79 (35) 122 (54) 224 (100)
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The difference between the two observers was > 50% 
of their pairwise mean in 18 (9%) of the 201 MCs for 
MC-ADC, 41 MCs (20%) for MC-ADC%, and 34 MCs 
(17%) for MC-ADC-ratio.

Reproducibility parameters for ADC values in CSF and 
normal vertebral body marrow are shown in Additional 
file 1, Table A2.

Table 4 Interobserver reliability for ADC variables

ADC Apparent diffusion coefficient, MC Modic change. MC-ADC, ADC in MC. MC-ADC%, ADC in MC in percent (0% = vertebral body, 100% = cerebrospinal fluid). 
MC-ADC-ratio, ADC in MC divided by ADC in normal vertebral body marrow

Values are intraclass correlation coefficients (95% confidence intervals)

L4/L5 superior to disc, n = 40 L4/L5 inferior to disc, n = 39 L5/S1 superior to disc, n = 62 L5/S1 inferior 
to disc, n = 60

MC‑ADC 0.97 (0.94–0.98) 0.95 (0.90–0.97) 0.97 (0.94–0.98) 0.98 (0.97–0.99)

MC‑ADC% 0.94 (0.86–0.97) 0.91 (0.84–0.96) 0.96 (0.94–0.98) 0.97 (0.95–0.98)

MC‑ADC‑ratio 0.86 (0.74–0.92) 0.87 (0.75–0.93) 0.84 (0.75–0.91) 0.84 (0.73–0.90)

Fig. 2 Bland‑Altman plots for MC‑ADC. The figure shows results for two radiologists who measured MC‑ADC in a total of 201 MCs at the four 
endplates L4‑S1. MC, Modic change. ADC, apparent diffusion coefficient. MC‑ADC, ADC in MC
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ADC values by MC type group
Unadjusted mean values of the three MC related ADC 
variables are shown in Table 5.

Adjusted for data dependency within patients in the 
linear mixed-effects models, the predicted means for the 
ADC variables were higher in the type 1 vs type 3 MC 
group and in the type 3 vs type 2 MC group (p ≤ 0.001 to 
0.02) (Fig. 5).

Predicted mean for type 1 vs 3 vs 2 was for MC-ADC 
 (10− 6  mm2/s) 1201 vs 796 vs 576, for MC-ADC% 36 vs 21 
vs 14, and for MC-ADC-ratio 5.9 vs 4.2 vs 3.1.

The ability to discriminate between the MC type 
groups was moderate to high for MC-ADC and MC-
ADC% (AUC 0.73–0.91) and low to moderate for MC-
ADC-ratio (AUC 0.67–0.85) (Fig. 6).

Supplementary ADC data are found in Additional 
file 1, Table A3 and Fig. A1.

Discussion
This study provides new data on interobserver reproduc-
ibility for ADC values in MCs. We found relatively bet-
ter reproducibility for MC-ADC than for MC-ADC% and 
MC-ADC-ratio. To our knowledge, this is also the first 
study to show higher ADC values for a type 1 vs a type 
3 MC group and for a type 3 vs a pure type 2 MC group, 
supporting our hypothesis based on histology of MCs 
[10, 16, 21].

We tested the hypothesis of ADC differences between 
MC types to assess the construct validity of the ADC 
variables [26, 27]. ADC maps cannot replace images 

Fig. 3 Bland‑Altman plots for MC‑ADC%. The figure shows results for two radiologists who measured MC‑ADC% in a total of 201 MCs at 
the four endplates L4‑S1. MC, Modic change. ADC, apparent diffusion coefficient. MC‑ADC%, ADC in MC in percent (0% = vertebral body, 
100% = cerebrospinal fluid)
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used to discriminate between MC types. The discrimi-
native ability still supports the validity of MC-ADC and 
MC-ADC% and weakens the validity of MC-ADC-ratio. 
To evaluate how well ADC values represent actual dif-
fusion (criterion validity), one could perform DWI 
of phantoms with defined diffusion characteristics 
[28–30].

Pooled LoA suggested that 95% of differences in MC-
ADC between observers can be expected to fall within 
7 ± 316  (10− 6  mm2/s). This is relevant when differ-
ent observers measure MC-ADC in the same patient. 
ICC ≥ 0.95 indicated that MC-ADC distinguished 
well between the patients [31], despite LoA reached 
35% of the mean across L4-S1. The ICC quantifies the 

Fig. 4 Bland‑Altman plots for MC‑ADC‑ratio. The figure shows results for two radiologists who measured MC‑ADC‑ratio in a total of 201 MCs at the 
four endplates L4‑S1. MC, Modic change. ADC, apparent diffusion coefficient. MC‑ADC‑ratio, ADC in MC divided by ADC in normal vertebral body 
marrow

Table 5 Unadjusted mean for ADC variables by Modic type 
group

ADC Apparent diffusion coefficient, MC Modic change. MC-ADC, ADC in MC. 
MC-ADC%, ADC in MC in percent (0% = vertebral body, 100% = cerebrospinal 
fluid). MC-ADC-ratio, ADC in MC divided by ADC in normal vertebral body 
marrow

Tabled are mean values (standard deviation) across Th12-S1 in each of three 
Modic type groups including a total of 224 MCs in 90 patients

Modic group Number of 
MCs

MC-ADC MC-ADC% MC-ADC-ratio

Type 1 111 1226 (352) 36.3 (12.2) 6.0 (2.5)

Type 2 91 535 (306) 12.7 (11.1) 3.0 (1.9)

Type 3 22 786 (290) 21.1 (9.8) 4.5 (1.9)
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between-subject variability in relation to the measure-
ment error [31, 32]. Thus, the high ICC values (≥ 0.95) 
may reflect the large variability in MC-ADC values 
between the patients in our sample. In more homog-
enous samples the ICC will be lower.

No previous study has reported specifically on the 
reproducibility of ADC values in MCs. A study of ADC 
measurements in active spondyloarthritis foci and type 
1 MCs [6] reported interobserver ICCs of 0.89–0.98. 
Other studies on ADC values in bone marrow lacked 

interobserver data [23, 33]. Our LoA for ADC in nor-
mal lumbar bone marrow (4% ± 56%) (Additional file  1, 
Table  A2) were only slightly wider than previously 
reported for  intra observer LoA (5% ± 45%) [23]. ADC 
values have been found to be less reproducible in bone 
marrow than in soft tissues [23]. Thus, our results seem 
to agree with relevant prior studies.

Standardized ROIs, pilot testing, and clear instruc-
tions for where to measure probably reduced the vari-
ability of the ADC measurements. MC-ADC implied 

Fig. 5 ADC variables according to Modic type group. The left panel shows predicted means from linear mixed‑effects analyses for three ADC 
variables in each of three Modic type groups including a total of 224 MCs Th12‑S1 in 90 patients. The right panel shows regression coefficient for 
Modic type 1 and type 3 groups using type 2 group as reference. ADC, apparent diffusion coefficient. MC, Modic change. MC‑ADC, ADC in MC. 
MC‑ADC%, ADC in MC in percent (0% = vertebral body, 100% = cerebrospinal fluid). MC‑ADC‑ratio, ADC in MC divided by ADC in normal vertebral 
body marrow

Fig. 6 Ability of ADC variables to discriminate between Modic type groups. The figure shows receiver operating characteristic curves and AUC 
values describing the ability of each ADC variable to discriminate between the Modic type groups for 224 MCs Th12‑S1 in 90 patients. MC‑ADC and 
MC‑ADC% discriminated better between MC type 1 and type 2, and between type 1 and type 3 than did MC‑ADC‑ratio (p 0.005 to < 0.001). The 
ability to discriminate between type 3 and type 2 did not differ between the three variables. ADC, apparent diffusion coefficient. MC, Modic change. 
AUC, area under the curve. MC‑ADC, ADC in MC. MC‑ADC%, ADC in MC in percent (0% = vertebral body, 100% = cerebrospinal fluid). MC‑ADC‑ratio, 
ADC in MC divided by ADC in normal vertebral body marrow
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a single measurement, avoiding variation from meas-
urements in CSF and normal bone marrow. This may 
partly explain the relatively better reproducibility for 
MC-ADC compared to MC-ADC% and MC-ADC-ratio. 
We included the two latter variables since it had been 
found useful in prior studies of ADC values to standard-
ize lesion values against normal tissue values [34–36]. 
However, in our study this approach added variability. 
Compared to MC-ADC, MC-ADC-ratio also discrimi-
nated less well between the MC type groups. MC-ADC 
seems more feasible, reproducible, and promising for 
use in further research.

In line with our results, Belykh et  al. found higher 
mean ADC  (10− 6  mm2/s) in type 1 vs type 2 MCs (498 
vs 223, p < 0.001) [15]. Prior statistical comparisons of 
ADC values between all three MC type groups are lack-
ing. In a study with 20 MCs, mean ADC (recalculated to 
 10− 6  mm2/s) was descriptively reported to be 624, 500, 
and 756 in type 1, 2, and 3 MCs, respectively [4]. Thus, 
ADC values differed between studies. Our mean ADC 
value of 1226 in type 1 MCs was midways in the range of 
previous values (498 to 1800) [4, 5, 15], and close to what 
was found in spondyloarthritis foci (1240) [36].

Many factors can affect ADC values in MCs, such as 
MRI technique (sequence parameters, b values, fat sup-
pression) [37–40], ROI size and location, type of ADC 
measure (mean, percentile, histogram), and the definition 
of MC type (e.g., pure, mixed). Lack of information on 
mixed MC types, ROI size, and exact location of the ROI 
in the MC further complicates a comparison of the ADC 
values [5, 15].

Strengths and limitations
Strengths of this study are standardized MRI methodol-
ogy, well-defined criteria for measuring ADC, and a large 
enough sample size to compare ADC values between MC 
type groups. A limitation is that our type 3 MC group was 
dominated by type 2/3 MCs, which may have reduced 
its ADC values. Partial volume effect can bias ADC 
measurements in MCs. This was likely a minor issue in 
our study, since 85% of the MCs appeared clearly larger 
(based on height ≥ 7 mm) than the slice thickness applied 
(4 mm) and at least as large as the ROI used (diameter 
7 mm). The interobserver reliability for MC type group 
varied, reflecting difficulties in assessing signal intensities 
in MCs, especially in mixed MC types, which were preva-
lent (Table  3). The observers were experienced and had 
performed a pilot study. Interobserver differences may 
be larger between less experienced radiologists. We did 
not assess intra observer agreement, which is often better 
than the interobserver agreement [41–44].

The ADC maps showed some noise and distortion 
(Fig. 1), which are common problems in spine DWI [40]. 

The single-shot echo-planar imaging method applied 
is prone to susceptibility artefacts, which can influence 
ADC values. The DWI sequence (3 min 48 s) was part 
of an extensive MRI protocol where each sequence had 
been shortened to reduce total scan time and make the 
protocol feasible at all study centres. Longer acquisition 
time could have been used to improve the ADC maps 
[45, 46]. New DWI methods like RESOLVE (readout seg-
mentation of long variable echo-trains), can also provide 
better image quality but were not available to us at the 
time [47]. The DWI method we used should be possible 
to apply at most MRI centres. Importantly, we used T1/
T2 images as anatomical references when measuring 
ADC, and the modest quality of the ADC maps hardly 
affected the overall results.

Implications
Our findings have some implications for future research. 
Firstly, MC-ADC may be preferable when all study par-
ticipants undergo identical DWI protocols. Secondly, 
the intra observer repeatability of the ADC variables and 
their reproducibility with other and improved DWI pro-
tocols should be clarified. Finally, the clinical relevance 
of measuring ADC in MCs is unknown and should be 
investigated, especially in the most inflammatory type 1 
MC group. In inflammatory lesions of spondyloarthritis 
and sacroiliitis, ADC measures were related to disease 
activity [36, 48].

Conclusions
ADC values of MCs had overall moderate interobserver 
reproducibility and they differed between MC types as 
hypothesized. The reproducibility was best for MC-ADC 
- measured in a ROI of predefined size - without stand-
ardization against normal bone marrow or CSF. This var-
iable appears feasible, reliable, and valid to use in further 
research.
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