
ACIT5930

MASTER’S THESIS

in

Applied Computer and Information
Technology (ACIT)

May 2022

Cloud-Based Services and Operation

A comparative study between
Microservices and Serverless in the cloud

Beebu Nisha Yasar Arafath

Department of Computer Science

Faculty of Technology, Art and Design

1

Abstract

The revolutionary transformation toward cloud computing microservices has gained rapid

momentum among IT circles due to its agility, scalability, and resiliency. Many applications

are deployed using microservices at their core to increase the agility and flexibility of

management platforms. However, serverless computing has become a hot topic when

deploying cloud-native applications. Compared to microservices, serverless architecture

offloads management of underlying infrastructure and operational maintenance from the

user to the cloud provider. Thus, the users focus only on building the business logic. With

both these technologies, applications can take advantage of faster delivery, lightweight

scalable, and lower development and maintenance costs. Hence, there are debates

concerning which deployment strategy to use for their applications.

This thesis provides a comparison in terms of performance, cost, scalability, availability,

security, stability, controllability, visibility, and development experience when deploying an

application using microservices and serverless in two Cloud Platforms, AWS and Google

cloud. Furthermore, the experimental results demonstrate the advantages and

disadvantages of each type of deployment strategy under different scenarios and let the

Organization decide and choose which deployment strategy to use. The microservice

approach is best suited for predictable traffic, which results in better performance with pre-

built instances. On the other hand, the large number of requests is handled by serverless

due to its scaling agility and cost-effectiveness.

2

Table of Contents

Chapter 1 Introduction ..8

1.1 Problem Statement .. 10

1.2 Motivation ... 10

1.3 Objective and Research questions ... 11

1.4 Outline ... 12

Chapter 2 Literature Study .. 13

2.1 Background .. 13
2.1.1 Monolithic Architecture ..14
2.1.2 Service-Oriented Architecture ...16
2.1.3 Microservices Architecture..17
2.1.4 Serverless Architecture..20
2.1.5 Cloud Platforms ...24

2.2 Related Work ... 25

Chapter 3 Research Methodology ... 29

3.1 Data Sources and Search Strategy ... 29

3.2 Phases of Research ... 30

3.3 Research Methods .. 30
3.3.1 Qualitative Analysis ...31
3.3.2 Quantitative Analysis ...32
3.3.3 Tools and Techniques used ...32

Chapter 4 Application and Architecture Design .. 34

4.1 Application Used .. 34
4.1.1 Source Code Changes for AWS environment ..35
4.1.2 Source Code Changes for Google cloud ..35

4.2 General Software Architecture.. 36
4.2.1 Microservice Architecture ...36
4.2.2 Serverless Architecture..39

Chapter 5 Implementation .. 42

5.1 Microservice .. 42
5.1.1 Amazon Web Services ...42
5.1.2 Google Cloud ...49

5.2 Serverless Deployment ... 52
5.2.1 Serverless Deployment in Amazon Web Services ...53
5.2.2 Serverless Deployment in Google Cloud ...56

Chapter 6 Experiments and Results ... 59

6.1 Infrastructure Scaling for Evaluation ... 59
6.1.1 Microservice ..59
6.1.2 Serverless ...60

6.2 Infrastructure setup for load test .. 61

6.3 Load Pattern .. 62
6.3.1 Constant request rate ..63

3

6.3.2 Random Load Test ...63
6.3.3 Stress Incremental load ...64
6.3.4 Spike Load Test ..65

6.4 Results ... 66
6.4.1 Performance ..66
6.4.2 Cost ..78
6.4.3 Development Experience ..80

Chapter 7 Discussion ... 82

7.1 Quantitative Metrics .. 82
7.1.1 Performance ..82
7.1.2 Cost ..84

7.2 Qualitative Metrics ... 85
7.2.1 Scalability ...85
7.2.2 Security ..85
7.2.3 Development Experience ..86
7.2.4 Controllability and Visibility...87

7.3 Limitations ... 87

7.4 Challenges Faced .. 87

7.5 Summary.. 89

Chapter 8 Conclusion .. 90

8.1 Answer to Research questions .. 90

8.2 Future work ... 91

Reference List ... 93

4

List of Figures

Figure 2.1 Evolution from Monolithic to Serverless Architectures (Zollingkoffer, 2017)13
Figure 2.2 Monolithic Functional Architecture (Ravirala, 2019) ...15
Figure 2.3 Monolithic Operational Model(Maherchandani, 2019) ..15
Figure 2.4 SOA Functional view (Javatpoint, 2020) ...16
Figure 2.5 Microservices Functional Architecture (Ravirala, 2019) ...18
Figure 2.6 Microservices Operation Model (Maherchandani, 2019) ...20
Figure 2.7 Cost Comparison in AWS on Lambda Vs. EC2 (BBVA, 2020) ..26
Figure 2.8 Time to Market (Cloudflare, 2021) ..27
Figure 3.1 Phases of research ...30
Figure 4.1 Two-Tier Architecture ..36
Figure 4.2 Microservice Architecture in AWS ...37
Figure 4.3 Microservices Architecture in Google Cloud ...37
Figure 4.4 Serverless Architecture in AWS ...39
Figure 4.5 Serverless Architecture in Google Cloud ...40
Figure 5.1 Autoscaling Model in AWS ...45
Figure 5.2 Load Balancer in AWS ..47
Figure 5.3 Detailed Microservice Architecture in AWS ...48
Figure 5.4 Cluster Components ..48
Figure 6.1 Load Test Architecture...61
Figure 6.2 Monitoring Pipeline ...62
Figure 6.3 Load Pattern – Constant ..63
Figure 6.4 Load Pattern – Random ...64
Figure 6.5 Load Pattern – Stress Incremental...64
Figure 6.6 Load Pattern - Spike ...65
Figure 6.7 Constant - Response time [256 MB] ..67
Figure 6.8 Constant - Response time [512 MB] ..67
Figure 6.9 Constant - Memory Utilization [256 MB] ...69
Figure 6.10 Constant - Memory Utilization [512 MB] ...69
Figure 6.11 Random - Response Time [256 MB] ..70
Figure 6.12 Random - Response Time [512 MB] ..70
Figure 6.13 Random - Memory Utilization [256 MB] ..72
Figure 6.14 Random - Memory Utilization [512 MB] ..72
Figure 6.15 Stress - Response Time [256 MB] ..73
Figure 6.16 Stress - Response Time [512 MB] ..73
Figure 6.17 Stress - Memory Utilization [256 MB] ...75
Figure 6.18 Random - Memory Utilization [512 MB] ..75
Figure 6.19 Spike - Response Time [256 MB] ...76
Figure 6.20 Random - Response Time [512 MB] ..76
Figure 6.21 Spike - Memory Utilization [256 MB]...77
Figure 6.22 Spike - Memory Utilization [512 MB]...77

5

List of Tables

Table 4.1 Cloud Components ...36
Table 5.1 AWS Network Components ...43
Table 5.2 Microservice Instance Configuration in AWS ..43
Table 5.3 Container Task Configuration in AWS ...46
Table 5.4 Instance Scaling Policy ..46
Table 5.5 Container Scaling Policy ..47
Table 5.6 Google Network Components...49
Table 5.7 Google Instance Configuration ...50
Table 5.8 Function configuration in AWS ...53
Table 6.1 Memory-CPU Allocation in AWS Lambda ...60
Table 6.2 Memory-CPU Allocation in Google Functions ...61
Table 6.3 Load Test Instance Configuration ...65
Table 6.4 Constant Load Metrics ..66
Table 6.5 Random Load Metrics ...70
Table 6.6 Stress Incremental Metrics ...73
Table 6.7 Spike Load Metrics ..75
Table 6.8 Constant Load - Cost Calculation ..79
Table 6.9 Random Microservice - Cost Calculation ..79
Table 6.10 Stress Microservice - Cost Calculation ..80
Table 6.11 Spike Microservice - Cost Calculation ...80
Table 6.12 Serverless - Cost Calculation ...80

6

Acknowledgment

I am grateful to Professor Raju Shrestha for supervising me and as my teacher for all his

support, encouragement, and kindness during these two years of master's study. A special

appreciation goes to Raju Shrestha as a knowledgeable professor and a great person who

always makes time for me and my questions. His advice and comments on my technical

questions, as well as on my report by proofreading, were very precise and useful. Thank you,

Raju Shrestha, for accepting to be my supervisor and for all your invaluable guidance,

encouragement, and constructive suggestions during my thesis work.

Thanks to Oslo Metropolitan University (OsloMet) for offering this master’s degree program.

I would like to thank my friends for their kindness and support during the last year.

Last but certainly not least, I would like to thank my husband Yasar Arafath, my daughter

Tanisha, my beloved parents, my sisters, and my brother. Without your encouragement and

support throughout my life, none of this would have happened.

Beebu Nisha Yasar Arafath

May 16, 2022

Oslo, Norway

7

Abbreviations

IT Information Technology
AWS Amazon Web Services
SOA Service-Oriented Architecture
HTML HyperText Markup Language
SOAP Simple Object Access Protocol
WSDL Web Services Description Language
ESB Enterprise Service Bus
HTTP HyperText Transfer Protocol
API Application Programming Interface
FAAS Function as a Service
PAAS Platform as a Service
SAAS Software as a Service
IAAS Infrastructure as a Service
BAAS Backend as a Service
DDOS Distributed Denial of Service
EC2 Elastic compute cloud
VMs Virtual Machine
IAM Identity and Access Management
TCP Transfer Control Protocol
CPU Central Processing Unit
SSM System Manager
YAML Yet Another Markup Language
OSI Open System Interconnection

8

Chapter 1

Introduction

Cloud computing offers computing power, databases, storage, and resources located

somewhere else that can be consumed on-demand through the internet, which is pay-per-

use. Around the world, these computers are located and can be consumed virtually through

cloud providers like Google Cloud, Amazon Web Services, Azure, and other cloud providers

(Rajan, 2020). To support the quality and crucial attributes of the software in the software

lifecycle, software architecture plays a vital role (Ghayyur et al., 2018). In this thesis,

Microservices and serverless architecture are developed and deployed in two cloud

platforms. And the comparison is made on which architecture suites based on the

requirement, literature study, and experimental results.

Microservices is an architectural pattern in which applications are broken down into

independently deployable small services, Hence the term "microservices"(Chris Tozzi, 2021).

Microservices have fine-grained business capabilities and are isolated from each other.

Moreover, a microservices runs on its own process and communicates using lightweight

protocols and standardized interfaces (Viggiato et al., 2018).

Microservices architecture has been used by many organizations to achieve a high degree of

agility, speed of delivery, performance, and scale. Many organizations such as Uber, Netflix,

and Amazon successfully used the divide-and-conquer technique to break their monolithic

applications into smaller units. These organizations solved some prevailing issues they were

experiencing with their monolithic applications. Following the success, many other

organizations started adopting this as a typical pattern to refactor their monolithic

applications(Packt, 2017). Microservices have gotten into the mainstream last few years

along with the spread of DevOps practices and holder's advancements, like Kubernetes and

Docker (Pahl & Jamshidi, 2016). We can see an expansion in the use of microservices

architectural style since 2014 (Viggiato et al., 2018). The usage of microservices is high when

compared to other software architecture models, which can be verified in the service-

oriented industry (Richards, 2016). Microservices are more adjusted to business capabilities

9

and have independently manageable life cycles, and they are the perfect choice for

enterprises on DevOps and cloud.

On the other hand, Serverless Computing allows you to build and run the applications

without thinking about servers. Compared to the microservices, serverless architecture

discharges the effort of server management from the application developers, who now have

to focus on the application logic (Baldini et al., 2017). With serverless, users can build nearly

any type of application, and backend service that demands scale and high availability is

handled by the cloud provider.

In recent years serverless has evolved due to offerings and investments from cloud

providers. Some software teams spent time justifying a migration towards serverless.

Usually, they needed to address management's concerns about cost, performance, and

scale. All those things are relevant and remarkable to ask when exploring any new

architecture. Still, advanced serverless observability is booming to fill the gaps in the

market.

Both serverless and microservices computing has their own advantages and disadvantages,

but the decision to adopt a design pattern depends on the business and project

requirements. Hence there are debates concerning which deployment strategy to use for

their applications. As a result, a comprehensive study and experiments are required to

compare serverless and microservices (Sadaqat et al., 2018).

Presently, works of literature are not available for this topic which covers all the aspects of

an application such as performance, cost, scalability, availability, security, controllability,

visibility, stability, and development experience. This led us to conduct a study with

experimentation. The main theme of this thesis is the comparative study between

microservices and serverless deployment by evaluating the quantitative and qualitative

metrics.

10

1.1 Problem Statement

With the evolution of the cloud, especially in the field of public cloud, Microservices

architecture has already been well accepted by the developer community as it has

developed the necessary club in part with cloud computing quite well. But since change is a

natural phenomenon for further betterment, another architecture called serverless got

evolved these days. In contradiction, few things are common in both microservices and

serverless. To achieve modern, future-proof architecture, both have it. To build a better

architecture for large-scale application development and leveraging distributed systems

with innovations, both have that too. Where technology becomes crucial in the organization

on what to choose in deploying an application, it is a key differentiator. To better

understand addressing their business needs with the help of the technologies, business

executives have a conversation with IT leaders on what to choose due to its much more

similarities. Architects, Site Reliability Engineers and DevOps Consultants in most IT

Organization finds it difficult to decide which one is best for their business applications and

for their organization. There is always a gap in seeing the key difference between

microservice and serverless from a holistic view covering all aspects of an application. The

trigger for this research starts here. For the development of the project choosing

appropriate infrastructure and architecture plays a crucial start and important step in

leading the application to success. This will set the boundaries for the application at the

beginning of the project. If an organization fails to choose a better and proper technology

later date, it costs more to change and waste of time. Therefore, for the application to set

up a long-term environment decision needs to be taken by the architect.

1.2 Motivation

The focus of the thesis is to provide and create a clear and informative document both

theoretically and experimentally, saving both time and money for the projects. This gives an

opportunity for the architect to decide on what architecture to choose for the requirement

of the project. Taking off the gloves, what are the similarities and differences? What are the

limitations and benefits? To find the answer, detailed research and experiment are carried

out under the top comparison between serverless and microservices.

11

1.3 Objective and Research questions

The objective of this thesis work is to help the organization make an informed decision on

the choice between microservice and serverless architectures and deployment strategy for

cloud-based applications through a comparative study and by doing hands-on experiments.

This is done in the context of deploying a backend system to support a cloud-based

application on two cloud platforms such as AWS and Google Cloud. The implementation is

done in AWS and in Google cloud for choosing the right technology platform by evaluating

quantitative and qualitative attributes between microservices and serverless. In order to

achieve the defined objectives, the following research questions are formulated:

▪ RQ1: What are the main factors that influence the decision of choosing between

microservices and serverless?

▪ RQ2: Which architecture among the two (Microservices and Serverless) is suitable

for deploying an application in the cloud?

I believe that this thesis work will be valuable to the enterprise business and industries

involved in software development activities in providing a good knowledge and

understanding of how, when, and where to use the microservices and serverless. It also

eliminates the business risks due to selecting the wrong technology stack and providing

good business value.

12

1.4 Outline

This thesis work consists of 8 chapters and is organized as follows:

▪ Chapter 1 is the introduction has coverage of essential topics related to the history and

periodic progress of microservices and serverless cloud computing. Introduction also

includes subsections are problem statement, motivation, objective, and research

questions.

▪ Chapter 2 is about a literature study that has subtopics like background and related

works. The background explains a brief knowledge of monolithic SOA, microservices,

serverless technologies, benefits, and limitations. Related work shows quantitative and

qualitative analysis of existing research.

▪ Chapter 3 Discusses the methodology, which carries how data are searched, a

systematic review of qualitative and quantitative methods, techniques and tools used in

experimenting and providing results, and phases of research.

▪ Chapter 4 Presents the application used and architecture design of both microservices

and serverless in AWS and Google Cloud.

▪ Chapter 5 presents an implementation of both architectures and deployment in

microservice and serverless.

▪ Chapter 6 Describes the experiment results, analysis, and evaluation between

microservices and serverless metrics.

▪ Chapter 7 Discussion, limitations, and challenges.

▪ Chapter 8 Conclusion and future work.

13

Chapter 2

Literature Study

This chapter provides background about microservices, and serverless cloud computing has

been reviewed to understand the development and existing issues. In addition, a number of

research articles are studied deeply two technologies, microservices and serverless in the

cloud. The essential findings of the related works are presented below under the

background.

Section 2.1 provides an overview of the evolution of software architectures, starting from

traditional to the most recent serverless architecture. This provides knowledge about how

monolithic shifts to service-oriented, microservices and, at present serverless too evolved,

which are similar in few concepts and contradictory in many. Section 2.1.1 briefly discusses

the monolithic architecture and how large application was managed by the organizations.

Some of the drawbacks that lose its popularity with some difficulties in the Organization.

Then, section 2.1.2 is about service-oriented architecture and some of its drawbacks.

Section 2.1.3 is about microservices architecture on how the large application broken down

into small services and attracted by large companies moved their application to the cloud.

Therefore section 2.1.4 about serverless computing is the trending topic that attracts many

companies with its effective features are briefly explained below.

2.1 Background

 Figure 2.1 Evolution from Monolithic to Serverless Architectures (Zollingkoffer, 2017)

14

Figure 2.1 (Zollingkoffer, 2017) depicts how serverless evolve starting from monolithic,

where an application is tightly bundled into a single package and run as one process in

dedicated infrastructure, either on-premises or in the cloud. Frontend, application layer,

and data store layers are tightly coupled in monolithic applications. There are some

difficulties like long start-up time, single point of failure, and maintainability. To overcome

this, microservices were introduced where an application is broken down into small

independent, loosely coupled components working together to perform a task that forms a

decentralized architecture. However, microservices are widely used across organizations

running large applications. The evolution of serverless technology, which massively scales

on public cloud platforms. It has gained more attraction among IT Architects and

developers. In Serverless, cloud providers are responsible for running a piece of code by

dynamically allocating the resources at the backend and only charging for the number of

resources execution time used to run the code (Ivanovic, 2021).

2.1.1 Monolithic Architecture

Monolithic is an architectural framework. An application is bundled into one package and

run as one process in a dedicated infrastructure. In monolithic architecture, the whole code

is encapsulated into one single application, so each piece of code cannot be executed

independently (Ponce et al., 2019).

Monolithic application with a single large codebase with one team (Ghayyur et al., 2018)

offers tens or hundreds of services using different interfaces such as HTML pages and Web

services. This codebase is given to multiple developers if they want to make any upgrades or

changes in code. Artifacts are managed by the team manually. If the single artifact needs to

deploy many times per day, then the whole application deploys on multiple machines. Here,

developers and the operations team work separately. Scaling in monolithic is challenging

because the same application with different services has some irregular consumption,

including additional infrastructure for the whole application. Therefore, the unused

resource for the other service is wasted, increasing the cost (Lehmann & Sandnes, 2017).

However, one component of the application experiences load, which then scales the whole

application. Even though that particular component needs to scale cannot be performed as

it has a single process (Dragoni et al., 2017). Some technical and business-related issues are

15

highly coupled. Therefore, system maintenance is hard. Releasing new features took a long

time and low productivity among developers. Apart from this, the application becomes

complex, and as a team grows, it has some drawbacks. They are:

• The large application becomes complex to understand and modify. This leads to a

slow-down the development.

• Few changes to a small part of the application need a whole application to be rebuilt

and deployed. So, continuous deployment is complex.

• Long-term commitment to technology stack required.

• Monolithic can be scaled horizontally, as scaling to extend difficult (Ponce et al.,

2019).

 Figure 2.2 Monolithic Functional Architecture (Ravirala, 2019)

 Figure 2.3 Monolithic Operational Model(Maherchandani, 2019)

Figure 2.2 (Ravirala, 2019) and Figure 2.3(Maherchandani, 2019) depict how a monolithic

architecture can be visualized from a functional and operational perspective. For example,

16

in a 3-tier application, all the components are bundled together and stacked into one

module. However, it does not need to be single regarding the number of machines the

application is running.

2.1.2 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is a pattern designed to build a distributed system that

offers services to other applications through the protocol. Figure 2.4 demonstrates SOA, the

user sends a request to the service provider, and the service provider sends the response to

the service user. Thus, both the service provider and the service connection are

understandable (Javatpoint, 2020). This traditional architecture mainly focused on

integration solutions. It has a heavy middleware technology that sends messages to services

and strongly relies on an enterprise service bus that acts as middleware. Protocols used by

service-oriented architecture are SOAP and WSDL (Jamshidi et al., 2018). In SOA, the

module concept takes place. However, it has large granularity (Gan et al., 2019). Like

monolithic, SOA has large granularity, which means behind the service-oriented interface

hides the whole monolithic application. If the load hits the application, instead of scaling

particular services, it scales as a whole and requires high availability (Dragoni et al., 2017). It

is loosely coupled and self-contained.

 Figure 2.4 SOA Functional view (Javatpoint, 2020)

Some of the drawbacks of SOA are:

• Few organizations might need to implement SOA to meet their requirement.

However, in that case, the large application becomes complex to develop and deploy

the application.

• As the application grows, it consumes time and becomes expensive.

17

• Thousands of users in enterprise applications support workload and ESB as it

interacts with the internet for scaling the application that has millions of users, leads

to bottlenecks, provides high latencies, and a single point of failure.

• Adding and removing servers on-demand makes it complex as it is not designed for a

cloud environment (Villamizar et al., 2017).

2.1.3 Microservices Architecture

Microservices architecture is used by many organizations that have started gaining

popularity. It evolved to build individual software applications that can be designed,

developed, and delivered in the form of modularization. But it has some technical

boundaries. It is smaller in size and independently deployable, as shown in Figure 2.5

(Ravirala, 2019), and in figure 2.6, both the DevOps team work together. Each service is

lightweight and has access to its data and internal logic. It relies on HTTP and API protocols.

It is a subtype of SOA. The benefits of microservices are greater autonomy, faster delivery,

and improved scalability. Many organizations have this architecture as a standard way of

developing their projects (Jamshidi et al., 2018). Each service is a piece of software that has

its own process that encapsulates some functionality, the Distributed task is performed, and

the configuration of servers depends on the requirement done by teams. Each service is

taken by a single user or team with five members, and yet it is a standalone server.

Continuous integration and continuous deployment take place as new features are added to

the application (Lehmann & Sandnes, 2017). However, microservices is a decentralized

framework where each service performs one specific sub-task that comes up with a security

mechanism in a trust-less network environment (Xu et al., 2019). It works on the latest

platform, and during input load, microservices handle heavy concurrency of load (Ghayyur

et al., 2018). DevOps comes along with microservice architecture in both industry and

academia. These both have been a top trend in technology since 2014. It has a set of

practices like integration, deployment, testing, and monitoring. Versioning is done in

collaboration with developers, testers, and operators. Hence, the cross-functional team was

performed, and the team's throughput and quality were increased along with automation

tools and the fast feedback mechanism that helps to deliver applications quickly. Combining

both enables the reuse of code in terms of reusability, and decentralized data governance

18

offers agility and productivity that leads to low time to market (Waseem et al., 2020). It uses

different programming languages like Python, C/C++, Go, JavaScript, Node.js, etc. Each

service communicates through a well-defined network interface. Because of fine granularity,

it reduces system complexity. The data center requires more hardware, network, operating

system, and programming language framework while scaling large applications. To avoid

this complexity, opting cloud to develop and deploy applications can be performed (Gan et

al., 2019).

 Figure 2.5 Microservices Functional Architecture (Ravirala, 2019)

2.1.3.1 Benefits

There are more benefits of using microservices architecture are below:

Distribution: SOA is also distributed in nature. However, microservices are smaller in size.

Because of its extreme characteristics, business capabilities and their functionalities can be

managed as an independent service and deployed on a host. As a result, the whole system

can be managed efficiently as compared to the monolithic. It increases the availability of an

application since the failure of a microservice doesn’t affect another one (Dragoni et al.,

2017).

Portability: Microservices are portable in nature. They are packed in a docker container in

which all its dependencies, such as databases, and libraries, are included so that they can be

deployed in a heterogeneous platform. Different versions of the same libraries were used

without any conflicts, scaled, and relocated to other platforms.

Elasticity: The model of multiple services per host is better to be deployed in the cloud as

when the load is at its peak, it uses resources efficiently and scales up. And once the load is

stable, it will automatically de-provisioned the container and releases the host.

19

Availability: Microservices are highly available. They can replicate across datacentres and

geographical locations to distribute the load. Another aspect is service updates. While

updating a monolithic application, the entire system must stop and restart for a new feature

which leads to long downtime. In microservices, because of its independence, a business

capability can be updated by stopping the specific service related to the functionality and

recreating, whereas the other service remains up and running. This leads to faster

deployment time and no single point of failure.

Replaceability: As microservices are small independent services in a whole application, each

service can be replaced easily. It can be renewed and replaced one by one, reducing the risk

and does not impact other services (Dragoni et al., 2017).

Reconfigurability: In microservices, updates can be easily performed, and one of the main

advantages. Protocols like HTTP/API allow a new version for service if any changes are done

in the existing application (Gan et al., 2019).

No long Downtime: Application composed of multiple microservices; a portion of an

application can be revised that offers recovery. Therefore, it does not affect the application

as a whole (Lloyd et al., 2018).

2.1.3.2 Limitations

Some of the limitations of a microservices architecture are below.

Lack of relevant skills: Beforehand, using and developing applications with microservices

architecture requires a clear knowledge of technology. When developing a single small

application might not be so complex. However, as heterogeneous technology stacks come in

for effective and efficient implementation, the large application requires advanced skills.

The application complexity significantly increases as scaling, recovery, continuous

development/delivery, monitoring, etc., cannot be managed manually. DevOps requires

DevOps tools like Jenkins for CI/CD, Docker for deploying containers, Docker swarm for

clustering orchestrating containers, Kubernetes for load balancing, and for scaling. It also

requires a better understanding of fault tolerance, latency, non-functional aspects

(Baškarada et al., 2020).

Resource monitoring and management: When a microservice application grows complex in

size, infrastructure resources like servers, services, and containers become hard to monitor

20

and manage during runtime. Services are in different regions, and zones that generate

information leads to data flow that becomes hard to monitor. With the help of automated

tools, the flow of information can be monitored. This can be controlled by alerts even

though it becomes strenuous to handle (Jamshidi et al., 2018).

Organizational structure: Having an independent team of developers for each service to

develop and deploy might be a double-edged sword. Each member has the freedom to

make decisions locally within their team. However, it might affect the business goal in an

overall picture.

Governance: One of the challenges is to shift from the centralized governance model

toward distributed one. Governance of microservice is distributed, which means service

owner is responsible for the overall governance of their own services. Any changes in the

service network interface or API endpoint will have a huge impact on the other service as

both services will communicate together via interface/API endpoint. This cannot avoid, but

proper communication and coordination with other teams will significantly reduce failure

(Baškarada et al., 2020).

 Figure 2.6 Microservices Operation Model (Maherchandani, 2019)

2.1.4 Serverless Architecture

Serverless is called function as a Service (FaaS) is an execution model most widely used by

many organizations these days. It's a combination of 'Backend as a Service' and 'Function as

a Service' (Kumar, 2019) adopted by most organizations that gives a production-ready-to-

use platform (Adzic & Chatley, 2017). Serverless is a way to develop and build more agile

applications. It provides a platform to run your piece of code with a prebuild runtime

environment so that you can innovate and respond to change faster. Serverless doesn’t

21

mean there are no servers. It exists, but the maintenance and operational complexity of

building server infrastructures are taken care of by the cloud providers so that the user or

developer will focus on innovating their business functionalities.

Developers are free from choosing instance types and the number of instances as in

microservices architecture. Serverless is on-demand. You pay for what you use. Cost is

calculated based on the time duration taken by the function to execute the code. Therefore,

the cost is charged less as, after execution, the resources provided by the cloud provider are

released from the function. The function starts in a microsecond and shuts down in 15

minutes, applicable in Amazon Lambda (Shafiei et al., 2019). Users do not want to worry

about scalability, load balancing, high availability, and security maintenance of the

underlying hardware (Eivy, 2017).

Application logic breaks down into functions and is defined by actions and event that

triggers them. It really works well, and it is a good fit for mobile and IoT applications

(McGrath & Brenner, 2017). IoT devices are inexpensive. It requires minimal software and

hardware; it collects the sensor reading and pushes it to the cloud at a regular

interval (Savage, 2018). Serverless technology has different patterns that provide solutions

to solve problems. Based on the requirement, a specific pattern was chosen to deploy an

application. Some of those patterns are big data patterns, automation and deployment

pattern, and Web application pattern (Taibi et al., 2020). In a serverless platform, multiple

individual functions are composed with a choice of the runtime environment to be selected

for their applications to run. One of the key issues with serverless functions is a cold start

which means the time taken by the backend system to initialize your function for the first

time. However, it is now possible to reuse an existing container to avoid time delay by pre-

warming. This is otherwise known as warm-start (Jackson & Clynch, 2019).

Most organizations migrate to serverless because of its cost-efficiency. Cloud providers like

Amazon and Azure take first and second place for deploying application decisions taken by

organizations. Services like monitoring, logging, database, and storage are not much

available in a private environment. Certain qualities are better provided by public cloud

providers like Amazon, Azure, Google Cloud, etc. (Eismann et al., 2020). Functions are short-

lived, which means ephemeral and isolated. It is stateless, and data is stored temporarily

22

(Hellerstein et al., 2018). Service is breakdown into a micro function that scales

independently during execution and is termed nano services. The process in which the

transformation of monolithic or microservices into functions is called FaaScification

(Albuquerque Jr et al., 2017).

2.1.4.1 Benefits

Some benefits of serverless architecture below:

Scalability: One of the well-established benefits of serverless computing is scalability.

Customers deploy their application without worrying about any scaling issues in serverless

as it guarantees a highly scalable feature during execution. It is the nature of FaaS where it

automatically scales or shrinks based on the on-demand. Scaling in serverless has no limits.

No maintenance and deployment complexity: Another benefit of serverless is free of

management and maintenance infrastructure. This saves time for developers who

desperately focus on production and do not want to manage infrastructure. In IaaS, users

must install and configure packages and libraries. In PaaS, management is quite easier, and

anyhow we still must configure some requirements in the application. In serverless, before

executing code, register for function and, with the help of credentials, invoke the function.

The underlying resource is carried out by cloud providers (Pellegrini et al., 2019).

Low cost: Unlike microservices, you pay only for the time the function runs. When resources

are ideal, do not require to pay for underlying resources.

No infrastructure security required: At the backend, cloud providers manage their own

infrastructures. The client-side only focuses on developing and deploying code in a function

and maintaining security only for the code. This leads to zero responsibility for the security

of backend infrastructures.

Low time to market: Setting up infrastructure is not required in the serverless concept. This

gives an opportunity for all developers to create, manage and maintain only code and

resources work is offloaded. This provides developers to deploy an application with minimal

time (Kumar, 2019).

23

2.1.4.2 Limitations

Some limitations of serverless architecture are below.

Vendor lock-in: Once the application code is executed, it relies on underlying resources that

cloud providers offer in serverless platforms. The code of the application is totally coupled

with platform services. This leads to code dependent on services offered by the cloud

provider. Further shifting the application code to any other cloud provider platform creates

a work to rewrite the whole code.

Short life span: Control of underlying resources is not accessible by application developers.

The activeness of function for the allotted code is short as it is stateless and ephemeral. All

are managed and maintained by cloud providers. A single task is performed at the given

time.

No local execution environment: The code environment created by the developer has no

way to run and test code on his or her own local server. The platform provides a versioning,

monitoring, and testing environment as the workflow, which is followed traditionally, was

impossible to run the code for testing purposes. Unlike microservices, Working in a team

becomes hard (Adzic & Chatley, 2017).

Start-up Latency: Cloud offers different run time environments to build and run the

application. Most used are Java, python, and recently GO... Comparatively, Java takes a

longer time, whereas python is lightweight and has a faster initialization time. Once a

function is invoked and executed with no further request, the backend container goes to

sleep mode and automatically de-provisions the backend resources. Again, when a new

function is invoked, a new container spins up, and there is a high chance of start-up latency

(Pellegrini et al., 2019).

Security problems: No access to backend resources managed by cloud providers; this may

lead to testing, monitoring, support, and maintenance of the serverless application is

complex with distributed nature chance of vulnerability due to a wide attack surface

(Kumar, 2019).

24

2.1.5 Cloud Platforms

This section describes the three major cloud platform that supports microservice and

serverless environment.

2.1.5.1 Amazon Web Services

AWS holds the market position in the cloud space with the more advanced set of serverless

products. One such product widely used is AWS Lambda runs on an underlying container

platform on Linux operating system (Lloyd et al., 2018). Lambda allows developers to build

and run their applications. AWS hosts a public git repository where serverless projects are

provided for public use with sample serverless architectural patterns that the developer can

modify according to their business requirement. EC2, a compute resource, can be used to

host microservices. Lambda@edge allows running the code nearest to the user location.

Amazon S3 is object storage that allows the storage of objects and retrieval of data.

Developer tools are Cloud Watch for monitoring, CI/CD code pipeline, and more. Amazon

Kinesis is used for real-time data. The workflow orchestration-like step function provides a

visual workflow for lambda. SNS, SQS is a cloud messaging service. For security IAM and

Amazon Cognito are used. Dynamo DB is used for storing data in key-value pairs. AWS has

its own flavor of the operating system known as Amazon Linux.

2.1.5.2 Microsoft Azure

As per Gartner, Microsoft Azure takes the second position in the cloud space. Some of the

services provided by Azure are Azure functions that are similar to AWS Lambda. Runs code

on IoT devices. It can run in intermittent connectivity conditions. Azure Cosmos DB has

distributed a NoSQL database used for storing data. Azure storage is highly available and

scalable object storage. For security and access control, Azure Active Directory is used. It

offers workflow orchestration called Logic Apps to integrate with different systems writing

complicated coding that is not required. For messaging events, the grid eliminates the need

for polling and manages event routing services (Kumar, 2019). Azure Function is built on the

Azure app service, an extension of web jobs with some effective features like scaling (Lloyd

et al., 2018).

25

2.1.5.3 Google Cloud

Google Cloud Platform (GCP) is offered by Google. It provides a suite of cloud services that

run on the same infrastructure that Google uses. It was ranked 3rd as per the report from

Gartner on the magic quadrant for cloud infrastructure platforms and services. In terms of

regions available, Google has the 2nd highest number of regions of 25 compared to AWS

and Azure, with a total of 24 regions and 52 regions available today. Regions are something

that can be important in terms of latency for some applications (Google, 2020). Google

Cloud Function is a serverless offering from google cloud which can be compared with AWS

Lambda and Azure Functions.

2.2 Related Work

This section presents the main theoretical contribution, which consists of several separate

literature reviews on the comparison between microservices and serverless. In the end, this

chapter concludes with the implications of the found literature for this work by answering

the research questions.

Villamizar et al. (2017) conducted a study where the performance and cost of three

different software architectures. They described the process of implementing a system in

the monolith, microservices, and serverless architectures and the challenges faced during

implementation. All versions of the application were deployed on Amazon Web Services,

and serverless functions were run in lambda. By running performance tests and making cost

comparisons, the study concluded that using FaaS platforms such as AWS Lambda can

reduce infrastructure costs by up to 77.08%. Based on a review, when the request is static,

the serverless function has a better performance in response time and scaling. Whereas, in

microservices, the researcher found that the response time starts to rise when there is an

increase in the workload. However, after the scale-out, the response time has decreased in

microservice. In the serverless strategy, there are also high response times at the beginning

of each test due to the cold-start problem, but afterward, it becomes stable. But the

serverless has a lesser duration of high request response time than microservices. In

another paper, Fan et al. (2020) conducted a study on microservices having a cost

advantage for long-running services with the regular pattern over serverless due to

26

limitations of maximum runtime in serverless functions (AWS Lambda). On the other hand, a

request accompanied by the large size of the response with a random spike traffic pattern is

more suitably handled by the serverless because of its scaling and agility.

In another study, Albuquerque Jr et al. (2017) deployed a simple application, where one

version of the application was deployed as container-based microservices and another

version as a serverless function in AWS Lambda. Measured performance between these two

by sending a high amount of HTTP traffic to the application, triggering different application

functionalities. The author performed some experiments on scalability and performance,

and they found two solutions similar for performance, where cold starts can have a negative

impact on serverless functions. The study also compared the cost between the two

platforms and found that PaaS is more economically suitable for applications with longer or

varied execution times while FaaS has a better cost-benefit for requests with short and

predictable execution times. Also, the author kept their own topics for future research the

below:

• Analyze cost by running the same set of applications in the different cloud service

providers to get a more in-depth cost analysis. Serverless enables more efficient use

of resources, thus making cost spent on infrastructure zero.

• Address cold start issues and possible solutions or techniques to avoid a cold start

Figure 2.7 shows the cost comparison between serverless function and VM in AWS. (BBVA,
2020)

 Figure 2.7 Cost Comparison in AWS on Lambda Vs. EC2 (BBVA, 2020)

In this paper, Adzic & Chatley (2017) explained serverless functions such as AWS Lambda

automatically scale out and scale in their backend instances, so a new request might end up

creating a completely fresh instance. Users have no control over this process. Creating an

27

application with a new Lambda instance using python for code takes about one second, and

in Java, it takes between three and ten seconds for other environments. The instance which

is not reused can be active for 3 minutes. Later it is removed automatically after the

inactivity for a longer period of time. There is no clean observation and statistics on this. As

per the author, any infrequently accessed services might have constant high latency. Even

for frequently accessed services, users might experience some additional latency during the

process of new instances getting created. During this research, the author mentioned that it

couldn't be possible to guarantee very low latency for each request deployed on lambda.

Here Sadaqat et al. (2018), in a serverless computing study, mentioned that serverless takes

operation concerns away from the developers and lets the cloud providers manage. And

developers rely on provider solutions to monitor the deployment and execution on the

serverless. This leads to additional costs for the serverless architecture, which includes

monitoring, logging, and debugging. In the same study, the author mentioned that the cloud

providers control the underlying infrastructure, and developers won't be able to customize

or optimize the environment as they require, such as removing, updating functionalities, or

changing APIs.

 Figure 2.8 Time to Market (Cloudflare, 2021)

Figure 2.8 depicts that both microservices and serverless have a better time to market.

However, serverless outperforms as it does not come with dependencies and takes

milliseconds to deploy (Cloudflare, 2021).

On the other hand, Waseem et al. (2020) mentioned that the future study gap has to be

focused on a deep study on DevOps and a proper study on monitoring, security, and

performance issues. Pellegrini et al. (2019) have provided a clear view of performance in

FaaS that creates a holistic view for IT architects and cloud customers to choose as a better

solution for businesses. Indirectly it has been applied stress on underlying SaaS, PaaS, and

IaaS to copy DDoS attacks. There might be changes in security vulnerabilities considered for

future work. Baškarada et al.(2020), in a study, explained that Microservices architecture is

28

widely used and gained popularity in many organizations. However, refactoring found few

difficulties among architects. It has some benefits like operational scalability, development

agility, and deployment agility. In contrast, some challenges like a lack of relevant skills,

organizational structure, governance, organizational culture, and orchestration. Some

organizations find it easier to adopt this architecture. Some found as a struggle in the

qualitative study can be considered future work.

Based on the findings from the related works, some of the experimentation related to the

comparative study between serverless and microservices was performed on one cloud

provider, which is AWS. One potential research gap found was multiple cloud providers

were not included in making a comparative study. Another observation from the existing

research is to compare cost by running the same application in multiple cloud platforms

between two approaches with two different memory configurations. And finally, no work

was found covering the qualitative attributes such as security, development experience,

controllability, and visibility.

To address the gaps found from the related work, experimentation is conducted by

leveraging two cloud providers and then performing quantitative analysis, which drives the

analysis for qualitative attributes. Hence this experimentation is needed to close the gaps.

29

Chapter 3

Research Methodology

3.1 Data Sources and Search Strategy

The study is based on a systematic review of the literature to find out the comparison

between microservices and serverless approaches, which addresses organizational

challenges in defining the right deployment strategy. The primary decision was made to

include all literature from the last six years to capture any potentially related work prior to

the beginning of the serverless trend, as microservice are already established and got

famous within the IT sector. As a result, the publications search date was set to 2016 and till

now.

Initial Search: For the systematic literature study, databases such as IEEE, Google Scholar,

and Research gate were queried. To increase the possible literature, strings like

"comparison serverless vs. microservices" and “serverless vs. containers” were queried.

The academic literature on the comparison between serverless and microservices is very

limited. There are no papers on the comparative study covering all aspects such as cost,

performance, security, development experience, etc.

Two different papers were found but were only limited to cost and performance. The initial

search resulted in collecting only two papers in total which is related to the research

objective. Therefore, the study was conducted on MLR. MLR includes all accessible

knowledge on a topic in the form of grey literature such as white papers, web pages, and

blogs with the combination of academic literature, but still, those papers lag the depth

required for this study.

Screening based on focus area: Due to the lack of literature papers on the comparison

topic, a further review of the literature was carried out against the individual platform

(serverless & microservices). Papers like Quality aspects of Serverless Architecture,

Serverless Architecture efficiency, and a systematic review on microservices were reviewed

30

individually. Data points were collected on each paper and evaluated performance, scaling,

and cost both qualitatively and quantitatively for serverless and microservices.

3.2 Phases of Research

 Figure 3.1 Phases of research

3.3 Research Methods

The thesis is carried out in three phases. The goal for each phase is to find answers to the

research questions and to gather valuable insight that can be used by anyone interested in

deploying their application in the cloud using serverless and microservices. Phase one is

about gathering background knowledge, focused mainly on understanding what monolithic

architecture microservices are and how serverless is evolved and what challenges they

introduce.

A literature study is performed to understand how researchers choose the right deployment

platform for their application using microservices and serverless in the cloud. In addition,

with no prior experience regarding microservices and serverless, which brings several

uncertainties. Therefore, exploring the subject as part of a literature study could provide an

opportunity to increase knowledge and dive deeper into the topic continuously.

After the literature review is complete, new experimentation is proposed based on the

outcomes, and gaps are found in the literature review. This approach aims to fill the gaps

Plan

•Problem Identification

•Set Objective

Study

•Do Literature Review

•Find answers for the problems

•Intialize plan based on the literature study

Experiment

•Indentify testing application

•Design architecture pattern on microservices and serverless

•Implement the test application for experimentation

Analyze
•Evaluation and conclusion

Phase 1

Phase 2

Phase 3

31

that were missed during the previous research and find the answers to the research

questions. The literature review formed the basis of experimentation.

During the second phase, an implementation strategy is created. This is split into different

sub-phases depending on the size of the application and the number of public cloud

platforms leveraged. Firstly, to build new infrastructure for microservices deployment in

cloud platforms such as AWS and Google to deploy a sample application for the research

and also build serverless architecture in the same platform for a detailed comparative study.

A controlled experiment is conducted. A web application is deployed to Amazon Web

services and Google cloud. The application was tested under four load patterns that

simulate the real production traffic.

During the final phase of the research, experimental results are evaluated, and find the

answers to the research questions. In order to address the research gaps found in the

literature study and also to extend the comparison between microservice and serverless

from the aspect of security, development experience, scalability, controllability, and

visibility, further experimentation is conducted to evaluate the metrics and make a

comparison. Both microservices and serverless architectures are compared and analyzed

qualitatively and quantitatively. For the evaluation of results, post-experiment following

metrics were analyzed.

3.3.1 Qualitative Analysis

As part of the qualitative analysis, the following aspects are considered to compare

microservices and serverless.

▪ Scalability: The ability of the system to handle the stable and unstable load that

must perform well during the up and down of the traffic(Gearheart, 2021).

▪ Security: To analyze the security feature between microservice deployed

applications and serverless.

▪ Development Experience: To analyze the experience of a developer while deploying

an identified application in the cloud with both the deployment pattern. Both pros

and cons were evaluated.

32

▪ Controllability and Visibility: The ability to change the backend resources and the

ability to visualize what is happening at the backend resources during scale.

3.3.2 Quantitative Analysis

The two architectures are compared and analyzed quantitatively based on the following

attributes.

• Performance

o Response time: Response time refers to the amount of time taken by an

application to return the response back to the user(DNSstuff, 2019).

o Throughput: Number of the requests processed successfully per second by

an application in the backend.

o Memory Utilization: Amount of memory utilized by an application to process

the submitted request.

• Cost: spent on serverless vs. microservices in the form of numbers.

The above quantitative and qualitative metrics is the main source to evaluate the

microservice and serverless deployment strategy. Response time is one of the key

evaluation metrics which has an impact on the application performance. If the application is

slow, there is a chance that the user will leave the application, which impacts business

(PrinceSinha, 2022). Cost is another key factor that has an impact on the organization's

estimated expense. The result of quantitative analysis drives the qualitative attributes.

3.3.3 Tools and Techniques used

Cloud Platform: Amazon Web Services and Google cloud is used as the cloud platform to

conduct experimentation in this thesis. Most of the existing research is conducted using

AWS. The reason for choosing AWS is that Microservice ECS is a homegrown service. On the

other hand, Google Cloud was chosen because of its simplicity, and Kubernetes is a native

service developed by Google, and it is user-friendly with CLI.

K6: K6 is used by developers for load testing, mainly developed by Grafana Labs and the

community. It is scriptable using JavaScript. Thresholds are set in the script for the four load

33

patterns to produce accurate results between microservices and serverless, which allows

delivering which strategy outperforms better than the other in terms of performance(K6,

2022).

Influx DB: Influx DB is an open-source database developed by InfuxData. It helps to store

and retrieve time series data. There are two query languages in InfluxDB. There are influxQL

and Flux. In this thesis work, Flux is used as a query language that has more functionality.

Grafana: Grafana is an open-source observability stack that is used by many organizations

and is well-integrated with other database tools like Influx DB, Prometheus, Graphite, and

Elasticsearch. It allows you to visualize and monitor metrics and logs. The dashboard pulls

data from the plugged-in data source. The above database tools are supported by

Grafana(Grafana, 2022). In this thesis work, Grafana is integrated with Influx DB and used to

display response time metrics for four different load patterns. For this setup, Influx DB is

configured as a data source in Grafana. Flux query is used to pull metrics from the database,

and dashboards are created in Grafana to visualize.

Serverless Framework: An open-source framework is used to deploy the serverless

application in the cloud.

Microsoft Excel: Used to capture the metrics from AWS CloudWatch, Google Monitoring

explorer, and Grafana, which then calculated to generate average from the results and

create graphs.

Docker-compose: To build load test and monitoring tools that define and share multi-

container applications.

34

Chapter 4

Application and Architecture Design

Architecture design with the components used will be addressed and presented in this

chapter. It begins with the high-level architecture and understanding of its underlying

components and continues with design approaches for two cloud providers.

To understand and compare how serverless and microservice architecture create an impact

on an application with respect to performance, scalability, and cost in an organization, a

case study with a sample application is undergone, which is then implemented and

deployed in two public cloud platforms.

The rest is organized as follows: Identifying the application for evaluation. Design and

Implementation of both the architecture in AWS Cloud and Google Cloud, Scenarios for

generating load patterns for microservices and serverless-based applications. Capture

metrics from the load test. Evaluate results against performance, cost, scaling and, present

the trade-off between these architectures and suggest the best one to offer. Discuss the

results, and conclusions are made.

4.1 Application Used

To evaluate the results, an application is required to deploy and run as a microservice and a

serverless application. Various sources such as GitHub and AWS samples were analyzed to

find the right application for this experimentation rather than reinventing the wheel. After

various searches, an image processing application was identified (Vt3199/Cloudimageproc,

2022). The core functionality of the application is to get the image URL as an input,

download the image from the given URL, resize the image and then upload the image to the

backend provided storage. The identified application requires a computing platform to

deploy and run. Hence the sample application is targeted to deploy in both Microservices

and serverless platforms. The original source code from the public git repository is

developed in Node.js and available for use to deploy in the AWS environment. Below the

listing is the main function from the source code, which performs resize and upload to the

backend.

35

 Listing 4.1 Application Source Code

4.1.1 Source Code Changes for AWS environment

For the ease of deployment and to deploy in the thesis AWS environment, the source code

is updated with minor changes. Refer to appendices C.1 and C.3 section for the updated

source code. Changes done for AWS deployment are environmental variables such as bucket

names to store modified images.

4.1.2 Source Code Changes for Google cloud

For deployment in google cloud, source code is modified and updated with google SDKs as it

needs to communicate with google cloud storage. Environmental variables are updated. The

rest of the function code remains the same, and no changes are made. Refer to appendix

C.2 and C.4 for the updated source code.

36

4.2 General Software Architecture

In this section, general software architecture is designed as 2-tier architecture, shown in

Figure 4.1.

 Figure 4.1 Two-Tier Architecture

The client forward incoming requests to the application tier, which does some

computational work, and in doing so, it communicates to the backend tier to retrieve and

insert data in the database. The application layer returns back the response to the client.

The next section explains the architectural design and its detailed description of each of its

components in the case of microservice and serverless in the two cloud platforms, AWS and

Google Cloud.

4.2.1 Microservice Architecture

A Prototype is designed for the comparative study. A platform is needed in order to deploy

an application as Microservice. In this section, a high-level architecture is designed for

Microservice deployment in both cloud platforms. For a detailed comparative study and to

close the gaps, the design is focused on building a Microservice architecture in Amazon Web

Services and Google Cloud. Table 4.1 shows the list of the services used in AWS & Google

cloud to deploy the container platform. Each service is mapped to the design component.

 Table 4.1 Cloud Components

37

4.2.1.1 Microservice architecture in AWS

 Figure 4.2 Microservice Architecture in AWS

4.2.1.2 Microservice architecture in Google Cloud

 Figure 4.3 Microservices Architecture in Google Cloud

Figure 4.2 and Figure 4.3 are the high-level 2-tier architecture targeted to deploy a

microservice application in AWS & Google cloud.

Database Layer: In AWS, S3 is used as the database layer for the microservice deployment.

Amazon Simple Storage Service (S3) is object storage that is highly available and scalable in

nature. It provides all the features required for data storage, such as security and

performance. Amazon S3 is used to store large amounts of data at any scale most common

use case for s3 is data lakes, analytics, log archive, etc. (AmazonS3, 2022). S3 is On-Demand.

No upfront required. Pay per usage. S3 is a Global service means it is public in nature. In the

deployment, S3 is used to store all the images uploaded by the user. But for the security

38

concern, private is chosen for the S3 bucket with EU-west-2 London region for both the

cloud platform and SSE-encryption is enabled, which is handled by the cloud provider

(PrivatelinkS3, 2022). Similarly, in Google, cloud storage is used as the database layer. Like

s3, cloud storage offers a platform to store millions of objects on a large scale

(CloudStorage, 2022). In this deployment, cloud storage is used to store the processed

image uploaded via the container application.

Application Layer: The microservices backend is deployed in AWS EC2 instances and

leverages Amazon Elastic Container Service (ECS) to orchestrate all of the container

instances, as shown in Figure 4.2. Amazon Elastic Container Service (ECS) is a container

management service that orchestrates the life cycle of a container running as the tasks that

support Docker and allows to run applications on a fleet of Amazon EC2

instances(AmazonECS, 2022). ECS is integrated with Amazon Elastic Container Registry (ECR)

by using the ECS task execution IAM role, where the updated containerized images are

uploaded, and the ECS service automatically pulls the latest images from it. Amazon Elastic

Container Registry (Amazon ECR) is an AWS-managed container image registry service that

is secure, scalable, and reliable. On behalf of the user, Amazon EC2 instances can access

container repositories and images (AmazonECR, 2022). Service and task are registered in the

ECS cluster. REPLICA service is the service type inside the ECS cluster that takes care of the

container by placing and maintaining the desired number of tasks placed randomly on

instances. In order to handle multiple requests, the ECS cluster is integrated with a load

balancer that distributes the traffic to the containers.

In Google Cloud, the Google Kubernetes Engine (GoogleGKE, 2022) is provisioned to deploy

the Microservice application. Like AWS ECS, GKE comes with two components Control plane

and the Node plane. The Control plane is similar to the ECS cluster, which manages and

schedules Pods in the Node group. Pods contain one container for the deployment of

microservice-based applications. Application code is built using a docker file, and the image

is pushed to Artifact Registry, which is the image registry in Google cloud. GKE cluster is

created first, and then the Node group. A node group is a group of instances with identical

nodes that runs the application workload. Under the GKE cluster, the workload contains a

39

group of identical pods. Since it is the GKE, Pods are deployed using externally managed

Kubectl, which is a command-line client.

Front end: A load balancer is used to distribute traffic to the backend containers and is

introduced in the front of the architecture. For deployment in AWS, a Network load

balancer is used. A Network Load Balancer operates at layer 4 of the OSI model. NLB

handles millions of requests. After NLB receives traffic, it will listen to the port of the

incoming traffic and then identifies the healthy target in a target group that matches the

rule(protocol- TCP and port-3000 of the container) and enable TCP connection (AmazonELB,

2022). A load balancer is integrated with the AWS Autoscaling group, which is capable of

scaling backend EC2 instances based on the load. ASG plays a major role in this architecture

as it creates an impact on Infrastructure costs. Load balancer continuously performs a

health check on the target by having the target group where all the targets are registered.

Similarly, in Google Cloud TCP load balancer(GoogleTCP, 2022) is used, which distributes the

traffic to the backend Kubernetes Pods hosted on identical nodes under the single node

pool. Both nodes and workloads are under the GKE cluster. Load balancer configuration and

distribution of traffic will be covered in detail in the implementation section of the report.

4.2.2 Serverless Architecture

In this section, high-level architecture is designed for Serverless platforms in both cloud

providers. In Google, the serverless platform used is Google Cloud Functions, and in AWS,

the serverless platform is AWS Lambda.

4.2.2.1 Serverless Architecture in AWS

Figure 4.4 Serverless Architecture in AWS

40

4.2.2.2 Serverless Architecture in Google Cloud

 Figure 4.5 Serverless Architecture in Google Cloud

Figure 4.4 and Figure 4.5 depict the high-level architecture to deploy a serverless application

in AWS and Google.

Like microservices, an image processing application needs a frontend endpoint to be

accessible from the public network. The data should be retrieved in the form of a payload

and pass it to the backend application. The front end should be flexible enough to redirect

the request based on a path (Path-based routing). Hence API Gateway is used for the cloud

platform for a serverless approach.

AWS Lambda is used to host the image processing application. It is a service that allows

users, developers, and technology organization to run their application code without the

need to set up and manage servers, which is often known as “serverless architecture ”

(Sentinalone, 2021). In a nutshell, function as the code pay for the time the function actually

gets executed. Also, lambda supports most programming languages. In comparison with

microservice architecture, each service in serverless architecture can be implemented as a

function which will be then invoked by the frontend layer. Here lambda function running the

code is considered as the application layer. Similar to microservices architecture, where one

load balancer is used for the backend services, in serverless, one API gateway is

implemented for the functions that receive requests from end-users through the Internet.

API Gateway is configured with method (POST) and linked to the respective lambda

function. POST method, which forwards the traffic to the respective path. Here /upload

resource path used to insert the image in S3 or Cloud Storage. It processes the image, then

uploads it to the S3 bucket and returns the results to end-users. Every function in Lambda is

41

mapped to a container, which runs in an AWS lambda worker (AWSLAMBDAsecurity, 2022)

called a lambda execution environment set up by a cloud provider on a dedicated AWS

account to run the application.

In contrast to microservice architecture, it is not necessary to assign specific ports since a

specific method, resource path, and integrated target are configured, as shown in Figure

4.6. AWS Lambda is the managed serverless service where the scaling of backend

infrastructure will be taken care of by AWS.

 Figure 4.6 Serverless Path-Based Routing

The backend incorporates object storage, where all stateful data is saved. S3 is a fully

managed service used to store objects.

Similarly, equivalent to AWS lambda, in Google is Google cloud functions. Google Cloud

Functions is a scalable, OnDemand serverless product to help build and connect event-

driven services underlying servers and containers are managed by cloud providers

(Googlefunction, 2022). For the front end, the Google API gateway is used. The functionality

of the API gateway is the same across all the Cloud Platforms as it routes the request to the

backend function based on the path. Like S3, cloud storage is used as the backend to store

images. The communication between functions and the cloud storage is secured with fine-

grained access using an IAM service account in google cloud, whereas, in AWS,

communication between services is secured using IAM roles.

42

Chapter 5

Implementation

In this chapter, the previously defined architecture is implemented with its associated

components. The above-discussed architecture is deployed using the two strategies:

Microservice, which is a DevOps approach, and the other is Serverless which is a NoOps

approach. DevOps deployment is achieved by deploying the microservices on an ECS cluster

and GKE cluster and configuring the scaling and other parameters manually. NoOps

deployment is achieved by deploying the functions on AWS Lambda and Google Cloud

Function. Additionally, two buckets are created S3 and Cloud Storage in AWS and in Google.

One for microservices and the other for serverless to upload the image.

5.1 Microservice

To benchmark the application for the comparative study, the application has to deploy as

the Microservice. Deployment using Monolithic is straightforward by provisioning a Virtual

machine and installing an application. Whereas for the microservices deployment, the

application code is packed as the docker container and run in a virtual machine. On top of

that, to achieve scalability and fault tolerance. An orchestrator is required to manage the

containers that run on virtual machines. In this section, step-by-step implementation of the

microservice in AWS & Google cloud can be seen below.

5.1.1 Amazon Web Services

Setting up infrastructure and configuring the basic elements in the AWS are the

prerequisites that need to be considered before implementing the system. This

configuration includes the following items:

Network Configuration: To set up the container platform for Microservices deployment

base network infrastructure is the pre-requisite. For serverless platforms, network setup is

not mandatory as the service can run outside the customer network. For setting up a virtual

network in AWS, the following services in Table 5.1 are provisioned, and the right IP CIDR is

created to allocate to subnets.

43

 Table 5.1 AWS Network Components

Security Configuration: An IAM role is created with the below access policy as mentioned in

Appendix D.3 and attached to an instance running the containers. This is required for the

EC2 instance to communicate with other services such as S3, ECS cluster, and SSM services.

One IAM role is created and attached to all the Ec2 instances spin up during scaling action

Image Configuration: Amazon Machine Image (AMI) has been chosen from the marketplace

to provision worker EC2 instances for the ECS cluster. Amazon ECS-optimized AMIs provided

by Amazon that is preconfigured with the requirements to run your container workloads on

Amazon ECS Linux instances (Amazon ECS-Optimized AMI - Amazon Elastic Container

Service, n.d.). Listing 5.1 is the command to fetch the latest ECS-optimized image. This image

has a pre-installed configuration such as an ECS agent to communicate with the ECS cluster,

an SSM agent to communicate with the session manager instance, and other dependency

libraries.

 Listing 5.1 Command to Fetch Latest AMI

Image Repository: For microservices deployment, the docker image must be ready

beforehand in the image repository to pull the image to run the container before creating

an ECS cluster. In AWS, the Elastic Container Registry (ECR) is used as an image repo.

Instance Configuration: The T3 instances feature contains up to a 3.1 GHz Intel Xeon

Scalable processor (Skylake or Cascade Lake) with baseline performance and burstable

CPU(AmazonEC2types, 2022). After choosing the instance type to include VPC, subnets, IAM

role, auto-assign IP address, user-data option, security group, and key pair are configured.

Below, Table 5.2 list the instance configuration.

Node Type vCPUs Memory (GiB)No of minimum instances On-Demand Price/hr*
t3.xlarge 4 16 4 $0.1670

 Table 5.2 Microservice Instance Configuration in AWS

44

5.1.1.1 Building the system

In the above section, the prerequisite environment configuration for implementing the

Microservice system in AWS is enabled.

Build an Image: Application code is converted into a docker image using a Docker file and

pushed to the ECR image repository to provision a container from the image. Image is

pushed to ECR using docker push commands. Listing 5.2 shows the Dockerfile used to build

an image.

 Listing 5.2 Dockerfile for Application Build

ECS Cluster: Once the image is available in the ECR, it is time to create the Cluster for service

provisioning. In this deployment, an empty ECS cluster is created. The reason for this is to

manage and update cluster resources outside of the cluster from the default setup. The next

setup is to add a capacity provider to the ECS cluster. To manage the infrastructure and the

tasks in the cluster, ECS capacity providers are used. The capacity provider strategy decides

how the tasks are spread across the cluster (ECSCapacityprovider, 2022). AWS Offers two

different types of capacity providers EC2 Launch Type and Fargate. Fargate is AWS Managed

computer layer where the user doesn’t have access to scale the compute layer. As discussed

in the design phase, this study is focused on the EC2 Launch type, which means the

containers will run on EC2 instances, which are managed and operated by the user.

Autoscaling Group: Amazon EC2 Auto Scaling helps to ensure that the correct number of

Amazon EC2 instances are available to handle the load. A group of EC2 instances forms an

Auto Scaling group. In this deployment, a new autoscaling group is created with a minimum

of 4 instances with the type mentioned in the instance configuration section and a

45

maximum of 16 instances. Under certain load conditions, there will always be four instances

pre-allocated as desired, and minimum instances and running do not exceed 16. When a

new instance is launched by an autoscaling group, the instance is configured with a user

data script in Listing 5.3 to join the ECS cluster automatically with two availability zones.

When an instance is terminated, it removes from the autoscaling group and unjoins the ECS

cluster. Autoscaling group using launch template to create a new instance using a base

configuration such as AMI, template version latest, key pair, instance type, and security

group specified in the launch template. After creating the launch template choose the

launch template with its version and choose the instance launch option containing VPC,

subnet, and Instance type. Along with advanced option LB, health check of EC2 for 300

(default). If it is healthy adds to the service. Figure 5.1 depicts how the autoscaling group is

configured with the minimum, maximum, and desired capacity of EC2 instances

below(AmazonEC2AutoScaling, 2022).

 Listing 5.3 Instance Onboarding to ECS Cluster

 Figure 5.1 Autoscaling Model in AWS

Container Configuration: Task Definition is required in ECS to run docker containers. Docker

image is specified in each container within the task definition. And also how much CPU and

memory to use with each task or each container within a task definition. In this deployment,

two task definitions for two different memory configurations were created, as mentioned in

Table 5.3. Versioning can be maintained in the task definition. One task can contain one or

more containers. Here, 1 task is assigned to 1 container as the container is exposed to port

3000 with TCP protocol specified in the port mapping with a random host port. ECS task

46

uses the virtual docker network to communicate with each other. ECS task execution IAM

role is assigned to the task as it pulls the container image from ECR and sends the logs to

Cloud Watch.

Configuration Option 1 Option 2
Task Memory (MiB) 256 512

Task CPU (Unitt) 1024 1024

Container Memory (MiB) 256 512

Container CPU (Unit) 1024 1024

Launch Type EC2 EC2

Network mode Bridge Bridge

Container Port 3000 3000

Host Port Random Random

Task Definition

 Table 5.3 Container Task Configuration in AWS

Instance Autoscaling Configuration: In the previous step, the empty ECS cluster, capacity

provider, task definition for container deployment, and ec2 autoscaling group were added

to the cluster. Now it’s time to configure Instance autoscaling. This is required for an

autoscaling group to respond on how to scale up and scale down the ec2 instances during

extreme load scenarios whenever the scaling is required. EC2 Autoscaling group has

different scaling policies to configure. In this deployment, “Target Tracking Policy “was

chosen as the scaling option. With the metric type “Average CPU Utilization” along with its

target value “70 %” (cool-down period 300), Table 5.4 shows the instance scaling policy for

microservices.

 Table 5.4 Instance Scaling Policy

Service Scaling and configuration: Service is responsible for task autoscaling, and the

service type used is REPLICA, which places and maintains the desired number of tasks on

EC2 instances. The desired count of the task may increase or decrease in the Amazon ECS

cluster by service, which has an ECS auto scaler role to scale the task. Firstly, create service

under ECS cluster with EC2 launch type, above created task definition, latest version, cluster

name all the details are configured. AWS ECS leverages the Application Auto Scaling service

to provide this feature (ECSserviceautoscaling, 2022). In this deployment, we used the

“Target Tracking Scaling Policy” to increase or decrease the number of tasks based on the

target metric value. With this scaling policy, whenever the average CPU utilization for all

running tasks goes beyond 70%, then the application autoscaling policy is triggered and

places new tasks on the ec2 instance. Similarly, when the CPU utilization is less than 70%,

47

then it will delete the tasks gradually from the instance and free up the space in the EC2

instance. This scaling policy depict in Table 5.5

Table 5.5 Container Scaling Policy

Task Placement: For task placement, instances are selected. In this deployment, the task

placement template custom is set with type random, which means the tasks are placed

randomly across the underlying EC2 instance based on the resource availability.

Load Balancer: After configuring both the horizontal and vertical scaling of tasks now, it’s

time to expose microservices behind the load balancer. For this purpose, a Network Load

balancer is used, which works on Layer 4. The load balancer is created and exposed to the

internet with IP address type IPV4 and by placing them into the public subnet. A listener is

created by configuring protocol (TCP) and port(80) for a random host. Hence, the load

balancer listens to the traffic and passes it to the backend, which is in a dedicated virtual

network environment created by the user with two availability zones. Once the load

balancer is created, it returns the DNS name, which is used as the endpoint for accessing the

Microservice. Below, Figure 5.2 shows the Load balancer created for the Microservice.

Figure 5.2 Load Balancer in AWS

Service Deployment: The final step of the deployment has been reached. In order to handle

multiple requests, the ECS cluster is integrated with the network load balancer (NLB) that

distributes the traffic to the containers. Figure 5.3 shows a further detailed overview of the

deployed back end.

48

Figure 5.3 Detailed Microservice Architecture in AWS

The target group is now configured to route the traffic to one or registered targets. Targets

are nothing but the EC2 instance that runs the application container. In this deployment, the

target group is configured to perform a health check on the target instance over the traffic

port. Once the target group is available, a new listener rule is created and attached to the

load balancer. All the load balancer traffic now listens to the new listener rule, which looks

up for traffic over port 80 and forwards the traffic to the target group. As a final step, the

service is now deployed on the ECS cluster using the task definition created above and

exposed the service to the load balancer over port 3000, which is the container port where

the application listens, as shown in Figure 5.4

 Figure 5.4 Cluster Components

49

5.1.2 Google Cloud

Like AWS, the deployment strategy using microservice and serverless similar infrastructure

setup is made in Google Cloud Platform. The same image processing application code is built

using the Docker file.

Network Configuration: Like AWS, a Network setup has to be completed before deploying

the Microservice application in GCP. Most of the network services in GCP follow the same

pattern as AWS except for Internet Gateway & NAT gateway, which are managed inside

Routes (GooglecloudRoute, 2022), as shown in Table 5.6. By default, the Google account

comes with a default VPC, Subnets, and Routes. For the purpose of this deployment, a

default network setup is used.

Table 5.6 Google Network Components

Security Configuration: Once the project is created in google, make sure billing, APIs, and

services must be enabled to access API and resources of google cloud. The service account

is authentication and authorization, which grant a role as an owner to access the Google

APIs and resources.

Image Configuration: To provision the worker VM instances for the GKE cluster. Google

provides various OS for node images. Container optimized OS with containerd that has pre-

configured with the requirements to run your container workloads on GKE worker VM

instances. By default, the above OS is created under the GKE cluster.

Image repository: For microservices deployment, the docker image must be ready

beforehand in the repository to pull the image to run the container before creating a GKE

cluster. In Google, the Artifact Registry is used as an image repo. It is used to manage and

store container images.

Instance Configuration: Here, nodes created under the GKE cluster with machine type e2-

standard-4 is a general-purpose machine with 4 VCPUs and 16 GiB memory. It has Skylake

processors. The E2 machine offers both AMD EPYC Rome and Intel processors

50

(GoogleComputeEngine, 2022). It is the second generation with a CPU platform based on

availability chosen. Refer to Table 5.7 for instance configuration.

Table 5.7 Google Instance Configuration

GKE cluster: In GKE, the cluster consists of a control plane and a group of nodes that

contains pods that run containers. In this deployment, Once the image is available in the

Artifact Registry, GKE standard cluster is created with four nodes. The control plane is

running in one zone with version 1.21.6-gke.1503, and the control plane decides what to run

on a group of nodes. This is similar to the ECS cluster with EC2 instance type. Unlike AWS,

the autoscaling policy is not configured for nodes. The reason is that the cluster contains a

default configuration that uses a cluster auto scaler to add or remove the identical nodes in

a single node pool. Nodes and the control plane communicate through Kubernetes APIs.

Master contains Kubernetes API server, resource controller, and scheduler (GoogleGKE,

2022).

Node pool configuration: A Group of nodes forms a node pool. A single Node pool is

created within the GKE cluster to handle application workloads. Here, standard nodes are

chosen so that the user can have flexibility in the configuration and managing of clusters

and nodes. In contrast, Autopilot mode is not chosen because it offloads the node

management from the users. Similar to AWS, EC2 instances run in 2 availability zones.

Likewise, nodes run on two zones within one region to avoid a single point of failure. In this

deployment, a minimum of 4 instances and a maximum of 16 instances are set. All the

nodes have a Kubelet agent. Unlike AWS EC2 instance configuration, a user data script is not

required to communicate with the GKE cluster. Auto-provisioning is not enabled as the GKE

cluster automatically launches multiple node pools with different instance types to serve

the load, which is not a fair setup for microservice deployment with both cloud platforms.

51

5.1.2.1 Building the system

The prerequisite environment configuration for implementing microservices deployment in

google is explained above. Provisioning infrastructure using the commands in cloud Shell CLI

below.

Build an image: In the console, similar to AWS, the same region is chosen as region EU-

west-2 London and format Docker is chosen to create a repository in Artifact Registry. Cloud

Shell is used to set up the infrastructure and for the deployment of microservices in the GKE

cluster. Cloud Shell environment manages resources hosted on google cloud. gcloud CLI,

Docker, and Kubectl are pre-installed by Google, where users can use the command-line

interface to work with by clicking Activate Cloud Shell button. Hence OAuth authentication

can be omitted. Before pushing the image, specify the project location, where the cluster

and resources need to run, and specify the compute zone and region to authenticate to the

artifact registry. Next step, the Application code is converted into a docker image using the

Docker file. During this process, google cloud asks for authentication to make an API call to

access Google services. Tag the target image that refers to the source image and pushes it to

the destination, and push the image to the artifact registry. Listing 5.4 is the command used

to build the image.

gcloud auth configure-docker europe-west2-docker.pkg.dev
gcloud config set project robust-resource-12345
gcloud config set compute/zone europe-west2-a
gcloud config set compute/region europe-west2
docker build -t europe-west2-docker.pkg.dev/robust-resource 12345/imageprocessing/imageprocessing:latest .
docker tag europe-west2-docker.pkg.dev/robust-resource-2345/imageprocessing/imageprocessing:latest
docker push europe-west2-docker.pkg.dev/robust-resource-12345/imageprocessing/imageprocessing:latest

 Listing 5.4 Google Artifactory Authentication

Cluster configuration: In this section, the GKE cluster is created along with four nodes in a

single node pool of identical size. During cluster creation, gcloud request credentials are

required to make an API call. The next step to interact with the cluster authentication

credentials is required. Using kubectl command-line client that fetches the cluster endpoint

and auth data. Later, a Kubeconfig entry is generated for the created cluster. Listing 5.5

represents cluster configuration.

gcloud container cluster create imagecluster --num-nodes=4 --machine-type e2-standard-4 --cluster-version 1.21.6-
gke.150
gcloud container clusters get-credentials imagecluster

52

Listing 5.5 GKE Create Cluster

Kubernetes Pod Deployment: After the cluster setup, there are two stages defined in the

deployment YAML file. The pods and the TCP load balancer are deployed using the

deployment YAML file. In order to handle multiple requests, the GKE cluster is integrated

with a TCP load balancer which exposes to port 80. LB distributes the traffic to backend

nodes by performing a health check of the targets. Load balancer works on TCP protocol and

port 80. Similar to AWS, one pod is assigned to one container. Horizontal scaling is

performed for nodes based on the load, and pods are controlled by the GKE cluster. In

contrast, vertical scaling for pods is defined in the deployment.yml file as well as horizontal

scaling is defined. Pods are called replicas, and all the properties of pods are defined in the

YAML file (k8poddeployment, 2022). The controller is responsible for creating and managing

pods. Both the memory of 256 and 512 MB are configured in the deployment.yml file.

Hence vertical autoscaling is performed for pods to benchmark the microservices and

serverless technologies. After deployment using kubectl pods are seen in workload under

the cluster. Horizontal autoscaling for nodes is managed by the GKE cluster. Horizontal pod

auto-scaler is set, using the below Listing 5.6.

kubectl apply -f deployment. yaml
kubectl autoscaler deployment demo-gke-test-deployment --min=12 --max=35 --cpu-percent=70

Listing 5.6 PoD Deployment

The load balancer forwards the traffic to a container that is exposed to port 3000. TCP load

balancer operates on layer 4. After the workload and TCP load balancer are created, the

external IP of the load balancer can be exposed to the internet.

5.2 Serverless Deployment

Serverless deployment is of two main components. They are FaaS (Function as a service)

and BaaS (Backend as a Service). FaaS is a service that runs small pieces of code known as

functions in the cloud. Some of the examples are AWS Lambda and Google cloud functions.

They are ephemeral and become active when an event is triggered. The developer uploads

the code that is stored as a function in the cloud. Backend as a service allows developers to

53

focus on the client-side application while things like authentication, user management, and

storage are the backend implementation is handled by someone else on the remote server.

As mentioned above, for this comparison study to benchmark the technologies, application

code is already into a docker image and deployed in AWS & Google container platform, and

now it’s time to deploy the same piece of code into the Serverless platform. AWS Lambda

and Google cloud functions are the services used to deploy the serverless application.

Same as Microservices architecture, the Application here is an image processing application

that downloads the image, resizes the image, and uploads the image to an s3 and cloud

storage.

Function Configuration: Below Table 5.8 shows the configuration parameters set for AWS

Lambda functions.

 Table 5.8 Function configuration in AWS

Serverless Framework: The deployment of serverless Architecture is carried out using a

serverless framework. It is an open-source web framework written using Node.js. It is

developed for building applications on AWS Lambda, Google cloud functions, etc.

5.2.1 Serverless Deployment in Amazon Web Services

Building the System

Pre-requisite:

• IAM user or IAM role used to authenticate into AWS account.

• A system with NPM installed to deploy a serverless framework.

• Serverless Framework is installed.

Build Framework: In Serverless Framework, the application is deployed using the

serverless.yml configuration file. This file describes the programming language and the

https://en.wikipedia.org/wiki/Open_Source
https://en.wikipedia.org/wiki/Web_framework
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Amazon_Lambda

54

entire infrastructure required for an application to deploy. serverless.yml is the starting

point and heart of the application. The deployment file is split into two pieces:

• Serverless Yaml file with the resources required to build frontend.

• Backend resources in a separate Yaml file.

Front End Resources: AWS API Gateway is used as the front-end for this application.

Amazon API Gateway is a fully managed serverless component that allows to create,

maintain, monitor, and secure APIs at scale. The file used for frontend deployment consists

of two stages.

Stage 1: Configure provider name as AWS, function runtime environment as node.js, and

region to deploy as shown in Listing 5.7

 Listing 5.7 Configure Provider for Serverless Deployment

Stage 2: In this stage, the actual resource to deploy. Amazon API gateway is created under

the resource section, and API gateway ids are exported in the outputs as shown in Listing

5.8

Listing 5.8 Provision API Gateway

Once the frontend is defined in the serverless.yml, it is time to configure the backend in a

separate file.

55

Backend Resources: In this section, the whole backend resource required for the application

is defined. Similar to the frontend, this is again defined in the serverless.yml file but in a

different folder. Please read the appendix for code details. This file contains three stages

Stage 1: Provider is configured as same as frontend and additionally exported API Gateway

id from the previous serverless.yml file is imported here, and IAM roles for backend

communication is provisioned under provider section as shows in Listing 5.9

 Listing 5.9 IAM Role for Function Integration

Stage 2: In this section, the AWS Lambda function is provisioned with the index.js, and the

event trigger is configured as the API Gateway. Post method is configured in the APIs for

image upload. An environment variable is passed in this section for the application to

consume, as shown in Listing 5.10

56

 Listing 5.10 Function Deployment in AWS

Stage 3: Finally, the backend database layer is created in this stage as in Listing 5.11. AWS S3

is used as the Storage data layer to store the images. Below is the snip to create an S3

resource as part of the serverless framework. All three layers of AWS services are created

using a serverless framework template (ServerlessFramework, 2022).

Listing 5.11 Provision Object Storage in AWS

Deploy Framework: Once the resources are defined in the serverless YAML file now, it is

time to deploy the resources. To deploy this, prepare a system with npm installed and then

use the npm install command to install the serverless framework.

Step 1: Authenticate into AWS account using IAM user or Role.

Step 2: Deploy resources using the serverless deploy command. Following bash script

prepared to deploy a resource in sequence as there is a dependency. The below script will

create API gateway resource and then deploy backend AWS Lambda function, API Gateway

methods, IAM role & Policy, and S3 bucket. Once the script shows in Listing 5.12 runs

successfully, resources defined in the Architecture are provisioned in the AWS environment.

 Listing 5.12 Deploy Serverless Application in AWS

5.2.2 Serverless Deployment in Google Cloud
Pre-requisite:

• Authentication into the Google account, using Cloud shell.

• A system with NPM installed to deploy a serverless framework.

• Serverless Framework is installed.

57

Build Framework: Like AWS, Google cloud resources are defined in the serverless YAML file,

and in addition, google APIs are used to provide some of the services.

Front End Resources: In this deployment, the API gateway is provisioned using Google APIs.

In google, the Open API specification document which routes the calls to the google cloud

function securely. Here, API methods are defined. Using google official documentation

swagger file is created (GooglecloudAPIGateways, 2022). Please refer to the appendix

section for the OpenAPI document. Once the API is defined in the swagger file, the API

gateway is created using the below Listing 5.13.

Listing 5.13 Provision API gateway in Google cloud

Backend Resources: Like AWS Lambda and S3, Google cloud functions and cloud object

storage are the two backend components used to deploy the serverless application, as

shown in Listing 5.14. Resources for both services are defined in the serverless.yml is

illustrated below. The file is executed using the serverless framework deployment

(ServerlessFramework, 2022)

 Listing 5.14 Provision function in Google cloud

58

Deploy Framework: Like AWS deployment, all pre-requisites must be met to run the

serverless.yml file and google APIs.

Step 1: Authenticate into a Google account using Cloud shell.

Step 2: Navigate to the serverless.yml file and run the serverless deploy command. This will

launch all the resources defined in the file. In this context, google cloud function and object

storage are provisioned.

Step 3: Final step is to deploy the frontend API gateway solution.

For the ease of deployment, all the APIs to create a gateway are packed into a shell script

and executed. Once the bash script is successfully run, the Google API gateway and its

methods are created. Refer to Appendix D.3 for the deployment script.

59

Chapter 6

Experiments and Results

This section consists of the experiments performed and the evaluation of results performed

against the load test. In this thesis, all the experiments are done to compare the

quantitative metrics such as Performance (Response time, Throughput), Cost, and

qualitative metrics such as Security, Scalability, Developer experience, and Controllability.

6.1 Infrastructure Scaling for Evaluation

To benchmark the metrics generated from both cloud platform, a certain amount of load for

different scenarios is applied to the deployed application. The following sections provide

more detail about the infrastructure scaling configuration setup before applying the load

test on both platforms.

6.1.1 Microservice

For the microservice architecture, AWS ECS is used to deploy and orchestrate containers.

Two different task definition is created in the ECS cluster with the below-mentioned

configuration for each container within the task. The potential reason for allocating more

CPUs with less memory is because the image processing application used in this thesis is

CPU intensive as it requires more computation power.

• One vCPU core (equal to 1024 CPU units) and 256 MB memory

• One vCPU core (equal to 1024 CPU units) and 512 MB memory

For maintaining the desired state of the containers, an automatic task scaling policy is

enabled under the ECS service. AWS provides a target tracking scaling policy chosen for

scaling the task. The average CPU utilization metric is chosen for scaling the task, and the

target value is set to 70%. The scale-in and scale-out cooldown periods are set to 60 seconds

to prevent over-provisioning. When the average CPU utilization of the deployed service goes

beyond 70%, service auto-scaling triggers and adds another task to the service. Conversely,

when the average CPU utilization of the service drops below the target utilization for a

60

sustained period of time, a scale-in alarm triggers, which then removes the tasks gradually

and reaches the desired count (ECSserviceautoscaling, 2022). On the other side, at the

compute level AWS auto-scaling group plays a major role as it is responsible for scaling

underlying instances within the cluster. Like task scaling, a target tracking scaling policy is

enabled here. When an average CPU utilization of all the instances goes beyond 70% for a

consecutive 1 minute, then one or more instances scales to balance the load, which keeps

the average CPU utilization close to 70%. If there is no load, ECS gradually de-provisioned

the instances from the cluster. This comes with a default health check grace period of 300

seconds and a cool-down period of 60 seconds.

6.1.2 Serverless

Unlike Microservices, a Serverless application doesn’t require a scaling policy to configure

scales backend managed by the cloud provider. Serverless Function allows to set only the

memory required to execute the function, and AWS proportionally allocates CPU to the

subsequent memory (Sentia, 2020), as mentioned in Table 6.1. Provisioned concurrency is

not enabled for the Lambda function due to the high-cost factor. However, AWS set a

concurrency quota of 1000 for each user account as a soft limitation.

 Table 6.1 Memory-CPU Allocation in AWS Lambda

Similarly, no configuration is required for scaling in the Google Cloud function, and the

function is configured and tested against 256 & 512 MB of memory. Min instance is not

configured due to the high-cost factor. The Google Cloud allocates proportional CPU for

memory configured to function(GoogleCloudFunctionPricing, 2022). Table 6.2 list the CPU

allocation for different memory configuration.

61

Table 6.2 Memory-CPU Allocation in Google Functions

6.2 Infrastructure setup for load test

In order to generate the subsequent amount of load to evaluate the application

performance, a load test tool is required to simulate the load and applied against the

application endpoints. For this evaluation purpose, k6 is considered. K6 is an open-source

load testing tool that makes performance testing easy (K6, 2022). K6 is generally used for

common use cases such as Load tests, Performance tests. For installing k6, an open-source

docker image is downloaded from the Docker Hub and run as the docker container within an

AWS EC2 instance. The idea of running K6 in AWS EC2 as a docker container is because it

could use container scaling capability when it needs more resources during the load test.

Each load test execution in k6 is defined in the form of JavaScript that is supported by K6,

which is explained in the next section. Below, Figure 6.1 depicts the load test architecture

executed and the deployment of k6 using the docker file with some modifications based on

the requirement (XK6-output-influxdb, 2020) is mentioned in the reference section 6.1

Figure 6.1 Load Test Architecture

62

K6 generates multiple metrics as the result of the load test. All these metrics generated in

K6 need persistent storage to monitor and visualize for evaluation. To achieve this,

continuous monitoring pipeline, as mentioned in Figure 6.2, is introduced to capture the

metrics and send them to the target system to visualize. Influx DB, an open-source time-

series database, is used as the persistent storage that captures the metrics generated by K6.

Grafana is then used to create graphs for better visualization. Grafana is open-source

analytics and interactive visualization web application which provides charts and graphs for

the metrics from the supported data sources.

Figure 6.2 Monitoring Pipeline

Like K6, Influx DB and Grafana are deployed as the docker container in the same EC2

instance where K6 is deployed. Both tools are packed and deployed using docker-compose.

Please refer to Appendix A. Influx, and Grafana are mounted with the local volume of the

EC2 instance to store data persistently. All the metrics generated by K6 are sent to Influx DB

using the DB endpoint, which is exposed over port 8086. Once the data is in influx DB,

Grafana queries the data using the influx DB data source. Grafana uses Flux query to pull

metrics and then create a dashboard in Grafana. In addition to the above monitoring tools,

cloud-native monitoring services are utilized to retrieve the backend performance metrics

such as memory utilization. AWS CloudWatch is used to retrieve the memory metrics, and in

Google, monitoring explorer is used. CloudWatch container and lambda insights are enabled

for deeper insights.

6.3 Load Pattern

This section covers in detail the load pattern defined to evaluate performance metrics such

as response time, throughput, and associated cost against various scenarios. Each scenario

is a simulation of the general traffic pattern seen across. k6 generates different patterns of

the user workload to the deployed application. k6 uses a script for running the tests where

the target endpoint is specified in the script file. K6 uses virtual users to execute the test.

Virtual Users (VUs) are the entities that generate a request to the target. They run

63

concurrently and parallel and will continuously iterate through the request until the test

ends. In this thesis evaluation, four scenarios have been identified, with each test run

duration of 15 minutes. Each scenario is repeatedly tested five times to calculate the

average number. Between each test, 30 minutes of pause is made to make sure that the

testing infrastructure reaches a normal state. Below are the four different types of load

patterns that were executed.

6.3.1 Constant request rate

The constant number of iterations is executed for a specified period of time so that it cannot

be affected by the performance of the system under test. Here, 50 iterations per second are

executed, allowing K6 to schedule dynamically to 200 virtual users. The total scenario

duration is 15 minutes. Pre-allocated virtual users are 2, and the maximum number of

virtual users is up to 200, as depicted in Listing 6.1, and Figure 6.3 is the visualization of the

applied load.

 Figure 6.3 Load Pattern – Constant Listing 6.1 Constant Load Simulation

6.3.2 Random Load Test

This load test is concerned with assessing system performance. To ensure the application

performs satisfactorily when the number of users randomly increases or decreases to access

the system at the same time. To meet the performance goal, success criteria are set that the

load test should have an average response time of fewer than 1000 milliseconds (avg<

1000ms). The maximum duration for the test is 15 minutes. Load ramp up and down

64

randomly up to 150 concurrent virtual users. Listing 6.2 is the script to simulate the load,

and Figure 6.4 is the load pattern.

 Figure 6.4 Load Pattern – Random Listing 6.2 Random Load Simulation

6.3.3 Stress Incremental load

This test is concerned with the availability, stability, and reliability of the system.

Incremental test, which simulates the stress test used to determine the limit of the system

and test beyond its breaking point. The load increases gradually up to 500 concurrent virtual

users. The test plan was executed for 15 minutes. In k6, configuring the options object

increases the load by 100 users every 1 minute and stays for 2 minutes. The recovery stage

is set to decide whether the system can serve requests as load decreases. Listing 6.3 is the

script to simulate the load, and Figure 6.5 is the visualization for the load pattern.

 Figure 6.5 Load Pattern – Stress Incremental Listing 6.3 Stress load Simulation

65

6.3.4 Spike Load Test

This test immediately overwhelms the system. Unlike incremental tests, it does not

gradually increase the load. Instead, it simulates a sudden spike in traffic. This helps to

decide how the system behaves under heavy spike load. This is used to examine the latency

of an application when the traffic is irregular. This pattern's maximum duration is 15

minutes. In K6, configuring the options object for the first 3 minutes, no load is specified.

After that, the load surges to 1000 concurrent virtual users and ramps down to 10 for 3

minutes, and again replicates for another 7 minutes (K6, 2022), as depicted in Listing 6.4 and

Figure 6.6

 Figure 6.6 Load Pattern - Spike Listing 6.4 Spike Load Simulation

To execute the load test for the above scenarios, the below configuration of instance is used

to run the load test. To avoid throttling instances with better configuration as mentioned in

the below table 6.3.

Table 6.3 Load Test Instance Configuration

66

6.4 Results

In this section, data gathered from the experiments were analyzed. Each load test results

are evaluated with a separate subsection that covers response time and throughput at first

and then followed by memory as part of quantitative metrics. In the end, evaluation on

qualitative metrics such as security, development experience, controllability of an

application running as a microservices, and serverless.

6.4.1 Performance

This section evaluates results against the quantitative metrics. The key metric considered

here is response time and throughput. Response time is the amount of time taken by an

application to process the request and return the response to the user. It is a critical factor

in an application lifecycle as it decides the usability of the application. On each graph

representing the response time, the x-axis denotes the duration of the test in minutes, and

Y-axis denotes the response time in milliseconds. Each load test scenario is analyzed and

compared in the following sections. These performance tests benchmarked microservices

and serverless between two cloud providers. The tested serverless platforms were AWS

Lambda and Google Cloud Functions, and the tested Microservices platform was AWS Elastic

container service and Google Kubernetes Engine.

Constant request rate

Response Time

The first scenario executed against the performance test is the constant request rate. This

test aims to validate whether the system is processing a fixed number of iterations with

better performance. Table 6.4 displays the comparison results from the constant request

rate load tests.

Table 6.4 Constant Load Metrics

67

 Figure 6.7 Constant - Response time [256 MB] Figure 6.8 Constant - Response time [512 MB]

According to the results, both AWS Lambda and Google cloud function satisfy the

requirement by handling approximately 50 req/sec, which is the benchmark set to evaluate.

Also, the average response time on both functions looks similar, which is around 1450

milliseconds. Though serverless satisfies the requirement, it is not ideal to declare it as the

winner of the test. However, microservice deployed in AWS Elastic Container Services

outperform compared to serverless with a better average response time. ECS has provided

consistent performance with stable response time throughout the test. However, GKE is not

up to the mark as it provides a high response time and only serves 36 Req/Sec, which is not

satisfying the requirement. It is not fair to compare AWS ECS & GKE as it is hosted by

different cloud providers and the results are not comparable.

Since serverless has a slightly lower response time than ECS, a further step is executed to

make the test more granular by increasing the memory configuration in both serverless and

microservice. With both 256 and 512 MB memory assigned for containers in the

Microservices platform, AWS ECS seems to perform better with respect to average, min

response time, and the standard deviation is kept relatively low. It is noticed that ECS has no

cold start. This is due to the minimum base infrastructure prebuilt for ECS to run. The other

reason for providing a stable response throughout the test is due to the minimum task run

on the ECS cluster. It took min 15, and a max of 17 tasks to run the whole test with one

instance scale, which means there is not much scaling happened and due to which there is

no delay in the latency. From this, it is evident that if the Microservice platform has

minimum infrastructure for a predefined constant rate requirement, then it offers better

performance on response time. This again adds to the minimum base infrastructure cost.

68

Figure 6.7 and 6.8 shows the average response time during the whole test run. Except for

GKE, both platforms have quite constant average latency without any fluctuations. AWS

Lambda has faced a slight cold-start compared to Google Cloud Functions; this is due to

both being different cloud providers with diff hardware in the backend. But on average,

both have more or less the same latency and still satisfy the requirement during the whole

test. One thing to notice here in serverless is when the memory was 256; the response was

more than 1000ms in both AWS & Google. Whereas when the function memory is set to 512

MB, the response time drastically comes down and provides much better performance. This

is due to the CPU being bound to memory in serverless if the memory is increased or

decreased, then it has an impact on the CPU performance of the function. In the end, a

microservice platform backed by AWS ECS could be a better choice for the constant

workload.

In the case of GKE, it initially started with a low response time, but with the increase in the

number of requests, the scaling of replicas on nodes and the requests started to take a

longer time to respond. This points towards the load balancing, Pod scheduling, and traffic

re-distribution problem in the Kubernetes. On the other hand, in serverless, both

deployments suffer from the cold start problem and hence have longer response times in

the beginning. However, both show a constant request response time even with the

increase in the number of requests for the rest of the test duration in both the workload

patterns. This indicates that the serverless is more agile in terms of scalability and can

provide a constant response time baring the initial cold starts. Furthermore, with the

increase in memory serverless function was able to serve a greater number of requests than

any other deployment strategy for this compute-intensive function. Therefore, Serverless

deployment can be used for applications requiring constant request latency. Though the

Microservices backed by AWS could also provide a constant request latency but finding the

optimal scaling and configuration parameters is difficult and requires a prior load testing of

the application.

69

Memory Use

Figures 6.9 and 6.10 depict the memory utilization of microservice and serverless during

constant workload.

Figure 6.9 Constant - Memory Utilization [256 MB] Figure 6.10 Constant - Memory Utilization [512 MB]

At first sight, it is evident that the memory usage is stable on both platforms across the

whole test. Compared to serverless, microservices occupy less memory which is 15 to 30%

of the overall memory limit. In contrast, Lambda and Cloud Function occupy 40 to 70% of

overall memory when the limit is 256 MB and 512 MB. One potential reason for this is for

each lambda or cloud function invocation, a dedicated run environment is provided with

256 or 512 MB, and the consumption of memory is only by the specific request. Whereas in

Microservices, the container is shared across multiple requests, and hence the memory

utilization is average for multiple containers. Microservices consume less memory to serve

the request, whereas in serverless, one request is served by one execution environment at a

time. The backend mechanism is totally different between the two techniques. Therefore, it

cannot be comparable.

Random Load Test

Response Time

The second scenario is random with 150 concurrent virtual users, and the duration is set to

15 minutes. Thus, the performance threshold is given (AVG< 1000ms) for both 256 and 512

MB memory. Table 6.5 depicts the metrics of random test.

70

 Table 6.5 Random Load Metrics

 Figure 6.11 Random - Response Time [256 MB] Figure 6.12 Random - Response Time [512 MB]

 Figure 6.11 and 6.12 shows the average response time during the whole test run. For 256

MB memory, serverless backed by AWS Lambda and Google Cloud Function has an average

response time of more than 1000ms. Both the serverless function does not satisfy the

performance goal which is set for them. Some thresholds failed with no request error. The

requested rate for AWS Lambda is 22 req/sec, and Google Cloud Function is 23 req/sec,

which is almost the same with slight differences. However, GCF performs slightly better with

throughput compared to AWS Lambda. It is not fair to compare serverless platforms. The

actual comparison between microservices and serverless. For 512 MB memory, the average

response time is in milliseconds and meet the requirement with more request served. This

proves that as the memory increases for serverless provides a better response time and best

throughput. A cold start problem occurs for 1 minute in AWS Lambda and GCF. For 256 MB

memory allocation, AWS Lambda suffers from a more cold start. Compared to AWS Lambda,

GCF has a relatively low cold start. In 512, both serverless functions start with the same cold

start problem. After 1 minute, it becomes stable.

In microservice deployment, both 256 and 512 MB memory in AWS ECS has low latency

compared to both serverless deployments with 256 MB memory. AWS ECS response time

71

and throughput seem similar to the serverless functions with 512 MB memory. Moreover, it

satisfies the performance goal for average response time must be less than 1000 ms. In

microservice deployment, increasing memory does not make any difference as this

application is purely CPU-intensive. The instances are pre-allocated with 4 and 15 tasks prior

to satisfy the performance threshold and to avoid request time out during scaling. There is

fluctuation in response time depending on the load increases and decreases randomly in

both DevOps platforms. The reason is that pre-allocated instances and tasks serve the whole

incoming request by distributing it in AWS ECS. Similar to GKE, nodes and pods are fixed.

Whereas in serverless deployment, cloud providers allocate proportional CPU to memory

which is configured for the function. This is evident that an increase in memory plays a

major role in serverless platforms. Though it is a random pattern with variation in load, the

response time served with stability due to each request is served by a dedicated instance at

the backend, which is not visible to users.

In GKE, both the memory has high latency and low throughput of 18.5 req/sec compared to

both serverless functions. The performance threshold which is set for it does not meet the

requirement for both memory configurations. The reason behind this is the scheduling of

pods and launching of new nodes by the GKE cluster consumes time resulting in the

minimum request served with high latency and poor throughput.

Taking into consideration, an increase in memory for serverless deployment results in better

response time and meets the requirement. Thus, the application behaves satisfactorily

under many users' access at the same time. This demonstrates that in comparison between

two deployment strategies using microservice and serverless, the winner for this random

scenario is AWS ECS with both the memory configuration with a fixed number of instances

to meet the performance goal.

Memory Use

Figure 6.13 and 6.14 depicts the memory utilization during the Random load test.

72

 Figure 6.13 Random - Memory Utilization [256 MB] Figure 6.14 Random - Memory Utilization [512 MB]

The memory results of this test are more similar to the previous constant rate. Usage of

memory in microservice is less compared to serverless. The reason for this behaviour

depends on how Microservice and serverless architecture patterns are defined by the cloud

provider. Though serverless utilizes more memory than its limit, it doesn’t have any impact

on the cost. The more memory it has, the better performance because Cloud providers

allocate CPU power with respect to the memory allocated. AWS or Google don’t charge

based on memory utilization. Rather, they charge based on the execution and amount of

memory allocated. Memory utilizes to resize the image is 210 MB for both 256 and 512 MB

in serverless.

Stress Load Test

Response Time

The incremental load test was performed for 15 minutes. This test is used to find out the

limit of the system. During the test, the load gradually increases up to 500 concurrent users.

The ramp down stage is defined to check how the system behaves as the load decreases.

Each user simulates multiple requests, and no request is fixed in this test. Table 6.6 depicts

the stress metrics and Figure 6.15 and 6.16 shows the response time.

73

Table 6.6 Stress Incremental Metrics

 Figure 6.15 Stress - Response Time [256 MB] Figure 6.16 Stress - Response Time [512 MB]

According to the results, both the microservices platform has poor performance while

handling the incremental load. For 256 MB memory settings, the average response time for

both microservices backed AWS ECS and GKE is 4070ms and 6820ms. Take a further step to

test with 512 MB to check whether the microservices platform delivers better performance

or not. But the outcome shows that both memory settings provide similar response time

and request rate with a slight difference. The reason for high latency in AWS ECS and GKE

because both serve the request with four nodes with 15 tasks. When the load increases

gradually, nodes start scaling to balance the load. Launching and scheduling the pods or

tasks in the instance takes time. This adds delay, and this leads to an increase in response

time. Each container serves four req/sec as load increases, and no additional space for more

requests to serve. The AWS ECS cluster scales up to 9 instances and 28 tasks for both 512

MB and 256 MB memory settings. In GKE, the cluster scales up to 12 nodes and 25 pods to

balance the request with 36 errors from the total request served. The error throws during

scaling results in instability.

74

For t3.xlarge with 4 VCPU and 16 GB memory, the maximum capacity of the system in terms

of users are 250 VUs with 3861 requests served. Here, the VUs simulate two requests in this

test. The request is not fixed for all the concurrent users. Some generate one request, or

some users with no request. The autoscaling is enabled as the load increases, launches the

instance and balances the load with some request fail due to time out, and serves the

request in newly launched instances without any manual intervention. Serverless backed

AWS lambda and Google Cloud Function have the best throughput and average response

time. In 256 memory allocation, both the serverless function has more or less similar

throughput with slight variation. AWS Lambda has 124 req/s and GCF has 125 req/s. Even

though both the function is hosted on different cloud provider uses different backend

resources, which is not visible to customers. Both deliver closer results in throughput and

response time. The total request is served more in both serverless platforms. Similarly, for

512 MB memory, both the functions have 171 req/sec and 172 req/sec request rate, and

the average response time in milliseconds are 784.63ms 773.87ms. Figures 6.20 and 6.21

are noticeable that AWS Lambda and Google Cloud Function have cold start problems for 1

minute. Though it has a cold start problem, functions scale up without introducing

additional delay and handle 500 concurrent users by serving 155732 requests very well.

There is no request error time that occurs during the test, which shows consistent

performance. The reason is that at the backend, serverless resources scale instantly. The

dedicated runtime environment with allocated memory and CPU assigned by cloud

providers serves a single request. As the request hit’s function, multiple instances scales to

serve multiple requests. Thus, the serverless function has the scaling agility of the

Microservices platform.

Microservice platforms are far behind in the results compared to both serverless platforms.

AWS Lambda and Google Cloud Function are suitable to handle load which gradually

increases, and under heavy load, delivery availability and stability throughout the test with a

cold start at the beginning. On the other hand, AWS ECS and GKE struggle to handle the load

as it increases. This reason is microservices deployment starts to scale automatically only

after the instance reaches the defined criteria for 1 minute with a setting like CPU and Linux

instances take time to launch and schedule containers. It took 60-90 seconds. However, this

can be reduced by pre-allocating the instances that provide low latency. Therefore, results

75

in increased cost. The winner of this load pattern is serverless deployment with scaling

agility.

Memory Use

Figure 6.17 and Figure 6.18 shows the memory utilization of Stress test. Similar to other load

tests on, an average serverless consumes more memory and provides better response time.

Each request in Lambda & Cloud function will be provided a dedicated memory space.

Whereas each request in ECS & GKE will use the shared memory. Hence it can’t be a head-

to-head comparison on memory utilization.

 Figure 6.17 Stress - Memory Utilization [256 MB] Figure 6.18 Random - Memory Utilization [512 MB]

Spike Load Test

Response Time

The Spike test is another variation of stress testing, but it does not gradually increase the

load. Instead, it spikes to extreme load over a very short period of time. This test is executed

to check how the system performs under a sudden surge of traffic and to check how the

system recovers.

 Table 6.7 Spike Load Metrics

76

 Figure 6.19 Spike - Response Time [256 MB] Figure 6.20 Random - Response Time [512 MB]

Compared to incremental test, AWS Lambda & Google cloud function has identical results.

Both serverless functions seem to handle spike load without any errors or additional delays.

AWS Lambda Function with 256 MB memory returned with a response time of 1450ms,

processing 162 req/s with a total of 147K requests during peak load, and similarly, Google

functions have the same results for 256 MB. From the figure, it is evident that both the

functions have a slight cold start but seem to have an aggressive scaling while handling

spikes. Response time of 1450ms seems to be reasonable as it offers consistent

performance throughout the test. From Table 6.7, It is clearly noticed that after adding

more memory, both the functions performed much better, and the average response time

has drastically come down to half of the previous test's average response time.

On the other hand, the Microservices platform has poor performance while handling a

drastic spike. After initially running with 256 MB, decide to check whether microservice

platform performance improves with 512 MB. As a result, both platforms struggle to handle

the peak load. Figures 6.19 and 6.20 displays all requests in a timeline. The reason for

increased response times in AWS ECS and GKE is apparent. One valid reason for increased

response time is initially, AWS ECS serves the request with 4 EC2 instances, and when the

requests are more, EC2 starts scaling, and that adds a huge delay of request latency Until

the new instance is launched and tasks are placed, ECS continues to serve the request with a

slower rate and also noticed that each container serves five req/s and no additional space

for more request. At the peak load, the ECS cluster scaled up to a max of 8 instances and 29

containers.

77

Microservice platform backed by AWS ECS unable to handle simultaneous requests without

causing additional delays. In contrast, AWS Lambda is capable of withstanding sudden spikes

and is able to serve simultaneous requests. Compared to the microservice platform, the

Serverless function is quick and instantly creates new runtime.

AWS Lambda scales up effortlessly without introducing additional delays and handles scaling

from 0 to 1000concurrent requests very well. Compared to AWS, Google Functions has a

less cold start and handles scaling. Based on the tests, both the serverless functions on AWS

& Google are suitable to handle spike workload if the initial limited cold start is not a

problem. Both AWS Lambda and Google functions can also handle request bursts. Where

the Microservices platforms on AWS ECS & GKE is not optimized to handle sudden burst,

this is mainly due to the scaling behaviour with a setting like CPU, target utilization, etc.

However, this can be mitigated by spinning pre-warmed instances with high CPU & Memory

configuration, which intern results in increased cost. In the end, the winner of this case

study is the Serverless platform. The serverless strategy has a better performance in terms

of performance stability and scaling agility regardless of the cold-start problem, but

afterward, it becomes stable.

Memory Use

Figure 6.21 and 6.22 depicts the memory utilization under the Spike load test.

 Figure 6.21 Spike - Memory Utilization [256 MB] Figure 6.22 Spike - Memory Utilization [512 MB]

 Though the usage of memory in microservice is less under normal load, it demands more

memory during a sudden spike in traffic which doesn’t contribute to the overall response

time. Whereas AWS Lambda and cloud functions utilize more memory during the overall

78

duration, it provides better response time and high throughput compared to ECS & GKE.

Comparing memory utilization between Serverless and microservice doesn’t affect the

overall application performance.

6.4.2 Cost

This section examines the cost between microservices and serverless deployment tested for

different scenarios in AWS and Google cloud platforms. Each cloud provider has its own

billing service that allows to easily understand the spending, usage, and manage billing. The

below Tables 6.8, 6.9, 6.10, 6.11, 6.12 shows the cost of cloud services used to deploy

microservices and serverless architecture during load test scenarios.

Virtual machines in the public cloud are usually billed on an hourly basis. Each instance type

has a different price based on the computing, memory, and network configuration. In this

evaluation, the cost is calculated for each service used during the load test duration, which

is 15 minutes. Once the cost is derived for 15 mins, it is converted into a monthly cost for

better comparison. For e.g., In Table 6.8 constant rate scenario requires five instances to

complete the test in 15 mins to meet the load test criteria. Then the cost is calculated for

five instances of t3.xlarge runs for a whole month (720 hours)

Similarly, the cost for serverless is calculated based on the number of requests, their

configuration, and the execution time. Based on the results, serverless supports a greater

number of requests compared to microservice in stress and spike scenarios. To make even

comparison, the number of requests served by microservices is taken into consideration to

calculate the cost for serverless. Irrespective of memory configured for containers, the

number of instances and load balancer remains unchanged in the Microservice architecture;

hence the cost is the same for both the configuration. For each scenario, the serverless cost

is calculated by multiplying the number of requests per hour with the number of hours per

month (no of request/hr * 720). Serverless cost is calculated using the cost calculator

provided by AWS & Google (AWSLambdaPricingCalculator, 2022; CloudGoogleCalculator,

2022).

 Total Instance cost = [(no of instances * 720) * cost per hour]

79

Based on the results, each scenario has generated a certain number of requests. However,

the cost of a serverless environment is economically low for both cloud providers. It is

obvious that both lambdas offer 1M free requests per month(AWSLambdaPricing, 2022) and

google offers 2M free requests per month (GoogleCloudFunctionPricing, 2022)when keeping

the serverless cost low. Further analysis is done by varying the memory configuration of the

serverless function to process the same number of requests. It was noticed from the

function pricing model that increases in memory increase the cost of serverless function,

which is almost 50% more, as shown in Table 6.12, and tries to match the cost of the

microservice environment.

In order to have a better cost-benefit from a holistic view for running and operating an

application in the cloud, both architecture patterns should be rightly balanced depending on

application requirements. For an application with a predictable load, microservice offers

lower cost-benefit compared to serverless due to its autoscaling feature of scaling down the

instances when not used or when the traffic is low. On the other side, when dealing with

small duration and less memory footprint, serverless is a viable low-cost option that is good

for an unpredictable spike use case that offers better performance compared to

microservice.

Cost for Microservice Architecture

• Constant Rate Load Test

Table 6.8 Constant Load - Cost Calculation

• Random Load Test

Table 6.9 Random Microservice - Cost Calculation

80

• Stress Incremental Load Test

 Table 6.10 Stress Microservice - Cost Calculation

• Spike load Test

Table 6.11 Spike Microservice - Cost Calculation

Cost for Serverless

 Table 6.12 Serverless - Cost Calculation

6.4.3 Development Experience

This section covers the application development and deployment experience on

microservice and serverless during experimentation.

One of the drawbacks identified in the serverless function is the testing of an application.

For the developer to test the code, a development AWS or Google environment is required.

For the image processing application, code is tested by packaging and uploading the code to

Lambda or Google function and then trigger using API gateway. This has a potential delay in

the development process. Whereas in the microservice environment, the application is

81

deployed as a docker container in the local development machine and invoked using an

HTTP endpoint, which enables the developer to perform testing faster than serverless.

One of the improvements noticed in the serverless evolution is the flexibility of developing

and deploying multiple resources of an application together, which was not the case before.

With the Serverless Framework, this is now possible to manage the application with a single

serverless file. Similarly, in microservices, tools like docker-compose and Kubernetes

deployment help to achieve this.

The deployment of microservice architecture in AWS & Google requires an additional skill

set to deploy and manage. These services have their own configuration to maintain in cloud

infrastructure. Whenever a new feature is released or new versions are published, the team

should be held the responsibility to communicate with other teams as the new version

might break other services. There should be collaboration and communication among

multiple teams depending on the upgrade.

During Microservice deployment, it is noticed there is a dependency on other services like

Autoscaling, Target group, AMI Management, Kubernetes cluster Management, etc. The

infrastructure required to build this microservice platform needs to be managed by the user.

This includes life cycle management of Amazon machine images used to deploy the

underlying compute, Network infrastructure, monitoring and maintenance of autoscaling

group to keep instance healthy, and configuration for integrating with AWS monitoring

services like CloudWatch. This is an additional overhead for the users or DevOps team to

maintain and manage the Cloud Infrastructure.

On the other side, ready-to-use services like AWS Lambda & Google function reduce the

overhead of managing the underlying cloud infrastructure. This helps to save a lot of time

and spend more time on improving business logic. Since both the architecture are deployed

using a Serverless framework. The deployment of Serverless is faster than microservices

because the number of resources involved in the serverless architecture is minimal, whereas

in microservice, it is more self-managed resources.

82

Chapter 7

Discussion

This section discusses the overall detail of the work done and the results obtained from the

experiments.

This thesis study focuses on comparing microservices and serverless platforms in the cloud

by deploying an application with the aim of identifying how these two different deployment

strategies affect the performance and cost of running and scaling an application in the

cloud. A sample application is deployed in AWS and Google cloud, and several load test

scenarios are executed, and results are obtained. Apart from cloud platforms, some of the

tools like K6, Influx DB, Grafana, and Serverless Framework were used to support the overall

experiment. The following section of the discussion is split into two main sections, one is a

comparison based on quantitative metrics, and the other one is based on qualitative

metrics.

7.1 Quantitative Metrics

7.1.1 Performance

This section discusses the application performance results when deployed in microservice

and serverless platforms. Further reading is split into two sections to discuss the research

metrics.

Response time

It is evident from all experiments conducted serverless strategy suffers from the cold-start

problem. This happens when a function is invoked for the first time or when the function

has not been used for some time, or when it is updated. Both AWS and Google provision a

new backend container in the Micro VM for the function to execute. This takes a certain

amount of time, and the request needs to wait until the function backend is ready to serve.

This wait is usually taken by the container to initialize the run time environment, pull the

function source code and install the dependency libraries. This causes a certain portion of

requests that are served by new instances to have higher latency, otherwise known as a cold

83

start. There already have been many types of research already performed to decrease the

cold start time, like using pre-warmed containers (MarKusThommas, 2017), periodic

warming consisting of submitting dummy requests periodically to induce a cloud service

provider to keep containers warm and pause containers (Mohan et al., 2019). But these

recommended methods add complexity to keep the environment warm. To overcome this,

cloud providers introduced provisioned concurrency to keep functions initialized and ready

to respond in milliseconds. This is to keep in mind that provisioned concurrency incurs an

additional price which increases the overcall cost of the application infrastructure while

considered serverless. Cold start issue in serverless thus adds latency to the overall

response time which is noticed in all starts. Before deciding serverless choice of

programming language used for application development should be keep in mind.

Despite the cold start issue in the serverless deployment during all the load tests, the

microservices deployment strategy suffers from the traffic redistribution problem, which

leads to a high response time during the Spike load test. This affects the overall average

response time when the application needs to handle sudden spikes to accommodate more

requests. One potential reason is that these spikes coincide with the scaling out activity of

the autoscaling in AWS and scaling of PODS and Nodes in GKE, which results in the increased

response time. Despite a cold start, If an application demands stable latency overall, then

the choice of serverless, either in AWS or Google, is the right deployment strategy.

In another load test, it is evident that microservices deployed using AWS ECS outperform

while handling the constant request. If the application requests are static and constant, then

a microservice deployment strategy would provide better response time with less

infrastructure cost and no cold start. One potential reason could be due to no scaling

activity; hence microservice is able to provide consistent performance. Compared to ECS,

the microservice deployed by GKE has a higher response time. This could be improved by

enabling the Node provisioning feature in GKE, and there by, the response time for the

constant load would be better.

84

Memory Use

Memory utilization or usage is one of the key attributes while evaluating an application's

performance. In the modern application world, this metric plays a different role as

compared to monolithic applications. Based on the results, memory utilization in

microservice is less compared to serverless, which is 85% of overall memory in all the tests.

One potential reason for this behavior is in serverless, each invocation or each request

invoked will have a dedicated run time container environment with memory available to

use, and utilization is calculated against the single request. Whereas in microservices, each

container processes multiple requests, and the utilization of memory is shared by multiple

requests. Hence memory metrics can’t be considered the key metrics to making a decision

against a better strategy. Similarly, for CPU, Cloud Providers don’t offer CPU utilization

Metrics for Serverless. The reason is that the CPU is not a configurable item in both AWS

Lambda and Google functions. CPU is proportionally allocated to Memory in the backend by

providers, as mentioned in the section, due to which CPU is not the right metric to

benchmark the results.

Concluding the performance discussion, there is no clear winner in terms of performance.

Serverless shows great potential while handling unpredictable traffic with better

performance. At the same time, microservice shows better response while handling

constant and predictable load traffic.

7.1.2 Cost

As we compare the cost between serverless and microservice platform. Serverless has a

higher response time while offering a lower cost in constant load tests when compared to

microservice. At the same time, in another test comparison, the serverless cost is relatively

low, with a better response time when dealing with peak workloads. Based on the results, it

is evident that serverless offers the same price irrespective of the load test. But the price

varies when there is a change in memory configuration. Hence, serverless is most suited for

applications that run for a shorter duration and the need for memory is relatively low. More

memory relates to high cost. On the other side, for a long-running application with a

predictable load, microservice offers lower cost-benefit compared to serverless due to its

autoscaling feature of scaling down the instances when not used or when the traffic is low

85

7.2 Qualitative Metrics

7.2.1 Scalability

In terms of comparing scalability and agility of microservice and serverless platform.

Serverless wins over the race of scaling and agility. This is because the cloud provider

offloaded the overhead of scaling activity and is managed by the cloud provider itself.

Microservices deployment starts to scale after the system has reached the defined criteria

for at least one minute. There is always a delay in responsiveness to re-balance the current

workload. As a result, there is an increase in response time with the increasing workload,

and then it drops after the new containers have been launched. For e.g., in the above

microservices deployment, the average CPU utilization is 70% for a consecutive 1 minute

than the scaling trigger. This limitation in microservice impacts the scaling and has a delayed

response which is not the case with serverless. In one of the spike and stress load tests in

microservices, some of the requests were errored and dropped. It is due to the instance

scaling activity, and the existing container couldn’t accommodate any more requests, which

lets down the average response time low.

7.2.2 Security

Based on the literature study, both the deployment architecture can be integrated with an

external authentication system. However, Serverless AWS API Gateway & Google API has

the native integration support with AWS Cognito (AWSCognito, 2022) and Google Firebase

Authentication (FirebaseAuthentication, 2022), which is a service for managing user and

application authentication. No additional configuration is required to manage, and it is

serverless by nature. This feature pushes serverless to the top of the list on this topic.

Authentication in microservices needs custom configuration in the form of code or external

tools, which adds additional complexity to managing the infrastructure.

Microservice and serverless are similar in several aspects, and the strategies to manage

them and keep them secure should be similar, too. However, there are some important

differences when it comes to managing and securing certain dimensions of a serverless or

86

Microservice workload, such as the extent of the responsibility for the host environment

and the tools to use.

In Serverless, permitter security can be controlled by having a separate IAM role with

restricted permission attached to the functions. By implementing this, access between

services is controlled with fine-grained access. Similar to Google cloud, the service account

held the role of applying fine-grained access privileges to the function there by increasing

the level of permitter security around the serverless application. In addition, AWS Lambda &

Google function has the control to define who can invoke the function

On the other hand, both AWS ECS & Google Kubernetes engine access to services is

controlled by the task role in ECS and service account in Kubernetes. In AWS, ECS tasks have

an IAM role attached to them. The permissions attached to an IAM role are assumed by the

containers running in the task. Similar to GKE, service accounts are bound to POD to have

controlled permission on the POD Level.

7.2.3 Development Experience

From the deployment perspective, the deployment of application code into the serverless

platform is quicker and faster compared to Microservice-based deployment. With the use of

an open-source serverless application, the framework application can be easily built by

integrating all resources into one YAML file and triggering the deployment; this has made

the serverless deployment complete within a couple of hours. Whereas microservice it’s a

two-step process, the application code has to first convert them into docker images and

then build underlying infrastructure to deploy the image as the container. The time duration

to complete the whole deployment process is more compared to serverless.

From the operational perspective, the serverless function takes care of everything required

to run and scale the implementation to meet the demand with high availability. No

administration of infrastructure is needed. No operational team is required to manage. This

allows the team to innovate faster and move quickly, and the developer focuses on business

logic because security and scaling are managed by AWS. On the other hand, microservices-

based deployment needs a dedicated operation team to run and operate the underlying

infrastructure along with the developer team. This drives a need for the DevOps team to

87

collaborate with developers and operations together to deliver higher quality software

much faster, which in turn increases the cost of the project. And in addition, an organization

needs to address the skill gap between Developers and the Operations team

7.2.4 Controllability and Visibility

Though serverless addresses the complexity of orchestrating the container by handing over

the code to the cloud provider to run on the cloud platform, the control over the underlying

layer is lost when it comes to managing the dependency libraries, run time, and resource

limit. And also, it losses visibility on how the cloud provider scraps the function environment

when a function is deleted and the user is not sure whether the data is completely removed

from the backend. At the same time, the microservice-based environment is fully owned by

the end-user, who has full control and visibility over the environment. On the other side,

serverless is improved over the last couple of years on gaining visibility over the application

characteristics. Based on the theoretical study, services like AWS Cloudwatch, AWS X-ray,

Monitoring explorer, and Cloud Trace improves the visibility of the Serverless platform in

the aspect of monitoring latency between the Application APIs.

7.3 Limitations

Though serverless is gaining popularity among architects and developers, certain limitations

in the serverless platform will create a potential delay in adopting serverless. Some of them

are 1. Runtime - Each function has a max run-time of around 15 minutes in AWS Lambda

and 10 minutes in event-driven, and 60 mins for HTTP function in Google. Hence long-

running applications are not suitable for Serverless deployment.

7.4 Challenges Faced

In this section, the main challenges faced during experimentation were mentioned. The

challenges reported here would help other researchers to address during the early stage of

experimentation.

88

Public Cloud with Free Credit

The experiment carried out in this thesis study is non-fundable. Public cloud provider AWS

and Google cloud platform were considered to conduct the experimentation. Personal

accounts were created in both these providers to deploy the sample application and run

load tests. Both accounts initially come up with free credits with certain limitations. During

experimentation in AWS, one of the key items evaluated is the cold start in Lambda.

Researchers addressed this issue by mitigating it using pre-warmed containers. As

technology continues to evolve, AWS addressed this using Provisioned concurrency, which is

high in cost and doesn’t fall under free credit. Hence to avoid the accumulation of high costs

in the personally-owned AWS account experiment against enabling provisioned

concurrently is skipped, and results are analyzed based on theoretical data shared by AWS.

The same applies to Google cloud.

Setting up Kubernetes platform

One of the gaps addressed in this report is extending the comparison study to other cloud

providers. Hence along with AWS, Google cloud is considered for evaluation. In order to

have a fair comparison between microservice and serverless in two different providers, the

same kind of service needs to be evaluated. In AWS, elastic container services are used for

evaluation in microservice. ECS is AWS managed container orchestrator with no cluster

management and is easy to deploy. Whereas, in Google, the only available container

orchestrator solution is GKE (Google Kubernetes Engine). To deploy and operate GKE, one

should need the skill set on Kubernetes to deploy and run the application. It took time to

understand the Kubernetes technology and then adapt GKE is very time-consuming, which

adds potential delay in overall thesis work.

89

7.5 Summary

Decision Drivers Serverless Microservice

Performance • Provides better performance
while handling high and
unpredictable traffic

• Due to faster scaling, able to
accommodate the high number
of requests with a better
response time

• Suffers from a cold start

• The predictable and constant
request has better performance

• Performance is impacted due to
load balancing and traffic
distribution while scaling.

Cost • Cheaper compared to
container-based Microservice
platform

• No charges for function when
not used

• Granularity pricing makes cost-
effective

• Functioning with more
memory will increase the cost.

• Compute level pricing irrespective
of CPU or memory configuration

• Cost is high when a high
configuration instance is used,
which results in better
performance

Development

Experience

• Simple deployment stands out
unique.

• No infrastructure management

• No configuration of docker or
Kubernetes.

• No Ops – Operations team is
not required

• All of the above results in
faster time to market

• An operations team is required to
manage the underlying
infrastructure

• Complexity in managing
Kubernetes cluster and
configuration

• Due to underlying infrastructure,
the time taken to deploy
microservice is high and needs
knowledge on managing
infrastructure components

Scalability • Highly scalable

• Scaling of functions taken care
of by the cloud provider

• Highly scalable

• The developer needs to configure
and manage to scale

• Scaling starts after the system
reaches the desired criteria for
one minute

Controllability &

Visibility

• No visibility of underlying infra

• Lack of control of underlying
runtime environment

• High visibility of underlying infra

• Developer controlled run
environment using docker
containers

90

Chapter 8

Conclusion

Microservices and serverless have emerged a long way from monolithic architectures. Both

satisfy the modern generation application requirements of highly scalable, flexible, and

agility, and the technologies to enable them are continuously improving. Based on the

experimental analysis for the POST method concludes that not all qualitative and

quantitative attributes fit one approach. For random and constant load, microservices has

better performance than serverless in both memory configuration with pre-built instances.

In contrast, serverless outperforms better than microservices for both memory

configuration having stability, performance, and scaling agility with stress and triangle load.

The reason for instability occurs in microservices during the surge of traffic due to the

scaling of instances. Microservices have more controllability and visibility than serverless for

backend services. Serverless is better than microservices with certain characteristics in some

of the areas to be specially mentioned, such as faster deployment and NoOps. However,

deep consideration is still needed choosing between them when designing infrastructure for

an enterprise. It is about choosing wisely and leveraging the advantages of each approach.

8.1 Answer to Research questions

This section answers the research questions, which were formulated at the beginning of this

thesis. The research questions are answered based on the tests, observations, and findings

which were made during the research work as a part of this thesis.

RQ1: What are the main factors that influence the decision to choose between

microservices and serverless?

Performance, cost, and scalability are the three main factors that influence the decision of

microservices and serverless deployment. The microservice platform provides low average

latencies when the load is static and predictable. However, not being the right fit for

applications with unpredictable traffic results in high latency. On the other side, serverless

can offer better latency for applications with unpredictable spike traffic. However, high

latency can occur in serverless platforms, especially with a cold start which could be

91

mitigated using provisioned concurrency or min instances. In conclusion, serverless can be

feasible if the occasional high latency is not an issue.

In terms of costs, Serverless platforms were found to be a very cost-effective solution as it

priced on demand. In conclusion, different platforms should be carefully considered and

compared in terms of costs when making architecture decisions.

RQ2: Which architecture among the two (microservices & serverless) is suitable for

deploying an application in the cloud?

Although serverless application shares many of the same benefits as a microservice, there

are a plethora of differences if we see it from a holistic view. Select serverless computing

when there is a need for automated scaling as well as low runtime costs. Serverless

architecture is a good choice for applications that run only for short periods of time and to

handle the surge in traffic. Services that need to be highly available will make a perfect fit

for serverless.

Choosing between the two-deployment strategy is not always necessary. It is recommended

to integrate the benefits and limitations of microservices and Serverless technologies by

using them together. However, one can also integrate both architectures to build a cost-

efficient application platform and leverage the technology of Microservice-based serverless

platform as well.

8.2 Future work

The research in this thesis has its limitations and can be complemented with further

research. The following topics are proposed for further research

Extend the comparison toward serverless-based Microservice platform: This thesis

examined the performance, cost, and security comparison between Container Orchestrator

platform and Serverless, more specifically between ECS and Lambda in AWS and between

Cloud Functions and GKE standard mode. The research could be extended to compare

serverless-based microservices platforms versus function-based serverless. For example,

AWS Fargate vs. AWS Lambda. AWS Fargate is a serverless, pay-as-you-go compute engine

that lets you focus on building applications without managing servers, and in google, GKE

92

Autopilot mode is the serverless based container platform. The appendixes section of this

thesis provides the scripts to deploy the Serverless and Microservice platform, which could

be reused for further research.

Extending the comparison to additional cloud providers: The experiment in this thesis is

conducted in Amazon Web Services and Google Cloud Platform. The tests could be

extended to cover other big cloud service providers like Microsoft Azure and some other

providers.

93

Reference List

Adzic, G., & Chatley, R. (2017). Serverless computing: economic and architectural impact.

884–889. https://doi.org/10.1145/3106237.3117767

Albuquerque Jr, L. F., Ferraz, F. S., Oliveira, R. F. A. P., & Galdino, S. M. L. (2017). Function-as-

a-Service X Platform-as-a-Service: Towards a Comparative Study on FaaS and PaaS. The

Twelfth International Conference on Software Engineering Advances Function-as-a-

Service, c, 206–212.

Amazon ECS-optimized AMI - Amazon Elastic Container Service. (n.d.). Retrieved May 2,

2022, from https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-

optimized_AMI.html

AmazonEC2AutoScaling. (2022). What is Amazon EC2 Auto Scaling? - Amazon EC2 Auto

Scaling. https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-

ec2-auto-scaling.html

AmazonEC2types. (2022). Amazon EC2 Instance Types - Amazon Web Services.

https://aws.amazon.com/ec2/instance-types/

AmazonECR. (2022). What is Amazon Elastic Container Registry? - Amazon ECR.

https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html

AmazonECS. (2022). Fully Managed Container Orchestration – Amazon Elastic Container

Service (Amazon ECS) FAQs – AWS. https://aws.amazon.com/ecs/faqs/

AmazonELB. (2022). What is a Network Load Balancer? - Elastic Load Balancing.

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html

AmazonS3. (2022). What is Amazon S3? - Amazon Simple Storage Service.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html

AWSCognito. (2022). What is Amazon Cognito? - Amazon Cognito.

https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-

cognito.html

AWSLambdaPricing. (2022). Serverless Computing – AWS Lambda Pricing – Amazon Web

Services. https://aws.amazon.com/lambda/pricing/

AWSLambdaPricingCalculator. (2022). AWS Lambda Pricing Calculator.

https://s3.amazonaws.com/lambda-tools/pricing-calculator.html

AWSLAMBDAsecurity. (2022). Lambda Executions - Security Overview of AWS Lambda.

94

https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-

lambda/lambda-executions.html

Baldini, I., Cheng, P., Fink, S. J., Mitchell, N., Muthusamy, V., Rabbah, R., Suter, P., & Tardieu,

O. (2017). The serverless trilemma: Function composition for serverless computing.

Onward! 2017 - Proceedings of the 2017 ACM SIGPLAN International Symposium on

New Ideas, New Paradigms, and Reflections on Programming and Software, Co-Located

with SPLASH 2017, 89–103. https://doi.org/10.1145/3133850.3133855

Baškarada, S., Nguyen, V., & Koronios, A. (2020). Architecting Microservices: Practical

Opportunities and Challenges. Journal of Computer Information Systems, 60(5), 428–

436. https://doi.org/10.1080/08874417.2018.1520056

BBVA. (2020). Economics of “Serverless” | BBVA. https://www.bbva.com/en/economics-of-

serverless/

Chris Tozzi. (2021). Microservices vs. Serverless Architecture | Sumo Logic.

https://www.sumologic.com/blog/microservices-vs-serverless-architecture/

Cloudflare. (2021). Serverless computing vs. containers | How to choose | Cloudflare.

https://www.cloudflare.com/en-in/learning/serverless/serverless-vs-containers/

CloudGoogleCalculator. (2022). Google Cloud Pricing Calculator.

https://cloud.google.com/products/calculator

CloudStorage. (2022). Cloud Storage | Google Cloud. https://cloud.google.com/storage

DNSstuff. (2019). Best Server and Application Response Time Monitoring Tools + Guide -

DNSstuff. https://www.dnsstuff.com/response-time-monitoring

Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M., Mustafin, R., & Safina, L. (2017).

Microservices: How to make your application scale. ArXiv.

ECSCapacityprovider. (2022). Amazon ECS capacity providers - Amazon Elastic Container

Service. https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-

capacity-providers.html

ECSserviceautoscaling. (2022). Service auto scaling - Amazon Elastic Container Service.

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-auto-

scaling.html

Eismann, S., Scheuner, J., van Eyk, E., Schwinger, M., Grohmann, J., Herbst, N., Abad, C. L., &

Iosup, A. (2020). A Review of Serverless Use Cases and their Characteristics. ArXiv.

http://arxiv.org/abs/2008.11110

95

Eivy, A. (2017). Be Wary of the Economics of “Serverless” Cloud Computing. IEEE Cloud

Computing, 4(2), 6–12. https://doi.org/10.1109/MCC.2017.32

FirebaseAuthentication. (2022). Firebase Authentication | Firebase Documentation.

https://firebase.google.com/docs/auth

Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P., Katarki, N., Bruno, A., Hu, J., Ritchken, B.,

Jackson, B., Hu, K., Pancholi, M., He, Y., Clancy, B., Colen, C., Wen, F., Leung, C., Wang,

S., Zaruvinsky, L., … Delimitrou, C. (2019). An open-source benchmark suite for cloud

and IoT microservices. ArXiv.

Gearheart. (2021). How to Build a Scalable Web Application for Your Project | Gearheart.

https://gearheart.io/articles/how-build-scalable-web-applications/

Ghayyur, S. A. K., Razzaq, A., Ullah, S., & Ahmed, S. (2018). Matrix clustering based migration

of system application to microservices architecture. International Journal of Advanced

Computer Science and Applications, 9(1), 284–296.

https://doi.org/10.14569/IJACSA.2018.090139

Google. (2020). Global Locations - Regions & Zones | Google Cloud.

https://cloud.google.com/about/locations

GooglecloudAPIGateways. (2022). Quickstart: Secure traffic to a service with the Cloud

console | API Gateway Documentation | Google Cloud. https://cloud.google.com/api-

gateway/docs/secure-traffic-console

GoogleCloudFunctionPricing. (2022). Pricing | Cloud Functions | Google Cloud.

https://cloud.google.com/functions/pricing

GooglecloudRoute. (2022). Routes overview | VPC | Google Cloud.

https://cloud.google.com/vpc/docs/routes

GoogleComputeEngine. (2022). General-purpose machine family | Compute Engine

Documentation | Google Cloud. https://cloud.google.com/compute/docs/general-

purpose-machines

Googlefunction. (2022). Cloud Functions | Google Cloud. https://cloud.google.com/functions

GoogleGKE. (2022). GKE overview | Kubernetes Engine Documentation | Google Cloud.

https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-

overview

GoogleTCP. (2022). Configuring TCP/UDP load balancing | Kubernetes Engine

Documentation | Google Cloud. https://cloud.google.com/kubernetes-

96

engine/docs/how-to/service-parameters

Grafana, I. (2022). With Grafana and InfluxDB | Grafana documentation.

https://grafana.com/docs/grafana/latest/getting-started/getting-started-influxdb/

Hellerstein, J. M., Faleiro, J., Gonzalez, J. E., Schleier-Smith, J., Sreekanti, V., Tumanov, A., &

Wu, C. (2018). Serverless Computing: One Step Forward, Two Steps Back. ArXiv, 3.

Ivanovic, N. (2021). Montecha - Blog - Serverless platform.

https://montecha.com/blog/serverless-platform/

Jackson, D., & Clynch, G. (2019). An investigation of the impact of language runtime on the

performance and cost of serverless functions. Proceedings - 11th IEEE/ACM

International Conference on Utility and Cloud Computing Companion, UCC Companion

2018, 154–160. https://doi.org/10.1109/UCC-Companion.2018.00050

Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., & Tilkov, S. (2018). Microservices: The

journey so far and challenges ahead. IEEE Software, 35(3), 24–35.

https://doi.org/10.1109/MS.2018.2141039

Javatpoint. (2020). SOA - Service Oriented Architecture - javatpoint.

https://www.javatpoint.com/service-oriented-architecture

K6. (2022). k6 Documentation. https://k6.io/docs/

k8poddeployment. (2022). Deployments | Kubernetes.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Kumar, M. (2019). Serverless Architectures Review, Future Trend and the Solutions to Open

Problems. American Journal of Software Engineering, 6(1), 1–10.

https://doi.org/10.12691/ajse-6-1-1

Lehmann, M., & Sandnes, F. E. (2017). A framework for evaluating continuous microservice

delivery strategies. ACM International Conference Proceeding Series.

https://doi.org/10.1145/3018896.3018961

Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., & Pallickara, S. (2018). Serverless computing:

An investigation of factors influencing microservice performance. Proceedings - 2018

IEEE International Conference on Cloud Engineering, IC2E 2018, 159–169.

https://doi.org/10.1109/IC2E.2018.00039

Maherchandani, J. (2019). The Idea of Micro-frontend. The term Micro Frontends extends

the… | by Jitin Maherchandani | Medium. https://medium.com/@jitin.maher/the-idea-

of-micro-frontend-85028131112f

97

MarKusThommas. (2017). Squeezing the milliseconds: How to make serverless platforms

blazing fast! | by Markus Thömmes | Apache OpenWhisk | Medium.

https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-

platforms-blazing-fast-aea0e9951bd0

McGrath, G., & Brenner, P. R. (2017). Serverless Computing: Design, Implementation, and

Performance. Proceedings - IEEE 37th International Conference on Distributed

Computing Systems Workshops, ICDCSW 2017, 405–410.

https://doi.org/10.1109/ICDCSW.2017.36

Mohan, A., Sane, H., Doshi, K., Edupuganti, S., Nayak, N., & Sukhomlinov, V. (2019). Agile

Cold Starts for Scalable Serverless.

Packt. (2017). Microservices and Service Oriented Architecture | Packt Hub.

https://hub.packtpub.com/microservices-and-service-oriented-architecture/

Pahl, C., & Jamshidi, P. (2016). Microservices: A systematic mapping study. CLOSER 2016 -

Proceedings of the 6th International Conference on Cloud Computing and Services

Science, 1(January), 137–146. https://doi.org/10.5220/0005785501370146

Pellegrini, R., Ivkic, I., & Tauber, M. (2019). Towards a Security-Aware Benchmarking

Framework for Function-as-a-Service. ArXiv, 1–4.

Ponce, F., Marquez, G., & Astudillo, H. (2019). Migrating from monolithic architecture to

microservices: A Rapid Review. Proceedings - International Conference of the Chilean

Computer Science Society, SCCC, 2019-Novem(September).

https://doi.org/10.1109/SCCC49216.2019.8966423

PrinceSinha. (2022). Monitoring Application Response Times | Scout APM Blog.

https://scoutapm.com/blog/application-response-time-monitoring

PrivatelinkS3. (2022). AWS PrivateLink for Amazon S3 - Amazon Simple Storage Service.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-

endpoints.html

Rajan, R. A. P. (2020). A review on serverless architectures-Function as a service (FaaS) in

cloud computing. Telkomnika (Telecommunication Computing Electronics and Control),

18(1), 530–537. https://doi.org/10.12928/TELKOMNIKA.v18i1.12169

Ravirala, S. (2019). Monolithic vs Microservices - Santhosh Ravirala.

https://santhoshravirala.com/monolithic-vs-

microservices/?utm_source=rss&utm_medium=rss&utm_campaign=monolithic-vs-

98

microservices

Richards, M. (2016). Microservices vs. service-oriented architecture – O’Reilly.

https://www.oreilly.com/radar/microservices-vs-service-oriented-architecture/

Sadaqat, M., Colomo-Palacios, R., & Knudsen, L. E. S. (2018). Serverless computing: a

multivocal literature review. NOKOBIT - Norsk Konferanse for Organisasjoners Bruk Av

Informasjonsteknologi, 26(1). https://brage.bibsys.no/xmlui/handle/11250/2577600

Savage, N. (2018). Going Serverless. Communications of the ACM, 61(2), 15–16.

https://doi.org/10.1145/3171583

Sentia. (2020). Sentia Tech Blog | AWS re:Invent 2020 Day 3: Optimizing Lambda Cost with

Multi-Threading. https://www.sentiatechblog.com/aws-re-invent-2020-day-3-

optimizing-lambda-cost-with-multi-

threading?utm_source=reddit&utm_medium=social&utm_campaign=day3_lambda

Sentinalone. (2021). AWS Lambda Use Cases: 11 Reasons to Use Lambdas.

https://www.sentinelone.com/blog/aws-lambda-use-cases/

ServerlessFramework. (2022). Serverless Framework - AWS Lambda Guide - Serverless.yml

Reference.

https://www.serverless.com/framework/docs/providers/aws/guide/serverless.yml#la

mbda-events

Shafiei, H., Khonsari, A., & Mousavi, P. (2019). Serverless computing: A survey of

opportunities, challenges and applications. ArXiv, 1–13.

https://doi.org/10.31224/osf.io/u8xth

Taibi, D., El Ioini, N., Pahl, C., & Niederkofler, J. R. S. (2020). Patterns for serverless functions

(Function-as-a-Service): A multivocal literature review. CLOSER 2020 - Proceedings of

the 10th International Conference on Cloud Computing and Services Science, Closer,

181–192. https://doi.org/10.5220/0009578501810192

Viggiato, M., Terra, R., Rocha, H., Valente, M. T., & Figueiredo, E. (2018). Microservices in

Practice: A Survey Study. September. http://arxiv.org/abs/1808.04836

Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., Casallas, R., Gil,

S., Valencia, C., Zambrano, A., & Lang, M. (2017). Cost comparison of running web

applications in the cloud using monolithic, microservice, and AWS Lambda

architectures. Service Oriented Computing and Applications, 11(2).

https://doi.org/10.1007/s11761-017-0208-y

99

vt3199/cloudimageproc. (2022). https://github.com/vt3199/cloudimageproc

Waseem, M., Liang, P., & Shahin, M. (2020). A Systematic Mapping Study on Microservices

Architecture in DevOps. Journal of Systems and Software, 170(August).

https://doi.org/10.1016/j.jss.2020.110798

XK6-output-influxdb. (2020). xk6-output-influxdb/docker-compose.yml at main ·

grafana/xk6-output-influxdb. https://github.com/grafana/xk6-output-

influxdb/blob/main/docker-compose.yml

Xu, R., Nikouei, S. Y., Chen, Y., Blasch, E., & Aved, A. (2019). BlendMAS: A blockchain-

enabled decentralized microservices architecture for smart public safety. Proceedings -

2019 2nd IEEE International Conference on Blockchain, Blockchain 2019, 564–571.

https://doi.org/10.1109/Blockchain.2019.00082

Zollingkoffer, M. (2017). Marc Zollingkoffer on Twitter: “My infographic on evolution from

monolithic to capability oriented architectures https://t.co/076FSi1qg1 #Microservices

#Cloud #Serverless https://t.co/ZRkaCtLmVv” / Twitter.

https://twitter.com/mz_74/status/841959762099085313

100

Appendix A

Load Test Code and Scripts

A.1 K6, Influx DB, and Grafana Deployment file

version: '3.8'

networks:

 k6:

 grafana:

 influxdb:

services:

 influxdb:

 image: influxdb:2.0-alpine

 networks:

 - k6

 - grafana

 - influxdb

 ports:

 - "8086:8086"

 environment:

 - DOCKER_INFLUXDB_INIT_MODE=setup

 - DOCKER_INFLUXDB_INIT_USERNAME=croco

 - DOCKER_INFLUXDB_INIT_PASSWORD=password1

 - DOCKER_INFLUXDB_INIT_ORG=k6io

 - DOCKER_INFLUXDB_INIT_BUCKET=demo

 -
DOCKER_INFLUXDB_INIT_ADMIN_TOKEN=EEKpryGZk8pVDXmIuy484BKUxM5jOEDv7YNoeNZUbsNbpbPbP6kK_qY9Zsyw
7zNnlZ7pHG16FYzNaqwLMBUz8g==

 grafana:

 image: grafana/grafana:8.1.3

 networks:

 - grafana

 - influxdb

 ports:

 - "3000:3000"

 environment:

 - GF_AUTH_ANONYMOUS_ORG_ROLE=Admin

 - GF_AUTH_ANONYMOUS_ENABLED=true

 - GF_AUTH_BASIC_ENABLED=false

 volumes:

 - ./grafana:/etc/grafana/provisioning/

 k6:

101

 build: .

 networks:

 - k6

 ports:

 - "6565:6565"

 environment:

 - K6_OUT=xk6-influxdb=http://172.31.214.14:8086

 - K6_INFLUXDB_ORGANIZATION=k6io

 - K6_INFLUXDB_BUCKET=demo

 - K6_INFLUXDB_INSECURE=true

 # NOTE: This is an Admin token, it's not suggested to use this configuration in production.

 # Instead, use a Token with restricted privileges.

 -
K6_INFLUXDB_TOKEN=EEKpryGZk8pVDXmIuy484BKUxM5jOEDv7YNoeNZUbsNbpbPbP6kK_qY9Zsyw7zNnlZ7pHG16FYzN
aqwLMBUz8g==

 volumes:

 - ./scripts:/scripts

A.2 Setup Repo in Influx DB

A.3 Setup Dashboard in Grafana

A.4 Build K6, InfluxDB and Grafana

Navigate to the path where docker compose file exists and run

http://172.31.214.14:8086/

102

docker-compose up -d

A.5 To run Load Test in AWS

sudo docker-compose run k6 run -<lambda_rps.js
sudo docker-compose run k6 run -<lambda_spiketriangle.js
sudo docker-compose run k6 run -<lambda_stressincremental.js
sudo docker-compose run k6 run -<lambda_loadrandom.js
sudo docker-compose run k6 run -<ecs_rps.js
sudo docker-compose run k6 run -<ecs_spiketriangle.js
sudo docker-compose run k6 run -<ecs_stressincremental.js
sudo docker-compose run k6 run -<ecs_loadrandom.js

A.6 To run load test in Google

sudo docker-compose run k6 run -<gfunc_rps.js
sudo docker-compose run k6 run -<gfunc_spiketriangle.js
sudo docker-compose run k6 run -<gfunc_stressincremental.js
sudo docker-compose run k6 run -<gfunc_loadrandom.js
sudo docker-compose run k6 run -<gke_rps.js
sudo docker-compose run k6 run -<gke_spiketriangle.js
sudo docker-compose run k6 run -<gke_stressincremental.js
sudo docker-compose run k6 run -<gke_loadrandom.js

103

Appendix B

Load Test Results

B.1 Constant Load Test – AWS Lambda

B.2 Constant Load Test - AWS ECS

B.3 Constant Load Test - Google Function

104

B.4 Constant Load Test - Google Kubernetes Engine

B.5 Random Load Test – AWS Lambda

B.6 Random Load Test – AWS ECS

105

B.7 Random Load Test - Google Function

B.8 Random Load Test - Google Kubernetes Engine

B.9 Stress Incremental Load Test - AWS Lambda

106

B.10 Stress Incremental Load Test - AWS ECS

B.11 Stress Incremental Load Test - Google Function

B.12 Stress Incremental Load Test - Google Kubernetes Engine

107

B.13 Spike Load Test – AWS Lambda

B.14 Spike Load Test – AWS ECS

B.15 Spike Load Test – Google Function

108

B.16 Spike Load Test – Google Kubernetes Engine

109

Appendix C

Application Source Code

C.1 Microservice - AWS ECS

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

'use strict';

const serverless = require('serverless-http');

const express = require('express');

const bodyParser = require('body-parser');

const cors = require('cors');

const app = express();

const Jimp = require('jimp');

const { v4: uuidv4 } = require("uuid");

const height = 500;

var imageType = "image/png";

require('dotenv').config();

const bucket = process.env.Bucket;

const port = process.env.Port;

const AWS = require('aws-sdk');

const s3 = new AWS.S3();

var params = {

 Bucket: bucket

};

// Cors

app.use(cors());

// Data Parsing

app.use(bodyParser.json({ extended: true }));

app.use(bodyParser.urlencoded({ extended: true }));

// here you send the URL image

app.post('/dev/upload', async (req, res, cb) => {

 let path = req.body.photoUrl; // URL Image

 console.log(path);

 let photoUrl = path;

 let objectId = uuidv4();

 let objectKey = `rz-${height}-${objectId}.`;

 return fetchImage(photoUrl)

 .then(image => {

 imageType= image.getMIME();

 if(imageType == 'image/png'){

 objectKey= objectKey+'png';

 } else if(imageType == 'image/jpg') {

 objectKey= objectKey+'jpg';

 } else if(imageType == 'image/jpeg') {

 objectKey= objectKey+'jpeg';

110

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

 }

 image.resize(Jimp.AUTO, height);

 return image.getBufferAsync(image.getMIME());

 })

 .then(resizedBuffer => uploadToS3(resizedBuffer, objectKey,

imageType))

 .then(function (response) {

 console.log(`Image ${objectKey} was upload and resized`);

 res.status(200).json(response);

 })

 .catch(error => console.log(error));

})

/**

 * @param {*} data

 */

function uploadToS3(data, key, imageType) {

 console.log('uploadToS3');

 return s3

 .putObject({

 Bucket: bucket,

 Key: key,

 Body: data,

 ContentType: imageType

 })

 .promise();

}

/**

 * @param {url}

 * @returns {Promise}

 */

function fetchImage(url) {

 return Jimp.read(url);

}

app.listen(port, () => {

 console.log(`App listening at http://localhost:${port}`)

})

C.2 Microservice - Google Kubernetes Engine

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

'use strict';

const serverless = require('serverless-http');

const express = require('express');

const bodyParser = require('body-parser');

const cors = require('cors');

const app = express();

const Jimp = require('jimp');

const { v4: uuidv4 } = require("uuid");

const height = 500;

var imageType = "image/png";

111

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

require('dotenv').config();

const port = process.env.Port;

const { Storage } = require('@google-cloud/storage');

const bucket = process.env.Bucket;

const project_id = 'robust-resource-12345';//process.env.Bucket;

// Cors

app.use(cors());

// Data Parsing

app.use(bodyParser.json({ extended: true }));

app.use(bodyParser.urlencoded({ extended: true }));

app.get('/', async (req, res) => {

 const healthcheck = {

 uptime: process.uptime(),

 message: 'OK',

 timestamp: Date.now()

 };

 res.status(200).send(healthcheck);

});

app.get('/health', (req, res) => {

 const healthcheck = {

 uptime: process.uptime(),

 message: 'OK',

 timestamp: Date.now()

 };

 res.status(200).send(healthcheck);

});

// here you send the URL image

app.post('/upload', async (req, res, cb) => {

 let path = req.body.photoUrl; // URL Image

 console.log(path);

 let photoUrl = path;

 let objectId = uuidv4();

 let objectKey = `rz-${height}-${objectId}.`;

 return fetchImage(photoUrl)

 .then(image => {

 imageType = image.getMIME();

 if (imageType == 'image/png') {

 objectKey = objectKey + 'png';

 } else if (imageType == 'image/jpg') {

 objectKey = objectKey + 'jpg';

 } else if (imageType == 'image/jpeg') {

 objectKey = objectKey + 'jpeg';

112

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

 }

 image.resize(Jimp.AUTO, height);

 return image.getBufferAsync(image.getMIME());

 })

 .then(resizedBuffer => uploadToGoogle(resizedBuffer,

objectKey, imageType))

 .then(function (response) {

 console.log(`Image ${objectKey} was upload and resized`);

 res.status(200).json(response);

 })

 .catch(error => console.log(error));

})

function uploadToGoogle(data, key, imageType) {

 return new Promise(function (resolve, reject) {

 console.log('uploadToS3');

 const storage = new Storage({

 projectId: project_id,

 keyFilename: '826719257276.json'

 });

 const googlebucket = storage.bucket('oslometimagev1');

 const bucketfile = googlebucket.file(key);

 // Uploads the file.

 bucketfile.save(data, { contentType: imageType }).then(() =>

{

 // Success handling...

 console.log('success save');

 resolve("success");

 }).catch(error => {

 console.log('error');

 reject(error);

 // Error handling...

 });

 console.log("returning success");

 });

}

function fetchImage(url) {

 return Jimp.read(url);

}

app.listen(port, () => {

 console.log(`App listening at http://localhost:${port}`)

})

113

C.3 Serverless - AWS Lambda

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

"use strict";

const AWS = require("aws-sdk");

const { v4: uuidv4 } = require("uuid");

const Jimp = require("jimp");

const s3 = new AWS.S3();

const height = 500;

var imageType = "image/png";

const bucket = "oslometx2";

module.exports.handler = (event, context, callback) => {

 let requestBody = JSON.parse(event.body);

 let photoUrl = requestBody.photoUrl;

 let objectId = uuidv4();

 let objectKey = `rz-${height}-${objectId}.`;

 fetchImage(photoUrl)

 .then(image => {

 imageType= image.getMIME();

 if(imageType == 'image/png'){

 objectKey= objectKey+'png';

 } else if(imageType == 'image/jpg') {

 objectKey= objectKey+'jpg';

 } else if(imageType == 'image/jpeg') {

 objectKey= objectKey+'jpeg';

 }

 image.resize(Jimp.AUTO, height);

 return image.getBufferAsync(image.getMIME());

 })

 .then(resizedBuffer => uploadToS3(resizedBuffer, objectKey,

imageType))

 .then(function (response) {

 callback(null, {

 statusCode: 200,

 body: JSON.stringify(response)

 });

 })

 .catch(error => console.log(error));

};

function uploadToS3(data, key) {

 return s3

 .putObject({

 Bucket: bucket,

 Key: key,

 Body: data,

 ContentType: imageType

 })

 .promise();

}

function fetchImage(url) {

 return Jimp.read(url);

}

114

55

56

C.4 Google Cloud Functions

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

const { v4: uuidv4 } = require("uuid");

const Jimp = require("jimp");

const { Storage } = require('@google-cloud/storage');

// Instantiate a storage client

//const storage = new Storage();

const height = 500;

var imageType = "image/png";

const bucket = 'oslometx2';//process.env.Bucket;

const project_id = 'robust-resource-12345';//process.env.Bucket;

exports.uploadHandler = (req, res) => {

 console.log('handler', req.method);

 console.log('imageUrl:', req.body.photoUrl);

 //let requestBody = JSON.parse(req.body);

 let photoUrl = req.body.photoUrl;

 let objectId = uuidv4();

 let objectKey = `rz-${height}-${objectId}.`;

 if(photoUrl.length === 0) {

 return res.status(500).send({

 error: "empty value"

 });

 }

 fetchImage(photoUrl)

 .then(image => {

 imageType = image.getMIME();

 if (imageType == 'image/png') {

 objectKey = objectKey + 'png';

 } else if (imageType == 'image/jpg') {

 objectKey = objectKey + 'jpg';

 } else if (imageType == 'image/jpeg') {

 objectKey = objectKey + 'jpeg';

 }

 image.resize(Jimp.AUTO, height);

 return image.getBufferAsync(image.getMIME());

 })

 .then(resizedBuffer => uploadToGoogle(resizedBuffer, objectKey,

imageType))

 .then(function (response) {

 console.log('response:', response);

 res.status(200).send('Ok');

 })

 .catch(error => console.log(error));

};

115

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

function uploadToGoogle(data, key, imageType) {

 return new Promise(function (resolve, reject) {

 console.log('uploadToGoogle');

 const storage = new Storage({

 projectId: project_id,

 keyFilename: '826719257276.json'

 });

 const googlebucket = storage.bucket('oslometx2');

 const bucketfile = googlebucket.file(key);

 // Uploads the file.

 bucketfile.save(data,{contentType: imageType}).then(() => {

 // Success handling...

 console.log('success save');

 resolve("success");

 }).catch(error => {

 console.log('error');

 reject(error);

 // Error handling...

 });

 console.log("returning success");

 });

}

function fetchImage(url) {

 return Jimp.read(url);

}

116

Appendix D

Serverless & Microservice Deployment

D.1 AWS Lambda

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

service: demo-lambda

custom:

 bucket: oslometx

provider:

 name: aws

 runtime: nodejs12.x

 region: eu-west-2

 stackName: imageUploader

 apiGateway:

 restApiId:

 "Fn::ImportValue": SharedGW-restApiId

 restApiRootResourceId:

 "Fn::ImportValue": SharedGW-rootResourceId

 iamRoleStatements:

 - Effect: "Allow"

 Action:

 - "s3:PutObject"

 - "s3:GetObject"

 - "s3:ListBucket"

 - "s3:DeleteObject"

 - "s3:PutObjectAcl"

 - "s3:CreateObject"

 - "s3:ListObjects"

 Resource:

 - "arn:aws:s3:::${self:custom.bucket}"

 - "arn:aws:s3:::${self:custom.bucket}/*"

functions:

 UploadImage:

 handler: uploadImage.handler

 # The `events` block defines how to trigger the

uploadImage.handler code

 events:

 - http:

 path: upload

 method: post

 cors: true

 environment:

 Bucket: ${self:custom.bucket}

resources:

 Resources:

 StorageBucket:

 Type: "AWS::S3::Bucket"

 Properties:

 BucketName: ${self:custom.bucket}

117

D.2 Google Functions

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

service: demo-gfunction

custom:

 scripts:

 commands:

 make-public-function: gcloud functions add-iam-policy-

binding ${self:service}-${self:provider.stage}-${opt:opt.function,

"functionName"} --member="allUsers" --

role="roles/cloudfunctions.invoker" --project=${self:provider.project}

--region=${self:provider.region} | xargs echo

 hooks:

 'after:deploy:deploy': npx sls make-public-function --

stage ${self:provider.stage}

provider:

 name: google

 runtime: nodejs14

 region: europe-west2

 project: robust-resource-12345

plugins:

 - serverless-google-cloudfunctions

functions:

 uploadHandler:

 handler: uploadHandler

 # The `events` block defines how to trigger the

uploadImage.handler code

 events:

 - http: upload

package:

 include:

 - index.js

 excludeDevDependencies: false

D.3 Deploy script for Google Function

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

#!/bin/bash

PROJECT_ID=<enter your project id>

API_ID=demo-gfunction-api

CONFIG_ID=gfunction-api-configs

PROJECT_NUMBER=<enter your project num>

REGION=europe-west2

GATEWAY_ID=demo-gfunction-gateway

Enable required services

gcloud services enable apigateway.googleapis.com

gcloud services enable servicemanagement.googleapis.com

gcloud services enable servicecontrol.googleapis.com

118

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

#serverless deploy

#gcloud functions deploy demo-gfunction-dev-uploadHandler --

runtime=nodejs14 --trigger-http --allow-unauthenticated

#gcloud functions deploy demo-gfunction-dev-downloadHandler --

runtime=nodejs14 --trigger-http --allow-unauthenticated

Create an API

gcloud api-gateway apis create $API_ID --project=$PROJECT_ID

Describe the API to see the details

gcloud api-gateway apis describe $API_ID

#gcloud beta api-gateway apis create $API_ID --project=$PROJECT_ID

Create an API config

gcloud api-gateway api-configs create $CONFIG_ID \

 --api=$API_ID --openapi-spec=openapi2-functions.yaml \

 --backend-auth-service-account=$PROJECT_NUMBER-

compute@developer.gserviceaccount.com

Describe the API config to see the details

gcloud api-gateway api-configs describe $CONFIG_ID \

 --api=$API_ID

Create a gateway with the API config

gcloud api-gateway gateways create $GATEWAY_ID \

 --api=$API_ID --api-config=$CONFIG_ID \

 --location=$REGION

Describe the gateway to see the details

gcloud api-gateway gateways describe $GATEWAY_ID \

 --location=$REGION

Default gateway default host

DEFAULT_HOST="$(gcloud api-gateway gateways describe $GATEWAY_ID --

location=$REGION --format='value(defaultHostname)')"

echo $DEFAULT_HOST

D.4 ECS Cluster Ec2 Instance Profile

119

