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Abstract

This thesis is concerned with the topics in modeling, guidance, navigation and con-

trol of underwater gliders, related to a special class of autonomous underwater vehicles

(AUVs). Gliders main source of locomotion is a buoyancy engine which allows the vehi-

cle to perform repeating upward and downward glides in the water column. To control

the attitude and heading, internal moving mass actuators are exploited. A mathemati-

cal model of the fixed-wing underwater glider is derived, including rigid-body dynamics,

hydrodynamics, and hydrostatic forces. The glider model is implemented in a numerical

framework to simulate generic glider motions and to validate guidance, navigation and

control systems.

PID feedback control laws are proposed for heading and pitch control of the simu-

lated buoyancy propelled glider. The control laws are further cascaded with a guidance

and navigation system in a feedback loop. Navigation is considered a notorious chal-

lenge in underwater gliders due to limitations of navigational instruments. In practice,

inertial measurement units (IMUs) and depth sensors are commonly used sensors for

dead-reckoning (DR) navigation. Considering a limited sensor suite, we investigate how

deep learning (DL) models e.g. artificial neural networks can be exploited to aid DR

navigation. The proposed networks predict the planar velocities of the vehicle, which

are further used to approximate the planar displacement trough time integration.
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The second part of the thesis investigate path-following/guidance laws for under-

actuated underwater gliders. Line-of-sight (LOS) guidance laws are presented for the

straight-line path-following control problem. Various simulations are carried out to

evaluate the performance when affected by different ocean current disturbances using

the numerical glider model.

In addition to the latter topics, we propose a target tracking scheme of underwater

gliders using unmanned surface vehicles (USVs) for the purpose of target localization.

A target tracking guidance law is implemented in a topside USV to pursue generic

motions of the submerged glider from the surface. The target-tracking scheme was

validated in a simulation environment of the two vehicles.
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Chapter 1

Introduction

1.1 Underwater Gliders

Underwater gliders are a special class of autonomous underwater vehicles (AUVs) driven

by buoyancy propulsion. By adjusting it’s net buoyancy, the vehicle is able to glide up

and down in the water column without conventional power-consuming thrusters. Com-

mercial legacy gliders such as Slocum and Seaglider are operational for months and

are able to travel 1500-2500 km before the onboard batteries need to recharge. The

longevity of these vehicles has made them useful tools in physical oceanography, usually

equipped with scientific payloads, e.g. CTD (conductivity, temperature, depth) sen-

sors, chlorophyll instruments, and/or dissolved oxygen sensors. The merit of gliders in

oceanography has been demonstrated in various expeditions such as long-term hurricane

monitoring [4,23,72], Atlantic-ocean crossing [40] and under-the-ice surveys [71,75,101].

However, the commercially available gliders are often costly and large in size and weight.

The average length and weight are approximately 2 meters and 50 kg, which makes it

challenging to deploy and recover gliders without having an assisting surface vessel,

resulting in large operational costs. Hence, there is an unmet demand for affordable

and smaller underwater gliders.
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1.1.1 The OASYS Project

The OASYS (Ocean-Air synoptic operations using coordinated autonomous robotic

SYStems and micro underwater gliders) project aims to demonstrate an ocean-air

coordinated operation using miniature underwater gliders and unmanned aerial ve-

hicles (UAV). The deployment and recovery of the miniature underwater gliders are

autonomously made by the UAVs with the purpose of reducing operational costs and

removing human intervention in hazardous environments.

The OASYS glider, illustrated in figure 1.1, is a low-cost miniaturized glider with a net

weight of 10 kg. Its cost, including a scientific payload, is approximately 1/10 the price

of a commercial glider.

Glider Weight Length Diameter Price
OASYS [92] 10 Kg 1.4 m 0.08 m 7.5K-10K $
Seaglider [31] 50 kg 2 m 0.2 m 100K-200K $
Slocum [41] 50 kg 1.5 m 0.2 m 100K-200K $

Oceanscout [78] 25 kg 1.5 m 0.10 m < 50K $

Table 1.1: Comparing Underwater Gliders

Figure 1.1: OASYS underwater glider, courtesey of Oslomet

The OASYS glider travels from place to place by performing a series of upward and

downward flights. A novel variable buoyancy system (VBS) displaces the net volume

of the vehicle [28,92] allowing it to sink and rise in the water column. The VBS system

consists of an external bladder and an internal oil reservoir, where the oil is pumped
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between the two receptacles using a miniaturized pump [28]. It’s nominal cruising speed

is approximately 0.1-0.3 m/s depending on the pitching angle of the vehicle. Due to the

slow speeds, causing low hydrodynamic pressure, internal moving mass actuators are

exploited to control the pitch and heading angles of the vehicle, instead of conventional

control surfaces such as rudders and dive planes.

The flight characteristics of underwater gliders are twofold: 1) The most common

trajectory is a wings-levelled flight where the heading is fixed and the pitch angle is

non-zero. Accordingly, the glider performs symmetric upward and downward flights,

also referred to as yo-yo or saw-tooth maneuver. 2) To turn the glider, we can roll the

glider body by rotating an internal mass. This will result in a vertical spiral if the ro-

tating mass is remained offset from it’s initial origin. During a vertical spiral the wings

are no longer aligned in the vertical plane, similar to how fixed-wing airborne crafts

turn. In practice, turning manoeuvres are occasionally made to adjust the heading of

the vehicle, typically towards a desired path.

One of the main design considerations of the OASYS glider is low-cost. The imple-

mentation of navigation and guidance systems must consider a limited sensor suite,

where key acoustic navigation instruments such as doppler velocity loggers (DVLs) are

absent. This is however, also common in conventional underwater gliders, where DVLs

are an optional payload. To avoid large navigation errors, the OASYS glider returns to

the surface frequently to receive a GPS fix

The navigational payload in the OASYS glider consists of the following sensors:

• 9DOF IMU (Inertial Measurement Unit)

• Pressure/depth sensor

• GPS receiver (surface only)

15



1.2 Background

In this section we present a context of the main topics investigated in this thesis:

• Mathematical modelling of underwater gliders

• Path-following guidance

• Dead-reckoning (DR) navigation

• Control of underwater gliders

• Target-tracking of underwater gliders using unmanned surface vessels (USVs).

The following sections details a brief literature study of the latter topics.

1.2.1 Glider Dynamics

To simulate the motion of underwater gliders we need to derive a mathematical model

of the glider dynamics. The model is represented as a set of differential equations

which are typically solved in a numerical integrator to simulate the glider motions.

These differential equations are based on the fundamental physics of the vehicle and

its surroundings. The following pillars in physics are introduced for a submerged

moving object - Classical mechanics (transnational and rotational motions of a rigid-

body mass), hydrostatics (buoyancy and gravity forces), hydrodynamics (hydrodynamic

forces and moments which acts on the vehicle), kinematics (geometrical motion). De-

tailed glider models based on the latter topics have been proposed in various literature,

see e.g. [41,60,106,113].

The rigid-body dynamics, which describe transnational and rotational motions of the

vehicle, are the core of a mathematical glider model. In previous works, the classical

mechanics have been derived using Kirchhoff’s equations of motion [41, 60, 113] that

describe the relationship between transnational and rotational motion and externally

applied forces and moments. The externally applied forces and moments are results from
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control actions, which are divided into two parts. This can be a result of a buoyancy

propulsion system or internal moving mass actuators (alternatively external control

surfaces such as rudders). A glider’s main source of locomotion is the adjustable net

buoyancy of the vehicle, allowing it to sink and rise in the water column. Furthermore,

due to the hydrodynamic effects acting on the airfoil of the fixed wings, the vertical

motion is transformed into a forward motion by the horizontal component of the vertical

force, which is often referred to as lift force in glider nomenclature.

Applied control moments from the internal moving mass actuators alter the rota-

tional motion of the vehicle. This is used to change the heading (direction) and pitch

angle of the glider. From a modelling perspective, the internal moving mass is cou-

pled with the glider body as presented in [41, 60, 106]. The transnational motion of

an underwater glider is also highly influenced by ocean currents. Due to the absence

of aft thrusters, the glider cruising speed can easily be altered by an ocean current in

the water column. Hence, it’s convenient to model these currents to more realistically

reflect the glider dynamics. In many works the ocean current is assumed to be constant,

irrotational and fixed with respect to an inertial frame [36,41,60].

A moving submerged vehicle will be introduced to hydrodynamic forces and mo-

ments. As gliders resemble fixed-wing aerial vehicles, the hydrodynamics have been

modelled following aerodynamic theory in previous works [41, 60, 113]. In addition to

hydrodynamic damping effects, there is hydrodynamic added mass. This occurs as

the submerged vehicle displaces water while moving forward and is added as a virtual

mass/inertia to the rigid-body dynamics in glider models [41,60].
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1.2.2 Path-Following

One of the main topics in this thesis is path-following - that is, to converge along a

desired path without any time constraints. The path-following control problem is a

well-established topic for underactuated marine vehicles (surface vessels, AUVs, under-

water gliders), see e.g. [3, 11, 16, 19, 27, 30, 36, 38, 55, 79]. As most marine vehicles have

underactuated sway dynamics - the inability to instantly move along the lateral axis,

path-following controllers apply well to both surface and underwater vehicles. Guidance

laws can be derived for both planar and vertical path following problems as presented

in [9,16,55]. Vertical path following is however more relevant for thruster based AUVs.

In buoyancy propelled underwater gliders, the vertical path is typically fixed by the

pitching angle that generates the most optimized steady-state velocity [86, 91, 96, 113].

Hence, planar motion guidance laws, which allow the vehicle to follow paths in the

horizontal plane, are the main foci in this thesis. The planar motion guidance law is

a cascaded feedback law, which use navigational measurements, either in form of the

predicted position or velocities as feedback, to compute the heading reference necessary

for converging towards the desired path. A low-level control law is cascaded with the

guidance law to assign control signals for the heading autopilot. As gliders spends most

of their time in wings-levelled flights, we can assume that the path-following problem is

parameterized by straight lines between desired waypoints, also referred to as straight

line path-following.

Underwater gliders are often subject to ocean current disturbances. These dis-

turbances are characterized as constant or slowly varying sea currents which have a

magnitude and direction. Such environmental loads introduce drifts which makes it

challenging to converge towards a desired path. Commercial legacy gliders such as

Slocum and Seaglider introduce an optional current correction mode to compensate for

ocean current drift in navigation and guidance systems [27, 31, 105]. Current compen-

sating guidance laws for underwater gliders have been derived as a vectorial sum of the

velocity vectors of the glider and the ocean current, see [19,31,105,105].
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In recent years, Line-of-Sight (LOS) guidance laws have received popularity in var-

ious underactuated marine vehicles, including underwater gliders, see e.g. [9, 16, 55, 56,

99,102]. The LOS guidance law is derived by the helsman principle, in which the objec-

tive is to converge towards a point ahead of the vehicle, analogous to a helsman steering

a boat. In presence of ocean current disturbances, an integral term can be added to

the LOS guidance law to correct drifts as suggested in [9, 16,55].

1.2.3 Navigation

A notorious challenge for gliders is to navigate in the the absence of GNSS systems under

water. Traditionally, this is solved by dead-reckoning (DR) to predict the location of

the vehicle given an initial position (GPS fix at surface). The principle of DR is to

perform time integration of the transnational velocities, which produce the traveled

distance in a local frame of reference. The velocities, which are measured in the body

fixed frame, are rotated to the inertial frame before performing integration using the

euler angles from the onboard IMU . Due to inevitable bias and random walk errors

in IMUs and velocity estimation, time integration imposes a position drift which grows

over time. To resolve this, gliders frequently surface to get a GPS fix to reinitialize the

DR algorithm [31,41,60,104].

Due to the low-power design of buoyancy driven gliders, the navigational suite is

often limited to an IMU and a depth sensor. Commercial gliders such as Slocum use

a set of simple geometric equations to approximate the planar position of the vehicle,

where the transnational velocities are computed as vector components of the vertical

velocity (rate-change of depth measurements) [104,105]. Optionally, a doppler velocity

logger (DVL) can be integrated in the glider payload to provide more accurate estimates

of the relative velocities as presented in [25,70,97,104]. However, DVLs are not always

convenient to integrate as these operate based on the acoustic doppler shift principle

and must be close to the seabed to get bottom-lock measurements. Some DVLs can

measure the velocities with respect to water particles (water-lock), but this is not
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considered a stationary frame of reference due to ocean currents and will impose drift

errors depending on the current magnitude. Accordingly, DVLs are most useful when

close to the seafloor, for instance in coastal and shallow water operations.

In [100] a model-based observer is proposed to aid DR navigation. An extended

kalman filter (EKF) was developed based on the dynamic model of the Slocum glider.

Such models include hydrodynamic properties of the vehicle, which are more accurate

than the geometrical representations mentioned previously. Yet, the glider model con-

taining intricate hydrodynamic coefficients is obtained through expensive towing-tank

tests or/and CFD (computational fluid dynamics) simulations. However, the hydro-

dynamic models of popular commercial and research gliders are usually published in

various research works and available for reuse, see [41,60,113].

In the recent time machine/deep learning (ML/DL) models have been proposed

as model-free state estimators for DR navigation in marine vehicles. Various articles

have suggested state estimators for surface vessels in GNSS denied scenarios and AUVs

using recurrent neural networks (RNNs) [88, 114]. Given some ground truth measure-

ments from navigational instruments, the networks are trained based on sequential

learning. After the learning process, the networks can be employed as a supplement

when DVL/GNSS sensors are denied or unavailable.
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1.2.4 Control

Control in underwater gliders is typically referred to controlling the net buoyancy, pitch

angle and heading angle. As the on-board variable buoyancy system consumes most

of the power, it often has primitive open-loop on/off controllers and is only active in

transition between upward and downward dives [31,86,100]. Due to the low-speed and

symmetric design of underwater gliders, linear feedback controllers are typically imple-

mented for pitch and heading control [43, 61, 76, 98, 112]. Commercial gliders such as

Slocum and Seaglider have default decoupled PID (Proportional-Integral-Derivative)

feedback controllers for pitch and heading [41, 89]. In research orientated gliders,

MIMO (Multiple Input Multiple Output) linear feedback controllers like LQR (Lin-

ear Quadratic Regulation) [43, 98] and MPC (Model Predictive Control) [1] have been

investigated.

Nonlinear feedback controllers have been introduced in research gliders. Control

laws such as sliding-mode control [66,107,115] and adaptive back-stepping control [17,

18] have been proposed. However, the use of nonlinear feedback control requires detailed

information about the glider dynamics, which is often inconvenient if the geometry of

the glider has changed due to payload substitutes or changes in internal distribution of

masses.

In recent time machine learning approaches to feedback control has been proposed

using data-driven artificial neural networks [51,52] and reinforcement learning [53,93].

As glider designs are often iterated in the shape of added features or change of instru-

ment payload, the dynamic properties changes. Hence, using a data-driven approach to

feedback control could swiftly adjust to these changes without tuning complex mathe-

matical models. However, these models do require experimental data to train on.
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1.2.5 Target-Tracking

The final topic in this thesis is related to target localization using an unmanned surface

vehicle (USV) for the purpose of collecting accurate trajectories of an underwater glider

to be used in supervised neural network training. On-board navigation systems in

underwater gliders are not suited as ground truth measurements to train machine/deep

learning models. It is more convenient to collect experimental data using an acoustic

positioning system as demonstrated in [5, 42]. Since gliders are designed to displace

large distances, the acoustic positioning receivers (typically located on the surface) must

move along the vehicle to stay within range of the submerged vehicle. In this regard,

we want to localize the glider using unmanned surface vessels (USVs) in order to reduce

operational costs and potential hazards. Furthermore, a topside vessel aims to track

the glider motions. From a control perspective, the topside vessel must try to bound

the planar distance to the submerged target. We refer to this control problem as target-

tracking - to pursue a moving or stationary target whose future motions are not known

[11, 36]. Topics in target tracking for unmanned marine vehicles was introduced in

[12,14,15]. The target tracking guidance laws investigated in the latter works originate

from missile guidance systems such as Pure Pursuit (PP), Constant Bearing (CB), and

line-of-sight (LOS) guidance laws, designed to intercept moving or stationary targets.

Extension of these guidance laws in underactuated marine vessels have been proposed

in various literature [11,12,14,15,77,95]. The target tracking guidance laws introduced

in the latter works are composed of surge velocity and heading/course controllers due to

under actuation in marine vessels, which combined achieve the target tracking control

objective.
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1.3 Thesis objective & Outline

The main objective of this thesis is to investigate topics in navigation, path-following,

control and target tracking that can be implemented in the OASYS glider developed

at OsloMet. The physical implementation of these systems is out of scope of this thesis

as the vehicle is still under development. Hence, the topics investigated must consider

the limitations of the OASYS glider, such as cost, size and power consumption. As the

vehicle is not ready for ocean testing, a simulator environment is developed to validate

the motion control systems investigated in this thesis.

1.3.1 Research Questions

Based on the latter description, this thesis aims to answer the following research ques-

tions:

• How do we develop attitude and heading controllers for the underwater glider,

assuming there is no hydrodynamic model available for the vehicle?

• Can machine learning models improve dead-reckoning navigation for underwater

gliders?

• How do underwater gliders efficiently follow straight-line paths, and how well is

it’s performance considering significant navigational errors?

• How can we autonomously gather experimental data from underwater gliders using

range-only localization?
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1.3.2 Conference Papers

Three conference papers have been written based on the main results from this master

project. The following papers are considered to be a contribution to this thesis:

• [83] Saksvik, I. B., Alcocer, A., & Hassani, V. (2021). A Deep Learning

Approach To Dead-Reckoning Navigation For Autonomous Underwater Vehicles

With Limited Sensor Payloads. Presented at Global Oceans 2021: Porto–San-

Diego (pp. 1-10). IEEE.

• [84] Saksvik, I. B., Alcocer, A., & Hassani, V. (2022). Path-Following for

Underwater Gliders With Limited Navigation Payloads. Draft submitted to the

14th IFAC CAMS: Kgs. Lyngby, Denmark

• [85] Saksvik, I. B., Alcocer, A., Hassani, V & Pascoal, A. (2022). Tracking Un-

derwater Gliders Using Small Unmanned Surface Vessel (USV). Draft submitted

to the 14th IFAC CAMS: Kgs. Lyngby, Denmark

1.3.3 Thesis Outline

The outline of this master thesis is organized as follows:

• Chapter 2 presents a mathematical model of the buoyancy driven underwater

glider and heading and pitch feedback control systems. The model is derived in

6DOF (degrees of freedom) and details rigid-body dynamics, hydrostatic forces

and hydrodynamic forces which acts on the submerged vehicle.

• Chapter 3 addresses a model-free machine/deep learning approach to dead-

reckoning navigation for underwater gliders. The proposed observer was validated

on experimental data from a hybrid AUV/glider, where a doppler velocity logger

(DVL) was used as a ground truth reference. The observer was also validated on

the simulated glider dynamics from the mathematical model in chapter 2.
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• Chapter 4 is related to guidance systems and planar motion path following for

underwater gliders. The chapter focuses on the principles of look-a-head guid-

ance using line-of-sight (LOS) and integral line-of-sight (ILOS) steering laws for

straight-line path-following problems. The guidance laws are simulated using the

mathematical model presented in chapter 2.

• Chapter 5 presents a target-tracking scheme of underwater gliders using an un-

manned surface vessel (USV). This is a methodology for localizing underwater

gliders using acoustic range measurements. The motivation behind this subject

was to propose a autonomous platform for gathering experimental glider trajec-

tories which can further be used to develop machine/deep learning models as

presented in chapter 4.

• Chapter 6 discuss the results from the different chapters and provide recommen-

dations for further work

• Appendix C: Conference paper 1 Path-Following for Underwater gliders with

Limted Navigation Payloads

• Appendix D: Conference paper 2 Target Tracking of Underwater Gliders

Using Small Unmanned Surface Vessels (USV’s)

• Appendix E: Conference paper 3A Deep Learning Approach To Dead-Reckoning

Navigation For Autonomous Underwater Vehicles With Limited Sensor Payloads
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Chapter 2

Modelling & Control of Underwater

Gliders

The aim of this chapter is twofold - firstly, we want to derive a mathematical model

of the underwater glider for simulation purposes and secondly, develop feedback con-

trol systems for attitude and heading control to be validated in the simulation frame-

work. The mathematical model is mainly derived from Fossen’s vectorial marine

craft equations which originates from the work in [33–36, 39]. The vectorial ma-

rine craft dynamics formulates a general dynamic model for marine vehicles e.g., au-

tonomous underwater vehicles (AUVs) and surface vessels as presented in previous

works [3, 20, 29, 32, 33, 37, 37, 63, 79, 81, 81, 116]. A preliminary mathematical model for

underwater gliders using the vectorial marine craft model has been made in previous

ACIT master projects [49, 50]. Due to lack of hydrodynamic characterization of the

OASYS glider, the proposed simulated glider model use the parameters of the Seawing

glider presented in [108, 110, 113], which is a scaled version of the OASYS glider with

similar shape and control actuators.

The control section presents two decoupled PID controllers for heading and pitch con-

trol. As there does not exist a dynamic model for the OASYS glider, we aim to develop
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system identification models from experimental datasets for the control plants. Accord-

ingly, nonlinear auto-regressive exogenous (NARX) models were used to identify these

plants and further used to autotune the PID controllers in MATLAB.

The mathematical model derived in this chapter consists of five sections in the fol-

lowing order:

• The rigid-body dynamics of the glider is addressed in section 2.2. This section

details the transnational and rotational motions of the vehicle.

• Section 2.3 details the kinematic relationships of the glider, which describe geo-

metric motions.

• The restoring forces, also referred to as hydrostatics is described in section 2.4.

The restoring forces of a submerged underwater object relates to gravitational

and buoyant forces.

• In section 2.5 the hydrodynamics are detailed. This section is divided into two

parts - The first section details hydrodynamic forces and moments, while the

second section describes hydrodynamic added mass effects.

• The implementation and open-loop simulations of the numerical model in MAT-

LAB/SIMULINK is addressed in section 2.6.

2.1 Preliminaries

We start by defining the reference frames in which the model is formulated. The

geometric orientation and position of an underwater glider is derived relative to an

inertial frame, while the angular and linear velocities are defined in a body-fixed frame

[36].The state variables presented for the marine craft dynamics are defined following

SNAME [90] nomenclature as
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DOF Description Positions Velocities Forces
1 Surge x u D
2 Sway y v SF
3 Heave z w L
4 Roll ϕ p K
5 Pitch θ q M
6 Yaw ψ r N

Table 2.1: SNAME nomenclature

The nomenclature in table 2.1 is defined in vectors by

η =
[
x y z ϕ θ ψ

]T

ν =
[
u v w p q r

]T

τc =
[
D SF L K M N

]T

(2.1)

The vector η describes the position and orientation in the the inertial frame {n}, while
ν and τ are represented in the body-fixed frame of the vehicle {b}.

Remark. Note that the hydrodynamic forces D,SF,L = drag, sideforce, lift are mod-

ifications of the SNAME notation. The forces are traditionally represented by X,Y,Z

[33,36,90].

Following [33–36, 39], the 6DOF dynamics for a submerged underwater vehicle is

derived as

Mν̇ +C(ν)ν +D(ν) + g(η) = τc (2.2)

where:

• M ∈ R6×6 - Is the system inertia matrix that describes the transnational rigid-

body dynamics and correlating added mass effects.
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• C(ν) ∈ R6×6 - Defines the system coriolis and centripetal matrix that forms the

rotational rigid-body dynamics with rotational added mass effects

• D(ν) ∈ R6×6 - Is the hydrodynamic damping matrix that describes the hydrody-

namic forces and moments that act on the vehicle. The hydrodynamic forces and

moments for a fixed-wing gliders share similarities with aerodynamic forces such

as drag forces, sideforce and lift forces.

• g(η) ∈ R6×1 - Details the hydrostatic forces, which are results of gravitational

and buoyant effects.

• τc ∈ R6×1 - Describes the control force vector, which consists of external applied

forces and moments that acts on the vehicle.

We start to derive some assumptions about the general marine craft dynamics in eq.

2.2 to suit the motions of an underwater glider:

Assumption 1. The applied control forces and moments which acts on the vehicle are

considered constraint forces, hence τc = 06×1

Assumption 2. The hydrostatic forces g(η) are derived based on a variable buoyant

vehicle

Remark. Control moments in underwater gliders are a result of slowly moving internal

mass actuators that are translated and rotated along a rail inside the vehicle housing. To

avoid modelling complex coupled rigid body dynamics between the two systems, which in

practice are only ”slightly interactive”, we follow assumption 1 by neglecting these effects

and consider the moving mass system as constraint forces. As the mathematical model

is used for simulation purposes only, and not to derive model-based control systems or

observers, we accept the unmodelled actuator dynamics.
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2.1.1 The Relative Velocity Model

The marine craft dynamics presented in equation 2.2 are derived by the velocity vector

ν ∈ R6. In real ocean conditions, the velocity vector will have an ocean current

component. Thus, we rewrite the marine craft dynamics using a relative velocity model.

Assumption 3. The glider dynamics and kinematics are influenced by an ocean current

Vc that is constant and irrotational in the inertial frame - V̇ n
c = 0

Assumption 4. The ocean current is defined by the planar vector components: V n
c =

[V n
x , V

n
y , 0]

T . Vertical ocean currents are neglected, V n
z ≈ 0

Remark. On a macro scale, ocean currents are not assumed constant and irrotational.

However, since marine vehicles tends to operate at a micro scale, where ocean currents

are slowly changing, we can follow assumption 3 and simplify the ocean current model.

Following assumption 3, 5, and [36], the ocean current vectors in the body-fixed

frame νbc = [ubc, v
b
c, 0]

T are given by

νbc =




V n
c · cos(βc − ψ)

V n
c · sin(βc − ψ)

0


 , V

n
c =

√
unc + vnc (2.3)

Where βc is the direction of the ocean current. The relative velocity vector is then

defined as νr = ν − νb
c = [u− ubc, v − vbc, 0, 0, 0, 0]

T . Finally, the marine craft dynamics

in eq. 2.2 are rewritten in a relative velocity model derived by

Mrbν̇r +MAν̇r +Crb(νr)νr +CA(νr)νr +D(νr) + g(η) = τc (2.4)

In the latter equation we introduce two new matrices, MA ∈ R6×6 and CA(νr) ∈ R6×6

which are the added mass matrices correlating to transnational and rotational motion,

and will be addressed later in this chapter. The marine craft dynamics is often described

in a simplified notation where M =MA +Mrb and C(νr) = Crb(νr) +CA(νr)
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2.1.2 Distribution of Masses

There are multiple masses to consider in an underwater glider. Firstly there is the

internal moving mass system denoted mp, which can be translated and rotated along a

rail inside the vehicle housing. Next we have a buoyancy mass mb, often represented as

an oil reservoir inside the housing. Lastly there are the hull massmh and static massms,

where the static mass consists of all the other components inside the vehicle. All masses

are defined in three-dimensional Cartesian space by a vector rmi ∈ R3 with respect to

a center of origin (CO). Following previous works [41,60], the center of buoyancy (CB)

vector is aligned with CO. The geometric center of buoyancy is located at the center

of the displaced fluid/water. Assuming a symmetric prolate spheroid hull shape, CB is

located at the center of the symmetric glider body.

Figure 2.1: Distribution of glider masses

Remark. Note that the location of the masses in 2.1 are not necessarily ideal for glider

designs, but merely used for illustration purposes.
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We define the masses and vector definitions of the notation in figure 2.1 as

• CB: The center of buoyancy is an origin and located at the center of the displaced

fluid. Hence, CB = [xcb, ycb, zcb]
T = [0, 0, 0]T . Note that CB coincides with mb in

figure 2.1.

• CG is the center of gravity vector denoted by CG = [xcg, ycg, zcg]
T

• mh is the hull mass, with a vector rmh = [xmh , ymh , zmh ]
T . Since the hull mass

is uniformly distributed, we neglect rmh when computing the center of gravity

vector.

• ms is the static mass, composed of the electronics and internal components (except

the moving mass system and hull mass) and have the vector rms = [xms , yms , zms ]
T

with respect to CB.

• mp is the moving mass, which typically consists of a custom-shaped battery pack

that can be translated and rotated inside the housing. It’s vector is denoted by

rmp = [xmp , ymp , zmp ]
T with respect to CB. Note that the moving mass vector is

not fixed in time.

• mb is the buoyancy mass, which is an oil reservoir located inside the glider housing

with a vector rmb = [xmb , ymb , zmb ]
T . This mass is often located in the front or

back to aid pitching moments when altering between upward and downward glides.

However, when deriving the glider dynamics, the oil mass is often considered fixed

and aligned with CB [41,60,113] to simplify the mathematical model.
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2.2 Rigid-Body Dynamics

The rigid-body dynamics of an underwater glider can be derived in terms of transna-

tional and rotational motions. Transnational rigid-body dynamics is described by the

system inertia matrix Mrb, while the rotational rigid-body dynamics is determined by

the Coriolis and centripetal matrix Crb(νr). The rigid-body dynamics described in

the vectorial marine craft equations originates from Newtonian mechanics using the

renowned Newton-Euler equations. In underwater vehicles it’s convenient to derive

the rigid-body dynamics at the center of buoyancy CB [36, 41, 60], and not the center

of gravity CG which is more common for non-submerged bodies. The Newton-Euler

equations in matrix notation are derived following the work in [34,34,36,39]

Mrbν̇ +Crb(ν)ν+ = τrb (2.5)

where τrb represents the forces and moments acting on the rigid-body. We fist introduce

some assumption about the rigid-body dynamics.

Assumption 5. The transnational and rotational rigid-body dynamics are derived about

a center of origin (CO) that coincides with the center of the displaced fluid, also referred

to as CB

Remark. It’s common to derive the glider dynamics about the center of buoyancy as

suggested in previous works [41,60,113].

2.2.1 Preliminaries

We start by deriving the Newton-Euler equations about the center of gravity CG, which

will later be transformed to the center of buoyancy CB.
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Consider an arbitrary vector x ∈ R3, that satisfies S(x)y = x x y, where S is given

by

S(x) =




0 −x3 x2

x3 0 −x1
−x2 x1 0


 , x ∈ {x1, x2, x3} (2.6)

The skew-symmetric properties in 2.6 are further exploited to derive the translational

and rotational motion of a rigid body.

2.2.2 Newton-Euler Equations

Following [33,36] the transnational and rotational dynamics are represented by a force

vector fcg ∈ R3 and moment vector mcg ∈ R3


 fcg
mcg


 =Mcg


v̇cg
ω̇cb


+Ccg


vcg
ωcb


 , ∈ R6 (2.7)

If we expand the inertia matrix Mcg and the Coriolis and centripetal matrix Ccg,

equation 2.7 can be rewritten as


 fcg
mcg


 =


mI3×3 03×3

03×3 Icg




v̇cg
ω̇cb


+


mS(ωcb) 03×3

03×3 −S(Icgωcb)




vcg
ωcb


 (2.8)

Equation 2.8 represents the Newton-Euler equations with respect to the body-fixed cen-

ter of gravity (CG). For submerged underwater vehicles, it is convenient to represent the

equations of motion about the center of buoyancy (CB). A coordinate transformation

is needed to map the rigid body dynamics about a new body-fixed coordinate frame

CB. Following [36] a coordinate transformation matrix can be defined by

Z(rcg) =


I3×3 S(rcg)

03×3 I3×3


 , ZT (rcg) =


 I3×3 03×3

S(rcg) I3×3


 (2.9)
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Furthermore we can use the coordinate transformation matrix to convert the Newton-

Euler equations to the body-fixed frame CB.

ZT (rcg)


 fcg
mcg


 = ZT (rcg)McgZ(rcg)


v̇cg
ω̇cb


+ZT (rcg)CcgZ(rcg)


vcg
ωcb


 (2.10)

From the new Newton-Euler equations with respect to CB we can rewrite the inertia

matrix and Coriolis and centripetal matrix as

Mcb = Z
T (rcg)McgZ(rcg) =


 mI3×3 −mS(rcg)
mS(rcg) Icg −mS2(rcg)




Ccb = Z
T (rcg)CcgZ(rcg) =


 mS(ωcb/n) −mS(ωcb/n)S(rcg)
mS(ωcb/n)S(rcg) −S((Icg −mS2(rcg)ωcb/n)




(2.11)

The inertia terms in equation 2.11 defined by Icg − mS2(rcg) are derived using the

Parallel Axes theorem [36], [41], where the inertia is diagonal I = diag(Ix, Iy, Iz). We

start by deriving the static inertia of the underwater glider following the theory in [41,62]

yielding

Is = Ih −mtS(rcg)S(rcg) (2.12)

Where Ih relates to the inertia of the uniformly distributed hull of the glider. The total

rigid body inertia Irb is derived by adding the static inertia term Is with the inertia for

the moving mass system Imp such that

Irb = Is + Imp (2.13)

The inertia of the internal moving mass system is defined by a principal rotation matrix

of the servo angle γ and the static inertia I0 [60, 113]

Imp = R
T
mp

(γ)I0Rmp(γ) (2.14)
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As the cylindrical battery pack is rotated about the body-fixed x-axis of the glider, we

need to use a rotation matrix that maps the rotation of the servo angle γ about the

body x-axis given as

Rmp(γ) =




1 0 0

0 cos(γ) −sin(γ)
0 sin(γ) cos(γ)


 (2.15)

Given a radius, length Lp, width wp and depth dp and mass mp, we can compute the

static inertia of a semi cylinder following [26,62]

I0 =




mp
12
(w2

p + L2
p) 0 0

0 mp
12
(w2

p + L2
p) 0

0 0 mp
12
(d2p + w2

p)


 (2.16)

Remark. When the rolling mass is located at it’s origin γ = 0 the rotation matrix

Rmp(0) results in a identity matrix with diagonal ones. Hence, when γ = 0 we can

rewrite the inertia as Irb = Is + Imp = Ih −mtS
2(rcg) + I0

The vector locating the center of gravity is a sum of the masses and correlating

positions divided by the total mass. Following [34,41,60] we have

rcg =

∑
mirmi
mt

=
msrms +mprmp +mbrb +mhrmh

mp +ms +mb +mh

(2.17)

Where rmi
= [xmi,ymi,, zmi,]

T is the x-y-z coordinates of the ith masses with respect to

the origin located at CB. According to [41] the hull mass mh is uniformly distributed,

meaning that the vector rmh coincides with the center of origin rmh = [0, 0, 0]. The

buoyancy mass (internal oil tank) is often located in the front or back to induce a pitch-

ing moment during transitions between upward and downward glides [41,60]. However,

the location of the mass is not always known and often assumed aligned with CB as

in [41, 62]. Given a radius of the cylindrical battery pack rc the servo angle of the

rotating actuator γ, the position of the moving mass system is defined by [60, 60, 113]
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as

rmp =




rxp

ryp

rzp


 =




rxp

rc · cos(γ + π/2)

rc · sin(γ + π/2)


 (2.18)

For semi-cylindrical moving mass systems, the mass is rotated within the space of

γ ∈ {−π/2, π/2} rad. Where the origin γ0 = 0 rad is located at the lower part of the

cylindrical housing.

Finally, we rewrite the translational dynamics into the systen inertia matrix follow-

ing [33,34,36] with the properties Mrb =M
T
rb > 0 and Ṁrb = 0 ∈ R6×6

Mrb =


 mI3×3 −mS(rcg)
mS(rcg) Irb




=




mt 0 0 0 mtzcg −mtycg

0 mt 0 −mtzcg 0 mtxcg

0 0 mt mtycg −mtxcg 0

0 −mtzcg mtycg Ix 0 0

mtzcg 0 −mtxcg 0 Iy −Iyz
−mtycg mtxcg 0 0 −Izy Iz




(2.19)

Remark. Recall that the inertia matrix is given by Irb = Is+ Imp = Ih −mtS
2(rcg) +

RT
mp

(γ)I0Rmp(γ)
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The Coriolis and centripetal matrix C(ν) describe the rotational dynamics of a

rigid-body. According to [33,34,36] the Coriolis and centripetal matrix is symmetrical

such that Crb(ν) = −CT
rb(ν) is satisfied. Accordingly, we have

Crb(νr) =




03×3 −mtS(υ)−mtS(ω)S(rcg)

−mtS(υ) +mtS(rcg)S(ω) −S(Irbω)


 (2.20)

The expanded matrix of (2.20) can be defined as

Crb(νr) =




0 0 0

0 0 0

0 0 0

−mt(ycgq + zcgr) mt(ycgp+ w) mt(zcgp− v)

mt(xcgq − w) −mt(zcgr + xcgp) mt(zcgq + u)

mt(xcgr − v) mt(ycgr − u) −mt(xcgp+ ycgq)

mt(ycgq + zcgr) −mt(xcgq − w) −mt(xcgr + v)

−mt(ycgp+ w) mt(zcgr + xcgp) −mt(ycgr − u)

−mt(zcgp− v) −mt(zcgq + u) mt(xcgp+ ycgq)

0 −Iyzq + Izr Iyzr − Iyq

Iyzq − Izr 0 Ixp

−Iyzr + Iyq Ixp 0




(2.21)
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2.3 Kinematics

Kinematics of a rigid body describes the geometric aspects of motion without in-

cluding forces and moments. Kinematics are derived in an inertial North-East-Down

(NED) reference frame [33, 34, 36]. The NED frame is defined by the local coordinates

{n} = [xn, yn, zn]
T relative to an origin on that is fixed. Furthermore, the x-axis points

north, the y-axis points east and the z-axis points downward.

The kinematic equations of an underwater vehicle is represented by the vector η =

[x, y, z, ϕ, θ, ψ]T , which contains transnational and angular positions of the vehicle. Be-

Figure 2.2: Glider kinematics

fore deriving the kinematic equations, we introduce some assumptions:

Assumption 6. The kinematic equations are true for all euler angle combinations

Θ = [ϕ, θ, ψ]T except for the geometric point where θ = π/2
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Assumption 7. The kinematics are influenced by a constant and irrotational ocean

current V n
c that is fixed in the inertial frame.

Remark. Assumption 6 is true when using euler angle representation of the kinematics.

The trigonometric equations suffer from a singularity at specific points. This phenom-

ena is often referred to gimbal lock, see e.g., [22,45] for more details on this topic. The

kinematics can alternatively be represented by unit quaternions to avoid the singularity

problem [36].However, since we are not operating close to the singularity at θ = π/2,

we can use an euler angle representation.

Following [36] the 6DOF kinematic equations are given by

η̇ = J(η)νr + V
n
c (2.22)

We can expand this to


Ṗ

n
b

θ̇


 =


R

n
b (Θ) 03×3

03×3 T n
b (Θ)


 ·


ν1
ν2


+


 V

n
c

03×1


 (2.23)

Where υ = [ur, vr, wr]
T and ω = [p, q, r]T .Following [36], the transformation between

the body frame {b} and NED-frame {n} can be described trough the Euler angle

rotation matrix Rn
b (Θ) by a zyx-convention.

Rn
b (Θ) =




cψcθ −sψcϕ+ cψsθsψ sψsϕ+ cψcϕsθ

sψcθ cψcϕ+ sϕcϕsθsψ −cψsϕ+ sθsψcϕ

−sθ cθsϕ cθcϕ


 (2.24)

Where c = cos() and s = sin()
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The relationship between inertial velocities Ṗ b
n = [Ṅ , Ė, Ḋ]T and body-fixed veloci-

ties υ is derived by

Ṗ n
b = Rn

b (Θ) · υ (2.25)

The expanded form of the inertial velocities are given as

Ṅ =ur · cos(ψ)cos(θ) + vr · [cos(ψ)sin(θ)sin(ϕ)− sin(ψ)cos(ϕ)]+

wr · [sin(ψ)sin(ϕ) + cos(ψ)cos(ϕ)sin(θ)] + V n
x

Ė =ur · sin(ψ)cos(θ) + vr[cos(ψ)cos(ϕ) + sin(ϕ)sin(θ)sin(ψ)] + V n
y

Ḋ =− ur · sin(θ) + v · cos(θ)sin(ϕ) + wr · cos(θ)cos(ϕ)

(2.26)

Following [33, 34, 36] the euler rates Θ̇n = [ϕ̇, θ̇, ψ̇]T are defined by multiplying the

angular velocities ω = [p, q, r]T by a transformation matrix T n
b (Θ), yielding

Θ̇b
n = T n

b (Θ) · ω =




1 sϕtθ cϕtθ

0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ


 ·




p

q

r


 (2.27)

Remark. The transformation matrix in eq. 2.27 is not defined when θ = + − π
2
. In

the scenario where the pitch angle is 90 degrees a singularity occurs

The euler rates in eq. 2.27 are expanded such that

ϕ̇ =p+ q · sin(ϕ)tan(θ) + r · cos(ϕ)tan(θ)

θ̇ =q · cos(ϕ)− r · sin(ϕ)

ψ̇ =q · sin(ϕ)
cos(θ)

+ r · cos(ϕ)
cos(θ)

, θ ̸= +− π

2

(2.28)
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2.4 Restoring Forces

The restoring forces of an underwater glider relate to hydrostatic forces due to buoy-

ancy and gravity [33, 34, 36]. The gravitational force fng ∈ R3 works trough the center

of gravity of the glider located at rcg = [xcg, ycg, zcg]
T . If we recall from section 2.2

the location of CG is determined by the distribution of masses and their correlating

position vector. The buoyant force fnb ∈ R3 acts off the center of buoyancy CB which

is aligned with the vehicle origin.

For a submerged underwater object the weight W and buoyancy force B is derived

following [33,34,36,39]

B = ρg∆, W = mtg (2.29)

Where ρ is the density of water, ∆ is the displaced volume of the submerged object

and g is the acceleration of gravity.

Remark. The displaced fluid volume ∆ is sometimes not prior knowledge. Hence, we

can alternatively model the buoyancy by the displaced fluid mass ∆m = mt−mb, which

have been proposed in previous work on modelling glider dynamics, see [42,60,113].

The weight W and buoyancy W are compensatory forces, meaning that the dif-

ference between the two scalars determines if the vehicle will float, sink or be neutral

buoyant. If W < B the buoyant force is larger than the weight and the object tend to

float. In the opposite scenario, When W > B, the weight is larger than the buoyancy

and it will tend to sink. An equilibrium occurs when W = B, which is referred to

as neutral buoyancy. A common practice in glider design is to create a slightly posi-

tive buoyant vehicle so that it will use only a small volume displacement in order to

sink/dive [41,60].
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Figure 2.3: Restoring forces

Remark. We have previously defined the center of buoyancy CB as a fixed location.

However, when the external bladder (figure 2.3) is expanded or deflated, a very small

volume change occurs, which in theory changes the location of CB. Yet, due to minor

changes, the deviation in CB is neglected.

The vector representation of the weight W and the buoyancy B can be derived in

the following manner

fng =




0

0

W


 , fnb = −




0

0

B


 (2.30)

According to [36] we can generalize the restoring forces in the body frame {b} as

g(η) = −




Rn
b (Θ)−1(fng + fnb )

S(rcg) ·Rn
b (Θ)−1fng + S(rcb) ·Rn

b (Θ)−1fnb


 (2.31)

We recall from the previous page that the vector representing center of buoyancy rcb

coincides with the origin of the vehicle so that rcb = [0, 0, 0]T . Accordingly, we can

rewrite the generalized forces by removing the terms related to the rcb vector. Then
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the generalized restoring forces are simplified by

g(η) =




(W −B) sin(θ)

−(W −B) cos(θ) sin(ϕ)

−(W −B) cos(θ) cos(ϕ)

−ycgW cos(θ) cos(ϕ) + zcgW cos(θ) sin(ϕ)

zcgW sin(θ) + xcgW cos(θ) cos(ϕ)

−xcgWcos(θ)sin(ϕ) + ycgWsin(θ)




(2.32)

2.5 Hydrodynamics

In this section we introduce the hydrodynamic effects in fixed-wing underwater gliders.

The hydrodynamics are divided into two parts - Firstly, we investigate the hydrody-

namic forces and moments which act on the glider body and airfoils of the fixed-wings.

Secondly, added mass effects are described, which occur as the glider pushes away water

when moving trough the water column.

Common practises in hydrodynamics is to represent forces and moments in the flow

frame as presented in many works [34,36,41,113]. The flow frame {f}, also referred to

as the wind-frame in airborne vehicles, originates from traditional aerodynamics theory

and have been extended to fixed-wing gliders in [41,42,60].

The relationship between the body-frame {b} and flow-frame {f} is determined by an

rotation of the angle-of-attack (AOA) denoted α and the sideslip angle (SSA) denoted

β. Following [41] the angle of attack and sideslip angle are derived by

α = tan−1(
ur
wr

), β = sin−1(
vr
U
) (2.33)
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where U =
√
u2r + v2r + w2

r . The rotation matrix from the body frame to the flow frame

can then be given by [36,41,113] as

Rf
b (−β, α) =




cos(β)cos(α) sin(β) cos(β)sin(α)

−sin(β)cos(α) cos(β) −sin(β)sin(α)
−sin(α) 0 cos(α)


 (2.34)

2.5.1 Hydrodynamic Damping

Damping of an submerged underwater glider occurs due to vortex shredding and skin

friction effects [33, 36]. For fixed-wing gliders, the hydrodynamic transnational forces

are equivalent to aerodynamic forces such as drag, sideforce and lift [41]. As gliders

operate at low speed, we can assume that the damping is linear and diagonal. The

hydrodynamic forces and moments can be defined by Morrison’s equation [36]. Given

a velocity u, a cross-sectional area under water A, the water density ρ and the drag

coefficient Cd the viscous damping force is derived as

F (u) = −1

2
ρCD(Rn)Aυ

2 (2.35)

Where CD is a function of the Reynolds numbers given by Rn = uD
v

where D is the

length of the body and v is the kinematic viscosity coefficient [36]. Consequently, the

hydrodynamic forces and moments can be derived by using eq. 2.35 such that




Db
f

SF b
f

Lbf

Kb
f

M b
f

N b
f




=




−1
2
ρCD(α, β,Rn)Aυ

2

1
2
ρCSF (α, β,Rn)Aυ

2

−1
2
ρCL(α, β,Rn)Aυ

2

1
2
ρCK(α, β,Rn)Aυ

2

1
2
ρCM(α, β,Rn)Aυ

2

1
2
ρCN(α, β,Rn)Aυ

2




+




0

0

0

Cpp

Cqq

Crr




(2.36)

45



Where Cp, Cq, Cr are the coefficients for the rotational damping [41, 113]. Following

[41, 113] the hydrodynamic forces and moments can be derived in a quasi-state model

by

Db
f = (KD0 +KD · α2) · U2

Lbf = (KL0 +Kα · α) · U2

SF b
f = Kβ · β · υ2

Kb
f = (KMR · β +Kp · p) · U2

M b
f = (KM0 +KM · α +Kq · q) · U2

N b
f = (KMY · β +Kr · r) · U2

(2.37)

The hydrodynamic damping terms from eq. 2.37 are defined in the flow frame {f},
and must be rotated to the body frame by the rotation matrix Rf

b (−β, α). Consider

the hydrodynamic forces denoted by the vector F b
f = [Db

f , SF
b
f , L

b
f ]
T and the moments

denoted by M b
f = [Kb

f ,M
b
f , N

b
f ]
T . Using the rotation matrix we can rotate the vectors

from the flow frame to the body frame, yielding

F f
b = F b

f ·R(−β, α)

M f
b =M b

f ·R(−β, α)
(2.38)

where F f
b and M f

b ∈ R3. Following the matrix notation of the vectorial marine craft

dynamics, the hydrodynamic damping can be derived in the body-fixed frame as

D(νr) =


diag(F

f
b ) 03×3

03×3 diag(M f
b )


 =




Df
b 0 0 0 0 0

0 SF f
b 0 0 0 0

0 0 Lfb 0 0 0

0 0 0 Kf
b 0 0

0 0 0 0 M f
b 0

0 0 0 0 0 N f
b




(2.39)
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Figure 2.4: Glider hydrodynamics

Figure 2.4 illustrates the hydrodynamic forces (D,SF,L) and moments (K,M,N)

which acts on the glider. xstab (stability) and xflow are the two axes in which we

rotate the glider hydrodynamics from the flow frame {f} to the body frame {b}. The

rotation matrix R(−β, α) consists of two rotations, yielding R(−β, α) = Rz,−β ·Ry,α.

Firstly, the flow axis is rotated to by a negative SSA −β about the vertical axis (z-axis),

which results in a new coordinate system referred to as stability axis (see figure 2.4.

Finally, this coordinate system is rotated about the y-axis by the AOA α to get to the

body-fixed frame {b} [34, 36,41]

2.5.2 Added Mass

A secondary non-dimensional hydrodynamic force occurs for submerged objects - added

mass effects. This occur due to displacement of fluid when the glider travels trough
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the water column. As the water and the glider cannot occupy the same space at the

same time, the vehicle must push the water away in order to move forward. Following

[36,41,113], the added mass effects for the transnational dynamics are given by

MA = −




Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ




(2.40)

The added mass matrix MA in 2.40 is a fully coupled model, and in practice, ”over-

complicated” for low-speed underwater gliders. Off-diagonal terms are very small com-

pared to the diagonal terms. Consequently, as gliders are slow vehicles and spends

most of it’s time in steady-state glides, the off-diagonal terms can be neglected follow-

ing [36,42,60] such that the matrix 2.40 is rewritten with only diagonal terms

MA = −diag[Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ] ∈ R6×6 (2.41)

The matrix MA represents the added mass effects in transnational motion. We also

need to model the added mass effects for rotational motions. The rotational added

mass effects for the coriolis and centripetal matrix CA(νr) is parameterized with skew-

symmetric properties yielding: CA(νr) = −CT
A(νr), where νr = [υ,ω]T ∈ R6 [33,34,36],

which yields

CA(νr) =




03×3 −S(A11 · υ +A12 · ω)

−S(A11 · υ +A12 · ω) −S(A21 · υ +A22 · ω)


 (2.42)
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Where Aij ∈ R3×3 is the quadrants of the added mass matrix in eq. 2.40.

MA =


A11 A12

A21 A22


 (2.43)

Expanding the matrix 2.42 results in

CA(ν) =




0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 Mq̇q Kṗp 0




(2.44)
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2.6 Simulations

As the OASYS glider lack empirical testing of the hydrodynamic properties of the vehi-

cle, the parameters of a similar glider, the Seawing glider [82,109,110,113] is exploited

to validate the numerical model. The Seawing glider is a fixed-winged underwater

glider that shares similarities of the OASYS glider in terms of a cylindrical moving

mass system and a variable buoyancy system based on hydraulic oil. The mechanical

and hydrodynamic parameters of the Seawing glider is found in Appendix A.

2.6.1 Actuator models

As previously mentioned, underwater gliders are driven by buoyancy and internal mov-

ing mass actuators. They are able to adjust the net buoyancy by pumping an oil mass

mb between an internal reservoir and external bladder. The variable buoyancy sys-

tem (VBS) for the OASYS glider is driven by a miniaturized pump and a valve to

distribute the oil. The second actuator is the moving mass system, where a battery-

pack is translated and rotated inside the glider housing. The mass mp is attached to

a rail system consisting of threaded screws. Common for the two actuating systems is

that they are driven by rotary motors e.g., brush less DC/stepper motors [28, 92]. We

let u = [ωx, ωγ, ωmb]
T be the control input vector consisting of the motor revelations

of the moving mass system and VBS system respectively, which yields the following

assumptions:

Assumption 8. The three actuators ωx, ωγ, ωmb and their outputs are considered de-

coupled.

Assumption 9. The transnational ωx and rotational ωγ moving mass actuators can be

activated simultaneously.

Remark. To simultaneously translate and rotate the internal moving mass, there must

be two motors that control each motion. Accordingly, the moving mass system is con-

sidered a 2DOF actuator.
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The actuator components of the OASYS glider are showcased in the following figure,

consisting of the VBS system and internal moving mass system

Figure 2.5: Internal components of the OASYS glider [28]

From a control perspective, the moving mass system is used for pitch and head-

ing control, while the VBS system is for buoyancy control. Buoyancy control is often

achieved trough simple bang-bang/on-off controllers and is only activated during tran-

sition between upward and downward glides. Heading and pitch control are more active

as the internal mass actuator have faster response compared to the VBS system. This

control system is also a little more advanced where the control laws are cascaded with a

battery position controller. Accordingly, the output of the pitch and heading controllers

(see figure 2.6) are the desired moving mass positions rxd , rxγ that are further cascaded

with the battery position controller.

Figure 2.6: Actuators in control loop
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Ideally, the VBS and moving mass dynamics should be modelled to improve the

quality of the glider dynamics. However, modelling coupled moving mass systems and

fluid dynamics for the VBS requires complex and cumbersome mathematical models.

As the glider model will be used for simulation purposes and not to derive model-based

control laws or observers, a simplified model of the actuator dynamics is suggested.

Rate-limiters are proposed to reflect the actuator dynamics as both systems introduce

time-delays.

Assumption 10. The VBS system pumps oil with a constant flow rate - ṁb = κ

Assumption 11. The velocities of the translating and rotating mass actuators are

constant - ṙx = κ, ṙγ = κ

Following [67] the rate-limiters of the two actuators can be defined. The translational

moving mass is used as an example, which have the rate

ṙx(k) =
ωrx(k)− rx(k − 1)

t(k)− t(k − 1)
(2.45)

where t(k) is the time incremented by k. Next we define rising and falling slew rate

parameters denoted by ϵr, ϵf . If the rate satisfies ṙx > ϵr, the output is limited by the

rise slew rate ϵr, such that

rx(k) = ∆k + ϵr + rx(k − 1) (2.46)

If the rate is lower than the falling slew rate ϵf , the output rx(k) yields

rx(k) = ∆k + ϵf + rx(k − 1) (2.47)

Remark. Note that the simplified actuator models for the moving mass system neglect

the battery position controller as this is only necessary for actual hardware.
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2.6.2 Open-Loop simulations

We start by simulating the glider dynamics using open-loop control actions. The first

simulation illustrates the repeating undulating trajectory by adjusting the net buoy-

ancy mb and translational moving mass position rx. This is considered a wings-levelled

flight where the heading ψ is fixed.

The following initial state vectors were introduced in the simulation: νo = [0, 0, 0, 0, 0, 0]T

and η0 = [0, 0, 0, 0, 0, 0]T . As presented in figure 2.7, three simulations were conducted

with different ocean current headings - βc = 0 rad, βc = π/2 rad, and βc = −π/2 rad.
An ocean current magnitude of V n

c =
√
unc + vnc = 0.1 m/s was recurring for all three

simulation cases.

Figure 2.7: Open-loop simulation - case 1
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The open loop control inputs are presented in figure 2.8, where the net buoyancy

and moving mass position are adjusted between upward and downward glides. When

descending, the net buoyancy mass is 0.3 kg and -0.3 kg when rising. The transition

between the two states introduces an instant drop in the surge velocity as seen at the

top right plot. The moving mass control inputs are activated simultaneously with the

buoyancy displacement. For downward glides, the moving mass is located in the front

and moved to the back of the vehicle when rising.

0 1000 2000

-20

-10

0

10

20

30

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

0 500 1000 1500

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 500 1000 1500

-0.4

-0.2

0

0.2

0.4

0.6

Figure 2.8: Simulation parameters - Case 1
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The second simulation experiment is the characteristic vertical spiral. This happens

when the rotating mass is shifted from it’s origin, introducing a constant angular ve-

locity r about the yaw axis. When the glider body is rolled, the wings are no longer

aligned in the vertical axes, making the vehicle enter a vertical spiral. The initial state

vectors in this simulation are the same as with case 1, where: νo = [0, 0, 0, 0, 0, 0]T and

η0 = [0, 0, 0, 0, 0, 0]T . Instead of changing the ocean current vector βc, we alter the

ocean current magnitudes for the three simulation cases - Accordingly, three different

scenarios were proposed with the following magnitudes: V n
c = 0.1 m/s, V n

c = 0.2 m/s,

and V n
c = 0.3 m/s. During these experiments the ocean current direction was set to

zero - βc = 0.

Figure 2.9: Simulation case 2 - vertical spiral
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Conversely to the first experiment, the control inputs are only initialized at the

beginnings and remained constant throughout the simulation experiments. The rotating

mass angle was set to 2 rad (resulting in a left-turn), while the net buoyancy mass was

initialized to mb = 0.3 kg where the vehicle is negatively buoyant (downward glide).

Depending on the ocean current magnitude V n
c , the surge and sway velocities in figure

2.10 have sinusoidal responses due to the circular motions.
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Figure 2.10: simulation parameters - case 2
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2.7 Control

This section details low-level control of underwater gliders. In practice, gliders control

their net buoyancy mass mp and pitch θ and heading ψ angles. The attitude and

heading is controlled using the internal moving mass system, which is translated and

rotated along a rail inside the housing using rotary motors connected to trapezidoal

screws. The bouyancy control, consists of pumping oil between an internal reservoir

and an external bladder. The oil is pumped using a geared motor [28].

Figure 2.11: Control - Block-diagram
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Given the latter description, we want to relax the following conditions:

lim
t→∞

(mbd −mb) = 0

lim
t→∞

(ψ − ψd) = 0, ψ ∈ (−π, π)

lim
t→∞

(θ − θd) = 0, θ ∈ (−π/4, π/4)

(2.48)

Remark. The pitch angle is configured for θ ∈ (−π/4, π/4) rad due to practical lim-

itations. Optimized pitching angles are documented in ranges from 20 − 30 degrees

(0.35− 0.5 rad) [31,61,100,104,113] depending on the glider shape and design.

For the buoyancy control, the open-loop inputs presented in the previous section are

reused. In practice, however, this is achieved by simple bang-bang/on-off controllers,

where the displaced buoyancy mass (oil) ∆mb of the internal tank is used as feedback.

2.7.1 Plant Identification for Pitch and Heading Control

In this section we propose a system identification scheme for the kinematic plants of

the vehicle. This will further be used to tune linear PID controllers for the underwater

glider using autotuner tools in the MATLAB control system toolbox [69]. The proposed

system identification model is a nonlinear auto-regressive exogenous model (NARX).

This type of system identification uses regression models of past data, typically in form

of past inputs and outputs from the nonlinear dynamic system.

Nonlinear Auto-Regressive Exogenous (NARX) System identification

The linear SISO (Single-Input-Single-Output) linear auto regressive exogenous model

is derived Following [7, 58,59] as

y(t) + a1y(t− 1) + a2(t− 2) + . . . ana(t− na) = b1u(t) + b2u(t− 1) + . . .

+ bnb(t− nb+ 1) + e(t)
(2.49)
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Where y is the output, u is the input and e is the noise. Accordingly, na and nb

represents the number of past outputs and inputs respectively, these are often referred

to as regressors. We can rewrite equation 2.49 so that the output y(t) is left alone on

the left side of the equation, yielding

y(t) =[−a1,−a2, . . . ,−an, b1, b2, . . . , bnb] · [y(t− 1), y(t− 2), . . . ,

y(t− na), u(t), u(t− 1), . . . , u(t− nb+ 1)]T
(2.50)

The structure of the linear ARX model consists of weighted sums of past output values

and current and past input values to predict the current output y(t). The nonlinear

ARX model is derived in the following manner

y(t) = F (y(t− 1), y(t− 2), y(t− 3), . . . , u(t), u(t− 1), . . . ) (2.51)

Where F (x) is the nonlinear function that consists of a linear and nonlinear function

in parallel. and x consists is the regressors for the output and input variables. The

function F (x) can be derived as

F (x) = LT (x− r) + d+ g(Q(x− r) (2.52)

As real datasets from the glider is not available, we revisit the simulation of the non-

linear glider dynamics to generate ”fictitious” datasets for heading and pitch system

identification. We can rewrite eq. 2.51 to represent the heading and pitch plants as

two decoupled SISO plants. Accordingly, the heading/yaw plant have ψ as an output

and the rotating mass positionrγ as input. The pitch plant consists of the output θ and

the input rx which is the translational position of the moving mass. Accordingly, we

introduce the two SISO plants in the following form

ψ(t) = F (ψ(t− 1), ψ(t− 2), . . . , ψ(t− na), . . . , rγ(t), rγ(t− 1), . . . , rγ(t− nb))

θ(t) = F (θ(t− 1), ψ(t− 2), . . . , θ(t− na), . . . , rx(t), rx(t− 1), . . . , rx(t− nb))
(2.53)
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2.7.2 Heading and Pitch control

Control in underwater gliders relate to controlling the heading/yaw and pitch angle of

the vehicle induced by the internal moving mass system. In practice, glider dynamics is

considered linear due to its slow cruising speeds and symmetric properties. Hence, lin-

ear controllers such as PID have been proposed in various research [31,60,61,76,89,112].

PID controllers are extended to the simulated glider in this thesis.

Given a control error e = (yref − y) the PID control law is derived as

u(k) = kp · e(k) + ki

∫ t

0

e(k) dt+ kd · ė(k) (2.54)

where {kp, ki, kd} are tuning parameters. In this work a closed-loop autotuner in MAT-

LAB [68] is used to determine the control parameters that satisfy stable and transient

behaviour. The control output in figure 2.12 u + ∆u is a sine signal with a desired

ampitude that is feed into the NARX control plants in order to tune the PID control

parameters.

Figure 2.12: PID autotune loop
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2.7.3 Pitch control

Three different controllers are proposed - PI, PID, and PD. The tuning parameters
{kp, ki, kd} where obtained for each controller. After tuning the PID controllers using
the NARX plants, we implement the tuning parameters into the nonlinear simulation

framework.

Gains PI controller PID controller PD controller
P-term kpθ -0.1 -0.15 -0.14
I-term kiθ -0.01 -0.03 0
D-term kdθ 0 -0.08 -0.03

Table 2.2: PID tuning - Pitch control

The parameters from table 2.2 are further compared in the glider simulation as

presented in the following figure. The simulation considers a combined upward and

downward glide where the net buoyancy mb is altered using open loop control inputs.

The step responses for the pitch controllers are presented in figure 2.13:

0 100 200 300 400 500 600 700 800

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 2.13: Comparing PID,PI,PD controllers
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Figure 2.14: Moving mass control actions - rx

The control input rx for pitch control is presented in fig. 2.14 for the different

PI,PID, and PD controllers. We observe that the position of the moving mass is located

forward in the glider rx ∈ {0.4, 0, 45} m for downward glides, while position in the back

rx ∈ {0.35, 0, 4} during upward glides. In transition between upward and downward

glides, the speed of the vehicle is reduced as the buoyancy of the vehicle is changed

from negative to positive. Accordingly, this will impact the control moments made by

the internal moving mass such that the rise time of the pitch controller will be longer

than in nominal speeds.
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2.7.4 Heading control

In this section we investigate heading control where the internal mass actuator is rotated

to create a yaw moment. We follow the same tuning procedure as with pitch control by

comparing PI,PID, and PD controllers. Note - the autotuner did not provide transient

tuning parameters for the control plant, hence the the terms in table 2.3 was manually

tuned based on the initial autotuning results.

Gains PI controller PID controller PD controller
P-term kpθ 7.43 8.32 8.87
I-term kiθ 0.21 0.56 0
D-term kdθ 0 1.23 0.75

Table 2.3: PID tuning - Heading control

The tuning parameters in table 2.3 are further implemented in the glider simulation.

The case study for heading control only considers a downward glide where the vehicle

performs left and right turns.
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Figure 2.15: Comparing PID,PI,PD controllers - Heading control
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Figure 2.16: Rolling mass control actions - rx

Figure 2.16 presents the control input rγ which is the rolling mass servo angle. We

observe that the mass is rotated in short periods before returning to it’s initial position

rγ = 0. If the mass was fixed at a non-zero angle, the glider would enter a spiral,

accordingly it has to return to a wings-levelled flight to maintain a constant course -

the turning maneuver is analogous to how aircraft’s make turns. We can also observe

that overshoots are compensated by rolling the mass in the opposite direction after

returning to rγ = 0.

The heading control is performed during a downward glide, hence the rise time is

faster as the speed is nominal and not reduced due to buoyancy alternation as with

pitch control.
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2.8 Conclusion

In this chapter we have derived a 6DOF mathematical model of a buoyancy driven

underwater glider, which has been presented in a numerical simulation. Open-loop sim-

ulations were conducted with various ocean current disturbances to validate the merit

of the proposed glider dynamics. Consequently, control laws for heading and pitch were

proposed using linear PID controllers. Nonlinear system identification models were de-

veloped to autotune the control plants using MATLABs control system toolbox. We

show that the simulation of the glider dynamics reflects documented glider character-

istics, such as wings-levelled motions and vertical spirals. Also, the proposed linear

PID controllers show transient and converging behaviour for pitch and heading control,

which will further be used in path-following applications in chapter 4.
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Chapter 3

Navigation: A Deep Learning

Approach

This chapter presents a deep/machine learning approach to aid dead-reckoning (DR)

navigation. Recurrent Neural Networks (RNN) are proposed to predict the relative

velocities of an underwater glider using data from an IMU, pressure sensor, and control

inputs. The predictions of the relative velocities are implemented in a dead-reckoning

algorithm to approximate north and east positions. The experimental part of this chap-

ter is twofold I) Sea-trial data from a hybrid glider/AUV is firstly presented. Datasets

from a series of surveys in Monterey Bay, California (U.S) are used to train and test

the RNN velocity observers. II) The second study explore datasets generated by the

simulated underwater glider from chapter 2. The proposed neural network approach to

DR navigation is compared to the on-board DVL-aided navigation system and ground

truth simulated positions.

The theory presented in this chapter was firstly introduced in a preliminary project

by the author in [49] and later extended to a conference paper published at the IEEE

Oceans conference in 2021.
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[83] Saksvik, I. B., Alcocer, A., Hassani, V. (2021). A Deep Learning Approach To

Dead-Reckoning Navigation For Autonomous Underwater Vehicles With Limited Sen-

sor Payloads. Presented at Global Oceans 2021: Porto–San-Diego (pp. 1-10). IEEE.

(Paper is attached in Appendix D)

3.1 Introduction

A notorious challenge for gliders is to navigate and georeference acquired sensor data

as GPS signals propagate poorly in water. Conventional solutions to this issue involve

adding acoustic navigational or/and positioning instruments to the glider payload. Due

to the good propagation of sound in water, doppler velocity loggers (DVLs) and base-

line positioning systems are considered novel solutions to underwater navigation and

localization [5,21,25,42,80,104]. However, these acoustic instruments are often expen-

sive and consume large amounts of power.

In this chapter we consider a limited glider sensor suite consisting of an IMU sensor and

a pressure transducer, where acoustic instruments (e.g., DVL or baseline positioning

systems) are partially available to collect experimental training data. Collected ground

truth measurements from only a few missions are used as a reference in supervised neu-

ral network training. The aim for the trained network is to complement DR navigation

when DVLs or acoustic positioning systems are inaccessible, for example in glider fleets

with budget limitations (OASYS project).

The absence of acoustic navigational and positioning instruments have traditionally

been compensated by model-based observers like Extended Kalman Filters (EKFs) in

various AUVs/gliders, see [88, 100]. These are derived from the vehicle dynamics to

form an estimation model. Unfortunately, model-based observers rely on parameters

that are difficult to obtain in practice. As we recall from chapter 2 on modelling glider

dynamics, intricate hydrodynamic models are required. Experiments must be carried

67



out in a towing-tank facility or using expensive CFD (Computational Fluid Dynamics)

software to obtain hydrodynamic damping coefficients [88, 113]. If the external geom-

etry of the glider changes, e.g. when making small modifications to payload sections,

the coefficients need to be updated.

To avoid deriving complex glider models and conducting time consuming towing-tank or

CFD experiments, this chapter presents a data-driven approach to dead-reckoning nav-

igation. Using experimental data from glider missions and simulations, neural networks

are trained to learn and generalize relative glider motions. Recurrent neural networks

(RNNs) are developed to capture time-delayed glider dynamics. With an input layer

composed of onboard sensors (pressure sensor, inertial measurement unit) and control

actions, the RNN networks aim to predict relative surge ur and sway vr velocities.

These are further implemented in a dead-reckoning algorithm to approximate North

and East positions while the glider is submerged and not able to receive a GPS fix.

Figure 3.1: Proposed DL approach to dead-reckoning

Figure 3.1 illustrates the GNC (guidance, navigation and control) feedback loop with

the proposed neural network velocity observers. The navigation system is cascaded

with a guidance system, where the estimated position of the glider is used as feedback

in path-following control.
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3.1.1 Related work

Several articles have addressed neural network observers to aid navigation for marine

vehicles. In [114] a Short-Long-Term-Memory (LSTM) recurrent neural network is

proposed to estimate the relative position of an AUV. The LSTM network used data

from a pressure sensor, IMU, and an acoustic doppler velocity logger (DVL) to predict

the horizontal north and east positions. Training and validation data were collected

from a series of surface trajectories while logging GPS locations, which were projected as

ground truth measurements. A similar study with the same AUV is presented in Mu et

al. [74], where a bi-directional LSTM network was proposed. A neural network approach

to dead-reckoning navigation of dynamically positioned ships is presented in Skulestad

et al. [88]. Control actions and commands from vessel thrusters combined with heading

measurements were used as input data in a RNN network to aid navigation during

GNSS outages. Experiments were conducted in a vessel simulator with time-varying

environmental disturbances such as wind forces, sea waves and ocean currents. In Chen

et al. [57] a neural network is presented to assist navigation during DVL malfunction. A

nonlinear autoregressive network with exogenous SINS (Strapdown Inertial Navigation

System) inputs was used. The network was tested and validated on a ship with a DVL

mounted on the vessel hull to provide training and validation data.

3.2 Dead-Reckoning Navigation

In the absence of GNSS (Global Navigation Satellite Systems), underwater gliders enters

a mode called dead-reckoning. Given some initial position (typically a GPS fix before

diving), the displacement for each time-step is estimated trough time integration of the

transnational velocities [31, 80, 91, 104, 105]. To compute the position of the glider in

a local frame of reference, the measured/estimated relative velocities are rotated with

respect to the inertial reference frame of the vehicle. We recall from chapter 2 , the
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planar position in the inertial frame, given by

Ṗ n
b = Rn

b (Θ) · υ + V n
c ∈ R2 (3.1)

Where Θ = [ϕ, θ, ψ]T are the attitude and heading of the vehicle provided by an inertial

measurement unit (IMU), υ = [ur, vr, wr]
T are the translational velocities, and V n

c =

[V n
x , V

n
y , 0]

T are the ocean currents in the inertial frame. Equation 3.1 is written in

expanded form as

Ṗ b
n =




ẋ

ẏ


 =




ur · c(ψ)c(θ) + vr · (c(ψ)s(θ)s(ϕ)− s(ψ)c(ϕ))

+wr · (s(ψ)s(ϕ) + c(ψ)c(ϕ)s(θ))) + V n
x

ur · s(ψ)c(θ) + v · (c(ψ)c(ϕ) + s(ϕ)s(θ)s(ψ))

+w · (s(θ)s(ψ)c(ϕ).c(ψ)s(ϕ) + V n
y




(3.2)

Remark. Equation 3.2 contains all three euler angles Θ = [ϕ, θ, ψ]T it is assumed that

the vehicle have active roll motions. Note that some gliders (e.g, Slocum) are stable in

roll and creates yaw moments from an aft rudder. In this case, when ϕ ≈ 0, eq. 3.2 is

truncated.

To obtain the position of the vehicle, we integrate the inertial positions Ṗ n
b . In

discrete form, the numerical integration of eq. 3.1 is given by

P n
b (k + 1) = P n

b (k) + (Rn
b (Θ) · υ(k + 1) + V n

c ) ·∆k (3.3)

where ∆k is the sampling time.

3.2.1 Existing DR Strategies In Underwater Gliders

In this section we investigate an existing DR algorithm in a commercial glider (Slocum).

As previously mentioned, DVLs are rarely available in underwater gliders and often

considered an optional payload. Default dead-reckoning navigation relies on IMU and
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depth sensors to approximate the planar velocities of the vehicle. Algorithm 1 presents

the default DR algorithm in Slocum gliders. It is firstly initialized with a GPS fix

(logged at the surface). The initial WGS84 (GPS) coordinates Pwgs84 = [λ, φ, h]T

(lat,long,alt) are transformed to a local frame denoted by Pi = [xi, yi, zi]
T . After the

initialization, the speed U in the body frame is computed. The speed is estimated

by the depth-rate ż and pitch angle θ measurements. The speed is further used in a

simplified kinematic model to be represented in an inertial frame.

Algorithm 1 DR navigation Slocum [105], [104]

Require: GPS fix: Pwgs84 = [λ, φ, h]T

Require: Transform GPS fix to local frame Pwgs84 = [λ, φ, h]T → Pi = [xi, yi, zi]
T

U(k) = ż
tan(θ)

▷ Horizontal speed in body frame

ẋ(k) = U · sin(ψ) ▷ North velocity
ẏ(k) = U · cos(ψ) ▷ East velocity

if ∆k = true then
x(k + 1) = x0 +

∑
(ẋ ·∆k) ▷ Local approximated north position

y(k + 1) = y0 +
∑

(ẏ ·∆k) ▷ Local approximated east position
end if

if Cycle = end then
Climb to surface ▷ Surface after n cycles of upward and downward glides

Pwgs84(k + 1) = [λ, φ, h]T ▷ Get GPS fix
Pwgs84(k + 1) = [λ, φ, h]T → Pi(k + 1) = [xi, yi, zi]

T ▷ Convert Pwgs84 to local NED
frame
end if

Remark. Algorithm 1. is proposed for the Slocum glider that have stable roll motions

where ϕ ≈ 0.

The DR algorithm propose a simplified kinematic model for approximating the

planar displacement of the glider. The speed U = ż
tan(θ)

is represented in the x-z plane,

where sway velocities are neglected v ≈ 0. As this model does not introduce any

dynamic parameters, the velocity estimation will be prone to errors as documented in

sea-trials [104].
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3.3 Neural Network Aided Navigation

The main contribution in this chapter is two neural network velocity observers that

predict the relative surge ur and sway vr velocities of the glider. We refer to the

two networks as recurrent neural networks (RNNs), that is, a network topology that

introduces feedback or temporal memory in its hidden layers. The proposed model-

free observers are presented in figure 3.2, where the network architecture consists of

an input layer, composed of measurements from an IMU, control actions and a depth

sensor. The inputs are further passed on to two Long-Short-Term Memory (LSTM)

recurrent neural networks which estimate the nonlinear relationship between the inputs

and outputs. This is followed by a numerical integration in the ”DR algorithm” block

to predict the planar glider displacement (xk, yk).

Figure 3.2: Overview of RNN aided DR navigation
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In addition to the neural network velocity observers, extensive kinematic mod-

els are proposed (eq. 3.2) assuming the glider have active roll motions. Given the

RNN velocity observers denoted by ûr(k) = net(rx, u̇, ẇr, θ, ψ, q,∆mb, wr) and v̂r(k) =

net(rγ, v̇, wr, ϕ, ψ, p, r,∆mb), we define the overview of the deep learning approach to

DR navigation in the following algorithm

Algorithm 2 RNN-aided DR navigation [83]

Require: Initialize position at the surface P i
0 = [xi0, y

i
0, z

i
0]
T

ûr(k) = net(rx, u̇, ẇr, θ, ψ, q,∆mb, wr) ▷ Neural network surge estimation
v̂r(k) = net(rγ, v̇, wr, ϕ, ψ, p, r,∆mb) ▷ Neural network sway estimation

▷ North velocity
ẋ(k) = ûr · c(ψ)c(θ) + v̂r · (c(ψ)s(θ)s(ϕ)− s(ψ)c(ϕ)) +wr · (s(ψ)s(ϕ) + c(ψ)c(ϕ)s(θ)))

▷ East velocity
ẏ(k) = ûr ·s(ψ)c(θ)+ v̂r · (c(ψ)c(ϕ)+s(ϕ)s(θ)s(ψ))+wr · (s(θ)s(ψ)c(ϕ)c(ψ)s(ϕ))

if k + 1 = ∆k then
x(k + 1) = x0 +

∑
(ẋ(k) ·∆k) ▷ Approximated north position

y(k + 1) = y0 +
∑

(ẏ(k) ·∆k) ▷ Approximated east position
end if

if Cycle = end then
Climb to surface ▷ Surface after n cycles of upward and downward glides

Pi(k + 1) = [xi, yi, zi]
T ▷ Reinitalize DR by a ”GPS” fix

end if

Remark. The latter algorithm is proposed for an underwater glider with active roll

motions, ϕ ̸= 0. Hence, all euler angles Θ = [ϕ, θ, ψ]T are exploited for the kinematic

models. Also note that the relative heave velocity wr is assumed known from depth-rate

measurements.
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3.3.1 Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) have in the last decades become popular in classi-

fication and regression problems such as image recognition and time-series forecasting

due to its universal properties and ability to learn nonlinear relationships. ANNs mimic

biological neural networks trough a simplified mathematical matrix representation con-

sisting of an array of layers with connecting nodes. The nodes represents a mathemat-

ical operation which summarizes all the inputs to further be passed onto an activation

function that resembles the biological synapse.

3.3.2 Long-Short-Term-Memory (LSTM) Neural Networks

One of the most renowned RNN architectures is the LSTM network which has been

proposed in many works including state-estimation for marine vehicles [88, 114]. The

LSTM cell is known for better long-term dependency estimation compared to early

vanilla RNN networks [88,111]

Figure 3.3: LSTM Network topology
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The LSTM network topology in figure 3.3 consists of a variety of mathematical

operations and functions. Essential to the neural network are the activation functions

σ (sigmoid) and tanh (hyperbolic tangent). These are nonlinear functions, that trough

sequential learning, determine when the neuron will be activated.

σ(x) =
1

1 + e−x
, ∈ {0, 1}

tanh(x) =
ex − e−x

ex + e−x
, ∈ {−1, 1}

(3.4)

The tunable parameters in a LSTM network are the weights w and biases b. Com-

bined with the latter activation functions, the different gates and states of the network

topology in figure 3.3 are derived following [111], yielding

fk = σ (wfk · hk−1 + wfx · xk + bf )

ik = σ (wik · xk + bi)

ĉk = tanh (Wĉh · hk−1 +Wĉx · xk + bĉ)

ck = fk · ck−1 + ik · ĉk
ok = σ (Woh · hk−1 +Wox · xk + bo)

hk = ok · tanh (ck)

(3.5)

where ck is the cell state, fk is the forget state and hk is the output state. Accordingly,

ck−1 and hk−1 are the recurring cell and output states respectively. Trough sequential

learning the LSTM networks are trained. Given a set of inputs x ∈ Rn (for instance

glider sensor data and control inputs) and reference ground truth outputs ĥk ∈ Rn

(e.g., DVL measurements), the network is trained by the renowned concept of back-

propagation [24,44,94,111], in which the network weights and biases are updated/tuned.

Formally, this is referred to neural network regression.
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The performance of the output hk is evaluated by comparing it to a ground truth

reference denoted ĥk, commonly referred to as the cost function denoted e, which is

typically derived as the mean squared error of the output prediction [94,111]

e =
1

2

∑

k

(ĥk − hk)
2 (3.6)

where ĥk−hik is the difference between the actual and predicted output. The objective

of the neural network is to resemble the ground truth reference. From a mathematical

perspective, this is achieved trough minimizing the cost function e, by determining the

weights w and biases b that minimizes the MSE error in eq. 3.6. Various optimization

algorithms have been proposed for sequential learning e.g., gradient decent, stochastic

gradient decent (SDG), adaptive moment estimation (Adam optimizer) etc. [2, 111]

Figure 3.4: Illustrating sequential learning using DVL as ground truth

Remark. Note that the comparable ground truth variable is just a reference that typi-
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cally holds accurate measurements that we want to reflect. DVLs does not provide ab-

solute measurements of the relative surge and sway velocities, but it’s estimation errors

are considered acceptable as the instrument is easily integrated to underwater vehicles

and cheaper than other novel methods such as underwater motion capture systems, e.g.,

qualisys [10].

In the latter illustration a DVL is proposed to provide reference measurements for

neural network training, which is one of the possible methods for obtaining accurate

glider velocities. Other methodologies such as range-only acoustic localization is also

convenient for collecting machine/deep learning datasets due to small estimation errors.

3.3.3 Input Layer

The main goal of the neural network velocity observers is to to predict the planar

surge ur and sway vr velocities of the glider using a limited sensor payload. IMU data,

consisting of triaxial accelrometers and gyroscopes are proposed as input variables to

the RNN network together with depth-rate measurements and control actions from the

onboard actuators. As the surge and sway dynamics is considered decoupled in nominal

steady-state glides, we propose two independent neural network velocity observers with

the relevant input variables. If the network inputs have little relevance to the predicted

output, the network is harder to generalize and may lead to the issue of overfitting [44].

3.4 Training data

To train and validate the neural network approach to DR navigation, glider datasets

are needed. In this chapter, two gliders are investigated. The first dataset originates

from the numerical glider model presented in chapter 2, while the second dataset is

from the Tethys hybrid glider/AUV. The Tethys dataset is from a series of sea-trials

in Monterey Bay (U.S) and is available trough the Monterey Bay Aquarium Research

Institute (MBARI) open source data repository.
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3.4.1 Glider datasets

Training datasets from the simulated underwater glider was conducted in Simulink with

varying ocean current disturbances. In total, three experiments were conducted with

increasing ocean current magnitude and a fixed direction. Furthermore, by performing a

square trajectory, the glider collects data from the entire spectrum of ψc = βc−ψ, , ψ ∈
(−π, π). The three different simulation cases were introduced with increasing ocean

currents, ranging from V n
c ∈ {0.14, 0.24, 0.32} m/s. The state variables of in the glider

simulation νr ∈ R6 and η ∈ R6 were logged to be used to train the RNN networks.

Furthermore, the surge ur and sway vr velocities from the three experiments are used

as a reference in supervised neural network training.

Figure 3.5: Glider simulation scenario 1, V n
c = 0.14 m/s
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3.4.2 Tethys datasets

The Tethys hybrid glider/AUV [8, 46] was developed by the Monterey Bay Research

Institute (MBARI) as a research vehicle with long-range capabilities. It’s characterized

as a hybrid AUV as it shares similar control actuators to underwater gliders. This allows

it to operate both in undulating glider-like trajectories and at fixed depths using aft

thrusters. A series of missions in Monterey bay, California (U.S) were used to train and

validate the neural networks. In-situ measurements from a Microstrain 3DM-GX5-24

IMU, Neil Brown pressure sensor and the control actuators were used as inputs to the

neural network. Ground truth relative surge and sway velocities [ur, vr]
T were provided

by a LinkQuest 600 KHz micro DVL.

Figure 3.6: Tethys AUV, courtesy of MBARI

The parameters for the IMU and DVL sensors hosted on the Tethys is presented

in table 3.1 and 3.2 respectively. The maximum operating altitude refer to bottom

lock navigation, where the AUV measures it’s velocities relative to the seafloor. When

out of range the DVL can measure the velocities relative to the water (water lock).

However, water is often considered as a moving reference frame due to ocean currents,

which introduces estimation errors depending on the magnitude of the ocean current

vector [80].
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Error value
Accelorometer Bias Instability ± 0.04 mg
Gyroscope Bias Instability ± 8◦/h

Attitude Accuracy EKF - ± 0.25◦ RMS
Heading Accuracy EKF - ± 0.8◦ RMS

Table 3.1: Microstrain 3DM-GX5-25 IMU Parameters

Parameter Value
Max Altitude 120 meters
Min Altitude 0.3 meters
Accuracy 1 % ± 1 mm/s
Ping rate 5 Hz

Table 3.2: LinkQuest 600 KHz Micro DVL Parameters

3.5 Experimental and Simulation Results

This section presents two studies which consists of simulated and experimental datasets.

The collected datasets were allocated into Matlab and further used to develop, train,

and test the neural networks. The Deep Learning Toolbox [67] was used to design

network architectures and perform backpropogation training. The Adam (adaptive

moment estimation) optimizer was chosen as the training algorithm which is a default

option in MATLAB. To improve the generalization of the neural networks, a dropout

layer was added to the RNN networks. By stochastically removing/dropping neural

network nodes, we prevent the notorious issue of overfitting and improve network gen-

eralization [6]. The network architecture consist of a single LSTM layer with 500 hidden

nodes. The output layer of the neural network is a fully connected layer with a linear

activation function, where the output variable of the two networks are the surge and

sway velocities.

Remark. Because we are removing nodes in the dropout layer it is convenient to have

a sufficient number of initial hidden nodes in the network architecture. If the initial

configuration has few hidden nodes, the network may end up being too shallow after

training.
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3.5.1 Case Study 1 - Seawing Glider

We start by testing the neural network velocity observers to a test dataset/trajectory

of the underwater glider. The trajectory is a straight-line trajectory where the glider

does repeating upward and downward glides. At each 1000 meters the glider surface to

receive a ”GPS fix” to reinitialize the DR algorithm. The simulation was carried out

with an ocean current magnitude of V n
c = 0.23 m/s and a direction βc = π/2 rad.

Figure 3.7: Seawing glider - DL navigation
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Figure 3.8: Estimated surge velocity ûr vs actual surge velocity ur
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Figure 3.9: Estimated sway velocity v̂r vs actual sway velocity vr
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3.5.2 Case Study 2 - Tethys AUV

Experimental data from the Tethys AUV/glider was investigated in the second study.

Data from three individual surveys were concatenated as a time-series vector and used

as training data. Datasets from another mission are used to test the neural network on

unseen data. The traning data and test trajectory were conducted in shallow waters

where the Linkquest DVL was able to get a bottom lock, although some samples were

out of reach for the operating altitude of the DVL sensor. Outliners in the DVL data

were removed and further filtered with Gaussian smoothing.

Figure 3.10: Test trajectory in Monterey Bay, California

The test trajectories consist of undulating saw-tooth motions with non-zero angle of

attack α as showed in figure 3.14. Note that periodic GPS fixes was not accounted for

in the Tethys AUV.

The results are presented in figure 3.13 and 3.14. The blue line represents the predicted

position based on estimated surge and sway velocities from the RNN network. The

orange line is the estimated position based on measured DVL velocities.
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Figure 3.11: Neural network aided navigation - Top view

Figure 3.12: Neural network aided navigation - 3D view
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Figure 3.13: Tethys - Estimated surge velocity ûr vs actual surge velocity ur
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Figure 3.14: Tethys - Estimated sway velocity v̂r vs actual sway velocity vr
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3.6 Conclusions

In this chapter we have proposed a neural network approach to aid dead-reckoning

navigation for gliders with limited sensor suites. Experimental data from an IMU, a

pressure sensor and control actions were gathered from sea-trials and simulations with

correlating ground truth DVL and simulated velocities. The objective for the trained

RNN networks is to complement glider navigation in absence of acoustic navigational

instruments. Results from the proposed method show promising potential considering

a limited sensor payload, although DR navigation errors are significant and not ideal.

The navigation system will be further used as feedback in path-following control, as

investigated in the next chapter.
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Chapter 4

Path-Following

This chapter investigates planar-motion path-following in underwater gliders. We con-

sider two guidance laws for the path-following control problem: I) A line-of-sight con-

troller, and II) an integral line-of-sight controller, where an integral action corrects

drifts from unknown ocean current disturbances. The on-board navigation system,

which is the main feedback component to the planar motion guidance laws, is aided by

the recurrent neural network (RNN) velocity observers presented in chapter 3 to better

approximate the planar position of the glider. The performance of the proposed path-

following controllers are analysed in the glider simulation from chapter 2 with varying

ocean current conditions.

The theory and results of this chapter were extended to a draft paper for the 14th IFAC

CAMS conference:

[84] Saksvik, I. B., Alcocer, A., Hassani, V. (2022). Path-Following for Under-

water Gliders With Limited Navigation Payloads. Draft submitted to the 14th IFAC

CAMS: Kgs. Lyngby, Denmark (Paper is attached in Appendix B)
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4.1 Introduction

The general guidance application in underwater gliders is straight-line path following,

typically defined by a series of waypoints. Due to underactuation, the path-following

problem is formulated by the helsman principle. The vehicle must change it’s course

while moving forward to follow an arbitrary planar path. From a mathematical per-

spective, this consists of computing the heading necessary to converge on the path,

while maintaining a steady cruising speed. Furthermore, a low-level control system

(heading controller) is cascaded with the guidance law to bound the heading control

error. Note that the path-following problem does not impose any temporal constraints

in the control objective, conversely to trajectory-tracking which needs to arrive on a

path at a specific time.

Figure 4.1: GNC block - Guidance

There have been many approaches presented to the path-following control problem

for underactuated marine vehicles, mostly by deriving kinematic guidance laws, see

[9,13,16,55,103,117], but also reinforcement learning methods have been proposed [64].

Legacy gliders such as Slocum use a velocity vector assignment to compute the heading

references for the planar motion case [104,105]. This consists of exploiting the velocity
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vector of the vehicle with respect to the path and optionally using the ocean current

vector to compensate for trajectory drifts.

In recent time, line-of-sight (LOS) guidance laws have received popularity in various

underactuated marine vehicles [13,55,117]. To compensate for environmental loads, e.g,

ocean currents, an integral term can be added to the LOS guidance law as presented

in [9, 16, 103]. The purpose of the integral action is to bound the drift between the

vehicle and the path, usually manifested by a parallel path due to constant or slowly-

changing ocean currents.

Based on the latter works in line-of-sight and integral line-of-sight based path-following

for AUVs and surface vessels, we aim to extend this approach to underactuated under-

water gliders in presence of unknown ocean current disturbances. And, also, investigate

the performance of the path-following controllers considering a limited navigation suite

with significant dead-reckoning errors.

4.2 Planar Motion Path-following

In this section we derive the line-of-sight (LOS) and integral line-of-sight (ILOS) guid-

ance laws for the planar motion path-following problem.

The majority of glider missions consists of travelling between geodetic waypoints. The

vehicle must occasionally turn when transitioning to a new set of waypoint coordinates.

We consider that the path P is parameterized as a straight line between the predefined

waypoints. We can parametarize the straight-line path assuming a scalar ζ ∈ R is given

so that

P =


xp
yp


 =


xk + ζ · cos(ξp)
yk + ζ · sin(ξp)


 (4.1)

Where (xk, yk) is a fixed location on the path and ξp is the angle between the path

and the x-axis along the stationary reference frame [13]. Most underwater gliders use

internal rotating masses to create a yaw moment by rolling the glider body. The roll
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motion will force the wings to be non-collinear in the z-axis, causing the glider to enter

a vertical spiral/turn. Due to active roll motions, the kinematic equations of the vehicle

are derived by all euler angles Θ = [ϕ, θ, ψ]T . Following [36] the position of the vehicle

in the inertial NED (north-east-down) frame is defined as




ẋ

ẏ


 =




ur · c(ψ)c(θ) + vr · [c(ψ)s(θ)s(ϕ)− s(ψ)c(ϕ)]

+wr · [s(ψ)s(ϕ) + c(ψ)c(ϕ)s(θ))] + V n
x

ur · s(ψ)c(θ) + v · (c(ψ)c(ϕ) + s(ϕ)s(θ)s(ψ))

+w · (s(θ)s(ψ)c(ϕ).c(ψ)s(ϕ) + V n
y




(4.2)

where c() = cos() and s() = sin(). The relative linear velocities are defined as

υr = [ur, vr, wr]
T = [u − ubc, v − vbc, w − wbc]

T . Where the ocean current νbc is con-

sidered constant and irrotational in the inertial frame.

We start deriving the guidance law by representing the position of the vehicle with

respect to the path P . The path is defined by the initial waypoints (xk, yk) ∈ R2 and

the consecutive waypoints (xk+1, yk+1) ∈ R2. The straight-line represented by the two

waypoints have a path-tangential angle defined as

ξp = atan2(yk+1 − yk, xk+1 − xk) (4.3)

where atan2(x,y) represents the fourth-quadrant of tan−1( y
x
) ∈ (−π/2, π/2). Following

[55] we can derive the position of the glider with respect to the fixed path, denoted by

the cross-track distance xe and cross-track error ye:

xe = (x− xk) · cos(ξp) + (y − yk) · sin(ξp)

ye = −(x− xk) · sin(ξp) + (y − yk) · cos(ξp)
(4.4)
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The time-derivative of the cross-track error ye is given by

ẏe =− ẋ · s(ξp) + ẏ · c(ξp)

=ur · c(ψ) · c(θ) · s(ξp) + vr · (c(ψ) · s(θ) · s(ϕ)

− s(ψ) · c(ϕ)) · s(ξp) + wr · (s(ψ) · s(ϕ)

+ c(ψ) · c(ϕ) · s(θ)) · s(ξp) + V n
x + ur · s(ψ)c(θ) · c(ξp)

+ vr · (c(ψ) · c(ϕ) + s(ϕ) · s(θ) · s(ψ)) · c(ξp)

+wr · (s(θ) · s(ψ) · c(ϕ)− c(ϕ) · s(ϕ)) · c(ξp) + V n
y

(4.5)

Stability proofs of eq. 4.5 at the equilibrium ye = 0 have been derived for planar LOS

and ILOS guidance laws in various literature, see e.g. [9, 13, 16,55].

We now derive the LOS guidance law which is defined by the kinematic properties

previously defined in this section. Given a path-tangential angle ξp, cross-track error

ye and a look-a-head distance denoted Λ, the planar motion guidance law is derived by

ψLOS = ξp + tan−1(
−ye
Λ

) (4.6)

where Λ > 0 determines the convergence rate towards the desired path. This is a

design parameter (given in meters) that must be tuned correctly. If Λ is too large, the

convergence time will be long. If Λ is too small, the convergence rate may be faster

than the response of the underactuated vehicle, resulting in oscillating trajectories.

The ILOS guidance law is derived as an extension of eq. 4.6. Following [16] and [9], it

is derived as

ψILOS = ξp + tan−1(
−ye
Λ

+ ki ·
∫ t

0

ye dt) (4.7)
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In [9] eq. 4.7 is rewritten to avoid anti-windup effects due to the integral term:

ψILOS = ξp − tan−1(
ye + ki · σint

Λ
)

σ̇int =
ye · Λ

Λ2 + (ye + ki · σint)2

(4.8)

where ki is a design parameter. Equations 4.8 satisfies the property {σ̇int → 0} when

{ye → ∞} [9]. Thus, the integration rate is slowed down for large values of ye, for

example when ψ << ψILOS which can occur when transitioning between waypoints

where ξp+1 >> ξp.

Figure 4.2: ILOS guidance - 2D view
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4.2.1 Control Objective

To follow an arbitrary planar path P ∈ R2 the vehicle has to achieve a geometric

task (LOS guidance laws) and dynamic tasks (maintaining a constant cruising speed).

Hence, the following control objectives are introduced:

lim
t→∞

ye = 0

lim
t→∞

xe = 0

lim
t→∞

(ψ − ψILOS) = 0, ψ ∈ (−π, π)

lim
t→∞

(θ − θd) = 0, θ ∈ (−π/4, π/4)

(4.9)

The three first conditions imply convergence along the path P . While the last condition

ensures that the vehicle will have a relative speed Ur =
√
u2r + v2r + w2

r > 0 ∀ t.

Remark. The control objectives imply the that the maneuvering task is underactuated

as we want to control 4DOF using only two inputs u ∈ R2.

4.2.2 GNC (Guidance, Navigation & Control)

As previously mentioned we have a GNC feedback loop where the guidance/path-

following law is cascaded with the control and navigation systems that were introduced

in chapter 2 and chapter 3 respectively. The aim of this chapter is to combine all three

systems to relax the control objectives in eq. 5.18. Furthermore, in this chapter the

three systems are implemented in the numerical glider model. Following the theory in

the latter chapters and in this chapter, the GNC loop is introduced in the following

algorithm, which is an extended version of the navigation algorithm 3.3 in the previous

chapter.
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Algorithm 3 Planar motion path-following

Require: Initialize position at the surface P i
0 = [xi0, y

i
0, z

i
0]
T

Require: Set look-a-head distance Λ
Require: Set acceptance radius Re

Require: Set waypoint list B = [(x(k), y(k)), (x(k+1), y(k+1)), . . . , (x(k+n), y(k+n))]

ûr(k) = net(rx, u̇, wr, θ, ψ, q) ▷ Neural network surge estimation
v̂r(k) = net(rγ, v̇, wr, ϕ, ψ, p, r) ▷ Neural network sway estimation

ẋ(k) = ûr · c(ψ)c(θ) + v̂r · (c(ψ)s(θ)s(ϕ)− s(ψ)c(ϕ)) +wr · (s(ψ)s(ϕ) + c(ψ)c(ϕ)s(θ)))

ẏ(k) = ûr ·s(ψ)c(θ)+ v̂r · (c(ψ)c(ϕ)+s(ϕ)s(θ)s(ψ))+wr · (s(θ)s(ψ)c(ϕ)c(ψ)s(ϕ))

if k + 1 = ∆k then
x(k + 1) = x0 +

∑
(ẋ(k) ·∆k) ▷ Approximated north position

y(k + 1) = y0 +
∑

(ẏ(k) ·∆k) ▷ Approximated east position
end if

ξp(k) = atan2(yk+1 − yk, xk+1 − xk) ▷ Path-tangential angle
ye(k) = −(x− xk) · sin(ξp) + (y − yk) · cos(ξp) ▷ Cross-track error
ψLOS = ξp + tan−1(−ye

Λ
) ▷ Heading reference

R = (xk+1 − x)2 + (yk+1 − y)2 ▷ Acceptance radius to transit waypoint

eψ(k) = (ψILOS − ψ)
rγ(k) = eψ · kpψ + ėψ · kdψ ▷ Heading control action

if R <= Re then
Climb to surface ▷ Surface after waypoint is reached

Pi(k + 1) = [xi, yi, zi]
T ▷ Reinitalize DR by a ”GPS” fix

end if

Algorithm 3 is an extension of the dead-reckoning algorithm presented in chapter

3, where path-following control and heading control is added. The approximated north

and east positions from DL aided navigation are used to compute the cross-track error

ye. Next, the computed heading reference ψLOS is fed to the low-level PID heading

control law.
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4.3 Simulations & Results

The numerical glider model from chapter 2 is used to evaluate the path-following con-

trollers cascaded with the control and navigation systems introduced in previous chap-

ters. The simulation results are twofold - firstly the LOS and ILOS guidance laws are

compared with the same ocean current disturbances. In the first simulation ground

truth north and east position are proposed as feedback in the planar motion guidance

laws. This is not ideal in real glider missions, but illustrates the difference between

LOS and ILOS path-following when exposed to ocean current disturbances more clearly.

Secondly, the DL aided navigation system presented in chapter 3 is cascaded with the

LOS/ILOS guidance laws. Moreover, multiple simulations are carried out to evaluate

performance with increased ocean current magnitude V n
c and directions βc.

In a real world scenario the path P cannot be perfectly tracked. Thus, a switching

function is needed when the vehicle is close to the desired waypoint. From [13] a circle

of acceptance mechanism is derived, yielding

(xk+1 − x)2 + (yk+1 − y)2 ≤ R2
k+1 (4.10)

Where Rk+1 is the radius which must be chosen by the operator. Eq. 4.10 must be

satisfied in order to switch to the next waypoint coordinates (xk+i, yk+i).

Before the two simulation cases, the characterization of the look-a-head distance Lambda

is investigated. Four different scenarios were simulated using the LOS guidance law,

where Λ ∈ {7, 10, 15, 20} meters.
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Figure 4.3: Λ vs ye

Figure 4.3 compares the cross-track error ye by the different look-a-head distances.

Accordingly, when Λ is too short, we observe overshoots and oscillations about the

origin ye = 0. Transient responses are present when Λ > 10 m.

4.3.1 Simulation case 1 - Comparing ILOS and LOS

In the first simulation case the absolute (ground truth) north and east positions are

proposed as feedback to the guidance laws. This is to illustrate the differences between

LOS and ILOS path-following control laws. The desired path is a straight-line with

the initial waypoint (xk, yk) = (0, 0) and consecutive waypoint (xk+1, yk+1) = (3000, 0).

The initial position and heading of the glider is set to (x0, y0, ψ0) = (0, 20m,π/4 rad).

An ocean current was present during the simulation with magnitude V n
c = 0.15 m/s

and direction βc = π/2 rad. Accordingly, we let Λ = 12 m and σint = 0.05.
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Figure 4.4: Simulation case 1 - 3D positions

Figure 4.5: Simulation case 1 - 2D positions
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Observations in figure 4.4 and 4.5 implies that there is a significant difference in the

cross track error ye between LOS and ILOS guidance. As previously mentioned, the

LOS equation fails to correct the drifts from the ocean currents and converge along a

parallel path to the desired one. By adding the integral action, the ILOS controller is

able to converge along the desired path with very small uncertainties.

4.3.2 Simulation Case 2 - Path-following using RNN velocity

observers

In the previous simulation case the ground truth north and east positions were used

as feedback for the guidance laws. Having such accurate position estimates is very

unlikely for underwater gliders. Thus, the RNN velocity observers from the previous

chapter is proposed to predict the north and east position of the glider, which is fur-

ther fed to the guidance law(s). This section propose two simulation cases, the first

considers the same straight-line path as in the previous section, but with different

initial conditions. Secondly, a zig-zag path is investigated which have varying path-

tangential angles ξp. For the straight-line path simulation, the initial state of the glider

is (x0, y0, ψ0) = (0, 100m, 0 rad), while the zig-zag path have (x0, y0, ψ0) = (0, 0, 0).

The ocean current parameters in the simulations is the same as simulation case 1.

As the RNN-aided navigation system is prone to estimation error, the glider must

frequently surface. The glider returns to the surface to get a GPS fix when the DR

navigation system ”believes” that it has reached the next waypoint (xk+1, yk+1).

Remark. The simulation is carried out in a local frame (NED) and not geodetic

(GPS/WGS84). The ”GPS” fix is not of geodetic coordinates in the simulation, but

the local NED position it has when returning to the surface. In practice, however, the

glider would need to receive a GPS fix and then transform it to the local frame. But,

this is not necessary in a simulation environment.
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Figure 4.6: Simulation case 2 - straight-line path

Figure 4.7: Simulation case 2 - zig-zag path
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The results in figure 4.6 and 4.7 have far larger cross-track errors than with the

previous simulation case using ground truth position feedback in the guidance laws.

For the straight-line simulation, the glider surfaced three times to reinitialize the DR

algorithm, while 5 times in the secondary simulation with the zig-zag path. Although

there are significant dead-reckoning errors present in the results, the glider is able to

stay relatively close to the desired path with frequent GPS fixes.

4.3.3 Simulation Case 3 - Comparing LOS and ILOS Guidance

Laws in Different Ocean Current Scenarios

In the final simulation case of this chapter, we revisit the straight-line path in the

previous simulation case using RNN observers to aid navigation. In this section we

introduce increased ocean current magnitudes and direction to investigate the perfor-

mance of LOS and ILOS guidance laws. The current magnitudes are increased by

V n
c =

√
unc

2 + vnc
2 ∈ {0.1, 0.2, 0.4} m/s, while the direction is step-wise increased by

βc ∈ {0, 30, 90, 150, 210, 270, 330} degrees. The different ocean current directions are

applied for each magnitude, in total 41 simulations were carried out.
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V n
c = 0.1m/s V n

c = 0.2m/s V n
c = 0.4m/s

(βc, ȳe) (βc, ȳe) (βc, ȳe)

ILOS

(0◦, 21.0 m) (0◦, 21.2 m) (0◦, 21.1 m)
(30◦, 21.6 m) (30◦, 22.4 m) (30◦, 24.0 m)
(90◦, 32.5 m) (90◦, 34.6 m) (90◦, 32.5 m)
(150◦, 25.0 m) (150◦, 25.9 m) (150◦, 26.6 m)
(210◦, 22.2 m) (210◦, 21.8 m) (210◦, 23.0 m)
(270◦, 22.1 m) (270◦, 20.1 m) (270◦, 23.8 m)
(330◦, 21.9 m) (330◦, 21.4 m) (330◦, 20.7 m)

LOS

(0◦, 21.5 m) (0◦, 21.3 m) (0◦, 21.4 m)
(30◦, 22.8 m) (30◦, 22.1 m) (30◦, 23.9 m)
(90◦, 25.7 m) (90◦, 30.9 m) (90◦, 31.1 m)
(150◦, 24.9 m) (150◦, 25.8 m) (150◦, 26.32 m)
(210◦, 22.9 m) (210◦, 21.5 m) (210◦, 22.6 m)
(270◦, 21.6 m) (270◦, 21.4 m) (270◦, 20.7 m)
(330◦, 22.6 m) (330◦, 22.0 m) (330◦, 21.0 m)

Table 4.1: Path-following with different ocean current conditions

Figure 4.8: Polar plot of table 4.1
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4.4 Conclusions

In this chapter we have investigated LOS and ILOS guidance law for the planar motion

path-following problem. The guidance laws were compared in the glider simulation

framework with different ocean current disturbances. The DL aided navigation system

from chapter 3 was added in the GNC loop, providing approximated north and east

feedback to the path-following controllers. We show trough extensive simulations, that

both guidance laws have convergent behavior when the ocean current disturbance is

increased in magnitude and direction. Due to significant DR errors, the glider frequently

surface to reinitialize the path-following controller and navigation system.

4.5 Stability Considerations

To end this chapter we discuss the stability of the proposed kinematic LOS and ILOS

guidance laws of the origin ye = 0, where the vehicle has converged on the path P ∈ R2.

Stability proofs of planar motion line-of-sight path-following control laws are presented

in many works [3, 9, 16,55].

4.5.1 LOS Guidance

We start by investigating the stability for the look-a-head based LOS guidance law that

was firstly introduced in this chapter. In this scenario, the ocean current component is

not considered, such that V n
c = 0. Some assumptions about the kinematic models are

firstly defined:

Assumption 12. The heading and pitch angle is perfectly tracked, such that ψ = ψLOS,

θ = θd.

Assumption 13. The look-a-head distance Λ is chosen such that sway dynamics is

relaxed and the rolling mass actuator is fixed at it’s initial position rγ = 0 rad after

convergence along the path P ∈ R2.
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Remark. The pitch control objective imply that the glider is either in an upward or

downward steady-state glide, in which the vertical path is fixed. The look-a-head distance

must be tuned to hold transient convergence. Otherwise, if too small, it may cause

unnecessary oscillations about the desired path.

Assumption 13 imply that the glider sway dynamics is relaxed, resulting in a zero

roll angle ϕ = 0. Hence, the cross-track error derivative is reduced to

ẏe =− ẋ · s(ξp) + ẏ · c(ξp)

=u · c(ψ) · c(θ) · s(ξp)− v · s(ψ) · s(ξp)

+ w · c(ψ) · s(θ)) · s(ξp) + u · s(ψ)c(θ) · c(ξp)

+ v · c(ψ) · c(ξp) + w · s(ψ) · s(θ) · c(ξp)

(4.11)

Accordingly, eq. 4.11 can be simplified using trigonometric identities shown in [3, 55],

which yields

ẏe = −c(ψ) · s(ξp) · (u · c(θ) + w · s(θ))

+ s(ψ) · c(ξp) · (u · c(θ) + w · s(θ))
(4.12)

Eq. 4.12 is then further simplified by representing the trigonometric equations in phase-

shift format as proposed in [3, 55]

ẏe = U · cos(θ − α) · sin(ψ − ξp) (4.13)

Where U =
√
u2 + w2 and α = atan2(w, u). Following assumption 12 the heading is

perfectly tracked, such that we substitute ψ with ψLOS from eq. 4.6, yielding

ẏe = U · cos(θ − α) · sin(ψLOS − ξp)

ẏe = U · cos(θ − α) · sin(ξp + tan−1(
−ye
Λ

− ξp))
(4.14)
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The term sin(tan−1(−ye/Λ)) is rewritten using the trigonometric property sin(arctan(x)) =

x ·
√
1 + x2/1 + x2, such that

ẏe = U · cos(θ − α) · −ye ·
√

Λ2 + y2e
Λ2 + y2e

(4.15)

Finally the Lyapunov Function Candidate (LFC) is given by

V =
1

2
· y2e (4.16)

in which the time-derivative is defined following [3, 55] as

V̇ =
√
U2 · cos2(θ − α) · −y2e√

Λ2 + y2e
(4.17)

The LFC candidate is negative, which implies universal global asymptotic stability

(UGAS) following the stability theory in [54]. [3,55] also show that the LCF candidate

have universal local exponential stability (ULES) and thereby κ-exponential stability.

Remark. Note that the stability discussed in this section only considers kinematic mod-

els which do not introduce any dynamic parameters. The reader may see [9,16,103] for

extensive stability proofs including vehicle dynamics for the LOS and ILOS guidance

laws.

4.5.2 ILOS Guidance

In the latter section there was no ocean current present for the LOS path-following

problem. With Integral Line-of-Sight (ILOS) however, the ocean current vector and

relative velocity model is reused when representing the kinematics. In this regard, we

rewrite the cross-track error following the work in [9, 16] such that

ẏe = Ur · cos(θ − α) · sin(ψ) + V n
y (4.18)
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where Ur =
√
u2r + w2

r . Substituting ψ with ψILOS in eq. 4.8 gives the subsystem

ẏe =
−Ur · cos(θ − α) · (ye + ki · σint)√

(ye + ki · σint)2 + Λ2
+ V n

y

σ̇int =
ye · Λ

Λ2 + (ye + κ · σint)2

(4.19)

The subsystem 4.19 have the following equilibrium points

σeqint =
Λ · V n

c

ki · (Ur · cos(θ − α)− V n
c )
, yeqe = 0 (4.20)

It’s necessary to move the equilibrium point to the origin. Following [54] and [16] we

have

ζ1 = σint − σeqint, ζ2 = ye + ki · ζ1 (4.21)

where ζ1 and ζ2 are differentiated as

ζ̇1 =
Λ · ζ2

(ζ2 + ki · σint)2 + Λ2
− Λ · ki · ζ1

(ζ2 + ki · σint)2 + Λ2

ζ̇2 =
−Ur · cos(θ − α) ·

√
(ζ2 + ki · σint)2 + Λ2 − ki · Λ · ζ2

(ζ2 + ki · σint)2 + Λ2)

− Λ · k2i · ζ1
(ζ2 + ki · σint)2 + Λ2)

− V n
c ·

√
(ki · σint)2 + Λ2)√

(ζ2 + ki · σint)2 + Λ2

(4.22)

The Lyapunov function candidate (LFC) is defined following [16,103], which is quadratic,

V =
k2i
2

· ζ21 +
1

2
· ζ22 (4.23)
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and have the time derivative

V̇ = −(−ki · Λ + Ur · cos(θ − α) ·
√
(ζ2 + ki · σint)2 + Λ2)

· ζ22
(ζ2 + ki · σint)2) + Λ2

− k3i · Λ
(ζ2 + ki · σint)2 + Λ2

· ζ1

− V n
c ·

√
(ki · σint)2 + Λ2)√

(ζ2 + ki · σint)2 + Λ2
+ V n

c

(4.24)

Following [16] the LCF candidate is bounded by

V̇ ≤ −k3i · Λ|ζ1|2 − Λ · (Ur − ki) · |ζ2|2 = W (4.25)

which yields uniformly global asymptotic stability (UGAS) as W is positive definite.

It is further proved in [16] that the equilibrium point is uniformly exponentially stable

locally (ULES).

Remark. The stability considerations in [16] are based on a kinematic model of a sur-

face vessel. We modify this model by adding the term cos(θ−α) to suit the underwater

glider in a steady-state glide with non-zero angle of attack. As the kinematic models

do not include dynamics they can be applied to different types of vehicles. Stability

considerations involving vehicle dynamics for the ILOS guidance law is further detailed

in [9,16,103] for thruster based AUVs and surface vessels.

106



Chapter 5

Tracking Underwater Gliders Using

an Unmanned Surface Vessel (USV)

This chapter propose a methodology for target tracking of an underwater glider using

an unmanned surface vessel (USV). The topside USV is assumed to have knowledge

about the position of the underwater glider from an acoustic positioning system, which

is exploited to track the planar motions of the submerged vehicle from the surface.

We propose a target tracking method for the purpose of glider localization using un-

manned systems to reduce the operational costs and potential hazards. A guidance law

is implemented in the topside vehicle to pursuit and intercept the underwater glider

while it’s performing generic saw-tooth and spiral maneuvers. A numerical simulation

environment of the two vehicles is presented to validate the target-tracking scheme.

The theory and results from this chapter is the origin for the conference paper draft:

[85] Saksvik, I. B., Alcocer, A., Hassani, V & Pascoal, A. (2022). Tracking Un-

derwater Gliders Using Small Unmanned Surface Vessel (USV). Draft submitted to the

14th IFAC CAMS: Kgs. Lyngby, Denmark (Paper is attached in Appendix D)
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Navigation systems onboard underwater gliders are often prone to estimation er-

rors due to limited sensor payloads. In practice, inertial measurement units (IMUs)

and depth sensors are used to approximate the position of the glider trough simple

kinematic equations, which frequently lead to navigation errors. Absence of accurate

position estimates makes it challenging to evaluate guidance, navigation and control

(GNC) systems. To obtain accurate estimates of glider trajectories, an acoustic baseline

positioning system is typically employed as demonstrated in [42] and [5]. In practice,

however, this requires cumbersome and costly deployment and calibration of a number

of transponders in the seabed. This work proposes a strategy for obtaining such trajec-

tories using an unmanned boat equipped with a low-power acoustic positioning system

with limited calibration requirements.

Due to range limitations in low-power acoustics, it’s convenient to bound the planar

distance between the topside vessel and submerged vehicle. From a control perspective,

we refer to this as target-tracking, that is, to pursuit a moving target whose future

motions are not known. The objective in this paper is to let the topside vessel track

the horizontal displacement of the submerged glider. This motion control problem has

been introduced in several underwater target-tracking & localization schemes using one

or more autonomous surface vessels (ASVs), see e.g., [47, 48, 77]. The maneuvering

task related to tracking and localization is highly dependent upon the number of range-

measurements available to the topside vehicle(s). For instance, single-beacon vehicles,

limited to one acoustic range measurement, impose a challenge to represent the target

on a sphere (3D case) or circle (2D case) surrounding the recipient. In [73] and [65] the

latter issue is solved by continuously encircling around about the target to increase the

range-information from the target. In this paper we assume that the topside vessel is

equipped with a short baseline (SBL) acoustic positioning system and that the position

of the target is known throughout the simulation experiments. Moreover, a vectorial

guidance law is proposed for the USV to track generic motions of an underwater glider.

The guidance system is derived based on the helsman principle as the vessel cannot
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actuate the sway dynamics without changing it’s course. Hence, the guidance law is de-

composed to surge velocity and heading controllers to relax the dynamic and kinematic

assignments of the target-tracking scheme respectively.

5.1 Target Tracking Guidance Law

The topics in airborne guidance systems have been extended to underactuated marine

vessels in various research, see e.g. [12, 14, 77], and [87]. In this section we derive a

constant bearing (CB) guidance law based on the theory presented in the latter works.

Following the notation in [14], we now refer to the surface vessel as the interceptor and

the underwater glider as the target. Before deriving the guidance law we introduce some

assumptions:

Assumption 2.1: The following vectorial definitions are defined with respect to a

fixed local frame denoted {n} with an origin located at an arbitrary point.

Assumption 2.2: The tracked target is assumed to be a moving target such that the

vessel speed satisfies Un
t (t) > 0 ∀ t

Assumption 2.3: The proposed guidance law consider a target moving in a planar

plane, where vertical motions are neglected.

Remark 2.1: Assumption 2.1 implies that the interceptor has no information about the

target’s motion in the body-fixed frame {b}. Secondly, the origin of the fixed local frame

{n} is chosen by the control operator, typically somewhere close to the operation [80]

Guidance laws are typically derived at a kinematic level. Considering a horizontal

plane, we define the planar distance between the target P n
t ∈ R2 and interceptor
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P n
u ∈ R2 as

P̂ n = (P n
t − P n

u ) =


x

n
t − ynt

xnu − ynu


 (5.1)

Differentiate P n
t and P n

u with respect to time yields the inertial velocities νnt = [ẋnt , ẏ
n
u ]
T

and νnu = [ẋnu, ẏ
n
u ]
T . Following [14], the CB guidance law is presented as a velocity

assignment

νn
d = (νn

t + νn
a ) ∈ R2 (5.2)

where νa ∈ R2 is the desired approach velocity vector. Given a maximum approach

speed Ūa and a transient control parameter Λ, the approach velocity is given by

νn
a = Ūn

a · P̂n√
P̂ T
n · P̂n + Λ2

∈ R2 (5.3)

The maximum approach speed Ūn
a must be chosen carefully according to maneuverabil-

ity considerations and physical limitations of the USV.

Most vessels have underactuated sway dynamics during nominal operations (< 1 m/s).

Accordingly, we cannot directly apply the desired velocity vector νnu onto the vessel.

However, we can decompose the CB guidance law into surge and heading references,

where the surge controller controls the velocity size and a heading controller is able to

control the direction of the velocity vector. From the velocity assignment in eq. 5.2,

we have the following velocity control objective:

lim
t→∞

(Un
d − Un

u ) = 0 (5.4)

where Un
d =

√
ẋ2u + ẏ2u is the speed of the vessel. It is convenient to assume that

ẋnu >> ẏnu and that we let Un
d yield

ubd ≈ Un
d (5.5)
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This introduces a new control objective, given as

lim
t→∞

(ubd − ubu) = 0 (5.6)

where ubu is the surge velocity of the vessel in the body-fixed frame {b}.

A line-of-sight (LOS) guidance law is used to compute heading references for the ves-

sel. Following [87] and [13], the LOS guidance law is derived based on the relative

position and orientation of the vessel with respect to the target position Pt ∈ R2. The

cross-track distance xe and cross-track error ye is given by

xne = (xnu − xnt ) · cos(χt) + (ynu − ynt ) · sin(χt)

yne = −(xu − xt) · sin(χt) + (yu − yt) · cos(χt)
(5.7)

where χt = atan2(ẏnt , ẋ
n
t ) ∈ [−π, π] is the target course angle. The LOS guidance law is

derived with a look-a-head distance parameter Λ which determines the convergence rate

towards the desired path. Λ is given in meters and must be tuned carefully such that

it does not exceed the maneuverability properties of the vessel. A common practice is

to let λ ∈ {2, 5} · Lusv. Where Lusv is the length of the vessel. Following [13] and [87]

we have

χLOS = tan−1(
−yne
λ

) (5.8)

We can derive the desired heading reference by

ψd = (χLOS + χt)− βu (5.9)

where βu = atan(−ẏ, ẋ) is the sideslip angle of the USV
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Figure 5.1: Target tracking of glider using an USV

5.2 USV Model

This section details the dynamics of the unmanned surface vessel. The vehicle simu-

lated in this paper is the Otter USV developed by Maritime Robotics. The vehicle is

characterized as a small unmanned catamaran as illustrated in figure 5.1. Before deriv-

ing the equations of motion, we introduce some basic assumptions about the system:

Assumption 3.1: The vessel is actuated by differential thrust from two fixed stern

propellers
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Assumption 3.2: Environmental wind and wave loads acting on the vessel τwind, τwave

are neglected

Assumption 3.3: The payload (acoustic receiver antenna) hydrodynamic drag and

added mass effects are neglected

Assumption 3.4: The vessel is influenced by an ocean current V n
c = [Vx, Vy, 0]

T which

is considered constant and irrotational in the inertial frame, hence V̇ n
c = 0.

Assumption 3.5: The hydrodynamic damping of the vessel is considered linear

The marine craft kinematics and dynamics are derived using the following state vec-

tors: η = [x, y, ψ]T consists of the inertial position and the heading (yaw) ψ of the

vessel. The dynamics is defined by ν = [u, v, r]T . Due to constant irrotational ocean

currents, we rewrite the latter vector into a relative velocity vector following [36]:

νr = [ur, vr, r]
T = [u− ubc, v − vbc, r]

T . The kinematics are defined by a rotation matrix

Rn
b (ψ) from the body-frame {b} to the inertial NED frame {n}. Accordingly, we have

Rn
b (ψ)

∆
=




c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0

0 0 1


 , ∈ SO(3) (5.10)

where c = cos() and s = sin(). The marine craft dynamics and kinematics of an

unmanned surface vessel is given by

η̇ = R(ψ)νr + V
n
c (5.11)

Mν̇r +C(νr)νr +D(νr)νr = τc (5.12)
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whereM =Mrb+MA andC(ν) =Crb(ν) +CA(ν) are the translational and rotational

rigid-body dynamics with correlating added mass effects. Hydrodynamic forces and

moments are included in the damping matrix D(ν). Control forces and moments

which acts on the vessel are defined by τc = BKf = [τu, 0, τr]
T , where B ∈ R3×2 is

the actuator configuration matrix which maps the control inputs (thruster revolutions)

f = [Tu, 0, Tr]
T into surge forces and yaw moments. K ∈ R3×3 is the diagonal force

coefficient matrix. We have the following modelling considerations for the matrices

M ,C,B,D:

M
∆
=




m11 0 0

0 m22 m23

0 m32 m33


 , B

∆
=




b11 b12

0 0

b31 b32




C
∆
=




0 0 c13

0 0 c23

c31 c32 0


 , D

∆
=




d11 0 0

0 d22 d23

0 d32 d33




(5.13)

Following assumption 3.1 we have two nonrotable aft thrusters which imply that the

control allocation problem is trivial and unconstrained. If we reduce B,K, τc to ∈ R2×2

we can compute the control inputs as

f = K−1 B−1 τc = [Tu, Tr]
T (5.14)
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Following [79] we can derive the kinematic and dynamic equations derived in eq. 5.2

into component form. Consequently, we have the following equations of motion:

ẋ =ur · c(ψ)− vr · s(ψ) + Vx

ẏ =vr · s(ψ)− vr · c(ψ) + Vy

ψ̇ =r

ṙ =Fr(ur, vr, r) + τr

u̇r =Fur(vr) + τu

v̇r =X(ur) + Y (ur) · vr

(5.15)

We have that X(ur) = −X1 ·ur+X2, Y (ur) = −Y1 ·ur−Y2. From assumption 3.5 we as-

sume thatX(ur) and Y (ur) are linear functions. The terms Fur(ur), X(ur), Y (ur), Fr(ur, vr, r)

are defined in [79], yielding

Fur(vr, r)
∆
=

1

m11

(m22 vr +m23 r)r −
d11
m11

ur

X(ur)
∆
=− m11m33 −m2

23

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

Y (ur)
∆
=− (m11 −m22)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

Fr(ur, vr, r)
∆
=
m23 d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

· vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r

(5.16)

Remark 6.1 The terms Y (ur) and X(ur) are assumed to be linear. Furthermore, Y (ur)

have the following bounds:

(m11 −m22)m23

m22m33 −m2
23

ur > 0,
d22m33 − d32m23

m22m33 −m2
23

> 0 (5.17)
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5.2.1 Control objective

The control objective for the USV is to track a moving vehicle whose future path is not

known. The target tracking error is defined by ed = [xd, yd, ψd, ud]
T , where ed repre-

sents the desired planar position, heading and surge velocity. Furthermore, we want to

relax the following conditions

lim
t→∞

(x− xt) = 0, lim
t→∞

(y − yt) = 0

lim
t→∞

(ψ − ψd) = 0, lim
t→∞

(u− ud) = 0
(5.18)

Remark 3.1 The control objectives implies that the control problem is underactu-

ated as we aim to control 4DOF with only two control inputs u ∈ R2. Consider-

ing assumption 2.2, that the vessel is always tracking a moving target with a speed

Un
t (t) =

√
ẋ2t (t) + ẏ2t (t) > 0 ∀ t, dynamic positioning scenarios are neglected.

5.2.2 Control System

As described in section 2, the CB guidance law is decomposed into surge and heading

controllers. We assume that the surge-sway dynamics are decoupled, such that two

model-based feedforward PI and PID controllers for surge and the heading can be

implemented. Following [36] we can linearize the maneuvering model in eq. 5.2 to 1DOF

heading and surge subsystems (Nomoto models). Given the control errors û = (u− ud)

and ψ̂ = (ψ − ψd), the surge PI controller and heading PID autopilot are given as

τu =(m−Xu̇) u̇+Xuud − kpu û− kiu

∫ t

0

û(τ) dτ

τr =(Iz −Nṙ) ψ̈d +Nr ψ̇ − kpψ ψ̂ − kdψ
ˆ̇ψ −Kiψ

∫ t

0

ψ̂(τ) dτ

(5.19)

where Xu̇, Xu, Nṙ, Nr are the hydrodynamic damping forces/moments and their deriva-

tives (added mass) in surge and yaw and m and Iz are the vehicle mass and inertia
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(vertical component) respectively.

5.3 Simulation & Results

5.3.1 Case 1

The first case study presents a scenario where the underwater glider is performing a

vertical spiral, which in the horizontal plane results in a circle. The initial conditions of

the Otter USV was [x0, y0, ψ0] = [−100m, 50m, 0 rad]T meters from the initial position

of the underwater glider.

Figure 5.2: Target tracking - Vertical spiral
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Figure 5.3: Case 1 - Surge control
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Figure 5.4: Case 1 - Surge control
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5.3.2 Case 2

The second case study presents a scenario when the glider is conducting a classical saw-

tooth motion. This is considered a Wings-leveled trajectory where there sway dynamics

is relaxed. In the horizontal plane, the glider trajectory is a straight line. The initial

conditions for the vessel were [x0, y0, ψ0] = [−100m,−35m,π/2 rad]

Figure 5.5: Target tracking - Saw-tooth motion
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Figure 5.7: Velocity control
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5.4 Further Work

The further steps are to validate the proposed target tracking scheme with experimental

tests. The aim is to use an Otter USV owned by the ocean laboratory (Oceanlab) at

Oslo Metropolitan University in Oslo, Norway. The vessel is complemented by a short

baseline (SBL) acoustic positioning system from Waterlinked. An acoustic receiver

antenna is mounted on the vessel and submerged approximately 0.5-1 meters. A small

omnidirectional acoustic locator (32 x 121 mm) is mounted on the underwater vehicle

to transmit range measurements to the topside vessel.

Figure 5.8: Oceanlab’s Otter USV equipped with Waterlinked SBL (short baseline)
acoustic positioning system, courtesy of OsloMet
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5.5 Stability Considerations

This section presents a Lyapunov stability analysis target tracking objective P̂n =

P n
u −P n

t ∈ R2. Following [11,36] we define the Lyapunov function candidate (LFC) as:

V =
1

2
· (P̂n)T · P̂n, ∀ P̂n ̸= 0 (5.20)

We differentiate 5.20 with respect time yielding

V̇ = (P̂n)
T · ν̂n (5.21)

where ν̂n = νnt − νnu is the difference between the target and interceptor velocities re-

spectively. Furthermore, we assume that the topside vessel velocity is perfectly tracked

νn
u = νn

d , such that ν̂n is rewritten as

ν̂n = νtt − νnd + ν̃n (5.22)

where ν̃n = νnd − νnu . Furthermore, we expand νnd which yields

ν̂n = −Ūa ·
P̂√

(P̂n)T · P̂n + Λ2

+ ν̃n (5.23)

Assuming that the velocity objective ν̃n is perfectly tracked yields

V̇ = −Ūa ·
(P̂n)

T · P̂n√
(P̂n)T · P̂n + Λ2

(5.24)

where the maximum approach speed Ūa and transient parameter Λ are both larger

than zero, which imply that eq. 5.24 is negative definite [11]. Hence, the origin of P̂n is

uniformly globally asymptotically stable (UGAS) according to the nonlinear stability

theory in [54].
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Chapter 6

Discussion & Further Work

In this chapter we discuss the theory and results from the main topics in this thesis

- Modelling, control, navigation, path-following, and target tracking. Finally, recom-

mendations for further improvements are proposed.

6.1 Modelling and Control

The dynamic model of the buoyancy driven underwater glider and attitude and head-

ing control was presented in chapter 2. The simulated model is used throughout the

thesis to validate guidance, navigation and target tracking schemes. In some sections

of the extensive model, there are rough simplifications, particularly related to actu-

ator modelling that consists of simple saturation models to reflect the time-delayed

dynamics of the VBS and moving mass systems. Additionally, the coupled dynamics

between the glider body and moving mass is neglected, which in previous works have

been included [42, 62, 106]. We argue that these effects are neglectable for the purpose

of validating model-free control systems and observers. However, this is just an as-

sumption that is not prior to any empirical observations/knowledge.

To reflect real ocean conditions, ocean current disturbances were introduced in the

dynamic glider model. Following previous works [16,36,79,103], the ocean current dis-
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turbances were defined by planar current components that were considered irrotational

and constant in the inertial reference frame. However, in slowly moving buoyancy pro-

pelled gliders, the ocean currents tend to change over time due to perpetual forces, e.g.,

tidals. To make the simulation more realistic, the planar ocean current components

V n
c = [V n

x , V
n
y , 0]

T could be varying with respect to the depth of the glider, such that

V n
c (z) = [V n

x (z), V
n
y (z), 0]

T

For further development of the glider model, investigating the performance of the dy-

namic model versus experimental data may be convenient to ensure merit in control,

path-following and navigation systems. Additionally, for longer simulation experiments,

tidal models could be added to the ocean current model (e.g., harmonic sine equation).

6.2 Navigation

A data-driven approach to dead-reckoning navigation was proposed in chapter 3 for the

simulated glider and the Tethys hybrid AUV/glider. Ground truth simulated veloci-

ties and measured bottom-lock DVL velocities were used as a reference in sequential

learning. As the experiments with the Tethys AUV were conducted with a LinkQuest

DVL attached to the vehicle, which have a weight and impose hydrodynamic drag, the

proposed velocity observers were not tested without the DVL. Accordingly, we do not

have any empirical evidence of the neural network observers when the DVL is detached

from the vehicle, which would assumably cause some deviation in the velocity estima-

tion. One solution to this issue could be to create a Dummy DVL which contains the

same weight and hydrodynamic shape of the actual sensor.

Further work may investigate the performance of the neural networks when the DVL is

removed from the vehicle. To improve the neural network performance, an analysis of

the selected input variables could be proposed. In [88] a mutual information analysis

of the network inputs are considered to find the inputs that are most dependent on the
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output, and thereby improving network generalization.

6.3 Guidance

Chapter 4 presents planar motion LOS and ILOS path-following controllers for the

buoyancy driven underwater glider. The performance of the two guidance laws are

highly dependent of the accuracy of the navigation system. We show that the glider

path is relatively close to the desired path when using the DL navigation system from

chapter 3. Surprisingly, the difference between ILOS and LOS guidance is very small

when the DL navigation system is used, while significant when the ground truth north

and east positions are used as feedback. The mean cross-track error ȳe is almost uni-

form when applying different ocean current magnitudes and directions, implying that

the guidance laws are adaptable to different ocean current scenarios.

Further work may investigate more closely the relationship between the navigation

errors and path convergence. Improvements of the planar-motion guidance system is

mostly dependent upon the navigation system, but tuning the path-following control

parameters Λ and σint may give better control responses.

6.4 Target tracking

The final topic in this thesis is target-tracking of underwater gliders. A topside vessel

is assumed to be equipped with an acoustic positioning system to bound the planar

distance to the target (underwater glider). The proposed constant bearing guidance

law originates from airborne missile systems, in which the objective is to intercept a

target. The need to intercept the planar distance of the glider is not our end goal,

but simply keeps the topside vessel within range such that the acoustic positioning

system is able to get sufficient measurements. However, the waterlinked SBL system,

that is recommended to use in sea-trials, claims to have an operating radius of 300
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meters, where interception is not necessary. It may be more convenient to create a

target-tracking control system that is more power-efficient where its objective is to stay

within the 300 meter radius. Further work may look into optimal control strategies

e.g., MPC (model predictive control), LQR (linear quadratic control) etc. For example,

when the glider is performing a vertical spiral, the topside vessel could rather perform

a station-keeping mode instead of following the circular motion of the target. In this

way, the topside vessel reduces its net power consumption.
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Appendix A

Seawing Underwater Glider

The following table details the mechanical properties of the Seawing glider that was used

in the numerical simulation of the dynamics in MATLAB. The position of the static

mass rms ∈ R3 and net buoyancy rmb ∈ R3 are offset from the center of origin which

coincides with the center of buoyancy rcb = [0, 0, 0]T ∈ R3. The latter assumption

is convenient as CB is always located at the center of the displaced volume of the

glider [41].

Static mass ms 54.28 kg

Moving/rolling mass mp 11 kg

Net buoyancy mb -0.5 kg < mb < 0.5 kg

Position of static mass rms = [-0.0814 0 0.0032] m

Position of net buoyancy rmb = [0 0 0] m

Inertia of static mass Is = diag[0.60 15.27 15.32] kg m2

Inertia of moving/rolling mass Imp = diag[0.02 10.16 0.17] kg m2

The hydrodynamic forces and moments of the Seawing glider were simulated in a CFD

analysis using Reynolds Averaged Navier-Stokes (RANS) equations [113]. Accordingly,

the coefficients for the different forces and moments of the glider was estimated. The
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following table details the estimated hydrodynamic coefficients of the Seawing glider

[113]

D KD0 = 7.19 kg/m KD = 386.29 kg/m/rad2

L KL0 = -0.36 kg/m Kα = 440.99 kg/m/rad

SF Kβ = -115.65 kg/m/rad

K KMR = -58.27 kg/rad Kp = -19.83 kg s/rad

M KM0 = 0.28 kg Kq = -205.64 kg s/rad2

N KMY = 34.10 kg/rad Kr = -389.30 kg s/rad2

Addition to the coefficient based hydrodynamic model the added mass coefficients for

the seawing glider is presented in [113] as

MA = −diag[1.48, 49.58, 65.92, 0.53, 7.88, 10.18] (A.1)
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∗ Department of Mechanical, Electronics and Chemical Engineering,
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Abstract: This paper investigates the performance of path-following controllers in underwater
gliders that have limited sensor suites. We consider two planar motion guidance laws for the
path-following control problem: I) A line-of-sight controller, and II) an integral line-of-sight
controller, where an integral action corrects drifts from unknown ocean current disturbances.
The on-board navigation system, which is the main feedback component to the planar motion
guidance laws, is aided by two recurrent neural networks (RNN) velocity observers to better
approximate the planar position of the glider, using inputs from the limited navigation suite
(IMU, pressure sensor, control actions). The performance of the proposed path-following
controllers is analysed in a glider simulation with varying ocean current conditions.

Keywords: LOS guidance, Underwater glider, Path-following, Waypoint Guidance.

1. INTRODUCTION

Underwater gliders are fixed-wing autonomous underwater
vehicles (AUVs) driven by buoyancy engines. To travel
from place to place, gliders change depth continuously
by adjusting it’s net buoyancy. The combination of verti-
cal profiling and a power-efficient propulsion system have
made these vehicles attractive in oceanographic research
and monitoring as highlighted in various expeditions Dong
et al. (2017), Glenn et al. (2011). Underwater gliders
exploits hydrostatic forces (gravity and buoyancy) for loco-
motion. A set of fixed wings translates the vertical motion
into a forward motion. Likewise to many other marine
vehicles, gliders are underactuated, that is, the inability
to instantly move along it’s lateral axis.
Due to the large operating ranges of gliders, a pilot moni-
tors the travel record and determines waypoints in which
the vehicle should travel to. The general guidance appli-
cation is to travel along straight-lines between the prede-
fined waypoints, also referred to as path-following. Due to
underactuation, the path-following problem is formulated
by the helsman principle. The vehicle must change it’s
course while moving forward to follow an arbitrary planar
path. From a mathematical perspective, this consists of
computing the heading necessary to converge on the path,
while maintaining a steady cruising speed. Furthermore,
a low-level control system (heading controller) is cascaded
with the guidance law to bound the heading control error.
Note that the path-following problem does not impose any
temporal constraints in the control objective, conversely
to trajectory-tracking which needs to arrive on a path at a

⋆ This work was supported by the OASYS project funded by the
Research Council of Norway (RCN), the German Federal Ministry
of Economic Affairs and Energy (BMWi) and the European Com-
mission under the framework of the ERA-NET Cofund MarTERA.

specific time.

There have been presented many approaches to the path-
following control problem for underactuated marine ve-
hicles, mostly by deriving kinematic guidance laws, see
Breivik and Fossen (2009), Lekkas and Fossen (2013),
Borhaug et al. (2008), Zhou et al. (2016), Wiig et al.
(2016), Caharija et al. (2016), but also reinforcement learn-
ing methods has been proposed Martinsen and Lekkas
(2018). Legacy gliders such as Slocum use a velocity vector
assignment to compute the heading references for the
planar motion case Woithe et al. (2013). This consists of
exploiting the velocity vector of the vehicle with respect
to the path and optionally using the ocean current vector
to compensate for trajectory drifts.

In recent time, line-of-sight (LOS) guidance laws have
received popularity in various underactuated marine vehi-
cles Lekkas and Fossen (2013), Breivik and Fossen (2009),
Zhou et al. (2016). To compensate for environmental loads,
e.g, ocean currents, an integral term can be added to the
LOS guidance law as presented in Borhaug et al. (2008),
Caharija et al. (2016), Wiig et al. (2016). The purpose of
the integral action is to bound the drift between the vehicle
and the path, usually manifested by a parallel path due to
constant or slowly-changing ocean currents.
Based on the latter works in line-of-sight and integral
line-of-sight based path-following for AUVs and surface
vessels, we aim to extend this for underactuated under-
water gliders in presence of unknown ocean current dis-
turbances. And, also, investigate the performance of the
path-following controllers considering a limited navigation
suite with significant dead-reckoning errors.

The remaining parts of this paper are organized as follows:
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Section 2 presents the planar motion guidance laws for the
underactuated underwater glider, Section 3 and Section 4
describe a mathematical model of the glider dynamics and
control & navigation systems respectively, followed by the
simulation results in section 5.

2. PLANAR MOTION PATH-FOLLOWING

In this section we derive the line-of-sight (LOS) and in-
tegral line-of-sight (ILOS) guidance laws for the planar
motion path-following problem.
The majority of glider missions consists of travelling be-
tween geodetic waypoints. The vehicle must occasionally
turn when transitioning to a new set of waypoint coor-
dinates. We consider that the path P is parameterized
as a straight line between the predefined waypoints. We
can parametarize the straight-line path assuming a scalar
ζ ∈ R is given so that

P =

[
xp
yp

]
=

[
xk + ζ · cos(ξp)
yk + ζ · sin(ξp)

]
(1)

Where (xk, yk) is a fixed location on the path and ξp is the
angle between the path and the x-axis along the stationary
reference frame Breivik and Fossen (2009). Most under-
water gliders use internal rotating masses to create a yaw
moment by rolling the glider body. The roll motion will
force the wings to be non-collinear in the z-axis, causing
the glider to enter a vertical spiral/turn. Due to active roll
motions, the kinematic equations of the vehicle is derived
by all euler angles Θ = [ϕ, θ, ψ]T . Note that some gliders
(e.g., Slocum) are stable in roll where ϕ can be neglected
when describing the kinematics. Following Fossen (2011)
the position of the vehicle in the inertial NED (north-east-
down) frame is defined as

[
ẋ

ẏ

]
=


ur · c(ψ)c(θ) + vr · [c(ψ)s(θ)s(ϕ)− s(ψ)c(ϕ)]

+wr · [s(ψ)s(ϕ) + c(ψ)c(ϕ)s(θ))] + V nx

ur · s(ψ)c(θ) + v · (c(ψ)c(ϕ) + s(ϕ)s(θ)s(ψ))
+w · (s(θ)s(ψ)c(ϕ).c(ψ)s(ϕ) + V ny


(2)

where c() = cos() and s() = sin(). The relative linear
velocities are defined as υr = [ur, vr, wr]

T = [u − ubc, v −
vbc, w − wbc]

T . Where the ocean current νbc is considered
constant and irrotational in the inertial frame.

We start deriving the guidance law by representing the
position of the vehicle with respect to the path P. The
path is defined by the initial waypoints (xk, yk) ∈ R2

and the consecutive waypoints (xk+1, yk+1) ∈ R2. The
straight-line represented by the two waypoints have a path-
tangential angle defined as

ξp = atan2(yk+1 − yk, xk+1 − xk) (3)

where atan2(x,y) represents the fourth-quadrant of tan−1( yx )
∈ (−π/2, π/2). Following Lekkas and Fossen (2013) we can
derive the position of the glider with respect to the fixed
path, denoted by the cross-track distance xe and cross-
track error ye:

xe = (x− xk) · cos(ξp) + (y − yk) · sin(ξp)
ye = −(x− xk) · sin(ξp) + (y − yk) · cos(ξp)

(4)

The time-derivative of the cross-track error ye is given by

ẏe =− ẋ · s(ξp) + ẏ · c(ξp)
=ur · c(ψ) · c(θ) · s(ξp) + vr · (c(ψ) · s(θ) · s(ϕ)
− s(ψ) · c(ϕ)) · s(ξp) + wr · (s(ψ) · s(ϕ)
+ c(ψ) · c(ϕ) · s(θ)) · s(ξp) + V nx + ur · s(ψ)c(θ) · c(ξp)
+ vr · (c(ψ) · c(ϕ) + s(ϕ) · s(θ) · s(ψ)) · c(ξp)

+wr · (s(θ) · s(ψ) · c(ϕ)− c(ϕ) · s(ϕ)) · c(ξp) + V ny
(5)

Stability proofs of eq. 5 at the equilibrium ye = 0 have
been derived for planar LOS and ILOS guidance laws in
various literature, see Borhaug et al. (2008), Lekkas and
Fossen (2013), Caharija et al. (2016), Breivik and Fossen
(2009). We now derive the LOS guidance law which is
defined by the kinematic properties previously defined in
this section. Given a path-tangential angle ξp, cross-track
error ye and a look-a-head distance denoted Λ, we derive
the planar motion guidance law as

ψLOS = ξp + tan−1(
−ye
Λ

) (6)

where Λ > 0 determines the convergence rate towards
the desired path. This is a design parameter (given in
meters) that must be tuned correctly. If Λ is too large,
the convergence time will be long. If Λ is too small, the
convergence rate may be faster than the response of the
underactuated vehicle, resulting in oscillating trajectories.
The ILOS guidance law is derived as an extension of eq. 6.
Following Caharija et al. (2016) and Borhaug et al. (2008),
we get

ψILOS = ξp + tan−1(
−ye
Λ

+ ki ·
∫ t

0

ye dt) (7)

In Borhaug et al. (2008) eq. 7 is rewritten to avoid anti-
windup effects due to the integral term:

ψILOS = ξp − tan−1(
ye + ki · σint

Λ
)

σ̇int =
ye · Λ

Λ2 + (ye + ki · σint)2

(8)

where ki is a design parameter. Equations 8 satisfies the
property {σ̇int → 0} when {ye → ∞} Borhaug et al.
(2008). Thus, the integration rate is slowed down for
large values of ye, for example when ψ << ψILOS which
can occur when transitioning between waypoints where
ξp+1 >> ξp.

Figure 1. ILOS guidance - 2D view
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3. GLIDER DYNAMICS

An underwater glider is characterized as a rigid body (usu-
ally torpedo shaped) with fixed wings. A variable buoy-
ancy system (VBS) is exploited to expand and contract the
volume that the vehicle is displacing trough an external
bladder. This allows the vehicle to sink and rise in the
water column, and is the main source of locomotion. The
hydrodynamic lift forces acting on the wings ensures that
the vertical motion is translated into a forward motion.
Due to low dynamic pressure (a result of slow cruising
speeds), conventional control surfaces such as rudders and
dive planes are replaced by internal translating and ro-
tating masses - often a custom shaped battery-pack lo-
cated inside the glider housing. This allows the vehicle
to create pitch and yaw moments by manipulating the
center of gravity CG vector, where the glider body and
moving mass system is considered coupled. Before deriving
a mathematical model of the glider dynamics, we define
some assumptions about the vehicle:

Assumption 4.1: The center of buoyancy CB ∈ R3 is
chosen as origin and is located at the center of the displaced
fluid, hence CB = [xcb, ycb, zcb]

T = [0, 0, 0]T

Assumption 4.2: The position of the internal buoyancy
mass (internal oil-tank/bladder) rmb ∈ R3 coincides with
CB

Assumption 4.3: The transnational and angular accel-
eration of the internal point mass actuator are considered
neglectable: v̇mp = ω̇mp ≈ 0. Thus the applied moving mass
forces and moments are considered as constraint forces.

Remark 4.1 Assumption 4.3 is convenient as the internal
moving mass actuators are in practice translated and ro-
tated at low velocities. These effects are neglected in order
to avoid modelling the complex coupled dynamics between
the rigid glider body and internal moving masses

A mathematical model of the glider is derived using the
6DOF vectorial marine craft dynamics presented in Fos-
sen (2011). The state variables can be divided into two
vectors - The position in the inertial frame {n} defined as
η = [x, y, z, ϕ, θ, ψ]T and the relative velocity in the body
frame {b} νr = [ur, vr, wr, p, q, r]

T . Ocean current dis-
turbances are considered irrotational and constant in the
inertial frame {n}. The ocean current model is assumed
two-dimensional, where vertical currents wc are neglected,
from Fossen (2011) we have

νbc =

[
V nc · cos(βc − ψ)
V nc · sin(βc − ψ)

0

]
, V nc =

√
unc + vnc (9)

The 6DOF dynamics of an underwater glider is derived as

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ c (10)

Where M ∈ R6×6 = M rb + MA and C(ν) ∈ R6×6

= Crb(ν) + CA(ν) are the transnational and rotational
rigid-body dynamics with correlating added mass effects.
Hydrodynamic forces and moments are described in the
damping matrix D(ν3) ∈ R6×6 and the restoring forces
are defined by g(η) ∈ R6×1. τ c is the vector describing

the control forces and moments which acts on the vehicle.
Following assumption 4.3, we consider the applied control
moments to be constraint forces, thus τ c = 06×1. The
marine craft dynamics is defined by skew-symmetric prop-
erties which satisfies S(x)·y = x×y, where S ∈ R3×3 and
x ∈ R3×1. Furthermore, we can derive the inertia matrix
of the system as

M =

[
mI3×3 −mS(rcg)
mS(rcg) Icg −mS2(rcg)

]
−
[
MA1 03×3

03×3 MA2

]
(11)

where {MA1 ,MA2} ∈ R3×3 are diagonal hydrodynamic
derivatives (added mass) - MA1 = diag([Xu̇, Yv̇, Zẇ]) and
MA2 = diag([Kṗ,Mq̇, Nṙ]). The center of gravity vector
rcg is not fixed in time due to the internal moving mass
actuators, thus ṙcg ̸= 0. Following Graver (2005) we can
derive the center of gravity vector as

rcg =
∑ mirmi

mt
=
msrms +mprmp +mbrb

mp +ms +mb +mh
∈ R3 (12)

For simplicity we assume that the position of the buoyancy
mass rb is fixed. Given a servo angle (angular position)
of the rotating actuator γ, the position of the moving
mass rmp with respect to the origin (CB) is given by
Mahmoudian and Woolsey (2008) as

rmp =

rxpryp
rzp

 =

[
rxp

rc · cos(γ + π/2)
rc · sin(γ + π/2)

]
(13)

where rc is the radius of the semi-cylindrical mass
(battery-pack). To model ocean currents in the 6DOF
manoeuvring model, the rotational dynamics detailing
Coriolis and centripetal forces is derived using velocity-
independent parametrizations Fossen (2011). Given the
body-fixed angular velocities ωb = [p, q, r]T the rotational
rigid-body dynamics is derived as

C(ν) =

[
m · S(ωb) −m · S(ωb) · S(rcg)

m · S(rcg) · S(ωb) −S(Ib · ωb)

]
−
[

03×3 −S(ν ·MA1
)

−S(ν ·MA1
) −S(ωb ·MA2

)

] (14)

where Ib and m is the vehicle inertia and total mass
respectively.

The restoring forces is the result of gravitational and buoy-
ant forces acting on the vehicle. The buoyancy is defined
by B = ρg∆, which depends of the water density ρ and dis-
placed fluid volume ∆. The gravity force and bouyant force
can be defined in the inertial frame as fng = [0, 0,−mg]
and fnb = [0, 0, ρg∆] respectively. Accordingly, the hydro
static matrix is defined by

g(η) = −

 Rn
b (Θ)−1(fng + fnb )

S(rcg) ·Rn
b (Θ)−1fng + S(rcb) ·Rn

b (Θ)−1fnb


(15)

where Rn
b (Θ) ∈ SO(3) is the rotation matrix from the

inertial frame {n} to the body frame {b}, defined by the
euler angles Θ = [ϕ, θ, ψ]T . Note: information about the
displaced fluid volume ∆ is not always available, hence
we replace this by the displaced fluid mass ∆m which is
altered by the net buoyancy mass mb.

Lastly we derive the damping matrixD(νr). As fixed wing
gliders shares similarities with fixed wing aerial vehicles,
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the damping terms are derived using standard aerody-
namic coefficient based models, where control surface de-
flections are neglected. Due to low operating speeds, the
damping is considered quadratic and diagonal, accordingly
we have the matrix shape

D(νr) = −diag([D,SF,L,K,M,N ]) (16)

where D, SF, L are drag, sideforce and lift force respec-
tively, and K, M, N are moments about each axis (roll,

pitch, yaw). Given a relative speed Ur =
√
u2r + v2r + w2

r ,
angle-of-attack (AOA) α = asin(w/u) and sideslip angle
(SSA) β = atan(v/U) we can derive the hydrodynamic
forces and moments in component form following the the-
ory presented in Graver (2005) and Zhang et al. (2013)

D = (KD0
+KD · α2) · U2

r

L = (KL0
+Kα · α) · U2

r

SF = Kβ · β · U2
r

K = (KMR · β +Kp · p) · U2
r

M = (KM0 +KM · α+Kq · q) · U2
r

N = (KMY · β +Kr · r) · U2
r

(17)

where KD0, KD etc. are damping coefficients, ususally
mapped in towing-tank facilities or using computational
fluid dynamics (CFD) analysis, see Javaid et al. (2017),
Zhang et al. (2013), Singh et al. (2017).

4. CONTROL & DEAD-RECKONING NAVIGATION

This section presents the low-level controllers for the
underwater glider and dead-reckoning approaches with a
limited navigation suite.

4.1 Control Objective

First we introduce an overview of the control objectives,
both for path-following and low-level control. To follow an
arbitrary planar path P ∈ R2, the glider must satisfy the
following conditions:

lim
t→∞

(y − yLOS) = 0

lim
t→∞

(ψ − ψILOS) = 0, ψ ∈ (−π, π)

lim
t→∞

(θ − θd) = 0, θ ∈ (−π/4, π/4)

(18)

The two first conditions satisfies convergence of the path
following problem, while the latter condition ensures that
the vehicle will move forward.

4.2 Pitch & Heading Control

Glider dynamics behaves in a slow and linear fashion. PID
controllers are typically employed for attitude and heading
control of gliders as presented in Eriksen et al. (2001),
Graver (2005), Mahmoudian and Woolsey (2008). In this
paper two PD controllers are implemented for the heading
autopilot and pitch controller. A simple bang-bang con-
troller is applied for the variable buoyancy system. A block
diagram of the control system is illustrated in figure 2.
During downward glides, the control error e(t) does con-
verge towards zero as the pitch reference is negative.
Hence, we introduce gain scheduling for the proportional

terms. The procedure is simple, when the glider dives, the
p-term is negative, and positive while ascending. We derive
the PD controllers as

rγ(t) = kpψ · eψ(t) + kdψ · ˙eψ

rx(t) = kpθ · eθ(t) + kdθ · ėθ
(19)

The PD terms used in this paper are defined as:

kpψ = ± 0.8 kdψ = 0.01 kpθ = ± 3 kdθ = 0.05

4.3 DR Navigation: A Machine Learning Approach

A notorious challenge for underwater gliders is to navigate
while submerged. Due to absence of GNSS systems, they
rely on dead-reckoning (DR) to predict the position of
the vehicle. DR relies on time-integration of the velocities
wrt to it’s inertial frame (see equation 2) to compute
the vehicle displacement. As gliders rarely have access to
acoustic navigational instruments such as doppler velocity
loggers (DVLs), computing the relative surge and sway
velocities are typically approximated using IMUs and
depth sensors Woithe et al. (2013), which frequently leads
to estimation errors. In this paper we propose a machine
learning approach to approximating the relative surge and
sway velocities based on the work in Saksvik et al. (2021).
As illustrated in figure 2, an LSTM (Long-term-short-
term memory) recurrent neural network is proposed to
compute the velocities, using inputs from control actions
(moving mass actuators, oil displacement), IMU data and
depth sensor measurements. To train the neural network
we need ground truth velocity measurements from a few
sea-trials/simulations. After the network is trained, it
approximates the relative velocities using only a limited
sensor suite. To avoid large dead-reckoning errors, the
glider frequently surfaces to get a GPS fix to reinitialize
the algorithm.

Figure 2. Guidance, Navigation & Control (GNC) systems
- Block diagram
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5. SIMULATIONS & RESULTS

A simulation enviroment based on the glider dynamics de-
rived in section 3 was implemented in MATLAB/Simulink.
The simulated glider object is the Seawing glider Zhang
et al. (2013), which is 1.99 m long and have a net weight
of 64.28 kg. Firstly, we investigate the performance of
the path-following controllers in presence of a constant
irrotational ocean current.

The first two experiment considers a straight-line tra-
jectory and zig-zag trajectory while following the path
between the predefined waypoints. The ILOS guidance
law was implemeted in the simulation with a look-a-head
distance of Λ = 15 m and ki = 0.05. The ocean current
mangitude and direction is given as V nc = 0.25 m/s and
βc = 4.7 rad (270◦). The maximum operating depth of the
glider is 60 meters in the simulation.
The first simulation (figure 3) have an initial position of
(x0, y0) = (0, 100) m.

Figure 3. Path-following - Straight line trajectory

Figure 4. Path-following - Zigzag trajectory

The second experiment reconsiders the straight-line tra-
jectory scenario illustrated in figure 3, but with varying
ocean current magnitude and direction. This was done
to investigate the performance of the path-following con-
troller and the reliability of the dead-reckoning navigation
system. The evaluation parameter in the following table is
the mean cross-track error ȳe derived as

ȳe =

∑N
i=1 ye
N

(20)

The mean cross-track error was evaluated for differ-
ent combinations of ocean current magnitude V nc ∈
{0.1, 0.2, 0.4} m/s and ocean current direction βc ∈
{0◦, 30◦, 90◦, 150◦, 210◦, 270◦, 330◦}

V n
c = 0.1m/s V n

c = 0.2m/s V n
c = 0.4m/s

(βc, ȳe) (βc, ȳe) (βc, ȳe)

ILOS

(0◦, 21.0 m) (0◦, 21.2 m) (0◦, 21.1 m)

(30◦, 21.6 m) (30◦, 22.4 m) (30◦, 24.0 m)

(90◦, 32.5 m) (90◦, 34.6 m) (90◦, 32.5 m)

(150◦, 25.0 m) (150◦, 25.9 m) (150◦, 26.6 m)

(210◦, 22.2 m) (210◦, 21.8 m) (210◦, 23.0 m)

(270◦, 22.1 m) (270◦, 20.1 m) (270◦, 23.8 m)

(330◦, 21.9 m) (330◦, 21.4 m) (330◦, 20.7 m)

LOS

(0◦, 21.5 m) (0◦, 21.3 m) (0◦, 21.4 m)

(30◦, 22.8 m) (30◦, 22.1 m) (30◦, 23.9 m)

(90◦, 25.7 m) (90◦, 30.9 m) (90◦, 31.1 m)

(150◦, 24.9 m) (150◦, 25.8 m) (150◦, 26.32 m)

(210◦, 22.9 m) (210◦, 21.5 m) (210◦, 22.6 m)

(270◦, 21.6 m) (270◦, 21.4 m) (270◦, 20.7 m)

(330◦, 22.6 m) (330◦, 22.0 m) (330◦, 21.0 m)

Table 1. Path-following with different ocean
current conditions

Figure 5. Mean cross-track error ȳe vs ocean current
magnitude and direction, V nc , βc. Polar plot of table
1
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6. CONCLUDING REMARKS

This work has addressed the path-following problem for
underactuated underwater gliders with limited sensor pay-
loads. Two planar motion line-of-sight guidance laws were
implemented and compared. To improve dead-reckoning
navigation, an LSTM recurrent neural network velocity
observer was used. The simulation results, with signif-
icant dead-reckoning errors, shows that the mean error
for straight line path-following problems for 2km displace-
ments is between 20-40 meters.
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Abstract: This paper propose a methodology for target tracking of an underwater glider using
an unmanned surface vessel (USV). The topside USV is assumed to have knowledge about
the position of the underwater glider from an acoustic positioning system, which is exploited
to track the planar motions of the submerged vehicle from the surface. We propose a target
tracking method for the purpose of glider localization using unmanned systems to reduce the
operational costs and potential hazards. A guidance law is implemented in the topside vehicle to
pursuit and intercept the underwater glider while it’s performing generic saw-tooth and spiral
maneuvers. A numerical simulation environment of the two vehicles is presented to validate the
target-tracking scheme.

Keywords: Target tracking, Underwater Glider, Unmanned Surface Vehicle (USV).

1. INTRODUCTION

Navigation systems onboard underwater gliders are often
prone to estimation errors due to limited sensor payloads.
In practice, inertial measurement units (IMUs) and depth
sensors are used to approximate the position of the glider
trough simple kinematic equations, which frequently leads
to navigation errors. Absence of accurate position esti-
mates makes it challenging to evaluate guidance, navi-
gation and control (GNC) systems. To obtain accurate
estimates of glider trajectories, an acoustic baseline po-
sitioning system is typically employed as demonstrated in
Graver et al. (2003) and Bahr et al. (2009). In practice,
however, this requires cumbersome and costly deployment
and calibration of a number of transponders in the seabed.
This paper proposes a strategy for obtaining such tra-
jectories using an unmanned boat equipped with a low-
power acoustic positioning system with limited calibration
requirements.

Due to range limitations in low-power acoustics, it’s con-
venient to bound the planar distance between the topside
vessel and submerged vehicle. From a control perspective,
we refer to this as target-tracking, that is, to pursuit a
moving target whose future motions are not known. The
objective in this paper is to let the topside vessel track the
horizontal displacement of the submerged glider. This mo-
tion control problem have been introduced in several un-
derwater target-tracking & localization schemes using one

⋆ This work was supported by the OASYS project funded by the
Research Council of Norway (RCN), the German Federal Ministry
of Economic Affairs and Energy (BMWi) and the European Com-
mission under the framework of the ERA-NET Cofund MarTERA.

or more autonomous surface vessels (ASVs), see e.g., Hung
et al. (2021), Hung et al. (2020), Norgren et al. (2015). The
maneuvering task related to tracking and localization is
highly depended upon the number of range-measurements
available to the topside vehicle(s). For instance, single-
beacon vehicles, limited to one acoustic range measure-
ment, impose a challenge to represent the target on a
sphere (3D case) or circle (2D case) surrounding the recip-
ient. In Moreno-Salinas et al. (2016) and Masmitja et al.
(2018) the latter issue is solved by continuously encircling
around about the target to increase the range-information
from the target. In this paper we assume that the topside
vessel is equipped with a short baseline (SBL) acoustic
positioning system and that the position of the target is
known throughout the simulation experiments. Moreover,
a vectorial guidance law is proposed for the USV to track
generic motions of an underwater glider. The guidance
system is derived based on the helsman principle as the
vessel cannot actuate the sway dynamics without changing
it’s course. Hence, the guidance law is decomposed to
surge velocity and heading controllers to relax the dynamic
and kinematic assignments of the target-tracking scheme
respectively.

The remaining parts of this paper are organized as fol-
lows: The target-tracking guidance law and maneuvering
model of the topside vessel is derived in section 2 and 3
respectively. The target, an underwater glider, is detailed
in section 4. Simulation results are presented in section
5 and recommendations for further work are presented in
the last section. Finally, an appendix with the complete
equations of the USV is given.
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2. TARGET TRACKING GUIDANCE LAW

The topics in airborne guidance systems have been ex-
tended to underactuated marine vessels in various re-
search, see e.g. Breivik and Fossen (2007), Breivik et al.
(2008), Norgren et al. (2015), and Skejic et al. (2009). In
this section we derive a constant bearing (CB) guidance
law based on the theory presented in the latter works. Fol-
lowing the notation in Breivik et al. (2008), we now refer
to the surface vessel as the interceptor and the underwater
glider as the target. Before deriving the guidance law we
introduce some assumptions:

Assumption 2.1: The following vectorial definitions are
defined with respect to a fixed local frame denoted {n} with
an origin located at an arbitrary point.

Assumption 2.2: The tracked target is assumed to be a
moving target such that the vessel speed satisfies Un

t (t) >
0 ∀ t

Assumption 2.3: The proposed guidance law consider a
target moving in a planar plane, where vertical motions
are neglected.

Remark 2.1: Assumption 2.1 imply the interceptor have
no information about target’s motion in the body-fixed
frame {b}. Secondly, the origin of the fixed local frame {n}
is chosen by the control operator, typically somewhere close
the operation Penas (2009)

Guidance laws are typically derived at a kinematic level.
Considering a horizontal plane, we define the planar dis-
tance between the target P n

t ∈ R2 and interceptor P n
u ∈

R2 as

P̂
n
= (P n

t − P n
u) =

[
xnt − ynt
xnu − ynu

]
(1)

Differentiate P n
t and P n

u with respect to time yields the
inertial velocities νn

t = [ẋnt , ẏ
n
u ]

T and νn
u = [ẋnu, ẏ

n
u ]

T .
Following Breivik et al. (2008), the CB guidance law is
presented as a velocity assignment

νn
d = (νn

t + νn
a ) ∈ R2 (2)

where νa ∈ R2 is the desired approach velocity vector.
Given a maximum approach speed Ūa and a transient
control parameter Λ, the approach velocity is given by

νn
a = Ūn

a · P̂ n√
P̂

T

n · P̂ n + Λ2

∈ R2 (3)

The maximum approach speed Ūn
a must be chosen care-

fully according to maneuverability considerations and
physical limitations of the USV.
Most vessels have underactuated sway dynamics during
nominal operations (< 1 m/s). Accordingly, we cannot di-
rectly apply the desired velocity vector νn

u onto the vessel.
However, we can decompose the CB guidance law into
surge and heading references, where the surge controller
controls the velocity size and a heading controller is able
to control the direction of the velocity vector. From the
velocity assignment in eq. 2, we have the following velocity
control objective:

lim
t→∞

(Un
d − Un

u ) = 0 (4)

where Un
d =

√
ẋ2u + ẏ2u is the speed of the vessel. It is

convenient to assume that ẋnu >> ẏnu and that we let Un
d

yield
ubd ≈ Un

d (5)

This introduces a new control objective, given as

lim
t→∞

(ubd − ubu) = 0 (6)

where ubu is the surge velocity of the vessel in the body-
fixed frame {b}.

A line-of-sight (LOS) steering law is used to compute
heading references for the vessel. Following Skejic et al.
(2009) and Breivik and Fossen (2009), the LOS steering
law is derived based on the relative position and orien-
tation of the vessel with respect to the target position
P t ∈ R2. The cross-track distance xe and cross-track error
ye is given by

xne = (xnu − xnt ) · cos(χt) + (ynu − ynt ) · sin(χt)

yne = −(xu − xt) · sin(χt) + (yu − yt) · cos(χt)
(7)

where χt = atan2(ẏnt , ẋ
n
t ) ∈ [−π, π] is the target course

angle. The LOS guidance law is derived with a look-a-head
distance parameter Λ which determines the convergence
rate towards the desired path. Λ is given in meters and
must be tuned carefully such that it does not exceeds
the maneuverability properties of the vessel. A common
practice is to let λ ∈ {2, 5} · Lusv. Where Lusv is the
length of the vessel. Following Breivik and Fossen (2009)
and Skejic et al. (2009) we have

χLOS = tan−1(
−yne
λ

) (8)

We can derive the desired heading reference by

ψd = (χLOS + χt)− βu (9)

where βu = atan(−ẏ, ẋ) is the sideslip angle of the USV

Figure 1. Target tracking of glider using an USV

3. USV MODEL

This section details the dynamics of the unmanned surface
vessel. The vehicle simulated in this paper is the Otter
USV developed by Maritime Robotics. The vehicle is char-
acterized as a small unmanned catamaran as illustrated
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in figure 1. Before deriving the equations of motion, we
introduce some basic assumptions about the system:

Assumption 3.1: The vessel is actuated by differential
thrust from two fixed stern propellers

Assumption 3.2: Environmental wind and wave loads
acting on the vessel τwind, τwave are neglected

Assumption 3.3: The payload (acoustic receiver an-
tenna) hydrodynamic drag and added mass effects are ne-
glected

Assumption 3.4: The vessel is influenced by an ocean
current V n

c = [Vx, Vy, 0]
T which is considered constant and

irrotational in the inertial frame, hence V̇
n

c = 0.

Assumption 3.5: The hydrodynamic damping of the ves-
sel is considered linear

Figure 2. Maritime Robotics Otter USV with Waterlinked
short-baseline (SBL) acoustic antenna/receivers,
courtesy of OsloMet

The marine craft kinematics and dynamics are derived
using the following state vectors: η = [x, y, ψ]T consists of
the inertial position and the heading (yaw) ψ of the vessel.
The dynamics is defined by ν = [u, v, r]T . Due to constant
irrotational ocean currents, we rewrite the latter vector
into a relative velocity vector following Fossen (2011):
νr = [ur, vr, r]

T = [u − ubc, v − vbc, r]
T . The kinematics

are defined by a rotation matrix Rn
b (ψ) from the body-

frame {b} to the inertial NED frame {n}. Accordingly, we
have

Rn
b (ψ)

∆
=

[
c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0
0 0 1

]
, ∈ SO(3) (10)

where c = cos() and s = sin(). The marine craft dynamics
and kinematics of an unmanned surface vessel is given by

η̇ = R(ψ)νr + V
n
c (11)

Mν̇r +C(νr)νr +D(νr)νr = τ c (12)

where M = M rb +MA and C(ν) = Crb(ν) + CA(ν)
are the translational and rotational rigid-body dynamics
with correlating added mass effects. Hydrodynamic forces
and moments are included in the damping matrix D(ν).
Control forces and moments which acts on the vessel are

defined by τ c = BKf = [τu, 0, τr]
T , where B ∈ R3×2 is

the actuator configuration matrix which maps the control
inputs (thruster revolutions) f = [Tu, 0, Tr]

T into surge
forces and yaw moments. K ∈ R3×3 is the diagonal
force coefficient matrix. We have the following modelling
considerations for the matrices M ,C,B,D:

M
∆
=

[
m11 0 0
0 m22 m23

0 m32 m33

]
, B

∆
=

[
b11 b12
0 0
b31 b32

]

C
∆
=

[
0 0 c13
0 0 c23
c31 c32 0

]
, D

∆
=

[
d11 0 0
0 d22 d23
0 d32 d33

] (13)

Following assumption 3.1 we have two nonrotable aft
thrusters which imply that the control allocation problem
is trivial and unconstrained. If we reduce B,K, τ c to
∈ R2×2 we can compute the control inputs as

f = K−1 B−1 τ c = [Tu, Tr]
T (14)

Following Paliotta et al. (2018) we can derive the kine-
matic and dynamic equations derived in eq. 3 into compo-
nent form. Consequently, we have the following equations
of motion:

ẋ =ur · c(ψ)− vr · s(ψ) + Vx
ẏ =vr · s(ψ)− vr · c(ψ) + Vy

ψ̇ =r

ṙ =Fr(ur, vr, r) + τr
u̇r =Fur (vr) + τu
v̇r =X(ur) + Y (ur) · vr

(15)

where Fr(ur, vr, r), Fur (ur) are defined in the Appendix.
From Paliotta et al. (2018) we have that X(ur) = −X1 ·
ur +X2, Y (ur) = −Y1 · ur − Y2. From assumption 3.5 we
assume that X(ur) and Y (ur) are linear functions.

3.1 Control objective

The control objective for the USV is to track a mov-
ing vehicle whose future path is not known. The target
tracking error is defined by ed = [xd, yd, ψd, ud]

T , where
ed represents the desired planar position, heading and
surge velocity. Furthermore, we want to relax the following
conditions

lim
t→∞

(x− xt) = 0, lim
t→∞

(y − yt) = 0

lim
t→∞

(ψ − ψd) = 0, lim
t→∞

(u− ud) = 0
(16)

Remark 3.1 The control objectives imply that the control
problem is underactuated as we aim to control 4DOF with
only two control inputs u ∈ R2. Considering assumption
2.2 we have that the vessel is always tracking a moving

target with a speed Un
t (t) =

√
ẋ2t (t) + ẏ2t (t) > 0 ∀ t, thus

dynamic positioning scenarios are neglected.

3.2 Control System

As described in section 2, the CB guidance law is de-
composed into surge and heading controllers. We assume
that the surge-sway dynamics are decoupled, such that two
model-based feedforward PI and PID controllers for surge
and the heading can be implemented. Following Fossen
(2011) we can linearize the maneuvering model in eq. 3
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to 1DOF heading and surge subsystems (Nomoto models).

Given the control errors û = (u−ud) and ψ̂ = (ψ−ψd), the
surge PI controller and heading PID autopilot are given as

τu =(m−Xu̇) u̇+Xu ud − kpu û− kiu

∫ t

0

û(τ) dτ

τr =(Iz −Nṙ) ψ̈d +Nr ψ̇ − kpψ ψ̂ − kdψ
ˆ̇
ψ −Kiψ

∫ t

0

ψ̂(τ) dτ

(17)

where Xu̇, Xu, Nṙ, Nr are the hydrodynamic damping
forces/moments and their derivatives (added mass) in
surge and yaw and m and Iz are the vehicle mass and
inertia (vertical component) respectively.

4. TARGET - UNDERWATER GLIDER

The target, an autonomous underwater glider (illustrated
in figure 1), is a special class of autonomous underwater
vehicles (AUVs). The glider’s main source of locomotion
is a variable buoyancy system (VBS), which allows the
vehicle to move up and down in the water column. Variable
buoyancy is often achieved by pumping oil between an
external bladder exposed to the surrounding water and
an internal reservoir. A minor volume change occurs when
the oil is pumped between the two receptacles, resulting
in a vertical movement (sink/rise). A set of fixed-wings
attached to the glider body transform the vertical motion
into forward movement from the horizontal component of
the hydrodynamic lift force (vertical force). The absence
of aft thrusters ensures longevity in glider missions as
documented in various field experiments Glenn et al.
(2011), Webb et al. (2001). Due to slow cruising speeds,
conventional control surfaces are often replaced by an
internal moving mass system. This typically consists of
a custom shaped battery-pack that can be translated
and rotated inside the glider housing, see Zhang et al.
(2013), Mahmoudian and Woolsey (2008). The moving
mass actuators are used in attitude and heading control,
where they create control moments which amend the
center of gravity vector. A detailed mathematical glider
model (6DOF) is found in Saksvik et al. (2021). The
steady-state flight characteristics of underwater gliders are
twofold. If the vehicle is stable in roll (wings-levelled),
it performs repeating saw-tooth maneuvers with non-zero
pitch angles and a steady heading. Seen from the surface
(2D), the trajectory is viewed as a straight-line. The latter
can be parametarized by a scalar ζ ∈ R to yield

P =

[
xp(ζ)
yp(ζ)

]
=

[
xk + ζ · cos(ξp)
yk + ζ · sin(ξp)

]
(18)

where (xk, yk) is a fixed location on the path and ξp is the
angle between the path and the x-axis along the stationary
reference frame Breivik and Fossen (2009). The second
flight is a vertical spiral. This happens if the rotating mass
actuator is shifted. Accordingly, a roll moment is applied
such that the wings are no longer aligned in the vertical
plane. Assuming the vehicle is in steady-state, the spiral
maneuver results in a circle seen from the surface.

P =

[
xp(ζ)
yp(ζ)

]
=

[
xc + rc · cos(ζ/rc)

yc + ·λ · rc · sin(ζ/rc)

]
, λ ∈ {−1, 1}

(19)

where rc is the radius of the circle, (xc, yc) is the center of
the circle and λ represents the motion of direction - λ = 1
is clockwise.

5. SIMULATION & RESULTS

To validate the proposed target tracking scheme, a dual
simulation environment of the target (underwater glider)
and interceptor (USV) was developed. The dynamic model
of the Otter USV was implemented using the MSS (Marine
System Simulator) toolbox Perez et al. (2006) developed
based on the topics in Fossen (2011). The simulated glider
object is the Seawing glider presented in Zhang et al.
(2013). This is a research glider with a length of 1.99 m and
net weight of 64.2 kg. It’s actuator configuration is similar
to commercial legacy gliders with an oil based variable
buoyancy system. The attitude and heading is controlled
using internal moving and rotating mass actuators. This
consists of a cylindrical battery-pack which can be trans-
lated and rotated inside the vehicle housing.

The dynamics of the USV and underwater glider were
implemented in Simulink for simultaneous simulation, to-
gether with the constant bearing guidance law and control
system presented in section 2 and 3 respectively. Two
PD-controllers were implemented for pitch and heading
control of the underwater glider, and a simple bang-bang
controller adjusted the buoyancy of the vehicle.

5.1 Simulation parameters

Due to the slow cruising speeds in underwater gliders, we
set the max approach speed in the CB guidance law as
Ūn
a = 0.5 m/s. Accordingly, we let Λ = 10. For the planar

motion LOS guidance law we have let the look ahead
distance be λ = 5 meters.

We present two general simulation cases for the target
tracking application. These consists of a vertical spiral
where the USV follows a circle from the surface, and a
saw-tooth trajectory which results in a straight-line target
tracking problem for the topside vehicle. During these
simulations, there exists an ocean current with magnitude
V n
c =

√
unc + vnc = 0.15 m/s and direction βc =

π
2 rad. In

the first simulation case the initial position and heading of
the USV is given as [x0, y0, ψ0] = [0,−30, 0]T . The initial
state for the underwater glider is [x0, y0, ψ0]

T = [0, 0, 0]T .
Seen from the surface, the USV is initially located 30
meters off east with respect to the underwater glider,
which is located at the origin of the inertial frame. The
initial heading of the two vehicles coincides.

In the second case study we investigate the straight-line
path following problem. In this scenario, the USV is ini-
tialized with an offset planar position and heading with
respect to the glider. The following initial conditions are
considered for the USV [x0, y0, ψ0] = [−100,−35,−π

2 ]
T .

Moreover, the initial conditions of the glider is the same
as case 1: [x0, y0, ψ0]

T = [0, 0, 0]T .
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5.2 Case 1 - Curved target tracking

Figure 3. Circular target tracking
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Figure 4. Surge control - Case 1
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Figure 5. Heading autopilot - Case 1

5.3 Case 2 - Straight line target tracking

Figure 6. Straight-line target tracking
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6. FURTHER WORK

The extension of this work is to validate the proposed
target tracking scheme with experimental tests. The aim
is to use an Otter USV owned by the ocean laboratory
(Oceanlab) at Oslo Metropolitan University in Oslo, Nor-
way. The vessel is complemented by a short baseline (SBL)
acoustic positioning system fromWaterlinked. An acoustic
receiver antenna is mounted on the vessel and submerged
approximately 1-2 meters. A small omnidirectional acous-
tic locator (32 x 121 mm) is mounted on the underwater
vehicle to transmit range measurements to the topside
vessel.

7. APPENDIX

The terms Fur (ur), X(ur), Y (ur), Fr(ur, vr, r) are defined
in this appendix. From Paliotta et al. (2018) we have the
following definitions

Fur (vr, r)
∆
=

1

m11
(m22 vr +m23 r) r −

d11
m11

ur

X(ur)
∆
=− m11m33 −m2

23

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

Y (ur)
∆
=− (m11 −m22)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

Fr(ur, vr, r)
∆
=
m23 d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

· vr

+
m23(d23 +m11 ur)−m22(d33 +m23 ur)

m22m33 −m2
23

r

(20)

Remark 6.1 The terms Y (ur) and X(ur) are assumed to
be linear. Furthermore, Y (ur) have the following bounds:

(m11 −m22)m23

m22m33 −m2
23

ur > 0,
d22m33 − d32m23

m22m33 −m2
23

> 0 (21)
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Abstract—This paper presents a deep learning approach to
aid dead-reckoning (DR) navigation using a limited sensor suite.
A Recurrent Neural Network (RNN) was developed to predict
the relative horizontal velocities of an Autonomous Underwater
Vehicle (AUV) using data from an IMU, pressure sensor, and
control inputs. The RNN network is trained using experimental
data, where a doppler velocity logger (DVL) provided ground
truth velocities. The predictions of the relative velocities were
implemented in a dead-reckoning algorithm to approximate
north and east positions. The studies in this paper were twofold
I) Experimental data from a Long-Range AUV was investigated.
Datasets from a series of surveys in Monterey Bay, California
(U.S) were used to train and test the RNN network. II) The second
study explore datasets generated by a simulated autonomous un-
derwater glider. Environmental variables e.g ocean currents were
implemented in the simulation to reflect real ocean conditions.
The proposed neural network approach to DR navigation was
compared to the on-board navigation system and ground truth
simulated positions.

Index Terms—Underwater Navigation, Deep learning, Dead-
reckoning, Autonomous Underwater Vehicles (AUV)

I. INTRODUCTION

A UTONOMOUS UNDERWATER VEHICLES (AUVS)
have in the last decades become important tools
in ocean research. Untethered from umbilical

cables, these vehicles are suitable for a high variety of
applications including bathymetric mapping, water sampling
and environmental monitoring. A notorious challenge for
AUVs is to navigate and georeference acquired sensor data
during operations as GPS signals can’t propagate trough
water. Conventional solutions to this issue involve adding
acoustic navigational or/and positioning instruments to the
AUV payload. Due to the good propagation of sound in water,
doppler velocity loggers and acoustic baseline systems are
considered the backbone in AUV navigation and underwater
positioning [10], [25]. However, these traditional sensors
are often expensive and consumes large amounts of power.
In AUV fleets, the cost of adding acoustic instruments is
compounded with the number of vehicles. In this paper
we consider a limited sensor suite consisting of an IMU

sensor and a pressure transducer, where acoustic instruments
are partially available to collect experimental training data.
Collected DVL velocity measurements from only a few
missions are used as a reference in supervised neural network
training. The aim for the trained network is to complement
DR navigation when the DVL sensor is inaccessible, for
example in AUV fleets with budget limitations.

The absence of acoustic navigational and positioning
instruments has traditionally been compensated by model-
based observers like Extended Kalman Filters (EKFs). These
are derived from AUV dynamics to form an estimation model
[8], [9], [21], [22]. Unfortunately, model-based observers
rely on parameters that are difficult to obtain in practice.
The dynamics of an AUV is derived based on intricate
hydrodynamic models. Experiments must be carried out in a
towing-tank facility or using expensive CFD (Computational
Fluid Dynamics) software to obtain hydrodynamic damping
coefficients [28], [3]. If the external geometry of the AUV
changes, i.e. when making small modifications to payload
sections, the coefficients need to be updated.

To avoid deriving complex AUV models and conducting
time consuming towing-tank or CFD experiments, this
paper presents a data-driven approach to dead-reckoning
navigation. Using experimental data from AUV missions
and simulations, a neural network is trained to learn and
generalize relative AUV motions. Data-driven neural network
regression abolishes the need for knowledge of a dynamic
model, and avoids modelling and estimation errors related to
classical state observers [4], [5]. A recurrent neural network
(RNN) is developed to relax time-delayed effects in the AUV
dynamics which occurs due to vehicle inertia, under actuation
and added mass effects [1], [6]. With an input layer composed
of standard sensory measurements (pressure sensor, inertial
measurement unit) and control actions, the RNN network
aims to predict relative surge ur and sway vr velocities.
These are further implemented in a dead-reckoning algorithm
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to approximate North and East positions during operations.

A. Related Work

Several articles have addressed artificial neural network
state estimation for marine crafts. In Zhang et al. [4] a
Short-Term Long-Term-Memory (LSTM) recurrent neural
network is proposed to estimate the relative position of an
AUV. The LSTM network used data from a pressure sensor,
an inertial measurement unit (IMU), and an acoustic doppler
velocity logger (DVL) to predict the horizontal north and east
positions. Training and validation data were collected from
a series of surface trajectories while logging GPS locations,
which were projected as ground truth measurements. A
similar study with the same AUV is presented in Mu et
al. [5], where a bi-directional LSTM network was used. A
neural network approach to dead-reckoning navigation of
dynamically positioned ships is presented in Skulestad et
al. [6]. Control actions and commands from vessel thrusters
combined with heading measurements was used as input
data in a RNN network to aid navigation during GNSS
outages. Experiments were conducted in a vessel simulator
with time-varying environmental disturbances such as wind
forces, sea waves and ocean currents. In Chen et al. [13]
a neural network is presented to assist navigation during
DVL malfunction. A nonlinear autoregressive network with
exogenous SINS (Strapdown Inertial Navigation System)
inputs was used. The network was tested and validated on
a ship with a DVL mounted on the vessel hull to provide
training and validation data.

The remaining parts of this paper are detailing the following
segments - Section II and III addresses the concept of
dead-reckoning navigation and the neural network velocity
observer respectively. Section IV presents the AUV platforms
and datasets used to train and test the neural networks. The
results are detailed in section V and the conclusion and
recommendations for further work are presented in VI.

II. DEAD-RECKONING NAVIGATION

In the absence of GNSS (Global Navigation Satellite Sys-
tems) systems, AUVs enters a dead-reckoning mode while
under water. The DR algorithm predicts the position of the
AUV based on estimates at the previous time-step. With a
reference of the heading and attitude combined with relative
velocity measurements, the position is determined by numer-
ical integration. To compute the relative position of the AUV,
the measured/estimated relative velocities must be rotated with
respect to the inertial reference frame of the vehicle. Following
[1] the inertial frame of underwater vehicles is defined by
North-East-Down (NED) local tangent plane coordinates. The
NED velocities χ̇ = [Ṅ , Ė, Ḋ]T of an AUV are derived by
an rotation matrix from the body frame {b} to the inertial
frame {n} [1]. An AUV influenced by ocean currents υc

will have a relative velocity υr. Assuming that the ocean
currents are irrotational they are derived following [1] as
υr = [ur, vr, wr]T = [u− uc, v − vc, w−wc]

T . Accordingly,

the relationship between the relative body-fixed and inertial
velocities are given as

χ̇ = Rn
b (Θ) · υr (1)

Where Θ = [φ, θ, ψ]T is the attitude and heading of the AUV
provided by an inertial measurement unit (IMU). Equation 1
can be written in expanded form as




Ṅ

Ė

Ḋ




=




ur · c(ψ)c(θ) + vr · [c(ψ)s(θ)s(φ)− s(ψ)c(φ)]
+wr · [s(ψ)s(φ) + c(ψ)c(φ)s(θ))]

ur · s(ψ)c(θ) + vr · [c(ψ)c(φ) + s(φ)s(θ)s(ψ)]

−ur · s(θ) + vr · c(θ)s(φ) + wr · c(θ)c(φ)




(2)
where c() = cos() and s() = sin().
For AUVs that typically operate with a zero angle of attack the
attitude can be neglected in eq. 2. However, for other vehicles
like underwater gliders which can perform spiraling motions
with non-zero attitude [φ, θ]T 6= 0, it persist. After rotating the
relative velocities according to the inertial frame of the vehicle,
numerical integration is performed to obtain the position.
Given the previous predicted position χt = [Nt, Et, Dt]

T the
DR algorithm is derived following [6]

χ(t+ 1) = χ(t) +Rn
b (Θ) · υr(t+ 1) ·∆t (3)

Where ∆t is the time step between the predictions.

Fig. 1. DR navigation Illustration

III. NEURAL NETWORK AIDED DEAD-RECKONING
NAVIGATION

A. Sensor Inputs

On-board sensors like IMUs and pressure transducers con-
tains valuable in-situ information about an AUV. These are
used as input variables in the RNN network to predict relative
horizontal velocities [ur, vr]T . The development of MEMS
(Micro-Electrical-Mechanical-Systems) based IMUs have led



to more affordable inertial measurements. They consist of
three-axis gyroscopes and accelerometers, typically confined
in a silicon chip. The gyroscope, which give measurements of
the angular rates ωbIMU = [pb, qb, rb]

T and the accelerometer
which provide measurements of the rate-change of velocities
υ̇bIMU = [u̇b, v̇b, ẇb]

T can be modelled as

ωb
IMU = ωb

gyro + bbgyro

υ̇b
IMU = υ̇b

acc + bbacc
(4)

Where bbgyro and bbacc are sensor biases [33]. Combined with a
three-axis compass, a Kalman Filter derived from a kinematic
model impart the euler angles Θ = [φ, θ, ψ]T . A key com-
ponent in AUVs is the pressure transducer. The relationship
between pressure and depth are assumed to be constant, thus
the vertical position of the AUV can be approximated by the
pressure measurements. Given a measured hydrostatic pressure
∆p, water density ρ and gravitation g, the vertical position z
and relative heave velocity wr is derived as

z = ρg∆p =⇒ wr = R−1
bn (Θ) · ż (5)

Where z is assumed to be inertial {n} and the relative heave
velocity wr is represented in the body-fixed frame {b}

B. AUV Control Actuators

To enforce the neural network state observer, control actions
from the AUV actuators are used together with the sensor
data. In this paper two AUVs with different actuator config-
urations are investigated. Conventional underactuated AUVs
are normally equipped with an aft thurster and external control
surfaces. The thruster is the propulsion system which generates
a hydrodynamic force τ to induce surge transnational motions,
while control surfaces consist of external airfoils that alter
attitude and heading depending on their deflection angles.
The control surfaces typically consist of a rudder and dive
planes denoted δR and δD respectively. Control actions are
determined from feedback controllers which in these studies
are decoupled into vertical and horizontal manoeuvres. For
thruster based AUVs, speed controllers are used to maintain
a desired velocity and reject ocean current disturbances. In
addition to the conventional AUV actuators, a variable buoy-
ancy system and internal moving masses are introduced by the
AUVs investigated in this paper. The simulated autonomous
underwater glider uses buoyancy displacement to alter vertical
motions, while a set of fixed wings generates hydrodynamic
lift forces to induce forward motions. As gliders operates
at low-speeds, control surfaces are ineffective due to low
dynamic pressure. Control moments from internal moving
masses are used to change the attitude and heading of the
vehicle.

C. RNN Architecture

The RNN architecture is formed with feedback loops in
the hidden layers of the network, providing internal memory
to capture AUV dynamics with time-delays. To improve the
estimation of the relative horizontal surge and sway velocities

[ur, vr]T , two independent neural networks are used for each
velocity vector. This is convenient as surge and sway dynamics
are often non-interacting or slightly interacting [1], [4]. Using
input variables that holds low dependence to the predicted
output variables reduces the generalization of the network and
may lead to the notorious issue of overfitting [20], [15].

Fig. 2. Neural network illustration

RNN networks are generalized feedforward neural networks,
but differs as recurring context layers are included in the
hidden layers as illustrated in figure 2. The hidden nodes
h(t) summarize the inputs x and weights wxh from the
previous layer combined with the recurring layer h(t − i).
The hidden neurons h(t) and output neurons y(t) is derived
mathematically as

h(t) = σh(
∑

wxh · x+
∑

whh · h(t− i) + bn)

y(t) = lin(
∑

why · h(t) + by)

(6)

Trough sequential learning based on AUV datasets, the RNN
network learns to predict the relative horizontal velocities.
Activation functions σh in the hidden layers are the key to
learning the nonlinearity between the selected inputs and pre-
dicted outputs. The network is trained based on the renowned
concept of backpropogation introduced in [24] to tune the
weights and biases. The goal of neural network training is
to optimize the network parameters so that the error function
E is minimized

E =
1

2

∑

i

(υ̂r(i)− υr(i))2 (7)

Where υ̂r(i)− υr(i) is the difference between the actual and
predicted relative velocities.

D. Navigational training data

In this work, experimental DVL data and simulated ve-
locities are used as a reference for the supervised neural



network training. Alternative approaches may involve using
acoustic positioning systems which are not prone to cumulative
integration errors [10], thus providing more accurate ground
truth measurements. However, a disadvantage with these ap-
proaches is that the DVL/acoustic modem must be replaced
with ”dummy” sensor to avoid changing the hydrodynamic
properties and net weight of the AUV. Ideally, we want to have
a reference of the AUV velocities/positions without changing
the geometry and weight. A potential solution is to use visual
based (machine vision) pose estimation relative to an assisting
AUV/ROV. Machine vision has proven to be successful in
autonomous docking operations for AUVs [29], [30] and may
possibly be extended to tracking applications.

IV. AUV PLATFORMS & DATASETS

To train and validate the neural network approach to DR
navigation, AUV datasets are needed. In this paper two AUV
platforms are investigated. The first dataset originates from
sea-trials of the Tethys Long-Range AUV (LRAUV), while
the second dataset is from a MATLAB simulation of an
underwater glider.

A. Tethys AUV

The Tethys Long-Range AUV [2], [14] was developed by
the Monterey Bay Research Institute (MBARI) as a research
AUV with long-range capabilities. It’s characterized as a
hybrid AUV as it shares similar control actuators to underwater
gliders. This allows it to operate both in undulating glider-like
trajectories and at fixed depths. Datasets from the constellation
of underwater vehicles at MBARI is available through their
public data repository [15].

Fig. 3. Tethys AUV, courtesy of MBARI

A series of missions in Monterey bay, California (U.S)
were used to train and validate the neural networks. In-situ
measurements from a Microstrain 3DM-GX5-24 IMU, Neil
Brown pressure sensor and the control actuators were used
as inputs to the neural network. Ground truth relative surge
and sway velocities [ur, vr]T were provided by a LinkQuest
600 KHz micro DVL. With periodic GPS fixes the overall
navigation accuracy for DVL-aided inertial DR is 3-4 % [2].
The navigational errors arise initially from sensor noise and
random walk errors from the inertial measurement sensor.
The parameters for the IMU and DVL sensors hosted on the
Tethys is presented in table I and II respectively. The maximum

operating altitude refer to bottom lock navigation, where the
AUV measures it’s velocities relative to the seafloor. When
out of range the DVL can measure the velocities relative to
the water (water lock). However, water is often considered
as a moving reference frame due to ocean currents, which
introduces estimation errors depending on the magnitude of
the ocean current vector [10].

TABLE I
MICROSTRAIN 3DM-GX5-25 IMU PARAMETERS

Error value
Accelorometer Bias Instability ± 0.04 mg

Gyroscope Bias Instability ± 8◦/h
Attitude Accuracy EFK - ± 0.25◦ RMS
Heading Accuracy EFK - ± 0.8◦ RMS

TABLE II
LINKQUEST 600 KHZ MICRO DVL PARAMETERS

Parameter Value
Max Altitude 110 meters
Min Altitude 0.3 meters

Accuracy 1 % ± 1 mm/s
Ping rate 5 Hz

A minor part of the training dataset is presented in figure 4.
Sensor noise has been filtered out with low-pass filters and
Gaussian smoothing. We can observe that the AUV performs
saw-tooth trajectories by using the dive plane control surface
and internal moving mass actuator. The heading is mostly
constant which indicates that the AUV is on a course keeping
path governed by a heading controller.

Fig. 4. Training data Tethys AUV



B. Underwater Glider

The second dataset is gathered from a MATLAB simulation
of the Seawing underwater glider [3], [11]. An underwater
glider is characterized as a slender body with fixed wings.
A variable buoyancy system (VBS) is used to manipulate the
volume that the vehicle is displacing to alter vertical motions
in the water column. Underwater gliders exploit hydrodynamic
properties using fixed wings to generate a forward motion. To
control the attitude and heading of the vehicle, an internal
moving mass system is used. This typically consists of a
battery-pack that can be translated and rotated inside the
vehicle housing. A mathematical model of the glider is derived
using the 6DOF vectorial marine craft dynamics presented in
Fossen [1]. State variables can be divided into two vectors
following SNAME notation [17] - The position in the inertial
frame {n} defined as η = [x, y, z, φ, θ, ψ]T and the relative
velocity in the body frame {b} νr = [ur, vr, wr, p, q, r]

T .
Accordingly, a 6DOF kinematic and maneuvering model of
an AUV is derived by

η̇ = Jθ(η)νr

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ

(8)

Where M = M rb + MA and C(ν) = Crb(ν) + CA(ν)
are the transnational and rotational rigid-body dynamics with
correlating added mass effects. Hydrodynamic forces and
moments are described in the damping matrix D(ν) and
the restoring forces are defined by g(η). τ is the vector
describing the control forces and moments which acts on the
vehicle.

In presence of ocean currents, the relative velocity
is defined by differentiating the body-fixed velocities to the
ocean current vector νr = ν − νc. In the Matlab simulation
we consider a two-dimensional irrotational ocean current
model. Given an absolute velocity Vc =

√
u2c + v2c we can

define the ocean currents in the body frame as

νb
c =



Vc · cos(βc − ψ)
Vc · sin(βc − ψ)

0


 (9)

Many chose to simplify the ocean current model to be constant
in the body-fixed frame {b}, thus υ̇bc = 0 [18]. However, this
only yields during course keeping. A more realistic approach
is to assume that the ocean currents are time-varying with
respect to rotational motions of the glider. Consider a skew-
symmetric matrix S that satisfies S(x) · y = x × y and the
angular velocities in the body frame ωb, the ocean currents
can be derived as

ν̇b
c = −S(ωb) · υb

c (10)

In order to model ocean currents in the 6DOF manoeuvring
model, the rotational dynamics detailing Coriolis and cen-
tripetal forces must be derived using velocity-independent
parametrizations [1]. Given a center of gravity vector relative

to the center of origin rcg = [xcg, ycg, zcg]T the Coriolis and
centripetal matrix can be defined as

Crb(ν) =

[
m · S(ωb) −m · S(ωb) · S(rcg)

m · S(rcg) · S(ωb) −S(Ib · ωb)

]

(11)
Where Ib and m is the vehicle inertia and total mass respec-
tively. As demonstrated in eq.11 the rotational dynamics is
derived only using angular velocities ωb = [p, q, r]T , which
satisfies the following property [1]

M rbν +Crb(ν)ν = M rbνr +Crb(νr)νr (12)

Glider dynamics was simulated in Simulink for a 10-hour
interval. Time-varying control inputs and ocean currents were
present during the simulation to provide variance in the
training dataset. The simulated trajectories of the glider were
a combination of undulating wings-levelled motions and turn-
ing/spiral manoeuvres. To control the attitude and heading of
the glider, two decoupled PID controllers was implemented.
The measured state variables were logged and saved to
workspace during the simulation. Each training variable holds
81 000 samples, while the validation dataset resulted in 20
000 samples per variable. The test dataset is a combination
of wings-levelled manoeuvres and spiral trajectories which
differed from the trajectories used in the training data. Hence,
we can validate how well the network is generalized to
untrained glider motions.
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Fig. 5. Simulated glider training data



V. EXPERIMENTAL AND SIMULATION RESULTS

This paper presents a two-folded study which consists of
simulated and experimental datasets. Collected AUV data was
allocated into Matlab and further used to develop, train, and
test the neural networks. The predicted outputs was fed into
the dead-reckoning algorithm derived in eq. 3.
The Deep Learning Toolbox was used to design network
architectures and perform backpropogation training. A Scaled
Conjugate Gradient (SCG) algorithm was chosen as the train-
ing function to deal with the large AUV datasets effectively.
The SCG algorithm [24] abolish the need for line-searches
as presented in its predecessor [25] which reduces the com-
putational load. To improve the generalization of the neural
networks, early-stopping was introduced. Early-stopping di-
vides the AUV dataset into training and validation batches.
The training dataset is fed into the SCG algorithm to tune the
weights and biases, while the validation data is used to monitor
and detect if occurrences of overfitting is evident [32]. If the
network starts to overfit the dataset, the training is aborted,
hence the name early-stopping.

A. Case Study 1 - Tethys AUV

Experimental data from the Tethys AUV was investigated
in the initial study. Data from three individual surveys was
concatenated as a time-series vector and used as training
data. Datasets from another mission is used to test the neural
network on unseen data. The duration of the test trajectory is
approximately 3 hours long. The mission, illustrated in figure
6, was conducted in shallow waters were the on-board Link
Quest Micro DVL was able to get a bottom-lock, although
some samples were out of reach for the operating altitude of
the DVL sensor. Outliners in the DVL data was removed and
further filtered with Gaussian smoothing.

Fig. 6. Test trajectory in Monterey Bay, California

The test trajectories consist of undulating saw-tooth motions
with non-zero angle of attack α as showed in figure 8. Note
that periodic GPS fixes was not accounted for in the results
presented in figure 8 and 7. Two RNN networks was developed
to isolate relative surge and sway predictions. The following
table presents the training parameters used for the Tethys AUV.

TABLE III
ANN TRAINING PARAMETERS - TETHYS AUV

Backpropogation Optimizer Scaled Conjugate Gradient (SCG)
MSE Surge Network 0.0347
MSE Sway Network 0.00588

Early Stopping Data Division Randomly
Early Stopping index Training 70 %, Val. 15%, Test 15%

Hidden layers 3
Hidden neurons per layer 40

Regressors per context layer 5

The results are presented in figure 7 and 8. The blue dotted
line represents the predicted position based on estimated surge
and sway velocities from the RNN network. The orange line
is the estimated position based on measured DVL velocities.
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Fig. 7. Neural network aided navigation - Top view

A 3D view of the same trajectory is presented in figure 8
where depth measurements from the pressure sensor is used
for the vertical z-axis.

Fig. 8. Neural network aided navigation - 3D view



The positioning error between the predicted and DVL-aided
horizontal positions was used to evaluate the performance. The
positioning error is derived as

[
Nerror

Eerror

]
=

[
||Nest − N̂ ||
||Eest − Ê ||

]
(13)

Where N̂ and Ê are ground truth north and east positions
respectively.
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Fig. 9. Positioning Errors - Tethys AUV

The positioning error relates to an approximate displacement
of 2500 meters north and 1500 meter displacement in the east
direction. Note that the ground truth north and east positions
estimated based on DVL velocities also have estimation errors
with an 3-4 % navigational accuracy [2].

B. Case Study 2 - Underwater Glider

A second case study was conducted with the simulated
autonomous underwater glider. Training and test datasets were
generated by the Simulink simulation of the glider dynamics.
A two-dimensional ocean current model was added in the
dynamics to create a simulated environment that reflects real
ocean conditions. Simulated ocean currents are assumed to be
constant, but time-varying during glider rotations.
Due to decoupled attitude and heading controllers from the
simulated trajectories, the interaction between the surge and
sway dynamics is assumed to be neglectable. Thus, two
isolated RNN networks was developed to predict the relative
surge and sway velocities.
Table IV presents the neural network training parameters for
the two RNN networks.

TABLE IV
ANN TRAINING PARAMETERS - GLIDER

Backpropogation Optimizer Scaled Conjugate Gradient (SCG)
MSE Surge Network 0.000212
MSE Sway Network 0.00000459

Early Stopping Data Division Randomly
Early Stopping index Training 70 %, Val. 15%, Test 15%

Hidden layers 3
Hidden neurons per layer 50

Regressors per context layer 5

The test trajectory presented in figure 10 consists of two spiral
motions and a wings-levelled movement. Three different ocean
current scenarios was simulated with increasing magnitude,
see figure 11. The plot illustrated in figure 10 shows the test
dataset in presence of low currents - uc = −0.05 m/s and
vc = −0.002 m/s.

Fig. 10. Estimated NED position vs ground truth

RNN velocity predictions is presented by the blue dotted
line in figure 10. The orange line represents ground truth
simulated NED positions. The glider trajectory was simulated
for 2.7 hours. The remaining simulations with increasing
ocean currents are presented in figure 11 where the north and
east positioning errors are compared by the three different
scenarios. Note that the x-axis relates to total samples with
a rate of 2 Hz. Accordingly, the real simulation time was 10
000 sec.

Fig. 11. Positioning error with increasing ocean currents

During the two first simulations with low and medium strong



currents the positioning error is slightly increased. The simula-
tion with strongest ocean currents induced a larger divergence
for the east positioning error, while a low increase in the north
error.

VI. CONCLUSIONS AND FURTHER WORK

A neural network approach to aid dead-reckoning
navigation for AUVs with a limited sensor suite was proposed
in this work. Experimental data from an IMU, a pressure
sensor and control actions were gathered from sea-trials
and simulations with correlating ground truth DVL and
simulated velocities. The objective for the trained RNN
networks is to complement AUV navigation in absence
of acoustic navigational instruments. Results from the
proposed method show promising potential considering
a limited sensor payload. Improvements can be made by
re-initializing the DR algorithm with GPS fixes when the
AUVs are surfacing. The positioning error for the underwater
glider grows slightly with increasing magnitude of ocean
current disturbances as illustrated in figure 11. Glider
positioning errors are significantly lower compared to DVL-
less traditional navigation algorithms used in commercial
gliders [31]. However, sensor noise and random walk errors
were not present in the simulated IMU measurements. Further
iterations of the simulated environment will focus on adding
more realistic scenarios by introducing sensor errors, GPS
fixes and vertical decomposition of the ocean currents.

Recommendations for further work include investigating
alternative methods to obtaining experimental data. Vision
based pose estimation is considered a promising candidate
which avoids replacing the DVL or acoustic modem with
a ”dummy” sensor. Another interesting subject is to extend
the deep learning approach to other underwater robots like
remotely operated vehicles (ROVs). Compared to under-
actuated AUVs, small/miniaturized ROVs are easy to deploy
and does not require large displacements to excite the
ROV dynamics, making the experimental procedures less
time-consuming.
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