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Abstract 
 

As people become old, there is a significant growth in osteoporosis-related fractures. 

Modern days require improvements in implants that are used in orthopedic interventions 

imperative. Biodegradable Magnesium (Mg) based implants were recently developed to 

replace non-degradable metallic implants. It is a viable and patient-friendly method for 

health care from patients' viewpoints. The Near-Infrared Spectroscopy (NIRS) area is in the 

range of 650-1100nm, which interacts with biological tissues is interesting in this regard.  

 

The project is associated with MSCA-ITN Horizon 2020 (MgSafe), which focuses on 

magnesium-based implant experiments. The target is to collect the NIR spectrum using an 

optical probe to detect changes at the magnesium-implant tissue interface. The thesis 

covers the study that connects in vitro works (lab-based experiments) at OsloMet to support 

the in vivo (animal-based)  experiments conducted by the MgSafe researcher's team in Italy. 

With the reduction in pandemic restriction, it was possible to gather data from rats, which 

was advantageous for a realistic exploratory study. 

  

The in vitro experiment studies biodegradable and non-biodegradable implant disks in an 

artificially created medium. It identifies the trend that there is a possibility to group the 

optical data based on different days, which is helpful for the in vivo experiment. A primary 

challenge for in vivo experiment is the complexity of the interaction of magnesium implant 

near interface summed up with the issues due to light scattering in a biological medium. This 

thesis aims to study the feasibility of using the optical spectrum to understand the progress 

of implant surgery near the implant tissue interface. It performs a multivariate explanatory 

study using the developed optical probe and relates the in vitro experiments with the in vivo 

experiments. This work compares the optical information from healthy and unhealthy 

animals as unique case studies. The thesis covers observations and suggestions for future 

researchers in this area.  

  

Keywords: Biodegradable implants, Magnesium implants, Biomarker, NIR spectroscopy, 

Optical probe, Multivariate analysis, Data analysis.   
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1. Introduction  

Osteoporosis is a disease that weakens bones, increasing the risk of fractures. Worldwide it 

is reported to have more than 9 million fractures a year. It means that there is somebody 

who gets a fracture every three seconds. The highest fracture rates are in Northern 

European countries. The main impact of such fractures is that they reduce life quality until 

the patient recover. Additionally, it also increases the financial burden. With changing 

demography, these expenses are going to rise considerably by 2030.  

 

Bone tissues are unique, as they can heal themselves after damage. Nevertheless, it takes a 

few weeks to several months to recover based on health and other conditions. Bone healing 

consumes the patient's time and reduces the quality of life due to strict restrictions on 

physical movements to aid the healing process. Depending on the nature of the fracture, at 

times supporting frames like plates and screws are inserted into the bone to avoid deformed 

healing. If supporting plates/screws are made of biodegradable materials, it would prevent 

further complications with additional surgical procedures to remove the implants.  

However, implant interaction with neighboring cells at the interface is complex as it 

influences numerous factors like the nature of implant materials, its surface topology, and 

biochemical reaction with living cells. Continuous monitoring of the interface for changes 

and progressive developments at different time points can assist a doctor in evaluating the 

progress of implant surgery.  

 

Monitoring implants requires a complex health care system. The optical approach is a low-

cost, patient-friendly, and non-invasive technology that shines near-infrared light (NIR) into 

the region of interest in tissue. The area with and without implant gives the receiver a 

different spectrum of reflected light due to implant interaction with the surrounding 

interface. There is an increase in the complexity of biological tissue. Still, variation can help 

relate the progress of surgery with time at the interface with the help of optical data.  

 

In Europe, extensive research works under the European Union project -MgSafe aims to 

develop novel imaging technologies using biodegradable magnesium Implants. Ph.D. 
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candidate, Hafiz Wajahat Hassan, focuses on creating an optical probe to gather information 

from the magnesium implant tissue interface. He has developed an optical probe that 

provides NIR spectroscopic data of samples analyzed. The European union researchers in 

Italy and Sweden conduct studies on animal models to evaluate the interaction of 

magnesium implants with living tissue (rat-based model) using this probe. Experiments done 

on animals has their limitations. As part of this thesis, I perform a multivariate analysis from 

in vitro lab experiments to connect to the biochemical changes, such as when an implant is 

inside an animal body. 

 

1.1 Problem Statement and Research Questions   

Integrating biological tissues and identifying experiments to realize the closest resemblance 

to the magnesium implant tissue interface is complex. The thesis research aims to perform 

an exploratory analysis to obtain valuable information on the changes near the implant 

interface as obtained from the optical spectrum data.  

 

The work aims to relate the in vitro observations to the in vivo datasets based on the 

problem statement, "Identify marker that relates1 changes at magnesium implant- tissue 

interface, using optical spectral analysis."  

As part of the thesis following areas, namely the implant interface, optical data-collection, 

lab experiments for the data collection, and the exploratory model, are studied extensively 

under the four research questions.  

1. Understand properties and features of magnesium implant-tissue interface. What 

are the possible biomarkers that can directly or indirectly relate to changes near the 

interface?  

2. What are the challenges of optical data collection? Compare commercial probes 

available at OsloMet to evaluate areas of improvement for the OsloMet probe. Are 

there new suggestions to improve?   

3. Modeling based on human data is beyond the scope of this master thesis. Gather 

information through  (in vitro)  lab experiments. Relate these trends to a living 

 
1 Animal model-based lab experiments were excluded initially due to the uncertainty of the pandemic. Fortunately, the animal datasets are available for a more realistic 

exploratory model, and hence there are modifications to research problem & questions from phase1 report. The four areas of research question are maintained same.   
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(animal) model. Perform a multivariate exploratory study to relate changes at the 

magnesium implant-tissue interface. What are the strength and weaknesses of this 

analysis?  

 

The primary flow of the work is that it introduces in vitro experiments performed using 

DMEM (a cell culture solution). Next is to study the trends and feasibility of gathering 

optical information, which can be helpful in understanding in-vivo or animal-based 

experiments. For non-invasive data collection, there is a need for reflection-based 

measurements. The OsloMet probe, specially designed for animal studies by the MgSafe 

researcher, is tested with different lab experiments to understand the feasibility of 

optical measurements. Measurements in an artificial tissue-mimicking gel with two 

different source-detector distances give optical probe studies considering varying 

depths. Further, studying dead tissue based on an in vitro study gives optical responses 

to structural changes. This thesis concludes with observations from the optical data 

analysis on animal models, which have structural information due to implant interactions 

and functional biological developments due to metabolic activities.  

1.2 Structure of Report 

The thesis report has different chapters based on the details mentioned above. Chapter 2 

includes the literature survey, which introduces the broad area of the research based on 

existing publications. This section shall introduce the methodology followed for the lab 

experiments. The following two chapters present differently in vitro works with the results 

and a brief discussion explaining the results' relevance. Chapter 5 details the results from the 

in-vivo observations. Chapter 6 summarizes the discussions section where the in vitro and in 

vivo experiments trends. The timeline of works followed by challenges faced and ways to 

perform prediction models in the future is in chapter 7. The report includes publication and 

valuable reference information in the appendix. The report ends with a conclusion of the 

work along with references.   
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2.Litrature review & methodology   

2.1 Background  

Magnesium deficiency contributes to osteoporosis, weakening bones, and increases the risk 

of fractures (Castiglioni et al., 2013, p. 1054). Worldwide it is reported to have more than 9 

million fractures a year. It means that somebody gets a fracture every three seconds 

(Borgström et al., 2020). Literature highlights osteoporosis as a matter of concern in 

European countries within a few decades (Borgström et al., 2020; Castiglioni et al., 2013).  

 

The main impact of such fractures is that the quality of life reduces until they recover. We 

can calculate a year of one's life using the average health-related quality of life the person 

had during that one year, referred to as quality-adjusted life years ( QALYs ). In short, 1 QAL is 

one year of healthy life. Such a parameter can help measure the disease burden of 

osteoporosis patients who have a higher tendency for bone fractures. Bone healing may take 

a few weeks and sometimes several months. Due to osteoporosis, the QALY burden shall 

increase by about a quarter percentage by 2030, as per a survey done in the five largest 

European Union countries by International Osteoporosis Foundation (IOF). This rise in QALY 

lost depends on age, gender, fracture types, patient's health history, days of hospitalization, 

the level of physical activities, and the healing rate. Additionally, it also increases the 

financial burden. With changing demography, these expenses shall rise considerably by 2030  

(Borgström et al., 2020). 

In Europe, extensive research works under the European Union project Marie Skłodowska-

Curie ETN MgSafe, aims to develop novel imaging technologies for patients that use 

biodegradable magnesium Implants. Research on numerous aspects of the implant is 

progressing in different countries with the help of 15 researchers from various European 

countries. Ph.D. candidate from OsloMet has developed an optical probe to gather 

information from the magnesium implant tissue interface. It is possible to collect  NIR 

spectroscopic data from samples analyzed using this probe. Efforts to improve its features 

and scope of application of the probe are also studied. The European union researchers in 
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Italy and Sweden conduct studies on animal models to evaluate the interaction of implants 

inside the rat's body.  

Monitoring implants requires a complex health care system. The optical approach shall help 

develop a  patient-friendly, non-invasive technology that shines near-infrared light (NIR) into 

the region of interest in the tissues. The region with the implant gives the receiver a 

different spectrum of reflected light due to implant interaction with its surroundings. The 

interaction depends on the type of implant material used. There is an increase in complexity 

due to scattering and light specificity in biological tissue. Still, this variation in optical spectra 

due to the changes and interactions near the implants can help predict the progress of 

implant surgery. A multivariate model can help to analyze the collected optical data.  

 

 Bone tissues are unique, as they can heal themselves after damage. Kim et al. explain how it 

takes a few weeks to several months (Ding, 2016) to recover based on health conditions and 

other factors. Bone healing occurs in stages that consume the patient's time and reduce the 

quality of life due to strict restrictions on physical movements to aid the healing process 

(Kim et al., 2020). Depending on the nature of the fracture, at times supporting frames like 

plates and screws are inserted into the bone to avoid deformed healing. If supporting 

plates/screws are made of biodegradable materials, it would prevent further complications 

with additional surgical procedures to remove the implants in the same region (Kabir et al., 

2021; Kim et al., 2020). When biodegradation happens, the mechanical properties of the 

materials degrade as the elements absorb into the body through complex biochemical 

reactions, as illustrated in figure2.1 (Wang et al., 2020). The changes at the implant interface 

with the medium of contact can give information regarding the progress of the implant 

surgery.   

 

Figure 2. 1 Biocompactablity of biodegradable Mg-based orthopedic implants (Wang et al., 2020)  * 
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Figure 2. 2 Ideal degradation pattern of the biodegradable fixators to support healing completion at the fracture site. 
(Wang et al., 2020) * 

 

* are from (Wang et al., 2020) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ( This is an open-access 
article under the terms of the  Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, 
provided the original work is properly cited.) 

  

   

Broadly implants can be classified as non-biodegradable and biodegradable implants. 

Research done as part of "MgSafe" focuses on magnesium-based implants. It has excellent 

biocompatibility (Wang et al., 2020) compared to zinc and iron. The mechanical 

characteristics of magnesium bone screws & pins have properties, namely density and 

elastic modulus, close to the natural bone. Also, magnesium-based alloys can stimulate new 

bone formation (Kabir et al., 2021, p. 837). About 60% of total magnesium gets stored in the 

bones (Castiglioni et al., 2013). There is no surprise that magnesium-based implants found 

applications in screws, pins, plates, and cardiovascular stents. Thus, magnesium's benefits 

make it one of the most promising biodegradable substitutes for biomedical applications 

with more clinical trials (Chakraborty Banerjee et al., 2019).  

 

Unfortunately, pure magnesium has a fast degradation rate that cannot give sufficient 

mechanical strength until the bones heal. To make them promising for implant applications, 

usually, magnesium is alloyed. It helps to prevent the fast degradation of magnesium, 

thereby extending the mechanical life of the implant (Kabir et al., 2021; Liu et al., 2018). 

Magnesium alloy as implant material has a broad scope of research to improve its properties 

(Bairagi & Mandal, 2021; Chakraborty Banerjee et al., 2019; Kumar & Katyal, 2021; Radha & 

Sreekanth, 2017; Tsakiris et al., 2021). Literature suggests that zinc alloying improves 

http://creativecommons.org/licenses/by/4.0/
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strength, and calcium alloying improves biocompatibility. (Kumar & Katyal, 2021) highlights 

that these elements have a specific daily allowance permissible for the human body. Also, 

these elements are present in human bones. As an implant, magnesium-calcium alloy 

possesses essential biocompatibility and mechanical properties close to cortical bone.  As 

mentioned in the literature, alloying helps reduce the fast degradation rate of pure 

magnesium implants. It gives sufficient mechanical strength for the bone support until it 

heals with time ( Figure 2.2). To sum up, implant reaction needs to be at slow rates to serve 

the purpose of its application.   

 

This thesis is an exploratory study based on lab experiments to analyze changes at the 

implant interface. From in vitro experiments, both non-biodegradable and biodegradable are 

analyzed. Further, animal-based optical datasets make the observations meaningful. The 

following section explains the methodology for optical data collection followed by the 

various lab experiments.  

 

2.2 Methodology  

The Near Infrared (Near IR or NIR) region falls next to visible light in the electromagnetic 

spectra. It can pass through the human tissue, making it feasible to collect information 

regarding changes inside the skin non-invasively. An optical probe is a device that sends light 

from the source, passes through the medium (specimen), and reaches the detector. The 

device spectrometer processes this light that reaches the detector as the absorption 

spectrum. Avantes software AvaSoft with its spectrometer (Avaspec-2048x14, Avantes, The 

Netherlands) gives spectrum in the range of 650 nm to 1100nm. Calibrate the instrument 

each time, as detailed in section III of the publication  (Hassan, Mathew, et al., 2021). 

Appendix C1 gives the steps in detail.  Microsoft Excel stores the spectrum for further 

analysis. One of the two ways to capture the optical data from different mediums/days is 

possible based on the type of medium through which it passes.  
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2.2.1 Data collection approches   

Transmission type is when the source and detector are on the opposite side of the medium. 

DMEM solution-based experiment can use this approach without immersing the probe in 

the liquid. As shown in figure 2.3, place the medium in a cuvette in the optical path between 

source and detector.  

   

Figure 2. 3 Experimental arrangement for reflection-based measurement done In vitro liquid-based medium (a) Path of light 
in the medium (b) lab set up (c) Illustration of the light source and detector for transmission type of arrangement. 

 

The reflection type is better for a thick medium-like animal surface. It is helpful to collect 

optical data non-invasively at a certain depth, like from bone implants, without damaging 

the tissue or medium through which it passes. Light needs to pass through a specific 

thickness, and a part of it reaches the detector.   Based on the required penetration depth, 

the source and detector are at the required distance on the same side of the medium. Figure 

2.4 shows the two different probes used in this thesis. The first probe is a commercially 

available probe with a distance between source and detector less than 1mm, while the 

OsloMet probe has one detector and two sources at a distance of 8mm and 6mm from it.  

 

Figure 2. 4 Reflection based measurement (a) Commercial probe (b) OsloMet probe (c) In vivo (animal Model) experiments 
have biological complexity due to the medium 

2.2.2 Data analysis 

For analysis, prepare the excel by combining all the collected spectrum into a common sheet 

with additional columns to specify the conditions of each data point. For the exploratory 

model based on spectrum, the variables are its wavelengths, and the target of interest is the 
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day when the optical spectra are collected. The optical spectrum from the spectrometer has 

wavelengths with a resolution of 0.281. Hence obtain the mean value of absorption for a 

particular wavelength to reduce the number of variables for modeling. On the nature of data 

gathered, remove both ends of the spectrum to avoid noises from the spectrometer. 

Preprocess the data based on the pipeline specific to the nature of optical samples. Pipelines 

for in vitro and in vivo experiments are different due to the changes in the medium through 

which light passes. More details are along with the corresponding lab experiments.  

 

Removing outliers or inconsistent data is an important stage of data cleaning. The clustering 

nature of data samples from a particular sample for in vitro and in vivo experiments is 

noticeable in the optical spectrum. However, it was challenging to decide if a particular 

cluster itself is an outlier. It was with a fear of losing valuable information with limited 

samples as the thesis focused on an exploratory approach. While modeling, additional care 

was to consider a particular condition rather than using all available data points. It helps to 

minimize inconsistent clusters in the model. For example, in the in vivo datasets, the first 

separation was done to consider only magnesium alloy implants from the available data. 

However, when handled in the same model, the optical information of the right femur and 

left femur were identified as inconsistent. Thus final animal studies are explicitly done on 

one femur data sample of rats with magnesium alloy implants. It helps to remove outliers to 

a large extent. Some points are far away for each day group within this subset. However, as it 

had information regarding trends, it is retained.   

 

 The exploratory model for the thesis uses the popular PCA approach. PCA or principal 

component analysis is a popular algorithm for dimension reduction. This approach helps to 

reduce large dimensions of wavelength or number of variables in X, which is close to 400 

variables in the experiments done, to n- number of principal components. The highest 

percentage of information regarding the dataset is present in the first principal component 

(PC1), followed by the following maximum percent in PC2 until n components. The algorithm 

generates the principal components corresponding to each data point in the experiment. It 

is now possible to plot the optical spectra in a new plain of principal components. PC1-PC2 

plot and PC2-PC3 plot are two dimensional PCA score plots that help the analysis. With the 

help of the first three dimensions, it is possible to present as a 3D plot the first three 
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principal components as well. The explained variance parameter helps to give a quantitative 

measure of information retainment during the dimensionality reduction. Cumulative 

variance is a cumulative sum of explained variance that is helpful to express the PCA 

performance. The loading plot connects the different variables (wavelengths) to various data 

samples. It unfolds critical wavelengths in the spectrometer range, holding valuable 

information about the interface changes at each test condition. 

 

The observations and experience from UnscramblerX and Orange3 software helped relate 

the requirements while working on the spyder available from Anaconda Navigator 

(anaconda3) to do python programming for data analysis. Python, an open-source software, 

was used to generate most of the results used in this thesis. Online support for coding and 

the observations and knowledge from the previous two software platforms were helpful. 

The python packages and libraries helped reduce the self-coding needed for the data 

analysis.  

 

Figure 2. 5 Flow chart for the methodology  

 

Figure 2.5 is the general flow chart for the experiment. The next chapter discusses in detail 

the different lab experiments. It also discusses the main results from corresponding 

experiments in the same section.   

1
•Collect spectral data (650nm to 1100nm) from different 
day  and consolidate in an excel. 

2

•Prepare Data

•1)Start & end of spectral data has noise that are 
excluded from analysis

•2) The number of variables (wavelengths) are reduced 
to whole numbers

•3) remove outliers

3

•Pre Process Spectra

•Min-Max scaler brings the data in range of 0 to 1 

• Apply scatter correction techniques as needed

4

•PCA and its performance Analysis 

•( Score plot & explained variance)

•( Loading plot)
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3. In vitro lab experiments and their results.  

When light passes through the medium, some light gets absorbed, while some gets 

scattered based on the medium through which it passes. In vitro experiment compares 

biodegradable and non-biodegradable implant material interface changes as it is in contact 

with a cell culture medium.  

 

Gibco Dulbecco's Modified Eagle Medium or DMEM is a cell culture medium. DMEM-like 

liquid medium has low scatters compared to living animal tissues. (Chakraborty Banerjee et 

al., 2019) compares chemicals blood plasma with cell culture medium including DMEM in 

table 4 of the paper. Maintaining pH in the medium is with the help of incubator settings in 

the in-vitro experiments (Luo et al., 2010).  

What is pH?  

In simple terms, pH expresses if the medium is alkaline or acidic. pH neutral medium 

maintains its value 7. If the pH is greater than 7, the medium is alkaline, while it is acidic with 

a pH less than 7. pH range goes from 0 to 14, with the neutral value as seven. By definition, 

pH is the negative log of hydrogen ion concentration. For an aqueous medium, pH can be in 

terms of hydroxyl ion (OH-) concentration 2. The pH meter helps get its value from the 

DMEM medium during the in vitro experiments.  

 

Figure 3. 1 (a) pH meter at UiO (b) pH of a medium is alkaline if OH- ions are more than H+ ions 

 
2 http://www.molecularhydrogeninstitute.com/understanding-ph 
 

 

http://www.molecularhydrogeninstitute.com/understanding-ph
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Overview of in vitro experiments  

In the in vitro experiment, the pH of the medium on different days is a marker as it changes 

with time. There are chemical reactions near the inserted material based on the nature of 

the implant material that is responsible for the changes in pH of the medium. Along with 

these functional changes, it connects to the interface's structural changes due to the 

degradation of the implant material with time. This section aims to consolidate the changes 

near the interface that can help describe the progress of implant interactions for an in vivo 

experiment on live animals.  

 

Preparatory lab work before the actual experiment on the rats by the MgSafe researcher's 

team in Italy helps learn about the features of the probe. There is a need for an optical 

probe explicitly designed for this in vivo experiment where the rats have an implant placed 

subcutaneously. Measurements must be 3mm to 4mm range, which is the goal. Experiments 

2 and 3 are two different experiments to test the probe's effectiveness using dead tissue and 

tissue-mimicking gel. Finally, the last section of this chapter discusses the observations from 

the in vivo datasets obtained from lab experiments conducted by MgSafe researchers in 

Italy, which helps to confirm the studies.  

 

3.1 Experiment setup and data preprocessing 

 (DMEM based in vitro experiment)   

Different implant materials interact differently with the surrounding medium. Hence, the in 

vitro experiments learn about implant materials [pure Titanium -Ti, and Magnesium Alloy 

ZX00 disk  [ 0.45 wt % Zn − 0.45 wt % Ca from BRI.Tech (Austria) ] with the help of DMEM 

medium. As it is a liquid medium, the transmission type of data collection is preferred.  

 

3.1.1 Procedure  

Place the disk-type implant material inside a bottle with DMEM solution for this in vitro 

experiment. Prepare three samples for each type of implant. Place the samples in an 

incubator (TS8056, Termaks) at 370C with 5% carbon dioxide CO2  and 21% O2 (Hassan, 
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Mathew, et al., 2021). Take measurements on different days from each sample. Day 0 is the 

reference day before inserting the implant material. Then measurements are taken on the 

second day, the fifth day, and the tenth day. Take ten measurements from each day for every 

sample after calibration. For each test case, capturing the light that reaches the detector can 

give the absorbance value at each wavelength with the help of a spectrometer. 

The pH meter helps measure the pH of the medium on each condition. An additional test on 

the implant surface was to measure chemical deposits with a scanning electron microscope 

(SEM) using the facilities at the UiO laboratory in Norway.   

 

3.1.2 Preprocessing of In vitro dataset  

 

Figure 3. 2 Flow chart for the data processing for the in vitro experiment 

 

The spectral datasets provide the absorbance of the samples measured from 600nm to 

1100nm. As part of preparing the dataset, remove the last 50nm from both ends to limit the 

noise introduced from the instrument. The spectrometer provides absorbance data for every 

wavelength with a resolution of 0.281 nm within the range of the device. These wavelengths 

are the independent variables or X, based on which we try to study the dependent variable 

or target variable. Hence we can see that there are multiple variables. Taking the mean of 

absorbance at a particular wavelength helps to reduce the number of  variables to 400. The 

1 •Collect Data from different conditions and consolidate it

2

•Prepare Data

•1)Start & end of spectral data has noise that are excluded 
from analysis (650nm to 1050nm)

•2) The number of variables (wavelengths) are reduced to 
whole numbers

•3) Extract data for the specific implant ( eg: case1 Mg Alloy, 
case 2  Titanium )

3
•Pre Process Spectra

• Scaled using Min-Max scaler

4

•Analysis 

•PCA 

•( Score plot & explained variance)

•( Loading plot)

•pH plot 
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measured data had negative readings. As part of data preparation, scale it to a range of zero 

to one with the help of a min-max scaler. 

 

 

Figure 3. 3 Mg Alloy DMEM Data (a) Raw Data (b) scaled data 

 

 For more analysis of the datasets, apply the dimension reduction approach after 

preprocessing. In the work, principal component analysis, also called PCA, is applied to the 

dataset that helps reduce the multi-dimensions to its corresponding leading principal 

components. The explained variance is a measure that describes how much information gets 

retained after the dimension reduction. The cumulative sum of explained variance is a 

parameter used to describe the total percentage. Moreover, PCA also helps identify the 

outliers (Figures 3.4 and 3.5). Removal of outliers can help to improve the model further. A 

comparison of scatter plots based on the score of the principal components reveals some 

information about the changes in the medium, which redirects to the changes in pH, 

especially on different days. Hence deciding if it is an outlier is a trade-off. (Sun, 1997).  

 

In the above case study, we see that measurement on day 5 has differences within the 

samples indicating significant changes in the medium. It is an exciting area to look into from 

implant interface analysis. However, it raised concerns about proceeding with the prediction 

model mentioned shortly.  
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Figure 3. 4 Score plot for Mg Alloy implant material (PC1- PC2) (a) 3 D plot and (b) 2D plot 

 

 

 

 

c 
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Figure 3. 5 PCA of data after removing outlier (10 samples taken on Day 5 from Sample 3). Still, we see that measurements 
from day five sample 1 influence PC1. It concludes that day 5 samples are inconsistent data in the group. There is a need for 

additional samples per category for future research. 

  

 

The explained variance gives a measure of information retained after PCA. The combined 

PC1 -PC2 retains about  99.4% (96.9+2.5) of information. However, outliers within the Mg 

Alloy implant make the dataset most dependent on day 5 sample 3, which is not a positive 

aspect of the model. After removing the data that is influencing PC1 mainly ( day 5 sample 3, 

ten measurements), we see an improvement in PC1 – PC2 % distribution (figure 3.5). 

However, reducing samples might lose some preliminary information (Sun, 1997). Hence all 

samples are retained.  

 

3.2 Observations of In vitro DMEM experiment  

Data analysis on the in vitro experiment was full of challenges but critical concerning the 

data analysis. Various thoughts and steps highlighting issues and challenges of work are in 

this section. Each observation is constructive as it’s a knowledge addition. 

  

In phase1, the plan was the prediction of pH using a regression-type model. From the 

application perspective, (Willumeit-Römer, 2019, p. 1453) suggests, in the conclusion of the 

article, that it is an excellent connection to connect pH changes and gas evolution; however, 

there are more developments to happen in the future for measuring chemical and biological 

parameters at the site of implantation. Hence getting non-invasive local pH was not practical 

for in vivo data acquisition.(Jayachandran et al., 2016; Papazoglou et al., 2006) Suggests gold 
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standard visual assessment tool helpful for measuring wound dimensions. It redirected focus 

to prediction based on the day as the literature confirms changes at the interface concerning 

time. There are restrictions on the in vivo experiment to collect data every day for the well-

being of animals under test. It suggests having sample collection on main days where there 

is the possibility of the influence. It initiated a piolet study of days 0, 2, 5, and 10 for in vitro 

preliminary experiments and to try classification-based algorithms. It can have performance 

parameters and a confusion matrix for predicting the multiclass model.  

 

The initial aim was to perform predictions based on the day using the ten measurements on 

a particular day, with three samples per implant type. Thus, there were 30 data points for 

each implant material for the DMEM in vitro experiment. Likewise, data includes two 

implant types for the pattern mentioned above on three different days. Hence the in vitro 

DMEM datasets had a total of 190 data points [(10 measurements *3 samples * 2 implant 

material * (day2 +day5 + day10)+ 10 reference sample].  

 

Initial studies used all the data points. To make the model realistic was my goal. Modeling 

based on a particular implant type was superior. Such a model is meaningful in the 

application as a person shall have only one implant for a particular wound. Inconsistent data 

(or outliers) must be minimal to improve model performance. Thus for use-case-based 

modeling, the total data points used reduces to one-third. It was a high-impact shrinkage.  

 

The updates on piolet study observations are helpful for future researchers and hence 

included in the report's challenges section 7.2.3, which covers additional details on modeling 

and obtaining the parameters.   

 

3.2.1 Trend observed from in vitro experiment 

Fortunately, this in vitro piolet study experiment helped observe an exciting trend in the 

optical data from the different mediums of the implant. As seen in figure 3.6, it is possible to 

group the optical spectrum based on data points from each day. Can it be helpful? 
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Figure 3. 6 The trend on timepoint based on the complete Mg Alloy implant dataset. 

 

The possibility of separating by the day is exciting as it points to the interaction of 

biodegradable material with DMEM medium. Day 0 is taken just before the insertion of the 

implant in the medium. Day 2 represents data points on the second day after the implant 

interacts with the medium. It is slightly away from the day 0 data points. Day 5 has 

maximum changes and covers a large area in the PCA plain. The higher positive axis of PC2 

separates the day 5 samples. The pH curve ( figure 3.7) for in vitro experiments for Mg alloy 

highlights that until day 5, there was a steep rise in the pH of the medium, indicating the 

reaction changes in the medium due to the presence of the implant material. With time it 

stabilizes. Day 10 sample points use certain areas in the PCA plain, indicating the 

continuation of chemical changes in the medium.  Of course, the absence of metabolic 

changes and blood flow of living animals makes DMEM observations different compared 

with in vivo studies.“Efforts to explain different dimensions of this trend are the basis of this 

thesis.”  

 

3.3 pH curve based in vitro experiment  

The experiment has different types of implants, namely degradable and non-biodegradable. 

Magnesium reacts quickly with the medium. As a result, it degrades at a faster rate. This 

rapid degradation rate of magnesium-based implants is a drawback. It does not help the 
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bone-implant applications as the mechanical properties of implants should only degrade 

with time so that fractured bone gets time to heal. A solution to this issue is using 

magnesium alloy for bone implant applications. After an initial reaction, a protective coating 

is formed around the surface that prevents fast degradation (Kumar & Katyal, 2021). Hence, 

magnesium alloys give bone healing time and maintain mechanical support more than pure 

magnesium implants. Titanium is a non-biodegradable material with minor pH changes 

among the two implant materials. Unfortunately, as it does not degrade, it requires second 

surgery when used as an implant material. However, it is helpful to compare with Ti implant 

in a cell-culture medium to get some reference observations about the range of changes.  

  

Figure 3.7 illustrates the pH graph of each implant material at increasing time points, namely 

D0, D2, D5, and D10. It shows the pH variation on different days for biodegradable (Mg 

Alloy) and non-biodegradable (Ti implant material) when placed in the cell culture DMEM 

medium. Non-biodegradable titanium implant has a rise in pH from day two till day five and 

later falls to a stable value. On the other hand, the Mg Alloy tends to increase and maintain a 

higher pH level. The variation pattern of pH is interesting in this experiment as live animal 

tissues have a slightly acidic pH of near 5 t 6 pH for hairless mice, 6.5 for rats, 5.5 for guinea 

pigs, 4.1 to 5.8 for healthy human skin rather than an alkaline medium (Proksch, 2018).  If so, 

how does a living animal overcome this shift toward alkalosis?  

 

 

Figure 3. 7 pH of the different mediums on different days. The plot is the average of three samples. 
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This pH graph is the primary observation for this thesis, as pH can be the biomarker. 

Unfortunately, getting local pH near the interface for the in vivo experiment is not practical 

presently, as suggested by Willumeit. Studies to draw relation is part of the work.  

  

3.4 A look into non-biodegradable titanium implant  

Non-biodegradable titanium (Ti) implant samples can be a reference check. PCA data 

samples undergo the same preprocessing pipeline as mentioned for Mg implants for 

plotting. PCA for this group, and the result is in figure 3.8. The goal is to identify similar 

trends in the titanium dataset. 

 

 The higher inclination toward PC1 (explained variance of 93.7% ) for Ti implants is due to 

the day 5 samples. Interestingly, unlike Mg alloy PCA for day 2, Ti implant's sample points are 

widespread for the second day. It connects to the time points of the Mg alloy and titanium 

samples changes concerning the pH curve changes. Hence, variations are prominent for Ti 

implants, especially on days 2 and 5, when the pH rises and reduces to the base value (figure 

3.7). This information meant that pH could influence the optical spectrum in the surrounding 

medium, giving a difference in PCA analysis.  

 

 

Figure 3. 8 Titanium implant-based PCA 
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The chemical reactions and changes in the medium are the hidden reason for these optical 

changes in magnesium alloy and titanium samples. The optical spectrum varies based on the 

medium through which it passes. Differences in the chemical reaction precipitate formed 

near the interface in the medium due to DMEM chemical,  gaseous chemical byproducts of 

reactions all contribute to the changes in the light path as it passes through it. Each day has 

some specific rate of change that distinguishes each day.  

 

 To sum up, the trend of separating optical data based on the day is present for the reference 

non-biodegradable Ti implants and biodegradable magnesium implants, relative to the pH 

changes.  
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4. Additional In vitro preparatory experiments  

(Papazoglou et al., 2006) performs NIRS measurements at 4 different source-detector 

distance combinations in healthy and unhealthy (diabetic rats) and concludes there is no 

significant information after a depth of 6mm. For in vivo experiments in Italy, there is a need 

to collect spectral data from the rat's surface with an implant placed subcutaneously after 

surgery. The probe should measure a depth of 3mm to 4 mm range. The optical probe is 

designed specifically for the experiment. To get the best results from the in vivo test, we 

(myself and the MgSafe researcher at OsloMet) performed a few lab experiments to test the 

optical probe before actual experiments. Experiments 2 and 3 are two different experiments 

to test the probe's effectiveness using dead tissue and tissue-mimicking gel. Before 

discussing the experiments, there is a need to understand the data collection methodology 

for in vivo experiments. The following section shall explain more about the OsloMet probe 

and surface-based data collection methodology.  

 

4.1 Probe Studies  

The OsloMet probe  

As briefed in section 2.2.1, among the two methodologies, in vivo measurements need to 

have the source and detector on the same side of the test specimen, as shown in Figure 4.1. 

The OsloMet probe sends continuous light from the source. As light passes through the 

specimen, some light gets absorbed, while some are scattered. The remaining light reaches 

the detector, which depends on the difference in the medium through which it passes. The 

light from the detector passes through the spectrometer. The next step is to collect the 

optical spectral data for data analysis with the help of a computer with AvaSoft software 

( More details are in section 2.2.2). Calibrate the instrument each time of data collection. 
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Figure 4. 1 OsloMet probe for reflection-based measurements from the surface. 

 

Figure 4. 2  Illustration of optical Probe and Data collection (Hassan, Mathew, et al., 2021) 

 

The optical probe (figure4.1) developed at OsloMet is for specific depth measurement that 

can help capture spectral information regarding the surgical progression of the implant in 

animals (rats). The OsloMet probe has two sources and one detector (figure 4.2). The 

source-detector distance is 8 mm for source s1 and 6 mm for source2. As a thumb rule, the 

expected data gathered optically is around the depth of ( 1 3⁄ − 1
2⁄  ) of the source-detector 

distance (Papazoglou et al., 2006, p. 1051; Taber et al., 2010, p. 356). The source at 8mm 

away from the detector is helpful for animal studies. 
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4.2 Additional in vitro experiments 

In vivo experiments include restrictions as they undergo defined surgical procedures during 

the implant surgery, and animal stress must be as permissible within guidelines limits. 

Hence, there are restrictions on getting invasive measurements. Moreover, additional tests 

collaborating with other MgSafe researchers from Europe were part of the experiment. 

Hence daily measurements were impractical on the same rats to avoid stress and 

unexpected health issues in animals. Thus based on the permissible conditions, data 

collected by the MgSafe team is used to relate the observations from in vitro DMEM 

experiments. The following prior testing of the OsloMet probe was crucial before the 

researchers' actual data collection experiment in Italy. These experiments focus mainly on 

the differences in optical data in different conditions and probe features.  

 

4.2.1  Experiment 2: Dead tissue experiment and its results  

Simple experiments on post-mortem pork were conducted in the optics lab to collect optical 

data from the OsloMet probe and Avantes probe (commercial probe) in the same 

wavelength range of 600 nm to 1100 nm (figure 4.3). The former gives the surface 

measurement in a newly purchased pork sample, while the latter gives depth information. 

(Mathew et al., 2021) . 

 

 

Figure 4. 3 Probe used for experiment (a) commercial Probe manufactured by Avantes (b) OsloMet Probe 

 

This experiment helps to understand the feasibility of separating various tissue of animals. 

Data was collected using the reflectance measurement approach at 11 selected pork points 

marked in figure 4.4, including bone, muscle, and different fat thicknesses. OsloMet probe 
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and commercially available Avantes probes capture reflectance measurement from the exact 

sample locations. 

 

 
Figure 4. 4 Eleven different selected points 

 

 
Figure 4. 5 Spectroscopic data plot  (a) for varying thickness obtained from OsloMet probe (b)For varying thickness obtained 

from Avantes probe 
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OsloMet probe at a source-detector distance of 8 mm compared with data obtained using 

the Avantes reflectance probe. The OsloMet probe responded to varied height distinctions 

for varying fat thickness (figure 4.6). This source-detector distance depends on the 

differential path length factor (DPF), which accounts for the actual distance traveled by 

photons before reaching the sensor. Scattering properties influence DPF. It confirms that the 

light reaching detector depends on the medium through which it passes. Interestingly, the 

probe developed at OsloMet helps distinguish the difference in the medium as light passes 

through it. 

 

 

Figure 4. 6 (a) PCA of post-mortem animal tissue Study of Avantes Probe Scatter plot from Unscrambler software (b) PCA 
study of OsloMet Probe, score plot from Unscrambler software. 

 

The different tissues of pork samples were in the cluster using the Avantes probe as in figure 

4.7(a), which uses the significantly less source-detector distance probe to measure. 

Interestingly, the OsloMet probe can group the different tissues used in the experiment, as 



36 
 

shown in Figure 4.7(b). The probe distinguished the different types of testing mediums that 

indicated that the OsloMet probe could be helpful for animal studies with different layers of 

biological tissue beneath the skin.  

 

4.2.2 Experiment 3: Gel Based Experiment and its results   

Different implant types were placed in an artificially created tissue-mimicking gel to test 

optical data received at the detector when illuminated independently from the two sources. 

(Hassan, Mathew, et al., 2021) explains the process of gel preparations in the chemistry lab 

at OsloMet. The lab experiment captures information from a particular sample using the s1 

source (8mm) and the s2 source (6mm). The goal is to identify the difference in the optical 

data collected from different implant samples. Additionally, testing from each source helps 

differentiate measurements from two different depths.  

 

PCA in Orange data analysis software is in figure 4.7. Interestingly, it separated 100% of the 

data information from source1 and source2. This feature is supportive as the probe can 

measure data at varying depths in the sample optically. An important observation of this 

experiment is that it is possible to predict depth in terms of the source to detector distance. 

(Papazoglou et al., 2006, p. 1051; Taber et al., 2010, p. 356).  Alternatively, it gives 100% 

separation of optical data was 6mm or 8mm depth of each sample set. 

 

Figure 4. 7 Principal component analysis (PCA) for 6mm and 8mm source distance measurement of optical probe (blue dots 
are 6mm and yellow dots are 8mm). 

Moreover, it is helpful to track the changes at the interface due to chemical reactions with 

different implant materials. If a particular measurement depth is selected, say 6mm, then 
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the magnesium alloy-based samples can be separated from titanium and control samples. 

The difference due to the material's surface when sandpapered/corroded gives a noticeable 

difference in the plots (Hassan, Mathew, et al., 2021).   The possibility is that magnesium-

based alloy's chemical reaction gives hydrogen gas near its surface that is absent for 

implants without magnesium. Hence, the optical measurements include light's effect that 

passes these gas in the optical path. It is essential to remember that magnesium ( or its 

alloy) degrades to generate hydrogen gas, influencing the optical dataset. (Deni Noviana a, 

2016) shows the images of hydrogen gas cavities formed in an experiment conducted on rats 

with magnesium implantation. On day 7 of implantation, the gas cavities were higher due to 

the type of implant in that experiment survival study. The gas bubbles formed in the skin 

were even visible with naked eyes due to the nature of the implant material used for the 

experiment by Deni Noviana et al. Closed-porous pure magnesium implants were used. 

(Zhang et al., 2009) uses high purity Mg-Zn-Mn alloy for in vivo experiments where the 

bubble formation was not visible with naked eyes. Hence nature of implant material has a 

vital role in implant degradation. Hence in vivo study uses only one type of magnesium 

implant material for all rats.   

 

The preliminary lab experiments help prepare for in vivo measurements using the OsloMet 

probe. A commercial probe study highlights the significance of the distance between source 

and detector as the requirement is to analyze optical changes after light passes through 

body tissues. Also, tissue-mimicking gel-based experiment highlights that it is possible to 

separately group optical data at different depths or, in other words, different source-

detector distances. Thus, the OsloMet probe can help collect data as needed for in vivo 

experiments. The difference in light absorption from a particular medium is due to changes 

in the tissues through which it passes. For in vivo experiments where the light passes 

through different layers of live tissues, the optical spectrum shall include the changes in the 

medium due to variation in the blood ( hemoglobin ), pH changes near the wound or the 

interface surrounding, and gas generated due to biochemical reactions. It is interesting to 

study the in vivo datasets, which is the focus of the upcoming next section.   
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5. In vivo experiment results  

In vivo experiments focus on biodegradable magnesium alloy implants in rat (WISTAR) 

models. The NIR light passes through the medium, including fat and hemoglobin, scattering 

or absorbing it. I was not part of the data collection from animal models. Data is made 

available from the MgSafe research project associated with OsloMet. The goal is to analyze 

more physiological and functional changes near the magnesium implant interface. The 

discussion section examines the trends in vitro and in vivo experiments more closely. The rat 

that faced deviations in surgery progress is closely analyzed and compared with the healthy 

rats to explain the progression trends using the optical data.  

 

5.1 Research Ethics and overview of the dataset 

 

The research experiment was conducted at the Institute of Clinical Physiology, CNR, San 

Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy, under the MgSafe project's 

umbrella.  OsloMet researcher was part of the team, and OsloMet owns the rights to control 

and use the optical data gathered using the OsloMet probe. The data collection was 

conducted based on the guidelines and protocol for such experiments. The team had a 

specialized surgeon who led the data collection activities. Special care was to limit the stress 

on the animal as there was data gathering from other devices apart from the optical probe. 

Long-term planning and meticulous preparations happened before the actual experiment in 

October 2021.   

Three different implant types are part of the datasets gathered from in vivo experiments. To 

avoid the vastness of the work, I am analyzing rats with magnesium alloy implants as it can 

Figure 5. 1 Data collection for in vivo experiments 
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help me gather information near the magnesium implant interface, the ultimate goal of the 

thesis. A group of four rats has the Magnesium alloy of WE43 implant. A similar implant is 

inserted in rats' right and left femur bones after a systematic surgical procedure by a 

surgeon. Measurements at different test points or days help study the progress of 

degradation over a certain period. Measurements on the same day after the surgery are day 

0 data. Measurements are available for day 3, day 7, and day 14  from the primary rat group. 

This biweekly data is principal analysis. Two rats from a secondary group helped collect 

optical data from day 45. It is part of the study as a piece of additional information on 

progress after a few weeks of surgery. However, spectra from the initial time points are 

unavailable for this group and vice versa for the primary rat group. Relation to the progress 

of wound healing and changes in metabolism near the wound for rats is crucial as more 

complex chemical and biological reactions occur due to the interaction of the magnesium 

implant. Optical information gathered is interesting to investigate and relates to using this as 

a possible non-invasive medical treatment modality. Preprocess of available data is the first 

step.  

 

5.2 Preprocessing and the pipeline for in vivo dataset  

The optical data collected from the animal is the in vivo datasets. Due to biological 

complexity and changes in implant material differences, modeling needs to be on a specific 

implant target that shall help avoid inconsistent data. Such observations can help create a 

prediction model for the future. Based on the observation in experiment 3, for consistent 

data, exploratory data analysis is done on optical spectral data collected from rats with 

magnesium alloy implants group only through the complete dataset has two additional 

implant types were also available.  

 

A particular rat has the same implant in the left and right leg. Interestingly, the optical data 

collected from different body parts are different even when taken from the same rat. PCA-

based score plot based on data collected from left and right legs of Mg implant rats is in 

figure 5.2, which confirms the above comment. The in vivo experiments critically observe 

that their biological changes are different across the body parts, which calls for the model to 
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be specific to the area of interest. This data analysis is a piolet study; the thesis focuses 

mainly on one leg, namely the right leg.  

 

 

Figure 5. 2 Right and Left femur data points from all-day conditions for Mg Implant Rats (a) First two PCA (b) First 3 PCA. 
Left femur data have more outliers compared to right femur. 

 

The first step of processing animal data is to separate the required conditions like 

magnesium implant data from the right femur of the rats. Same as in the in vitro data, 

reduce the number of observations by taking the mean of amplitudes per wavelength. Avoid 

the extreme ends of the spectrometer range to avoid noisy data points. Compared to in-vitro 

data, the in vivo data has more negative readings. To retain the information, perform min-

max scaling. Unlike the in vitro datasets, PCA did after the above stage was not giving any 

detailed information regarding the trends. 

 The in vivo optical data collected from live animals with different layers include fat, skin, 

muscles, and blood flow. The fat tends to scatter light while hemoglobin in blood absorbs 
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NIR light. (Rosen et al., 2002).  Additionally, due to the interaction of magnesium implant, 

there is a reaction that causes biological changes in the vicinity, including changes in pH, also 

referred to as wound pH due to surgery. The hydrogen gas formed as part of the implant 

reaction occupies the regions near the implant (Deni Noviana a, 2016). The gas bubbles near 

the implant can slowly increase in dimensions as they come closer to each other. Such 

bubbles influence the optical information due to light scattering as it falls in the light path. 

As the primary goal is to understand the changes at the interface, this bubble formation 

helps gather internal changes near the implant. Also, body healing after the surgical 

procedure adds more changes at the cellular level as many dead cells start to form in the 

upcoming days of the post-surgery period. Hence the optical information gathered from the 

surface above the implant is the net effect of complex biological changes. It needs further 

processing to identify the information regarding the implant surfaces. As the wound heals, 

there are changes in the skin wound. Local tissue changes influence optical properties 

(Jayachandran et al., 2016).  

 

Figure 5. 3 Flow chart for the data analysis for the in vivo experiment 

 

After repeated close analysis of filters and their application order, I observed trends similar 

to in vitro data in the PC1-PC2 plain that separates the optical data to different time points. 

Figure 5.3 shows the preprocessing of the in vivo data flow, which helped me see the trend. 

1
•Collect Data from different conditions and 

consolidate it

2

•Prepare Data

•1)Start & end of spectral data has noise that 
are excluded from analysis (680nm to 
1000nm)

•2) The number of variables (wavelengths) are 
reduced to whole numbers

•3) Reduce outlier , Extract data for the specific 
condition ( eg: Mg Alloy Implant, Right femur )

3

•Pre Process Spectra

• Scaled using Min-Max scaler

• Apply scatter and derivative filters ( SNV and 
Savitzky Golay filter with  derivative 1) 

• Remove Spikes at two ends 

4

•PCA and its performance Analysis 

•( Score plot & explained variance)

•( Loading plot)

•(Identify the outliers & remove as needed)
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Unlike the DMEM in vitro data analysis pipeline, it uses two other preprocess approaches: a 

scatter technique known as standard normal variate or SNV and a derivative filter.   

 

Multiplicative scatters correction (MSC ) is a popular scatter technique (Prieto et al., 2017). 

But it needs a reference spectrum that is ideally free from scattering effects. Getting such a 

spectrum is not possible in this case. A popular approach uses the mean of the sample data 

spectrum, but it reduces performance under the influence of outliers. Due to complex 

changes in the medium, there are possibilities of inconsistent data at someday points. Due 

to minimum sample points, removing data as outliers is not a good choice to study the trend 

as they have helpful information even if it spreads in the PCA plain (Sun, 1997). It motivates 

me to try another scatter technique, SNV or Standard Normal Variate, which performs on 

each spectrum. In this technique, it divides the mean-centered spectrum by its standard 

deviation3   𝑋𝑖𝑠𝑛𝑣 =
𝑋𝑖−𝑋𝑖𝑚𝑒𝑎𝑛

𝜎
. Interestingly, it groups the spectral data collected from 

different days. Compared to in vitro datasets, the overall optical datasets highlight the 

variations. A derivative approach can help to capture the changes in the spectrum. Hence 

the derivative technique Savitzky-Golay filter (Sun, 1997) with derivative 1 is applied to the 

dataset. In the last stage, remove the spikes at the ends to avoid high explained variance on 

PC1 during the subsequent analysis stage. The in vivo input and final preprocessed data are 

in figures 5.4 and 5.5. Hence additional preprocessing is needed for invivo data (Fan et al., 

2018), after which it passes to the next stage. PCA is on this preprocessed data, as detailed 

in the next section.   

 

Figure 5. 4 Raw in vivo  data as obtained from the spectrometer for Mg alloy Right implant 

 
3 https://towardsdatascience.com/scatter-correction-and-outlier-detection-in-nir-spectroscopy-7ec924af668 

 

https://towardsdatascience.com/scatter-correction-and-outlier-detection-in-nir-spectroscopy-7ec924af668
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Figure 5. 5 Preprocessed data by the end of step3 in the flowchart. It is the input for PCA analysis 

5.2 Principal component analysis (PCA) of In vivo Data  

With the information on the test conditions, let me continue the PCA analysis of in vivo 

datasets. After the preprocessing, the required variables pass through the PCA dimension 

reduction process. For in vivo samples, the total number of variables is from 680nm to 

1000nm, of about 320 variables. It is not practical to plot 320 variables (multivariate data) 

into a plain so that a human being can visualize it. These 320 variables are reduced to 10 

principal components, retaining a certain percentage of information referred to as the 

explained variance. Individual and cumulative percentages of explained variance are in 

figure 5.6 for the first 10 components.  

 

Figure 5. 6 Explained Variance of PCA in figure 5.7 

After reducing the dimension, the first principal component has 39.5% information, and the 

second has 26.4%, making a total of 65.9% while plotting the scatter plot as in figure 5.7. 

Adding the third principal component retains 77.3% of information (figure 5.8). The first 

three components carry most of the information in this in vivo dataset.  
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Figure 5. 7 PCA of MgAlloy implant-based optical data-based PCA of the right femur. The first two PCA plotted in the 2D plot 

 

Figure 5. 8 PCA of MgAlloy implant-based optical data-based PCA of the right femur.  The First 3 PCA components plotted in 
the 3D plot 

Thus, preprocessed Mg Implant optical spectrum from Right femur datasets retains 77.3 % 

of the information when considering PC1, PC2, and PC3. Unlike the in-vitro data, the 

explained variance is exceptionally high compared to PC2.  

• Does the PCA of optical data from the rats on a different day tell us any information? 

•  

• Figure 5. 9 PCA concerning PC1 and PC2 based on different days 
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The next stage is to perform a detailed analysis of the different conditions and look for the 

trend from in vitro data. This section includes efforts to understand the difference in optical 

data for different rats. Let us observe the same plot in figure5.7 from the angle of different 

days (figure 5.9). Day 0 (D0) has a significant cluster and a small cluster separated from this 

leading group. Similarly, day 14 (D14) has two clusters close by, while one stands out from 

these. 

Interestingly, timepoint 3 has two separate clusters. Why is the gap between the two 

clusters so much? Both clusters represent the optical information of rats at the same time 

points, which means the changes in the medium through which the light passes are similar, 

giving the same expected reactions inside the rat's body. Of course, slight variation based on 

the difference in rats is normal. But why are the two significantly separated clusters formed?  

 

5.3 Additional details about the rats used in the Model studies  

 

Figure 5. 10 Initial Orange-based observations 

Preliminary observations in Orange 3 software separate the left femur from the right for 

time 3 is interesting as it also gives similar results but in a magnified approach (the 

difference is due to changes in normalization of widgets in orange software). It gives 

additional information on the different rats used for the analysis. In the red region (right 

femur datasets) of the orange software-based results of figure 5.10, the rats 64 and 65 are 

grouped into a cluster, while rats 70 and 71 are separated further away from the initial 

groups. A similar trend is in the left femur, but points are further apart.  
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Before proceeding with the PCA results, it is essential to familiarise the samples or rats used 

for the discussions. From the information gathered from the researcher, one rat (r70 ) died 

on day 3 and couldn't survive the surgical procedure. Hence we have data until day 3 for this 

rat. For the remaining rats, data is available for day 0, day 3, day 7, and day 14. Day 0 gives 

optical spectra of changes soon after the implant interaction with the living tissue. Days up 

to a fortnight are of primary interest as it helps to relate to the in vitro experiment. Day 45 is 

a piece of additional information in PCA analysis.  

 

A particular rat could survive the surgery, but the spectral data was not the same as that for 

unknown reasons. Hence this rat is also of interest. The thesis is now challenging within in 

vivo datasets and finds areas to explore as the research progresses. For a quick sum up, 

summary information regarding all the rats is in table 1. 

 

Table 1: Description of Rats (Wistar)  used in in vivo analysis 

Sl.No Reference  
used in 
the report 

Rat group with 
Rat number 

Weight Data points Preliminary   observation 

1 r64 (G23 -1 –rat 64) 218 g Day 
0,3,7,14 

Survived the implant surgery & Normal 

2 r65 (G23-2 –rat 65) 224 g Day 
0,3,7,14 

Survived the implant surgery & Normal 

3 r71 (G24-3-rat71) 
 

225g Day 
0,3,7,14 

Rat survived the implant surgery. Did it 
have differences observed from the 
Orange 3 data analysis? It needs a 
detailed analysis in the discussion 
section. 

4 r54 (G21_1_rat54) 249g Day 45 Day 45 data only 

5 r57 (G21_4_rat57) 243g Day 45 Day 45 data only 

6 Rat 70 (G23_rat70) 230 g Day 0 , 3 Died on day 3 

 

The PCA analysis in figure 5.11 highlights the rats that have survived after the surgery. It can 

answer the questions discussed before. The samples collected from rats 64 and 65 were 

healthy clusters with day points in the color code. At the same time, the rat 70 (dead rat) 

and rat 71 (unhealthy rat) are the far-away clusters.  

 

• Can the optical data of the dead rat explain any hidden message? 

• Can optical data guide in understanding the health on different days? 
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From day 0, the rat with unhealthy conditions is separated in its PCA plain. Day 3 is very 

much exciting and critical. The two healthy rats are on two opposite sides of PC1 in the PC1-

PC2 plain. The optical spectra collected from these rats (r70 and r71) differed from healthy 

rats (r64 and r65), as in figure 5.11. As the next step of this exploratory analysis, let us 

analyze the wavelengths that contribute to optical information.  

 

 

Figure 5. 11 PC1 -PC2 plot highlighting different timepoints where the unhealthy rats are in white with label 

5.4 Wavelengths of significance 

A loading plot in the PCA is helpful. It relates additional details in the datasets. Loading-plot 

in the PCA can relate to the features in the datasets (Westad et al., 2003). In the spectral 

datasets, features are the wavelengths. The figures in 5.12 and 5.13 help in primary feature 

selection. The plot highlights that wavelengths near 680nm, 720nm, 750 nm, and 775 nm 

are of interest at the beginning of the NIR range, which strongly influences absorption due to 

hemoglobin and cytochrome c oxidase. Oxyhemoglobin absorption rises while 

deoxyhemoglobin reduces in this region, and metabolism-related changes (cytochrome C 

oxidase) have had their peak prominence at around 800nm (Taber et al., 2010). The higher 

absorption after 940nm is another area of interest concerning light absorption by water in 

the medium. Below the 1000nm range of NIR spectroscopy, wavelengths  955nm and 995nm 

seem to carry some information. The region above 1000nm gives more water content in the 

medium or tissues.  

As mentioned in preprocessing section 5.2, the derivative 1 filter is used that helps to 

highlight the wavelengths that are having changes in the raw spectra, as discussed 
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elaborately in (Sakata et al., 2012). The author, with images, explains how the slow rise in 

absorption curves and the sharp changing peaks in derivative curves of spectra. The 

amplitude of the sharp peaks is proportional to the changes in the actual spectra. Figures 

5.14 to 5.17 use the preprocessed in vivo data from one of the measurements to plot the 

graphs for different days. It is the derivative spectra of in vivo data. Though the availability of 

data samples is a limitation, it can be helpful to see an opportunity for a comparative study. 

It helps to identify the wavelength that influences more closely.  

 

Figure 5. 12 Loading plot and preprocessed optical data from the right femur of all rats having Mg implant 

 

 

Figure 5. 13  Loading plot and preprocessed optical data from the right femur of healthy rats alone 

 

Day 0 refers to the optical samples collected on the same day after surgery. Hence the 

magnesium implant starts to interact, giving optical changes. Additionally, the animal 

responds to the metabolic changes near the wound after surgery. Hence rats have maximum 

differences in the optical data, as in figure 5.14. All rats have similar hydration changes with 

peaks at 950nm, while changes due to blood flow in the region near the interface are 

different for each rat as in regions from 680nm to 800nm. Interestingly rat 71 has maximum 

differences.   
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Figure 5. 14 Derivative spectra of day 0 

 

As in figure 5.9, the PCA analysis data point on day 3 are separated 100% in the PCA for healthy 

and unhealthy rats. Derivative spectra for the same day in figure 5.15 explain that both the 

healthy rats exhibited a particular optical spectrum that was similar and overlapped. Hence it 

can be considered a reference to compare the other two rats on day 3. Rat 70 was dead on 

day 3. The remarkable change from healthy rats to unhealthy rats on day 3 is worth noting in 

the plot. Derivative spectra of optical data near unhealthy rats' wounds indicate that the 

hemoglobin and cell metabolism [figure 3 (Taber et al., 2010)] vary tremendously in the 

opposite pattern from healthy rats, especially from 700nm to 900nm. Also, rat70 has some 

differences in the 965-975nm range, where water absorption is predominant. It is evident that 

rat 71 also has significant hemoglobin and cell metabolism issues near the wounds. NIR light's 

deviation in hemoglobin absorption is striking for the dead and unhealthy rat. It is an indicator 

of the negative progression of surgery. Though the non-availability of a vast number of animal 

samples is a limitation, this piolet study can be helpful to see an opportunity for future 

researchers. This paper focuses on opening the possibility of a promising future for optical 

diagnosis. A non-invasive technology that doesn't destroy the tissue but at the same time 

gives varied optical spectra for unhealthy conditions.   
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Figure 5. 15 Derivative spectra of day 3 

After day 3, there are only 3 plots as rat 70 was dead. Day 7 plots are almost similar, with some 

differences in magnitudes. As in figure 5.16, some curiosity arises regarding rat 64 primarily 

related to hydration near the wound and blood flow near the implant interface. (Deni Noviana 

a, 2016),mentions that maximum internal changes due to wound and implant reactions 

happen on day 5 (figure 6.3A). So after day 7, the reactions expect to be stable. On day 14, 

the healthy rats are almost the same, while rat 71 has a higher amplitude in their derivative 

spectra (figure5.17).  

 

Figure 5. 16 Derivative spectra of day 7 
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Figure 5. 17 Derivative spectra of day 14 

Interestingly, the optical probe can distinguish the wound healing near tissues as the peak of 

the derivative spectra. Keeping in mind the work limitation, I wish to note some exciting 

wavelengths in the spectra that give information on surgery progress. In this in vivo study, 

wavelengths of interest are (685, 700,705**, 715*,750***, 773, 785), (800, 840*,855, 

870,885,905), and (940, 950**,960, 965-975 ***, 975*, 985*,995), with * indicating 

maximum importance in each group. 

All these animals survived the two weeks of observation, so rat 71 has some health issues 

even though it survived. Further examination of images taken during the experiment showed 

that rat 71 had rashes near the wound, unlike the two healthy ones. The difference in tissue 

near the wound is the reason for the difference in optical spectra for the rat 71. The following 

section discusses the possible reasons for issues near the interface.  

 

• What is the reason for the positive trend in surgery progress separated with the help 

of optical data near the magnesium implant interface? What can be the biochemical 

changes near the interface?  

• What is the future scope of this piolet study?  

 

In the next section, let us revisit the problem statement with detailed discussions concerning 

in vivo data samples compared to in vitro results.  
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6. Discussions  

In vivo experiments refer to data from the living body; unfortunately, there is no non-

invasive approach to measure local pH to give actual figures to mark the changes near 

implants  (Willumeit-Römer, 2019, p. 1448). In vitro data analysis using DMEM medium-

based experiments is limited because they cannot directly relate to the pH in vivo. However, 

the trend in pH is interesting to analyze further. pH plotted against different days is 

fascinating. It highlights the strong relation of implant material with pH on different days. 

Hence, local pH is a biomarker closely associated with the progress of implants in vivo. Let us 

try to see some chemical equations to relate the reason for changes in pH near an implant 

surrounding.  

 

6.1 The biomarker pH  

When magnesium reacts with water in the tissue, it produces hydrogen. The equations 

below explain the changes in the interface (Bairagi & Mandal, 2021; Willumeit-Römer, 2019).  

 

𝑀𝑔 →  𝑀𝑔2+ + 2𝑒−                                                         The anodic reaction             (1)  

2𝐻2𝑂 +  2𝑒−  →  2𝑂𝐻− +  𝐻2  ↑                                 The cathodic reaction           (2)     

 

Then the overall reaction can be written as equation three from equations 1 and 2.   

𝑀𝑔 +  2𝐻2𝑂 →  𝑀𝑔(𝑂𝐻)2  ↓  +  𝐻2  ↑                                                                      (3)  

Where  𝑀𝑔2+ +  2𝑂𝐻− =  𝑀𝑔(𝑂𝐻)2  ↓                             (4) 

These 𝑀𝑔(𝑂𝐻)2 Alternatively, the hydroxide layers cover the magnesium surface. However, 

due to its instability, it reacts with the chloride ions of human body fluids for in vivo 

experiments and DMEM medium for the in vitro experiment to form highly soluble 

magnesium chloride, as represented in equation 5. 

𝑀𝑔(𝑂𝐻)2(𝑠)
+  2𝐶𝑙−

(𝑎𝑞) →  𝑀𝑔𝐶𝑙2  + 2𝑂𝐻−
(𝑎𝑞)                                                (5) 
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6.1.1 What is pH? 

The pH of a medium is the concentration of hydrogen ions (𝐻+). The exact pH can also be as 

𝑂𝐻− Ion concentration value here. A solution is said to be alkaline or basic if there is an 

increase in the concentration of hydroxide ions ( 𝑂𝐻−) that is numerically the same as a 

decrease of (𝐻+). The reaction presented in equation 2 suggests that local pH near the 

interface shall increase due to the expulsion of hydroxide ions ( 𝑂𝐻−). The biochemical 

reactions are highly complex. As the reactions proceed at the interface, these hydroxide ions 

help form some precipitates, as mentioned in equations 6 to 11. Thus there is a delicate pH 

balance near the implant surrounding.  

 

𝑂𝐻−
(𝑎𝑞) +  𝐻𝐶𝑂3

− →  𝐶𝑂3
2−  +   𝐻2𝑂                                                             (6)  

𝑀𝑔2+
(𝑎𝑞) + 𝐶𝑂3

2− →  𝑀𝑔𝐶𝑂3 ↓                                                                     (7)  

 

𝐻2𝑃𝑂4
−/   𝐻𝑃𝑂4

2−  + 𝑂𝐻−
(𝑎𝑞) →  𝑃𝑂4

3−  +   𝐻2𝑂                                        (8)  

𝑀𝑔2+
(𝑎𝑞) + 𝑃𝑂4

3−  →  𝑀𝑔3 (𝑃𝑂4)2 ↓                                                             (9)  

 

Calcium also reacts to form its precipitates  

𝐶𝑎2+ +  𝐶𝑂3
2− →  𝐶𝑎𝐶𝑂3 ↓                                                                              (10) 

𝐶𝑎2+ +  𝑃𝑂4
3−  →  𝐶𝑎3 (𝑃𝑂4)2 ↓                                                                     (11)  

 

As from equation 3, water is used to initiate the reaction. On the other hand, in equations 6 

and 8, water is a byproduct of the reaction. Thus, as the complex biochemical reaction 

occurs near the implant interface, there are changes in the presence of water. The volume of 

water for in vitro experiments and the local hydration of the animal body can be biological 

changes near the interface.  

                                                      

Additionally,  corrosion or degradation of magnesium gets fastened due to the 

disappearance of the hydroxide cover of magnesium 𝑀𝑔(𝑂𝐻)2. As in the overall reaction 

equation, 3, hydrogen gas is present adjacent to the implant. The literature explains that 

hydrogen gas's presence is only in the first post-surgery week. In 2-3 weeks of the in vivo 
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implant surgery, the gas gradually disappears and assumes it does not interfere with the 

healing process if the corrosion rates are within certain limits, especially in the first couple of 

weeks(Chakraborty Banerjee et al., 2019). Hydrogen molecules are neutral and hence do not 

contribute to local pH. Equations 7,9,10,11 suggest the formation of precipitates near the 

interface that can form a coating near the implant that helps reduce the degradation of the 

implant (Bairagi & Mandal, 2021; Tsakiris et al., 2021). This layer obstructs the interaction of 

implant Mg with water and helps control the formation of hydroxide ions that contributes to 

pH. Variation in pH in the medium near the vicinity of the implant is an area of interest. 

 

 The body maintains a pH close to 7, neutral. pH greater than seven makes medium alkaline 

referred to as alkalosis, in which the tissues cannot exist. Hence, pH due to alkalosis can 

damage cells in its areas of influence. This section concludes that pH is the biomarker of 

interest as it can decide implant surgery's progress when related to actual implant surgery 

for living tissues.  

 

6.2 Chemicals at the interface  

In the in vitro experiments conducted at UiO, additional experiments help study the implant 

surface. Surface scanning the implant each day using the SEM machine gives a quantitative 

measure of chemicals present in the in vitro DMEM-based experiment. Figure 6.1 highlights 

the changes of different chemicals on various days. There is a strong prominence of 

magnesium across different days. Interestingly, it is maximum on day 0 and reduced with 

time to reach the lowest on day 5. It indicates faster degradation of magnesium in the initial 

days till about the fifth day. During these days, oxygen slowly but steadily rises. After day 5, 

the oxygen present is almost stable, and magnesium reaction rates start to pick up slowly 

but slowly.  

 

As in equations 7, 9,10, and 11, some precipitates are formed in the chemical reactions. 

These include the 𝑀𝑔𝐶𝑂3, 𝑀𝑔3 (𝑃𝑂4)2, 𝐶𝑎𝐶𝑂3 , 𝐶𝑎3 (𝑃𝑂4)2 . Calcium, phosphorus, and 

carbon presence in the scan are due to the precipitates settling near the implant surface. 

Among these, calcium and phosphorous are present across the days. While it is interesting 

to note that carbon presence increase between day 2 to day 5. Drop after day 5 can be due 
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to the reduction in carbonate-based precipitates, while phosphate-based precipitates 

continue over extended periods. (Zhang et al., 2009) mentions the formation of 

phosphorous precipitates after a few weeks of implantation of magnesium implant in an in 

vivo analysis.   

 

Figure 6. 1 Variation in the presence of different chemicals near the interface 

 

Figure 6. 2 Summary of Elements present in the Magnesium implant surface from in vitro experiments. 

The least prominent element is Zinc. The implant is an alloy having zinc in it. Its presence is 

unseen in the upcoming day. Figure 6.2 summarises the elements present on the 

magnesium alloy implant. (Zhang et al., 2009) in vivo studies mention P, C, Ca, O, and Mg in 

an in vivo Magnesium implant analysis.  

6.3 Optical medium properties 

The presence of gas bubbles can influence the optical path it passes. Literature (Deni 

Noviana a, 2016) shows the presence of hydrogen gas bubbles formed in a study of the 

survival rate of rats. Figure 6.3, taken from the same articles, mentions that day 5 has the 
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maximum size for these gas bubbles in the implantation period (Deni Noviana a, 2016, p. 

11).  It is interesting that in vivo experiments also have changes in the optical spectrum that 

varies with time. It is an indication of biological changes in vivo due to magnesium 

implantation. It supports the trend that is the center of this work, and hydrogen gases 

contribute to changes near the interface that shares the difference in optical spectrum and 

other biological changes at the site. It is exciting to understand that the OsloMet probe 

responds to the changes internally, giving a varied optical spectrum when collected from the 

left or right femur. It follows the observations of Deni Noviana in figure6.3 B, which shows 

the changes in the gas cavities at different rat parts.  

 

Figure 6. 3 (A) Gas cavity size evolution throughout the implantation period; and (B) gas cavity size at different rat parts. 

(Deni Noviana a, 2016, p. 11). 

Note: This image is from (Deni Noviana a, 2016). Published under Creative Commons Attribution-Non Commercial-No Derivatives License (CC BY NC ND) 
 

6.4 In vitro Vs In vivo  

6.4.1 In vitro DMEM experiment  

The pH variations for biodegradable and non-biodegradable implants in figure 3.7 from in 

vitro experiments highlight an initial rise in the pH when an implant material is in contact 

with DMEM. Biodegradable Mg has a higher pH variation than non-biodegradable Ti 

implants. It is due to higher concentrations of magnesium ions from magnesium-based 

implants that will interfere chemically with the salt ions (Willumeit-Römer, 2019, p. 1448) in 

the surrounding DMEM medium. The in vitro experiments suggest that the changes in pH 

are critical in the initial days, especially from the initial week. The in vitro experiment's 

connection can also be compared with the in vivo optical information. PCA analysis shows 

the feasibility of grouping optical data based on different days.  

 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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6.4.2 In vivo experiments   

 At present, medical practitioners use costly scans to evaluate the progress of implants, 

making the patient's life more complicated after the implant surgery (Hassan, Grasso, et al., 

2021). Hence an optical approach that is less costly and patient-friendly can be of great 

interest. In the in vitro experiment, this trend, especially in magnesium alloy implants, is 

fascinating. There is a tendency to shift toward alkalosis that can impair surgery progress. 

Days soon after the implant are crucial and draw the need for medical attention and 

diagnosis if there is any deviation in expected progression.  

 

Physiologic pH usually refers to the pH value of blood. In (Svorc & Petrášová, 2018), a table 

author compares blood pH in rats in different literature, highlighting around 7.4 as nominal. 

However, pH is local in a living body and varies slightly. The normal pH of skin surface for 

humans is slightly acidic (4.1 to 5.8), so it is different for mammalians, as highlighted 

(Proksch, 2018). The pH of the young mouse is 5.4 and can rise to 5.9 for aged mouse skin.  

The trends in the pH graph for the in vitro experiment happen in living tissues as the in vivo 

implant interacts with water in the tissues. Nevertheless, the body's ability to naturally 

balance the body parameters shall suppress pH changes and maintain pH homeostasis. 

Blood has pH buffers such as hemoglobin and albumin that helps to maintain optimal 

balance in a living animal (Aoi & Marunaka, 2014). Post-surgery, the rise in pH near 

magnesium implant is due to the release of OH- ions as it reacts with water (Jin et al., 2020). 

As the body starts to heal, there is a tendency of increased blood flow near the wound 

(Papazoglou et al., 2006). Thus, the tissues and implant interface undergo lots of changes 

that give functional (like metabolic changes) and structural (like surface changes) due to the 

magnesium implant inside the body.  

 

6.4.3 Special case study from in vivo : Unhealthy and Died Rats  

The spectrum from day 0 ( the same day after surgery) and the third day of surgery in the 

exploratory model suggest maximum biochemical changes in the rats. The time with 

maximum optical changes can be related to the changes in local pH and higher 

concentrations of magnesium ions that will interfere chemically with salts in animal body 
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fluid. On day 0, there is damage to tissues locally near the interface as part of the surgery. As 

the wound starts to heal, higher blood flow perfusion near the surgery increases the blood 

flow. Thus there is an increase in chemicals (𝑀𝑔2+, 𝐶𝑎2+,  𝐶𝑙−, 𝐻𝐶𝑂3
−, 𝐻𝑃𝑂4

2−) that are 

present in the blood as detailed in table 4 of reference (Chakraborty Banerjee et al., 2019). 

These ions are the backbone of the leading chemical reactions near the implant. In these 

chemical reactions, changes are leading to variation in animal dehydration. It confirms the 

observations of unhealthy rats and dead rats from an exploratory model that week of post-

surgery is critical concerning wound healing that decides the progress of surgery. Rat 70 died 

on day 3. Optical data gathered from rat 71 (unhealthy rat) and rat 70 (dead rat) was on day 

3, far away from the optical data of healthy rats. 

 

(Papazoglou et al., 2006, p. 1053 figure 10) Experimental results on healthy and unhealthy 

rats (diabetic rats) explain that the absorption coefficient of the optical spectrum is stable 

over time ( 5th day till 25th day). Strong absorption of NIR light relative to wound healing in 

healthy rats at 685nm gives information about deoxygenated hemoglobin near the surgical 

area. Papazoglou also suggests the possibility of tissue dehydration near the wound due to 

the in vivo implant. Higher ranges near 900nm to 1000 nm are regions of water absorption.  

 

In PCA analysis, unhealthy rats' data points are away from the two healthy rats, shown in 

figure 5.11. Hence these two rats are used as a reference in this piolet study to compare 

unhealthy ones. Rat71 survived, but its optical spectra were not the same rats 64 or 65. 

Figure 5.15 in wavelengths below 850nm indicates the combined effect of variation in 

hemoglobin & cellular metabolism near the wound resulted in negative results for rat70 and 

71. The rat 70 that died on day 3 indicates an abnormality in the optical spectra. The dead 

rat has dehydration-related concerns as the peak changes are much more significant than 

after 900nm. It can be a triggering cause for its death.  

 

Papazoglou mentions that wound size in cm2 is closely related to the healthiness of the rat. 

The author, in table 1, highlights that wound size reduces drastically from the fifth day to the 

tenth day and continues till the 15th day, after which it is almost the same. The in vivo 

experiment compared the first two weeks of surgical progression, where rat71 could survive 

but had different spectra. Studies show that it had rashes on its skin. Thus from in vivo, the 
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survived rat, r71, had issues in wound healing and was at a slower phase than other rats. 

Positively, researchers remember that the rashes were healing with time. Considering the 

thoughts of (Jayachandran et al., 2016) that optical data depends on local tissue, we 

conclude that optical changes in spectra collected from rat 71 are due to healing delays. 

Thus, the two unique case study of rats helps to answer the article's research question with 

proof. 

 

6.5 Strength and weakness of the model  

 The weakness of this exploratory model is that the “prediction” of the changes for in vitro 

or progress of surgery for in vivo experiments based on the day was impossible with limited 

samples. A multiclass classification model based on the day was the target set. A prediction 

model can be built only with additional samples. Samples are also needed to validate model 

performance. Test samples had to be entirely new samples that were not part of the 

modeling and validation samples. Test samples need an optical spectrum with maximum 

varied health conditions to capture differences. For the PCA model, the sample size needs to 

be multiple of the variable number (Hua et al., 2004). Thus additional studies can be done 

with the reduced number of wavelengths.  

 

The thesis is a piolet study at OsloMet that helps identify the future possibilities of the 

developed probe. The work identifies the feasibility of using optical spectrum to capture 

changes near the interface from in vitro and in vivo experiments and highlights a similar 

trend. The strength of the work is the possibility of evaluating surgical progression from the 

optical spectrum non-invasively without destroying the tissues. The reactions introduce 

functional and structural changes near its vicinity. These observations are in sink with other 

studies in the area.  The in vivo experiment results help to make the study realistic.  
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7. Challenges & future scope  

The research purpose is predefined, but not the paths to achieve it. In phase 1, the research 

plan starts with facilities and resources at OsloMet and the University of Oslo, the two 

universities under the umbrella of MgSafe in Norway, keeping in mind the challenges in the 

year 2021 with deep concerns about the pandemic's limitations.  

 

7.1 Timeline for thesis  

Close monitoring of the situation, openness to grab all opportunities, and continuous effort 

helped cover more than initially planned. The final updated timeline of this research work at 

three different phases is in table 2 

  

Table 2 Timeline with highlighting different areas covered across semesters 

SEM 2 SEM 2 SEM 3 SEM 3 SEM 4   SEM 4    

 (Q1)   (Q2)   (Q3)  (Q4)  (Q5)  (Q6)  

JAN 2021    AUG 2021   JAN 2022  

 Learn  
different  Spectroscopy                Me
asurements 

Learn the  
Orange3 
Software  

Implement the 
workflow in Orange 
s/w 

Learn Python 
for PCA  

Prediction model  

Study of Mg -
Tissue Interface 

Study of 
Probe 
Prototype  

Learn about 
PCA  

Work on  prediction 
of (timepoint and 
pH )   

Learn python 
for prediction  

identify 
performance 
parameters  

Study on 
biomarkers  

Dead Tissue 
experiment  

use 
unscrambler to 
understand PCA  
from the 
existing dataset  

Analyze Gel tissue 
expt. in Orange s/w  

PCA for in-
vitro studies   

PCA for in vivo 
studies  

Study 
Unscrambler 
software   

Gel tissue-
based expt.  

Analyze Gel tissue 
expt. in Orange s/w  

Probe studies 
to generate 
pulses  

Biochemistry 
studies  

Literature survey 
Draft phase 1 
report  

Prepare study 
Notes  

Draft progress  
report  

Prepare study 
Notes  

Final report & 
research article  
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7.2 Challenges Faced  

In this section, the main challenges are mentioned. Later in this chapter, I summarise a few 

areas that I had worked on but excluded from the main discussions as it is incomplete with 

available data. This report includes these details so that future researchers can learn from 

my mistakes. I have also detailed some approaches for modeling.  

 

7.2.1 Pandemic challenges   

In phase 1, while deciding on the problem statement and analysis, there were quite many 

uncertainties related to the pandemic. Animal studies by MgSafe researchers were in the 

planning phase and could not finalize dates due to regulation changes. Hence the animal 

studies were excluded for fear of an extended travel ban outside Norway. Fortunately, 

between the first and second wave, the researchers were able to meet, and hence this thesis 

became a realistic study with in vivo experiments. My problem statement and research 

questions must also be modified as work progresses.  

  

7.2.2 Concerns in the software platform   

In the initial stage, data analysis was using UnscramblerX software. Due to some reasons, 

there was a need to shift to another open-source platform. Data analysis software Orange3 

was easy to use for primary observations. However, I faced a few challenges in proceeding 

with the same tool. Each building block in the software is known as a widget. It helps to 

build the workflow as needed by the user. As the software uses the inbuilt widgets, its 

modification options limit its features. Some widgets, especially preprocess and model 

widgets, have default settings to normalize the data as it passes through. It loses data 

control as it passes from one widget to another, making it difficult to conclude the 

observations. Evaluating the performance parameters was not easy. Also, there were some 

technical issues due to which widgets received invalid or null data as it passed from one 

widget to another. Finally, there were a few difficulties while developing a pipeline for the 

data analysis. Hence I finally used sklearn packages that used open-source python 

programming to perform data analysis. Though python was new, any other programming 
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language background and understanding the requirements can help the beginner as there 

are numerous online contributions. I have mentioned some useful links in Appendix B's 

footnotes and helpful code snippets.  

7.2.3 Issues related to a prediction based model  

While performing the DMEM in vitro lab experiments, we took 10 measurements from a 

particular sample with the assumption of 30 data points as there were 3 samples for a 

particular implant type. Unfortunately, working on these piolet studies reveals that ten 

samples collected within a short time on a particular day have overlapping points in the PC1-

PC2 plain. Thus these 30 data points got reduced to 3 datapoints clusters ( one cluster per 

sample). These unexpected limitations blocked the prediction model as it needed many 

samples.  

On day 5, three different sample clusters were spread in PCA plain, influencing 96.9% of PC1. 

There is a need to remove outliers or inconsistent data to improve the PC1. Unfortunately, 

due to limited samples, removing one sample is difficult. Moreover, it is not possible to 

understand the trend with 2 samples. Getting additional rat samples for in vivo data was not 

easy, as there was much preparation for that experiment. By the time the issue was 

identified, there was only two weeks gap that wasn't sufficient to process it due to lots of 

preparation involved in the task.  

 

Figure 7. 1 In vitro experiment based on PCA highlighting the samples of day 5 

 

I had tried on prediction from in vitro data based on the day as the target with available 

data.  Unfortunately, proceeding with the available data was not the best approach for the 

thesis. While exploring the modeling aspects, there was a surprising observation. It is 
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possible to have excellent performance in the prediction model based on the day if the 

model and test have entirely different data points taken from the same samples. That means 

of the 10 measurements from a sample, the model uses measurements 1,3,5,6,7,9,10, and 

validation uses 2,4,8 measurements. It makes model data different from testing or validation 

data. However, it is not a dependable model, even with improved performance parameters.  

It was interesting to note that the performance (accuracy) of the KNN classifier model was 

cent percent. However, I concluded it was a cheat model due to two reasons. Firstly it is not 

a realistic approach. In an actual situation, model generation and its validation is with the 

help of data from specific samples, and testing samples have to be entirely new samples 

(patients). Then only testing becomes complete. It was my first observation. Again, PCA 

analysis shows that most samples have a clustered nature (Figure 7.1). KNN that uses K 

nearest neighbor can easily group the test points from a particular sample in this 

experiment. It was the reason for the high value for accuracy. A new attempt is to use 

sample 1,2 for modeling and validation. Testing with the last third sample was the next 

attempt. Unfortunately, the modeling work was blocked as there are no samples to validate 

the model. But it is the correct approach to be followed as test patients are always new.  

Were these studies advantageous?  

Studies are never a loss, and they helped me learn many new concepts in machine learning 

and learn new software platforms. My notes can be helpful for budding researchers to plan 

in the future — the next section details more of my notes for them. The main idea of seeing 

the trend concerning the day arrived from these studies: the thesis's main flow.  

 

7.3 Future Directions for researchers  

7.3.1 Data collection  

So the first main conclusion of this discussion is that make sure to have different and 

sufficient samples for modeling, validation, and testing. Either,  80% :20% or 70%: 30% is the 

modeling and validation data ratio. Also, there needs to be a minimum of 3 samples 

understanding the trend in the model. There are always chances of unforeseen experimental 

error; hence an additional sample is preferred. Then, validation needs at least two samples. 

Testing unknown samples needs to be a separate dataset different from modeling and 
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validation samples. It is interesting to perform testing on at least one similar and non-similar 

test sample to evaluate its performance. Thus a minimum of "ten samples per implant type" 

is recommended. Having more samples (Hua et al., 2004) for further studies when 

performing prediction-based models is helpful. A thumb rule says the number of samples 

needs to be multiple of the number of variables used in PCA. That calls for reducing the 

variables (wavelengths) to the most promising range like 700 to 800nm and 950 to 975nm.  

  

 To use a classifier-based prediction model to predict the progress of surgery based on the 

day. There need to be sufficient data points for more days. There is a need to recheck the 

extent of overlapping days when more days are part of the analysis. Frequent data collection 

in the first week slowly increases the gap with time and can be more creative in modeling. A 

healthy rat gets its wound healing stable in about 2 weeks. But the implant degrades slowly 

with time. Hence it is recommended to take non-systematic data collection for at least a 

month. It is challenging for in vivo experiments to have systematic data collection due to the 

test procedure guidelines to take care of animals' well-being. Hence if resources are 

available, it shall be effective to have even rat groups and odd rat groups so that it is possible 

to get optical data for all the days in the first week.  

 

7.3.2 Prediction model based on classification approach   

To create a predictive model, split the available data into model and validation data, usually 

in the 80: 20 percentage ratio (X)  and target (Y), assuming separate data samples to test this 

prepared model. Then based on the type of binary or multiclass classifier, create the model 

using the labeled model data X and model target Y. Classifier studies the given input and 

generates the model. Validate the model with the help of each sample X from validation 

data. It generates a prediction based on input X to the classifier model. It can be compared 

with the expected target of the sample to evaluate if the prediction was right or wrong. The 

confusion matrix is the table form of a summary of the prediction results.  

Among different classifiers, KNN is the simplest one that works well with these optical 

datasets due to the clustered points in the PCA plain. KNN predicts the unknown sample 

based on the nearest neighbors ‘K’ number. Model votes for the highest group of nearest 

neighbors and classifies into that group. How to get the best k value for the model?   To get 
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the best K value, perform initial testing. KNN model is to be created by iterating for different 

values of K in the base model. Using the validation data samples, test the model 

performance for each iteration by getting the mean square error.  Record the values in an 

error array. Plot this error array containing the mean square error for different K values. The 

k with the lowest k is identified for the final primary model to get the highest accuracy.  

Performance parameters: Confusion matrix  

The confusion matrix applies well to binary class classifiers. True positive (TP) are those 

predictions that are predicted positive or yes and were positive themselves. Likewise, true 

negative (TN) values are negative (or no)  and predicted the same. False Positive (FP) counts 

falsely positive records, which means they are negative but predicted positive or Yes. False-

negative (FN ) is its opposite.  The table below is a typical binary class confusion matrix that 

predicts healthy/unhealthy.   

With samples like DMEM datasets, it is possible to have three (day2, 5, 10)  multiclass 

classifiers, and a confusion matrix is sufficient to define the performance. Unlike the binary 

class-based confusion matrix, the multiclass obtains the values for each criterion. For the In 

vitro experiment, day 2, day 5, and day 10 were the target for prediction. So a new sample is 

also expected to give prediction based on the reaction progression for that day.  

Due to the lack of samples, we could not perform the necessary validation process of the 

model that uses samples 1 and 2.  The confusion matrix and its calculations use sample 3 as 

validation data with 10 data samples from each time point. Figure 7.2 (b) has green circles 

that are the actual positive values in the confusion matrix, meaning it was criteria_a and 

predicted as criteria_a itself. At the same time, the orange circles represent the False 

positive which means that they actually belong to criteria_a but are falsely predicted as 

criteria_b.  With these values, it is possible to obtain the performance parameters of a 

prediction model in terms of precision, recall, and F1 score concerning each criterion and 

model accuracy, as seen in the classification report concerning the model. Generation of 

classification report is possible from an already defined classifier. We need to pass the actual 

values and predicted values to the function. 

 It is possible to model KNN multiclass classifier in python code with the help of the KNN 

classifier package. The classification report lists the performance parameters. The recall is 

also known as the sensitivity of the model. Parameter's precision gives the possibility to 
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predict that particular criterion. F1 score is a combined parameter. In general, accuracy helps 

explain the model performance most easily.   

 

 Binary 

Classifier 

Predicted (No)  Predicted 

(Yes)  

Actual (No)   True negative  False Positive  

Actual (Yes)  False Negetive  False Positive  

 

 

Figure 7. 2 (a) Binary classifier (b) Muti class Confusion Matrix: a general representation   (c) as obtained from DMEM 
datasets for the Mg alloy model 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎1
=  

𝑇𝑃_1

𝑇𝑃_1+𝐹𝑃_21+𝐹𝑃_31
  for example;  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑑𝑎𝑦 2 =  

10

10+10+1
= 0.4762 

𝑅𝑒𝑐𝑎𝑙𝑙𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎1
=

𝑇𝑃_1

𝑇𝑃_1+𝐹𝑁_12+𝐹𝑁_13
    ; 𝑅𝑒𝑐𝑎𝑙𝑙𝑑𝑎𝑦2 =

10

10+0+0
= 1     

𝐹1𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎1
=

2∗𝑇𝑃_1

2∗𝑇𝑃1+(𝐹𝑃_21+𝐹𝑃_31)+(𝐹𝑁12+𝐹𝑁13) 
   ,   𝐹1𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎1

=
2∗10

2∗10+(11)+(0) 
= 0.645 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 =
𝐴𝑙𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑐𝑖𝑡𝑖𝑜𝑛𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟  
 =

𝑇𝑃1+𝑇𝑃2+𝑇𝑃3

(𝑇𝑃1+𝑇𝑃2+𝑇𝑃3)+(𝐹𝑃21+𝐹𝑃31+𝐹𝑃32)+(𝐹𝑁12+𝐹𝑁13+𝐹𝑁23) 
= 0.63333 
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Figure 6. 4  Performance parameter of classifier model ( classification report) 

However, if data points are from more days in future studies, the classes or groups in the 

model increase. In such multiclass classifiers, as the number of classes increases, instead of a 

confusion matrix, AUC-based results are more helpful. The basic codes helpful for coding are 

in appendix B.  

 

7.3.3 Probe studies   

Present studies are done using a continuous wave of light. If we can control the light 

intensity, there is a possibility of uncovering more domains. However, it has the complexity 

of overlap of light. The second suggestion is to develop the idea as a medical device. The 

present studies show that those specific wavelengths contribute more to the optical dataset. 

Thus there is the possibility of designing optical probes specific to wavelengths of interest. It 

helps to make a device by removing the spectrometer. Then the device can be cost-effective. 

However, there is a need to identify how to design the data collection and preprocessing.   

It can be interesting to compare and study the optical spectra and their influence on 

different types of magnesium alloy. How does it affect the pH? Which alloy responds with a 

more significant response to the optical probe? 

 

7.4 Future scope  

The trends from the in vivo and in vitro experiments highlight the possibility of separating 

the difference in implant interface concerning changes in the medium through its passes. 

The PCA studies show that the data points cluster extensively. Hence there is a possibility to 

develop a simple KNN multi-class classifier model to predict surgery progress. In vivo 
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experiments suggest developing this model with healthy rats that define the region for each 

day. In the in vivo dataset, we see regions that separate the day. Interestingly, PC1-PC2 and 

PC2-PC3 separate the day-based changes. It is interesting to note that PC1-PC2 / PC2-PC3 

can develop a healthy rats-based PCA model with a sufficiently large number of samples in 

the future to confirm the areas it covers.  

 

 

Figure 7. 3 PCA of healthy rats r64 and r65 (a) PC1 PC2 plot (b) PC2-PC3 plot 

 

The unknown sample collected from a particular day in a new animal expects to be close to 

that day. If it separates from the healthy cluster ( like the rat with rashes after surgery / dead 

rat), it is an indication that the changes in vivo are not in the expected pattern, and there is a 

need for medical diagnosis.  

New cells replace the damaged cells near the implant, where surgery destroys the nearby 

cells and tissues. As the wound heals, blood flow increases near the injury at the interface. 

Thus along with structural, there are significant functional changes at the implant interface. 

To sum up, comparing in vivo datasets is a promising way to compare the observations of in 

vitro datasets. 

This research opens up that the device can be modeled later in upcoming years to connect 

the optical spectrum to other physiological parameters like the oxygen level of the animal, 

metabolic parameters like cytochrome C oxidase, hemoglobin in the blood, and blood the 

information of the progress of surgery of the magnesium Implant (Rosen et al., 2002). It can 

be the supportive information to decide the necessary steps to help the subjects (animal 

models) cope with the situations. If the health conditions are progressing with changes in 

day points as expected, an alert message on good health can inspire the medical researchers 

to monitor the animals. Timely help to the animals can help to reduce the unknown stress.  
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From a medical perspective, I  would recommend closer medical attention for patients from 

the surgery for the first week, as it is the main day that can decide the progress of an 

implant. From the trend of the pH curve, we can see that variation in pH is getting stabilized 

after day 5 for a magnesium alloy implant. Hence, in vivo implants shift towards alkalosis 

due to the alloy reactions being balanced or neutralized within the body. If the body cannot 

maintain the local pH near the interface, there is every chance that the cells and tissues get 

damaged.   

It takes months for the bone to heal. Studies show that initial days are critical even for 

magnesium alloy-based implants. With such a user-friendly device connected to Wifi, 

facilities should enable patients to rest at home with self-diagnosis or remote diagnosis via a 

medical practitioner. In case of any difference in expected changes, the patient needs to 

travel to the hospital. It helps to improve the QALY of affected patients. Biodegradable 

implants shall help to avoid the need for a second surgery.  

  

Thus the future of optical spectrum-based medical diagnosis for predicting the progress of 

magnesium implant-based surgery has a bright future.  
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Conclusion  

An exploratory study to understand the changes at the magnesium implant interface is the 

core of this work. In vitro DMEM-based experiment helps to identify the trend. The possibility 

of separating days is intriguing in the in vivo studies. Deciding the outliers is challenging for in 

vitro with drastic dependency on PC1, especially from day five samples. The in vivo studies 

were made from the right femur alone to make the model more reliable. The pH curve 

suggests that till day 5, numerous chemical changes happened in the interface. The 

biochemical analysis of magnesium implant explores the internal changes near the interface. 

The analysis of in vivo datasets gave the observations meaningful thoughts to compare healthy 

with unhealthy rats. Lab experiments and literature suggest day 5 to have maximum influence. 

For magnesium alloy implants, local pH is a biomarker that strongly correlates to the changes 

near the implant interface. In vivo, optical spectra are complex due to biological 

chromophores. All the biochemical changes influence the optical spectrum and form specific 

expected changes on each post-surgery day. This thesis examined two particular cases of rats 

and confirmed that it is possible to separate unhealthy rats from healthy ones optically. These 

observations confirm the feasibility of optically predicting implant surgery's progress due to 

its interaction at the interface. Additional experiments help learn more about the optical 

probe and ways to improve it.  

As bones need time to heal, the patients need medical support for an extended period. 

Sometimes it takes months before the implant degrades completely. Simple self-diagnosis 

models that compare the optical data based on the model with healthy optical data on 

different days from the day of surgery can help them relate their health conditions. 

Additional information on oxygen saturation, hemoglobin, and water hydration can also help 

predict a need to go to the hospital for a medical checkup. After the first few days of 

hospitalization, patients can rest in their homes with a supportive medical device. It helps to 

improve the life quality. The future of optical spectrum-based evaluation of progress for 

magnesium implants is bright. This experimental study shows that hydrogen gas, pH, water, 

hemoglobin, and cell metabolism changes collectively give a safe expected direction of 

reaction that supports wound healing post-surgery. It is specific to the day. Thus, it can 

support patients as an optical health care device with further developments in the future. 
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Appendices 

Appendix A: Additional Achievement 

A1: Main author conference publication  

 

 
Figure A. 1 Poster presented used for Conference presentation 

 

Won Prize for Best Poster: In an online conference RoBUTCHER @ European Robotics Forum 
20214. 
 

Anna Mathew, Hafiz Wajahat Hassan, Peyman Mirtaheri, and Olga Korostynska, “Feasibility of 

Using NIR Spectroscopy in Automated Meat Cutting” Proceedings of the Challenges in 

Automated Food Processing, European Robotics Forum (ERF 2021), ISBN 978-963-449-242-9, 

pp. 10-12, April 2021.  

 

 
4 Link for details of the conference. 

https://www.nmbu.no/en/faculty/realtek/research/groups/roboticsandcontrol/news/node/42656 

https://www.nmbu.no/en/faculty/realtek/research/groups/roboticsandcontrol/news/node/42656
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A2: IEEE conference publication details (Co-author)  

➢ Title: Feasibility Study of Multi-Wavelength Optical Probe to Analyze Magnesium 

Implant Degradation Effects.  

➢ Authors: Hafiz Wajahat Hassan, Anna Mathew, Haroon Khan, Olga Korostynska, 

Peyman Mirtaheri.  

➢ (Hassan, Mathew, et al., 2021) available at 

https://ieeexplore.ieee.org/document/9639741 

➢ Conference details: Paper ID-1373, IEEE Sensor 2021.  

 

Poster used for presentation by the first author  

 

 

 

https://ieeexplore.ieee.org/document/9639741
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Appendix B: Python code snippets  

 Min Max scaling  
from sklearn.preprocessing import MinMaxScaler    # import package  
output_data= MinMaxScaler().fit_transform(input_data)  #  command  
 
SNV (Standard Normal Variate) 5 
#  approach : Divide each mean-centered spectrum by its own standard deviation: Xisnv = 
(Xi — Ximean)/sigma , data_snv has final data  
 
input_data = np.asarray(input_data) 
data_snv = np.zeros_like(input_data) 
for i in range(data_snv.shape[0]): 
        # Apply correction 
    data_snv[i,:] = (scalingMin_max[i,:] - np.mean(scalingMin_max[i,:])) / 
np.std(scalingMin_max[i,:]) 
 
First derivative applying a Savitzky-Golay filter 
from scipy.signal import savgol_filter   # import for filter 
der1_output = savgol_filter(data_input , 25, polyorder = 5, deriv=1)  #  input data given & 
set derivative needed 
 
PCA  
from sklearn import decomposition  # import for PCA 
 
pca_inputData = processedData  # set the data whose PCA is to be calculated  
n_components=10   # set number of compoents for PCA  
data_after_pca = decomposition.PCA(10)  # create object  & set number of compoents for 
PCA as 10 
PCA_data = data_after_pca.fit(pca_inputData)       # perform fit to finish PCA  , then get 
paramters 
 
score_PCA =PCA_data.transform(pca_inputData)  # Get PCA : Scores  
loadings_pca =PCA_data.components_.T     # fetch Loading values   
explained_var_pca= PCA_data.explained_variance_ratio_            # explained variance for 
percentage 
cum_variance_pca = np.cumsum(np.round(explained_var_pca, decimals=3))   # calculate 
cumative variance   
 
Spliting data to modeling and validation  
from sklearn.model_selection import train_test_split 
# X = scaled_data ,  y = target data ,  assign values and split based on test_size 

 
5 https://nirpyresearch.com/two-scatter-correction-techniques-nir-spectroscopy-python/ 

    https://towardsdatascience.com/scatter-correction-and-outlier-detection-in-nir-spectroscopy-7ec924af668 

https://nirpyresearch.com/two-scatter-correction-techniques-nir-spectroscopy-python/
https://towardsdatascience.com/scatter-correction-and-outlier-detection-in-nir-spectroscopy-7ec924af668
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X_train, X_val, y_train, y_val  = train_test_split(X,y,test_size=0.2 ,random_state=42, 
stratify=y) 
 
KNN (Classifier) 6 
 
from sklearn.neighbors import KNeighborsClassifier   # import for KNNclassifier  
from sklearn.metrics import mean_squared_error   # For MSE error 
 
error=[] 
 # get the error for different values of K  
for k in range(1,50):    # maximum value of K neigbours can be upto len(y_train)  
    knn=KNeighborsClassifier(k) 
    knn.fit(X_train,y_train)      # feed the model DataX and target Y 
    y_test_pred = knn.predict(X_val)   # send the new samples that are not used for modeling  
    error.append(mean_squared_error(y_val,y_test_pred ))  
# Plot error curve and get the best K correcpsonding to lowest error . Setup a knn classifier 
with k_actual 
knn = KNeighborsClassifier(k_actual) 
knn.fit(X_train,y_train)           # pass the variables X values and expected result y from model 
training data  
knn.score(X_val,y_val)               
y_KNN_pred = knn.predict(X_val)    # pass the validation X data and get the predictions 
 
Performance Parameters  
 
# imports  
from sklearn.metrics import accuracy_score,confusion_matrix 
from sklearn.metrics import classification_report 
from sklearn import metrics 
 
cnf_matrix = metrics.confusion_matrix(y_val, y_KNN_pred)   # sending actual and predicted 
values to get result 
accuracy_score(y_val, y_KNN_pred)) 
classification_report(y_val, y_KNN_pred) 

 

  

 
6 https://realpython.com/knn-python/ 

 

https://realpython.com/knn-python/
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Appendix C: Calibration procedure  

When a spectrometer collects data, it needs calibration with standard reference. The 

procedure for calibration is similar for reflectance/transmission type.  

 
Lab Step up using Avantes spectrometer.   

 
Figure C. 1 Block diagram for Reflectance measurement 

 

 

Figure C. 2  Block Diagram for transmission measurement 

 

The device arrangement for reflectance measurements is in figure C.1, while figure C.2 is for 

transmission. Use a smooth white reflecting surface to calibrate the former and an empty 

cuvette holder for later. The remaining steps for calibration are the same for both 

types. Figure A.3 shows how to place the sample for the transmission type of measurement.  

Precautions:  While using Avantes light source, ensure to turn on the source for 15 minutes. 

It is the warm-up time for the device.  
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Figure C. 3 Test Sample for measurement in transmission type 

 

 
Figure C. 4 AVASOFT GUI interface 

Calibration & data collection procedure measurement using AVASOFT.   

• Create a new folder to save the experiment set.  

• Go to File and click new experiment. 

• Refer to figure A.4 with AVASOFT GUI interface for the tabs. Back on the main page, 

Click the S-icon.  

• Place the spectrometer.  

• Click the auto integration icon . Ensure to get a curve plot (flat graph means 

saturations).  

• Once the curve is inverted U curve, take the reference reading by clicking the icon 

while placing the cylindrical end on the reference surface. The tab turns green 

and displays a confirmation message on the saved reference.  

• Then close the shutter in the light source. Please wait for a moment and then take 

the dark reading by clicking the tab next to it on the left side .  Message on saving 

dark reference indicates it is complete. After that, the shutter (light is still in ON 

state).  

• Click the R-icon  that indicates the Reflectance Reading. Take the reading of the 

same reference Surface. It will be around 100 % reflectance. Click the save icon and 

save the reference if we get such a reading.  
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• Now place the cylindrical end of the probe on the actual surface whose reflectance 

measurement is collected.  

Changes in transmission measurement  
 

• To take the reference Setting, place an empty cuvette in the cuvette holder and do 

the reference measurement by taking the light reference (with the shutter open) and 

dark reference (shutter closed) using an empty cuvette.  

• Then place the cuvette with the prepared Gel/solution. Then take an actual reading 

by clicking/the icon.  

 


