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Abstract

Nowadays, contextual language models can solve a wide range of language tasks such

as text classification, question answering and machine translation. These tasks often

require the model to have knowledge about general language understanding, like how

words relate to each other. This understanding is acquired through a pre-training stage

where the model learn features from raw text data. However, we do not fully understand all

the features the model learns through this pre-training stage. Does there exists information

yet to be utilized? Can we make predictions more explainable? This thesis aims to extend

the knowledge of what features a language model have acquired. We have chosen the

model architecture BERT and have analyzed its word representations from two feature

perspectives. The first perspective investigated similarities and dissimilarities between

English and Norwegian word representations by evaluating their performance on a word

retrieval task and a language detection task. The second perspective analyzed how a word

representation changes if the word stands in the wrong context or if the word was inferred

through the model without context.
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Chapter 1

Introduction

In recent years the field of Natural Language Processing has advanced significantly. We

exploit machines to translate from one language to another, answer questions, classify

words in grammatical categories, search documents for relevant passages, and more (Otter

et al., 2020). Much of the recent success is due to the advent of transformer architecture

(Vaswani et al., 2017), which was initially adopted to improve machine translation, though

later, the architecture has been applied to a range of NLP tasks with a variety of models.

BERT (Bidirectional Encoder Representations from Transformers)(Devlin et al., 2019) is

one such transformer-based model. It surpassed the performance on several benchmarks

like the question answering on SQuAD v1.1 (Rajpurkar et al., 2016) and SQuAD v2.0

(Rajpurkar et al., 2018), and language understanding tasks like GLUE (A. Wang et al.,

2018) and MutliNLI (Williams et al., 2017), at its release time. However, just like other

transformer-based models, we are not fully aware of why BERT performs so well.

Before BERT is trained for one specific task, it is pre-trained on raw text data. In the

pre-training the model learns to encode words into contextual word representations. The

contextual word representations contain different properties about the words. We are inter-

ested in understanding more about what information is there in the word representations

after only pre-training. Are there language features which yet may be better utilized in task
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solving? Can we make the models’ predictions more explainable? For example, what if the

model has acquired a helpful feature to machine translation, but the model is not currently

used for this task. The more we know about the model and how it encodes words into

features, the better we can utilize that information.

We are not the first ones interested in analyzing the pre-trained features of BERT,

probing BERT has become such a popular area that it is called BERTology (Rogers et al.,

2020). Probing involve creating a classifier with only a restricted set of parameters on top

of the pre-trained features. If the classifier manages to solve the task, we assume that the

necessary information already exists in the encoded word representations. It has already

been proven through probing, that BERT can encode words with semantic (properties in

terms of meaning) and syntactic (properties in terms of grammar) properties (Rogers et al.,

2020).

Our aim for this thesis was to extend the probing of BERT through an exploratory

analysis focusing on multilingual and contextual properties. In our analysis, we have

analyzed multilingual information by comparing word representations in English and Nor-

wegian and we have analyzed contextual information by comparing a word’s representation

in a real, in a wrong (misplaced) and without context. The core remained the same in

both analysis: comparing word representations with the non-parametric method KNN

(K-Nearest-Neighbors) and cosine similarity.

The first analysis presents an in-depth study of how the word representation for

English words and Norwegian words share properties but also how they have distinctly

different properties. We show similarity by proving the word representations’ power to

retrieve a correct translation from an English source to Norwegian target vocabulary.

Previous work in word retrieval between other languages using BERT (Cao et al., 2020;

C.-L. Liu et al., 2020) inspired us to do the same for English and Norwegian. We also

demonstrate how word representations differ for two languages by detecting the language

through language-specific features. To our knowledge, no previous work has used this
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method to detect each word’s language before.

The second analysis investigates the encoding of a word representation if they

appear in the wrong context (induced words in sentences where they do not belong) and

compares it to how the model represents a word without context. It has already been

demonstrated that word representations without context perform poorly on semantics

benchmarks (Bommasani et al., 2020; C.-L. Liu et al., 2020). We believe that our study

can help explain some of the effects behind the poor performance and emphasize the

importance of context on a word’s representation.

The overview of this thesis is the following. In chapter 2 Background and Related

Work, we give necessary background to the topic of NLP and word representations as

well as the transformer architecture. Chapter 3 Distilled BERT Embeddings for Norwegian

explains the method according to which we created a static set of word representations. In

the next two chapters, we divided the experiments into two because each of them focused

on a different perspective. Chapter 4 Multilingual Representation Analysis compares word

representation from English and Norwegian while chapter 5 Contextual Property Analysis

compares word embeddings from different contexts: real, wrong and without. In chapter 6

Discussion we discuss and compare the results from both experiments. Lastly, we sum up

the analysis in chapter 7 Conclusion.
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Chapter 2

Background and Related Work

2.1 Natural Language Processing

Natural Language Processing concerns all computational processing of natural language.

Already in the 1950s, Turing (2009) defined a task that involved automated interpretation

and generation of natural language. Even though the most trendy era of machine learning

for NLP had not begun, there existed other rule-based applications (Pollard, 1987; Schank

& Abelson, 1975; Schank & Colby, 1973; Weizenbaum, 1966). Today the field has

expanded to solve various problems ranging from language understanding and language

generation to speech recognition. This thesis will consider the language processing

sub-field called natural language understanding and limit us to text data.

Natural language understanding characterizes as an AI-complete or AI-hard problem

(Mallery, 1988). A simple algorithm cannot solve an AI-complete problem because it might

run into unexpected circumstances in the real world. By unexpected circumstances in

natural language, we mean that one will never be able to map all possible phrases of a

language because there are always ways to make new ones. This phenomenon is also

called the knowledge acquisition bottleneck (Gale et al., 1992). Consequently, researchers

have put tremendous effort into creating different methods for language representation, a
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way to represent language and finding patterns within it without depending on mapping it

all.

2.2 Machine Learning

Machine learning is a data-driven technique where the machine learns patterns in data

and later uses these patterns to make predictions or guesses on new data. It is used in

computer vision, natural language, and numeric observations. It diverges from traditional

rule-based machine processing because one does not explicitly tell the machine what

decision to make, but rather the machine bases its decision on the learned patterns.

The learning part takes place in an adaptable model. The model includes specific

parameters and numerical values that can change. To adapt the model to the data means

that the model slowly changes its parameters to fit patterns it can find in the data. This

period is called training or learning. After training, the model is ready to make predictions.

This phase can also be called inference. The model does not adopt at inference time but is

in a frozen state.

There is a distinction between supervised and unsupervised machine learning. In

supervised learning, the input data has a desired output through labels. The learning in

supervised machine learning is to make the model adapt to fit the output labels. Unsuper-

vised machine learning, on the other hand, requires no labeled output. In this method, the

model tries to find patterns in the raw data itself.

The objective for a machine learning model states what the model should find. We

mentioned that in supervised learning, there exists a labeled dataset. An example of

a labeled dataset can be a set of “dog“ and “cat” images, and then the labels are then

category “dog” or “cat”. The objective then becomes to predict the right “dog” or “cat” label

for an image. The objective of text processing can be to fill in a missing word in a piece

of text. In this case, one removes the word in a previous process. Because the objective
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is not from a label but rather from the raw data itself, this usually refers to unsupervised

machine learning. The objective of an unsupervised machine learning technique can also

be to gather data points into groups, where the number of groups or some threshold is

given beforehand.

Neural networks are a sub-field of machine learning that mimics part of the neural

structure in the brain to be able to learn complex patterns. The neurons can also be

called cells, which enables the neural network to find relationships in the not linear data.

Figure 2.1 is a simple illustration of a neural network. In computational neural networks,

the neurons are structured in layers. In this case, all the neurons in one layer connect to

the next layer. When a neural network has more than one or more hidden layers, all the

layers between the input and output layer are called hidden layers; the neural network is

called deep. Neural networks have become a prevalent technique in the last decade, both

in computer vision and in NLP (Goodfellow et al., 2016).

Figure 2.1: Simple neural network with fully connected layers. The circles represents neurons and
the arrows represent connections. The model consists of one input layer, one hidden layer and one
output layer. All the neurons from one layer is connected to all the neurons in the next layers. This
is why we call it fully connected.
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In addition to the connected neurons, neural networks often use activation functions.

It is called an activation function because using such a function makes the output either

activate or not. For example, a straightforward activation function could have a threshold of

0.5. If the calculated sum in the neuron were above this threshold, it would be one and

otherwise zero. In this case, one would mean the neuron activated, and zero would mean

not activated. The activation function changes the output of the neuron to be binary, like

yes or no. Although this explanation is not entirely correct, given that the activation function

often does not only output 1 or 0 but continuous numbers, this is the main idea. Either a

neuron fires(activates), or it does not.

There exist many different groups of neural networks. They are characterized by

which layers the neural network use. The layers are constructed of neurons. The different

layers are characterized by how the neurons connect and the activation function. One type

of layer structure is the dense layer. In a dense layer, all the neurons in one layer are fully

connected to the neurons in the next layer. In Figure 2.1, all the layers are dense. The

activation function differs depending on the problem at hand.

2.3 Convolutional Neural Networks and Recurrent Neural

Networks in NLP

Convolutional Neural Networks (CNNs) are networks often used in processing visuals,

such as images, and their architecture are inspired by the biological processes in how

the neural connectivity is structured in the visual cortex of an animal (Goodfellow et al.,

2016). The central concept of a convolutional neural network is that it learns hierarchical

features, or feature maps, by convolving over the image with different filters. CNNs have

also been used in NLP, for example, in character aware models (Kim et al., 2016) or

machine translation with finite contextual windows (Gehring et al., 2017).
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Recurrent Neural Networks deal with sequential data. They process one input at a

time, keeping a state of history called hidden state, which enables the processing to store

information about previous input (Lee et al., 2020). Since language, like text or speech, is

sequential data, the network is popular in NLP. It has been used in a range of NLP tasks

like machine translation (Wu & et al., 2016), text classification, and question answering

from deep language representation (Peters et al., 2018). This thesis will not focus on

RNNs and their contextual representation because we are more interested in another

architecture, namely the transformer, which we will get to later in the chapter.

2.4 Text Processing Pipeline

To be able to process text in a neural network, the text requires to go through a pipeline

of preparation steps. This section will describe three common steps that are present in

almost every application that uses text modeling.

2.4.1 Formatting and Cleaning Text

The first step in making text ready for processing usually includes formatting and cleaning.

It is not expected that text data come in a cleaned text file. In many cases, it might even be

divided into multiple files that need to be merged into one, where the format is text. After

the text is in the proper format, cleaning is standard procedure. The degree of how much

text cleaning is necessary varies a lot, and it is becoming more and more usual to include

the whole text as it is (Devlin et al., 2019). Cleaning can include removing stopwords,

which are the most common words in a language, lemmatization, which is only keeping the

lemma or root for each word, and removing special characters. The amount of cleaning all

depends on the model and the text application. We do not detail all the cleaning steps,

because in this thesis, we kept the text very close to how it is in the raw format, including

special characters and stopwords and having the words with their complete forms.
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2.4.2 Tokenization

Tokenization entails chopping the text into smaller units, such as words and characters. The

units do not have to be words. There is also sentence tokenization and ngram tokenization.

An ngram of words means n-words together, like bigram is two and to words, “of words,”

“words means” and so on, trigrams is three and three words “of word means,” “words means

n” and so on. While ngrams is a possibility and can prove helpful in several applications,

when we talk about tokenization in this thesis, we are mainly referring to how the text is

divided into words and characters or wordpieces (Wu & et al., 2016), as we will get to later

in this chapter.

There exist many pre-defined tokenizers. Both Spacy1 and NLTK2 have their respec-

tive ones for word tokenization. In this project, we mainly used Spacy for Norwegian.

However, we sometimes resorted to NLTK. The difference is often small between the two,

and we do not think this affected our result in any significant meaning. In Table 2.1 we have

found a sentence from BBC news (Schraer & Mwai, n.d.) and tokenized it with both Spacy

and NLTK. In this example the sentence is tokenized the same way by both tokenizers.

1https://spacy.io/
2https://www.nltk.org/
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Original South Africa was where the new Omicron variant was first identi-

fied, and cases there have taken off rapidly.

Spacy [“South”, “Africa”, “was”, “where”, “the”, “new”, “Omicron”, “variant”,

“was”, “first”, “identified”, “,”, “and”, “cases”, “there”, “have”, “taken”,

“off”, “rapidly”, “.”]

NLTK [“South”, “Africa”, “was”, “where”, “the”, “new”, “Omicron”, “variant”,

“was”, “first”, “identified”, “,”, “and”, “cases”, “there”, “have”, “taken”,

“off”, “rapidly”, “.”]

Table 2.1: Example of tokenization. The table shows how two tokenizers split a sentence taken
from BBC News in a set of smaller units. The tokenizers Spacy and NLTK uses word tokenization
and splits the sentence exactly the same.

2.4.3 Bag-of-Words Representation

Since computers do logical operations, they are better at processing numbers, which are

stronger related to logic, than raw text. Consequently, we need to translate our token into a

numeric representation. BoW (Bag-of-Words) is one technique for transforming text into

numbers. The idea behind BoW is that one has a “bag,” which is a vector in the size of the

vocabulary, where the vocabulary is often set to all the unique words in an entire dataset

after cleaning, and then one counts the number of each token in the relevant piece of text.

In Table 2.2 we illustrate how part of this vector would look for the tokenized example in

Table 2.1.

Vocabulary Africa was second ... last

Count 1 2 0 ... 0

Table 2.2: Bag-of-Words example. The words in the BBC News sentence is counted, and the count
for each word is set in the index of the tokens position. The word Africa stands once, so the index
of Africa is populated with a 1.
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BoW is a method that does not require many calculation steps to represent text

as a numeric sequence. Therefore, it is mainly suited for applications where only the

combination of specific words is essential in the application. However, there are multiple

downsides to this technique. One of the downsides is no notion of how the words relate to

each other. For example, the words “first” and “second” relate because they both are order

numbers. However, when we represented the words as only an index in a vocabulary, it

tells nothing about the relationship between them.

2.5 Language Representation

To find language representation that deals with the knowledge acquisition bottleneck

one need to train a model on a vast corpus. Huge, labeled text datasets are very time-

consuming and expensive to make (Ng et al., 1997). However, researchers found that

using raw text data and finding patterns in how the words stood in context to each other

could teach the machine useful features about language (Joulin et al., 2017; Mikolov, Chen,

et al., 2013; Pennington et al., 2014). These features are represented as a sequence of

numbers, where the relation between the numeric representations shows similarities and

associations in language. The language representation learned from this process has

proven to improve state-of-the-art results in many downstream applications of AI-complete

problems such as machine translation, information extraction, and question answering

(Brown et al., 2020; Radford et al., 2018; Wu & et al., 2016).

2.5.1 Pre-Training and Fine-Tuning

Today, computational language models divide their training into two phases: pre-training

and fine-tuning. Pre-training involves finding patterns in raw data, aiming to represent

the text with valuable features. Most downstream applications also require a fine-tuning

process. The fine-tuning process trains the model on a specific task with labeled data. In
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the fine-tuning process, the pre-trained language representation works as an initialization

with general information about natural language. The unsupervised technique for language

representation can be thought of as learning features about the text but not knowing which

features relate to the task one want to solve. The model learns this information later in the

fine-tuning period with supervised learning.

2.5.2 Word Embeddings

One way to represent language is to embed words into numeric vectors, where the

distribution in the vector space would determine certain features, such as semantics, about

the words. The idea of distributing words in vector space is rooted in the statement by Firth

1957): “a word is characterized by the company it keeps”. The technique has been around

for a long time and started with information retrieval using vector space models (Salton,

1962; Salton et al., 1975).

Although the idea of representing words as numeric vectors has been around for

a long time, recent advances in the field related in the last decade have indeed given

popularity to word embeddings through models like Word2Vec (Mikolov, Chen, et al.,

2013), GloVe (Pennington et al., 2014), and FastText (Joulin et al., 2017). These word

embedding models have used neural architectures to find compressed word represen-

tations based on co-occurrence patterns in raw text. One of the papers explains how

one can find mathematical relations between the word representations with the analogy

example; vector(“King”)-vector(“Man”)+vector(“Woman”) should be the closest vector to

vector(“Queen”) (Pennington et al., 2014). It has also been proven that these word em-

beddings have semantic features with other similar words. As an example, it would be

expected that the most similar vector to the vector(“Woman”) would give results such as

vector(“Girl”), vector(“Female”), and vector(“Lady”).

In Figure 2.2 we have created an imaginary example in 3D space to explain the
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Figure 2.2: Imaginary illustration of word embeddings for “chocolate”, “cat” and “dog”. We used
only 3 dimensions to show how a word embedding looks in latent space. The idea is that the two
words “cat” and dog are closer to each other in the latent space than “chocolate” because the
meaning of the two words are more similar.

concept of word embedding. For example, when looking at just the letters in the three

words “chocolate”, “cat” and “dog” then “chocolate” and “cat” are more similar as they share

the same letter. However, we are instead looking for semantic relation here (information

about syntax is also often encoded into the embedding). Therefore the two house animals,

“cat” and “dog” should be more similar.

We can distinguish between word embedding models by how they find co-occurrence

patterns in text. The Word2Vec model (Mikolov, Chen, et al., 2013) use a local text window.

It can only see the words surrounding that word when predicting the missing word in

a piece of text. A window hyper-parameter can be five words. The word embeddings

from this model were created from one out of two possible objectives, the Skip-gram

model or the CBoW (Continuous Bag-of-Words) model. The Skip-gram model predicts

the neighboring words by giving it one word as input, while the CBoW tries to predict the

missing word by giving it the neighbor words. In Figure 2.3 we illustrate the process of
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CBoW with one example where the window size is five from the tokenized sentence in

Table 2.1. We choose the five first words, “was” is the middle word, which the model should

predict with the surrounding four words as the input. Doing this process over a lot of data,

where Word2Vec is a shallow neural network, creates a numeric projection for each word,

which becomes its word embedding.

Figure 2.3: CBoW training example. The Word2Vec model takes as input the surrounding words to
“was” and the model tries to predict the missing word.

The Global Vectors for Word Representations (GloVe) (Pennington et al., 2014) model

uses a count-based method to find global statistics on how words co-occur. It is trained

on the aggregated global word-word co-occurrence matrix, showcasing interesting linear

substructures of the word vector space.

Word2Vec and GloVe might use different methods to create their word embeddings.

However, they both treat each word with one specific word embedding and take no notion

of the inner character structure of each word. It is exactly this inner character structure that

fastText (Joulin et al., 2017) wanted to improve. They used similar methods as Word2Vec

with CBoW and Skip-gram, but instead of representing each word in a word embedding,
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they represent all n-gram characters that a word is made up of and then add them together.

The 1-gram character of “player” is “p”, “l”, “a”, “y”, “e” and “r”, the 2-gram characters is

“pl”, “la”, “ay”, “ye” and “er” and so on. In fastText they use all n-grams characters with

n=3 to n=6 (Joulin et al., 2017). The n is also a hyper-parameter that can be changed.

FastText has shown to be especially useful for morphologically rich languages, where the

inner character structure is important for measuring similarity.

Figure 2.4: Illustrated flow of word embeddings. The model first learn a numeric projection for
each of the words in the text corpus. After the model has learned a projection for each word we are
left with only the word embeddings and do not use the word embedding model any more. It is then
possible to use the word embeddings as input to a new model, which then can solve a specific NLP
task.

In Figure 2.4 we illustrate the process and resources used to create word embeddings.

After the training process, which learn the word embedding projections, they can be

stored in a lookup table. At inference time, or just when one wants to evaluate the vector

representation of a word, a sequence of words is embedded in vectors by finding them in a

lookup table. We emphasize that models such as Word2Vec, GloVe, and fastText make

lookup tables so that when the word embeddings are used in downstream applications,
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the word embedding model is not used but input in another model.

The word embedding methods described in the previous paragraphs all suffer from

one single embedding per word limitation. This limitation causes problems when multiple

meanings of an ambiguous word get conflated into the same numeric representation

(Navigli, 2009). When these embeddings are used as input or compared in vector format,

they are directly translated from a static and fixed set of previously found vectors from the

word embedding model. In other words, when this word-to-number translation happens,

the embedding is not affected by the context in which the word appears.

2.6 Transformers

The transformer architecture has had tremendous development since the end of 2017

(Vaswani et al., 2017). Opposed to the word embedding models like Word2Vec, Glove,

and FastText, a transformer model is deep with many stacked layers, and they create

dynamic contextual representations from tokens. They can create dynamic contextual

token representations because the input is not just one token but a piece of text with many

tokens. Each of the tokens gets encoded into a representation, where the surrounding

tokens also matter in the final representation.

It is important to emphasize that transformers are not only used to create language

representation, such as the word embedding models described earlier. The transformers

themselves can be adapted to solve NLP tasks directly in applications for end-users such

as machine translation. The original architecture translated text between two natural

languages (Vaswani et al., 2017). However, in this project, we are mainly concerned with

how a transformer-based model represents words with context and how we can use this

information directly.
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2.6.1 Self-Attention in Multiple Heads

At the core of the transformer architecture is a method called self-attention. Self-attention

allows the model to learn more direct relationships between the input words and therefore

has proven to be efficient at finding long-range dependencies (Vaswani et al., 2017).

For example, in the sentence “Chocolate is a type of candy and it tastes delicious.”; we

want to enable the computer to see the relation between, e.g., “Chocolate”-“candy” and

“Chocolate”-“delicious,” even though these words are far apart in word position.

The self-attention method consists of different vectors called Queries(Q), Keys(K),

and Values(V). These vectors find direct relationships between data points (e.g., tokens or

words). The vectors are a linear projection from the previous layer or the input embedding.

By matching the Queries and the Keys through a compatibility function, the tokens attend

to each other with different magnitude. The magnitude of the Query-Key pairs is then put

into a distribution function to make the magnitude of each relation sum to one (Galassi

et al., 2020). The new output vector for a given token is then the sum of all the Value

vectors from each token, weighted by their distributed relating score. We used the sentence

“Chocolate is a type of candy, and it tastes delicious.” to say how the word “Chocolate” can

find a relation. In other words, attend to all the other words —the Query for “Chocolate”

matched against the Keys for all the other words, even itself. Then, the new output vector

for “Chocolate” is the sum of all the Value vectors from all the tokens, weighted by the

Query-Key match score.

In Figure 2.5 we illustrate the self-attention function from (Vaswani et al., 2017). The

Queries are matched with all the Keys before they are scaled. The scaling is the square

root of the number of dimensions. Then they go through the Softmax function to distribute

the magnitudes of the vectors. After this, the results are multiplied by the Values, and the

output is then new vectors, which is a weighted sum of the Value vector input.

For the model to learn different token relations at once, the self-attention process
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Figure 2.5: Illustrated self-attention concept with multiple heads. Inspiration from the attention
function in the original transformer (Vaswani et al., 2017). Each attention layer has 8 heads and
within each head the attention mechanism happens. The attention consist of a set of Keys, Queries
and Values, which all can be represented as a matrix. Each vector in the matrix corresponds to one
input token representation. It is created a dot product from the Keys and the Queries to give the
magnitude of attentions. This magnitude is then normalized and used to decide how much of each
value vector will create the new output representation for each token representation.

happens in multiple heads in parallel. One head is one self-attention process, where

the output vector from the last layer, or input, is divided between each of the heads. For

example, the original transformer model (Vaswani et al., 2017) uses eight self-attention

heads in each layer.

2.6.2 Direct Global Patterns

Compared to recurrent neural networks and convolutional neural networks, the transformer

architecture has achieved many state-of-the-art results in NLP tasks (Brown et al., 2020;
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Devlin et al., 2019; Yang et al., 2019) with its self-attention mechanism. The advantage of

the transformer architecture is suspected to come from the fact that all the data points in the

model are directly matched and can therefore find more global patterns. In a convolutional

neural network, the model is often efficient at finding local features within a filter. The filter

strides over the input data, but as the features are extracted in a hierarchy, the model might

overlook more direct relations between the input. Recurrent neural networks, on the other

hand, use a temporal state. Therefore, altering word representation in sequence may cause

problems in finding correct relations. For example, suppose there is a strong relationship

between a word early in a sentence and another word later in that sentence. The recurrent

layers might have difficulty finding this relationship because many intermediate words have

processed the state.

But what about the position? If each data point, for example, a word, is directly

tested towards all the other words, how can the model have information which reveal the

word’s position? The authors of the original transformer architecture figured out that they

could give positional information to the model by adding a positional encoding to the input

(Vaswani et al., 2017). The positional encoding was created so that a linear combination

could tell which position the word was standing on (B. Wang et al., 2021).

2.6.3 Encoder with Wordpiece Input

Many transformers are encoder-decoder architectures that deal with sequence-to-sequence

problems (Sutskever et al., 2014). The sequence-to-sequence problem is machine transla-

tion, where one has a sequence of words and characters in and a sequence of words and

characters out. However, for the sake of a word representation, we do not need an output

sequence of words. We only need the words to be embedded into useful semantic vectors.

That is why we have only focus on the encoder part of a model, in other words, only the

part that can make words into embeddings. BERT (Devlin et al., 2019) is an example of a
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transformer model only based on the encoder part of the original transformer architecture

(Vaswani et al., 2017).

In many transformers, the input tokens are wordpieces. A wordpiece can be a whole

word, a part of the word, or even just a single character and is found based on a subword

segmentation algorithm. The wordpiece method has improved the performance in several

NLP problems (Devlin et al., 2019; Wu & et al., 2016). One of the significant advantages

of using wordpieces instead of full-form words is the vocabulary length. The wordpiece

vocabulary, for example, in the BERT Base model, is restricted to approximately 30,000

wordpieces (Devlin et al., 2019). A vocabulary with massive text corpora, typically a

transformer model, can be trained on more than a hundred gigabytes of text, can include

millions of unique words. A word can always be represented by wordpieces, where all

characters are in the wordpiece-vocabulary. The wordpiece method avoids the out-of-

vocabulary problem, where a word not present in the training set appears in the test set or

at inference time.

The national library of Norway has created a Norwegian version of the BERT encoder

model (Kummervold et al., 2021), and below, we give an example of a sentence in

Norwegian, and how the sentence splits into wordpieces3. The tokens starting with “##”

indicate that the wordpiece is not the beginning of a word.

• Hei, mitt navn er Pernille og jeg er student.

• “He” “##i” “,” “mitt” “navn” “er” “Per” “##nil” “##le” “og” “jeg” “er” “en” “student” “.”

2.6.4 Stacked Layers for Deep Learning

Deep language models such as ELMo (Peters et al., 2018), BERT (Devlin et al., 2019)

and GPT-3 (Brown et al., 2020) all have multiple stacked layers. Each layer output an

intermediate state from the input tokens, also named a hidden state. It has been proven
3https://github.com/NBAiLab/notram
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that these internal, hidden states include more information about the structure of language,

both semantic and syntactic features, than appreciated in the beginning (Peters et al.,

2020). We mentioned earlier that all models try to adapt to an objective. The last layer in

the model is, therefore, often very adapted to be able to predict the objective of the training

process. However, after putting effort into analyzing more of the hidden internal states, one

has found that the hidden states from the lowest layers in a deep language model often

have syntactic features and that the upper hidden states carry more semantic features

(Loureiro et al., 2021; Peters et al., 2020).

Figure 2.6: Token input to stacked encoder layers in deep language model with intermediate
token embeddings. This model is a simplified version meant to illustrate the concept of how layers
in a transformer encoder is stacked on top of each other and that after each layer it outputs an
intermediate token embedding in the same format. The input tokens all propagate through their
own path in the model but in the layers each token can attend to the other tokens. To know the
sequence of the tokens a positional embedding is added to the input.

In Figure 2.6 we have created a figure to describe how input tokens is propagated
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through encoder layers in a transformer and how it outputs contextual representations for

each of the tokens in the output layer. In this figure, there are four stacked encoder layers.

However, this number depends on the transformer architecture and is often more than four.

The bottom one inputs a set of tokens, e.g., wordpieces, which are processed through

each model layer and outputs intermediate states. The intermediate states can also be

used as language representation, not just the last output state.

We have not mentioned that these layers include more than just the self-attention

mechanism; they also include simple feed-forward layers for each token and residual

connections between the layers. A residual connection includes the intermediate state

from the last layer to affect the next state. In one sense, it prevents the states from changing

too much by including some information from the last state. We will not go into any more

detail about these features in this report, but it is essential to know that there is more to

the transformer architecture than just self-attention.

2.6.5 Masked Language Modelling

One of, or essentially the main, training objective for BERT is called MLM(Masked Lan-

guage Modelling). MLM entails masking 15% of the input tokens randomly and then letting

the model predict what kind of tokens stands in the masked position. For example, in

Figure 2.7 we illustrate the concept with our tokenized sentence and how a token becomes

masked, and then the model needs to predict the masked token in the output layer.

From the original BERT paper, we found that the objective is a little more nuanced

than masking 15% of the tokens to re-predict the token in the output layer. From the 15%

of the masked tokens, only 80% is masked, while 10% is switched out with a random

token, and 10% remains itself (Devlin et al., 2019). So in the example Figure 2.7, the token

“taken” would be set to “[MASK]” 80% of the times, a random token like “snow” 10% of the

times, and remain “take” 10% of the times. They do this to force the model to keep track
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Figure 2.7: Masked Language Modelling in BERT. MLM is one pre-training objective in BERT
where a token gets masked and the model tries to predict which token is missing. In the figure we
illustrate how BERT masks the token “taken” and tries to predict that this is the missing word.

of relevant contextual embeddings for all the input tokens, not only the ones it needs to

predict.

2.6.6 Next Sentence Prediction

NSP (Next Sentence Prediction) is the second training objective that BERT is pre-trained

on (Devlin et al., 2019). BERT assigns the first token in the input sequence to be a

“[CLS]” or classification token and the last to be a “[SEP]” or separation token. The “[SEP]”

token can also be used between two text spans to show separation. In addition, the

segment embedding is added to the input embedding of each word, just like the positional

embedding, which tells the model which text segment the token belongs to. The model

aims to say if two text spans are following each other or not, like in the sentence below the

part before the first “[SEP]” token and the part after doing follow each other.

[CLS] South Africa was where the new Omicron variant [SEP] was first identified,

and cases there have [MASK] off rapidly. [SEP]
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50% of the time, they create real examples where the answer for NSP is yes, and 50%

of the time, they take two random text spans and put them together where the answer for

NSP is no. The objective is meant to help the model understand relations between words

at the sentence level.

2.6.7 mBERT, Multilingual BERT Trained on 104 Languages

The BERT architecture was originally trained on English monolingual corpora. However,

more general models with multilingual abilities have also proved exciting, and one of these

multilingual models is called mBERT 4 (Devlin et al., 2019). mBERT is trained on Wikipedia

data sampled from 104 languages, where the data from languages with major Wikipedia

languages are undersampled, and data from languages with fewer Wikipedia resources

are upsampled. Since the model is trained in several different languages, the creators also

made a shared vocabulary of approximately 120,000 wordpieces compared to the original

English token vocabulary of 30,000 wordpieces.

2.6.8 Notram, a BERT Model Specialized in Norwegian

Notram is a model with BERT architecture specialized in Norwegian (Kummervold et al.,

2021). It is trained on a vast amount of Norwegian corpus, including almost all the OCR-

scanned books in the Norwegian Library and many other online text resources. Unlike the

original base-bert, trained on English corpus and initialized on random weights, Notram is

initialized from mBERT and share its wordpiece vocabulary.

For the Notram model, this means that the wordpiece vocabulary is not specialized for

the Norwegian language but instead has more multilingual token splitting. In other words,

this indicates that a word is more likely to be split into multiple pieces than it would with a

Norwegian specialized tokenizer, even though the vocabulary is significantly larger.

4https://huggingface.co/bert-base-multilingual-cased
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Notram may be mainly trained on Norwegian data. However, it is estimated that

around 4% of the data is English corpus, and some are also other foreign languages

like Danish and Swedish (Kummervold et al., 2021). In addition, because the model is

initialized from a version trained in 104 languages, it has some information about other

languages like Finnish and Spanish.

2.7 Related Work

BERTology study the BERT architecture and what patterns it has acquired through training

(Rogers et al., 2020). Patterns in terms of language are often divided into two: syntax and

semantics. The former describes features related to meaning, while syntax describes how

a language is structured, such as grammatical rules. We introduce some research that

shows what kind of patterns we are already aware that the model produces in terms of

semantics and syntax.

In previous word by Tenney, Das, et al. (2019), they show that BERT acquires

hierarchically information that corresponds to the traditional pipeline in NLP. The first layers

show helpful information in local syntax structure, such as POS tagging and parsing,

named entity recognition, semantic roles, and coreference are information encoded in the

middle and later layers of the model. Similar discoveries can be found in other works as

well (N. F. Liu et al., 2019; Tenney, Xia, et al., 2019).

Naturally, since BERT is a contextual model representing a word based on itself and

the surrounding words, the question of whether one could distinguish different meanings of

an ambiguous word arose. More than one paper find that ambiguous words divide different

meanings into clusters from the contextual representation, although it is not always the

same clusters as we might have expected (Loureiro et al., 2021; Wiedemann et al., 2019).

Wiedemann et al. (2019) found that the best-hidden states from the BERT model to solve

WSD (Word Sense Disambiguation) were layers 10 and 11.
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To benefit from benchmarks like SimLex999 (Hill et al., 2015), WordSim353 (Agirre

et al., 2009) and SimVerb3500 (Gerz et al., 2016) which evaluate semantics in static

word embeddings, Bommasani et al. (2020) distilled a set of static word embeddings

from contextual word embeddings. The resulting static embeddings could be compared

to traditional static word embeddings (Joulin et al., 2017; Mikolov, Chen, et al., 2013;

Pennington et al., 2014). Different aggregation and pooling strategies were used to create

the static word embeddings. The strategies included element-wise mean, maximum or

minimum values from the contextual vectors. They report that the mean-pooling strategy

achieves the best results. Another important finding from this paper is that using more

context examples for a word increases the quality of the word representation (Bommasani

et al., 2020). Especially when using the late layers of a deep model, using more context

examples significantly improves the quality of the representation. This phenomenon is

suspected because more examples de-noise the context-sensitivity and create a more

general word vector. They also find mean pooling over subtokens of a word in case a

word consist of more than one token to be the best pooling strategy for subtokens. Even

though one of the significant advantages of the model is that it is contextual, the distilled

word embeddings still outperformed the traditional word embeddings (Joulin et al., 2017;

Mikolov, Chen, et al., 2013; Pennington et al., 2014) on several benchmarks, proving that

BERT is very good at encoding lexical semantics as well.

Chronis and Erk (2020) use K-means clustering to derive multi-prototype word em-

beddings from BERT contextual embeddings. They use a set of up to 100 sentences for

each word and group the contextual embeddings into a previous set of K groups. The K is

within {1, . . . , 10, 50}. In other words, they create many word embeddings for the same

word with this prototyping. Still, they only use it to solve word similarity tasks and not WSD.

The centroids of the K clusters for each word then become one of the word embedding

prototypes. When comparing the similarity between words, they use either the maximum

similarity between word groups or the average similarity between word groups. They

26



report maximum similarity to be the best-performing measure. The paper also proposes

which layers are best for two different purposes. They suggest using layer 8 of BERT for

semantic similarity and layer 12 for finding relatedness. In addition, they find that words

with more abstract meaning, such as stop words, have a higher contextual variance than

more concrete words (for example, nouns).
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Chapter 3

Distilled BERT Embeddings for

Norwegian

A static word embedding can be stored in a look-up table and used for direct comparison.

Even though we used a contextual model that produces contextual word embeddings

at inference time, we wanted to build this static look-up table so we could compare the

representation of different words. To infer text through the model is computationally

expensive given the deeply stacked layers with many parameters. Therefore, it can be

advantageous to construct a static list before solving the task.

Following the work by Bommasani et al. (2020) we created a static set of word

embeddings by taking the AOC (Average Over Contexts) of several contextual embeddings

for a word t . The contextual embedding for word t is obtained from a context ct ∈Ct , where

each ct is two sentences from the relevant language corpus. The final static embedding

then becomes the average of all the contextual embeddings.

st = 1

Nt

N∑
n=1

wtn (3.1)

wtn is the nth contextual embedding for the number of contexts Nt = |Ct |. For words that
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constitutes of more than one wordpiece we used mean pooling to aggregate all of the

token embeddings. mean pooling averages all the token embeddings in one word.

wtn = 1

It

I∑
i=1

pt i (3.2)

pt i is the i th token in the word and It is the number of wordpieces in the word. We created

static embeddings for all the 13 intermediate representations of BERT after all the 12

stacked layers and the input layer. Figure 3.1 illustrates the same process.

Figure 3.1: Process of how we produced our static word-embedding for the word dessert. We used
a text corpus with several contexts for each word. We then found a set of contextual embeddings
for each word and create the static embedding by taking the average of all these embeddings.

To produce our static word embeddings we used the transformer-based models

Notram (Kummervold et al., 2021) and mBERT (Devlin et al., 2019). Both models can

encode words in English and Norwegian, which became useful in our analysis.

3.1 The Norwegian News Corpus

We needed a corpus of raw Norwegian text to create our set of static word embedding.

This section describe the data.

As a data corpus for raw Norwegian text, we have used the Norwegian News Corpus1,

the part in Norwegian bokmål (not nynorsk). The news articles in the dataset are from

multiple different papers such as “VG”, “Aftenposten” and “Dagens næringsliv”, collected

from the years 1998-to 2019.
1https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
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The number of contexts Nt for each word is between 100 and 500. A context is

defined as two sentences. The vocabulary is restricted to only include the 50,000 most

frequent words from the Norwegian News Corpus. Additionally, we verified that the word is

present in a Norwegian wordlist for Bokmål 2.

Initial Formatting

The news corpus is divided into many files from the raw source and not in a simple text

format suitable for computational processing. Therefore, we first formatted and cleaned

the data. The NBAiLab, the same organization that trained Notram, provides a pre-made

script3 we have utilized to clean and format the news corpus. This merged all the news

articles ( ≈2,000,000) into the same file with double line shift to separate each article.

Text Splitting

To divide each article into sentences, we used the NLTK sentence tokenizer. To create our

static embeddings, we constructed text blocks of two sentences to give the context of the

words.

For word tokenization, we used the Spacy model for Norwegian Bokmål 4. The

Spacy tokenizer can separate punctuation from the words and is also familiar with certain

abbreviations in the Norwegian language. Later in the thesis, we compare Norwegian and

English parallel sentences. In this case, we used the NLTK word tokenizer.

The Spacy model is also able to detect language. We used this feature to remove text

classified as English. Later we compared our embeddings with English word embeddings,

and therefore we wished to keep our vocabulary of word embeddings to include only

2https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-23/
3https://github.com/NBAiLab/notram/tree/fe0fd50b948096cc1af00e2215416a507dd99728/corpus_

generation_scripts
4https://spacy.io/models/nb
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Norwegian contexts. However, removing text in another language can be challenging,

especially if only part of the sentence is in English.

Capitalization

Both Notram and mBERT have uppercase letters in their vocabularies. Therefore, we could

have chosen to store the words in our vocabulary with uppercase information. However, to

avoid complicated handling of uppercase letters, such as at the beginning of a sentence,

we used only lowercase in our word embedding vocabulary. During inference time, we

still retained the original text, uppercase or lowercase, but when we added the word

embeddings to the static vocabulary, we only used the words in lowercase. For example,

the contextual word embeddings for "Det" and "det" was averaged into a single word

embedding for "det".

3.2 Word-to-Word Comparing

Instead of simply considering absolute similarity values, we ranked similarities for the entire

vocabulary to find the closest match. The contextual representations are known to be

highly anisotropic (Ethayarajh, 2019), especially in subsequent layers. So the similarities

are not uniformly distributed, and we wanted to introduce this relative comparing system

instead.

3.2.1 Similarity Measure

To compare word embeddings, we used the distance measure cosine similarity, defined as:

cos(x1,x2) = x1x2

∥x1∥∥x2∥ =
∑n

i=1 x1i x2i√∑n
i=1 (x1i )2

√∑n
i=1 (x2i )2

(3.3)
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where x1 and x2 represent two different word embeddings. Cosine similarity is the most

commonly used similarity measure for word embeddings (Camacho-Collados & Pilehvar,

2018). It returns the similarity in angular direction between two different vectors, hence it

does not depend on the magnitude of the vectors.

3.2.2 Top Matches

When comparing word-to-word, we first found the embeddings of one word, either from

the static word embedding vocabulary, or we found the contextual word embedding for the

word with context. Then we found the cosine similarity to all of the words in one vocabulary

of distilled BERT embeddings, English or Norwegian depending on the task. We define a

top matches with an @, so if we return only the most similar word embedding from the

vocabulary this would be stated as @1, and if we wanted to return 10 matches then it

would be stated as @10.

3.2.3 Comparing the Embeddings in Different Layers

The BERT architecture has 12 stacked layers. After each of these layers, it is possible to

extract an intermediate representation. Since there is also the input layer, we can extract

13 intermediate representations. We were interested in analyzing not only the last of the

intermediate states but all of them because it gave us some information about which layer

representations perform best for different tasks. Additionally, since we were exploring how

meaning is activated by context, it was fascinating to observe which layers of the context

seemed to affect the contextual embedding of a word.
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Chapter 4

Multilingual Representation Analysis

Multilingual language models, such as mBERT, are known to be able to solve tasks

on datasets for different languages. However, there is also a new branch of research

that investigates information shared and not shared among languages (Cao et al., 2020;

Litschko et al., 2021; C.-L. Liu et al., 2020). This analysis have studied how the two

languages, English and Norwegian, and their respective word representations relate. First,

we attempted to discover similarities between the two languages by determining whether

the word representation can relate to its translation. In the second part, we examined

the differences by testing whether it was possible to distinguish a word in English from a

word in Norwegian. Throughout the analysis, we compared the two models, mBERT and

Notram, to evaluate whether there is any difference in performance.

4.1 Related Work on Multilingual Word Retrieval

Unsupervised multilingual word retrieval does not rely on parallel corpora as most traditional

machine translation systems do. Mikolov, Le, et al. (2013) noticed that the distribution of

word embeddings in latent space showed similar characteristics across different languages.

Motivated by the similarity of distributions, they hypothesized that they could align two
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distributions with word embeddings from two different languages to create a bilingual

dictionary using word retrieval. Their technique relied on bilingual parallel corpora. Later,

Conneau et al. (2017) showed that it was possible to align two word embedding distributions

from different languages without any supervision. They utilized adversarial training to

learn a linear mapping from source to the target language, alleviating the need for parallel

corpora.

Conneau et al. (2017) relied on matrices to align two word embedding distributions

in different languages. However, recent discoveries show that multilingual BERT, partially

aligns the semantics in two languages automatically (Cao et al., 2020). Hence, word

translation can be produced by simply looking for the most similar word embedding in the

target language.

4.2 The Bilingual MUSE Benchmark

To evaluate the word retrieval from English to Norwegian, we used the English-Norwegian

word benchmark from MUSE 1 (Conneau et al., 2017). MUSE is a benchmark that exists

for several language pairs. Each language pair consist of an extensive set of word pairs

like a bilingual dictionary. The benchmark has one training part, one development part, and

one test part. However, since we only relied on unsupervised or techniques, we included

the entire MUSE dataset when selecting the words to test our word retrieval. We only used

the word pairs, where the Norwegian word is in the top 50,000 words from the vocabulary,

and the English word is present in the Brown corpus2. Some English words have more

than one Norwegian word translation. We define a correct word retrieval as at least one

match from the possible translations.

1https://github.com/facebookresearch/MUSE
2https://www.nltk.org/nltk_data/
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4.3 The English Brown Corpus

Contexts for English words are derived from the Brown corpus (Francis & Kucera, 1979),

where Nt denotes the number of times a word occurs in the Brown corpus but a maximum

of 500 times. The Brown corpus is much smaller than the Norwegian News Corpus, so

the number of contexts is likely to be fewer than in the Norwegian contexts. In addition,

the Brown corpus is pre-tokenized, so there was no need to use an additional tokenizer.

Like with the Norwegian News Corpus, we also created a context for a word to be two

sentences. As for the English vocabulary, we only obtained static word embeddings for

the words in the MUSE benchmark, which resulted in roughly 12,000 words in the English

source vocabulary.

4.4 Word Retrieval with Static Embeddings

To demonstrate that BERT aligns the semantics of the two languages English and Nor-

wegian, without supervision, we conducted an experiment that attempts to retrieve a

Norwegian target translation from an English source word. We did this using only the non-

parametric method KNN from the static word embedding vocabularies. Figure 4.1 shows

the two collections of static word embeddings. Each intermediate state was evaluated.

By evaluating which layer performs best, we could test wherein the model cross-lingual

semantics, which is information that two languages share, was most present.

4.4.1 Retrieving a Word Translation

To find the closest word embedding match, we ranked cosine similarities. For each English

word in our benchmark, we used the static embedding of the English word and then

matched that word with all the Norwegian word embeddings to rank the most similar. We
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Figure 4.1: Two static word embedding vocabularies. The source vocabulary is English, while
Norwegian is the target vocabulary. After creating static word embedding, this is what we were
left with and used to search for embeddings. Each row corresponds to one word and its word
embedding in numeric vector format.

then returned the top matches, to which we can say we used KNN with a K set to 1, 3, and

10. From the @1, @3, and @10 matches, we evaluated if one of the words was a valid

Norwegian translation of the original English word.

K-Neighbours(i)= argmax
j

si m(si−en , s j−no) (4.1)

yi =


1, if K −Nei g hbour s(i ) ∈ tr ansl ati on(sno)

0, otherwise
(4.2)

The accuracy of the word retrieval task is defined as all correct translations within

K,divided by all the words tested (all the words in the English source vocabulary).

accuracy word retrieval= 1

T

T∑
i=1

yi (4.3)

T is the number of terms in the English vocabulary.

In Figure 4.2 we illustrate with a “cake”-word example. First, we have the English
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word “cake” and its static embedding. Then we compare that embedding to all the 50,000

static embeddings from the Norwegian target vocabulary. In this case, the ideal scenario is

if the Norwegian word embedding for “kake” is returned.

Figure 4.2: Word retrieval example of an ideal situation where the English word “cake” matched
closest with the Norwegian word “kake”. The English word is matched with all the words from the
Norwegian vocabulary using cosine similarity. The cosine similarities are then ranked by size, and
the best match, in this case, “kake” is returned.

4.4.2 Results Static Word Retrieval

(a) mBERT (b) Notram

Figure 4.3: The figure shows static word retrieval performance from English to Norwegian with
layer-wise performance accuracy. The bottom line represents the accuracy when only including the
closest match, @1, while the middle includes @3 and the top line @10 matches—the star marker
shows at which layer the performance peak.

In Figure 4.3 we report the result of the English to Norwegian word-retrieval using

37



KNN and cosine similarity. The performance comparison between mBERT and Notram

show that Notram achieved better accuracy than mBERT in general. The middle layers

seemed to perform best for both models, with Notram achieving around 50% at @1 match

and more than 70% accuracy when using the @10 matches at layer 7. Another part to

notice is the dip in performance in layer 11. Overall, we can at least argue that BERT does

very well in aligning semantics across two languages without using any supervised dataset

with parallel sentences.

4.5 Improving Static Word Retrieval with Mean Shift

C.-L. Liu et al. (2020) showed that words are represented with language-specific information

and that applying a mean shift helps to improve the translation ability. Although proved for

other languages our results show a comparison between the English and the Norwegian

language.

4.5.1 Language Specific Embeddings and Mean Shift

We construct a “characteristic vector” for language by taking the mean of all the static word

embeddings in each respective language vocabularies.

Ll =
1

T

T∑
t=1

wt (4.4)

l ∈ {Eng l i sh, Nor weg i an} and T is the number of words in each vocabulary. We try

retrieving the Norwegian word for a English embedding by doing an additional mean shift

(C.-L. Liu et al., 2020) with:

st ,en−>no = st ,en −Len +Lno (4.5)
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where the Len and Lno are language characteristic vectors for English and Norwegian,

respectively.

4.5.2 Results Word Retrieval with Mean Shift

(a) mBERT (b) Notram

Figure 4.4: The graph shows static word retrieval performance from English to Norwegian with
layer-wise accuracy with mean shift. The lower dashed lines show the increased performance in
word retrieval using the mean shift method. Again the stars show their peaking performance. For
both models, the highest increase in performance for all @1, @3, and @10 happens in the 11th
layer.

Figure 4.4 show the same type of graph as in Figure 4.3, however, this time with

mean shift. The graph with mean shift drops less performance accuracy from the middle

layers to the subsequent layers than the graph without mean shift. In layer 11, the word

retrieval performance for the Notram model improves by 8% for K at @1, @3, and @10.

4.6 Cross-Lingual Sense Disambiguation

English and Norwegian share several words, some with the same meaning but others that

do not share the meaning. To better understand the semantic power of the model, we

inspected how a word both in the English and Norwegian dictionaries relates to different
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words depending on the context in qualitative analysis. In Figure 4.5 we illustrate how the

English and Norwegian vocabularies in some cases overlap by drawing a Venn diagram.

The words we were interested in correspond to the lower part of the middle section, marked

with bright purple color.

Figure 4.5: Venn diagram illustrating how the English and the Norwegian vocabulary partly overlap.
Some words, like in the top part of the sharing part, marked with gradient purple, have words in
both vocabularies that also share meaning. In the lower part of the purple gradient, we have words
shared by both vocabularies but with a different meanings.

Table 4.1 gives two example words, “do” and “love” used in an English and a Norwe-

gian sentence. The meaning of the word “do” can translate to the Norwegian word “gjøre.”

However, the Norwegian meaning of “do” can translate to the English word “toilet”. The

meaning of the word “love” when used as a verb in English means “elske” in Norwegian,

while the Norwegian verb “love” can be translated to “promise” in English. We used one

sentence in English and one in Norwegian with the two respective words and show what

their closest matches from the Norwegian and the English vocabulary are. In all four

examples, we see that the word relates to words with a similar meaning in their relevant

context. More examples can be found in Appendix A.
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Sentence Language @3 Norwegian @3 English
Can you please do it? En gjøre, gjort, gjør do, done, doing
Jeg må gå på do en tur. No do, toalettet, doen toilet, bed, dock
Do you love me? En elske, elsker, els-

ket
love, loved, loves

Kan du love meg at vi ikke be-
høver å vente tre timer i kø?

No garantere, lovet,
lovte

promised, assure,
assured

Table 4.1: Example sentences in English and Norwegian share a word but with different meanings.
The word embeddings are fetched from layer 7. We see how each word related to words in each
word embedding vocabulary for English and Norwegian, respectively. We see how the senses are
disambiguated based on the meaning in each language.

4.7 Word Retrieval with Contextual Embeddings

Following previous work by Cao et al. (2020) we also tested if we could find the cor-

rect contextual embedding of a word, using aligned word pairs from parallel sentences3

(Riksrevisjonen, 2018). The parallel sentences we use were created by the Norwegian

organization “Riksrevisjonen”.

4.7.1 Visualizing Aligned Word Pairs from English and Norwegian

In Figure 4.6 we introduce a similar plot to the work by Cao et al. (2020), which originally

compared English and German with the mBERT model. This figure compares contextual

embeddings from layer 8 between English and Norwegian word pairs. The contextual

embeddings are reduced to two dimensions with t-SNE (der Maaten & Hinton, 2008). The

scatter color decides which language the contextual embeddings belong to, while the

marker of the scatter decides which word the contextual embeddings belong to. It is clear

from the plot that a word pair clusters together cross-language, though it does not always

overlap. The exception is the word par “year-år,” marked with +, which overlap.

3https://www.elrc-share.eu/repository/browse/bilingual-english-norwegian-
parallel-corpus-from-the-office-of-the-auditor-general-riksrevisjonen-website/
a5d2470201e311e9b7d400155d0267060fffdc9258a741659ce9e52ef15a7c26/
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Figure 4.6: Visualizing contextual word embeddings for word pairs in English and Norwegian. Con-
textual embeddings taken from layer 8 of the Notram model and the English contextual embeddings
have experienced a mean shift. The blue colored markers show contextual word embeddings for
Norwegian while the orange color shows contextual embedding for English. Each word pair has its
marker, so it is easy to spot which embeddings belong together.

4.7.2 Aligning Word Pairs for Comparison of Contextual Embeddings

We simplified the alignment of word pairs by using the MUSE benchmark as our valid

translation. First, we tokenized the English and the Norwegian sentence with NLTK. Then,

we checked if it existed in our MUSE benchmark for each English word in the sentence. If

a valid Norwegian translation was found in the Norwegian counter sentence, we accepted

the word pair. Finally, we removed every pair with more than one possible translation to

ensure that the word pairs were the aligned versions. For example, it occurs if two of the

same words are in the same sentence.

The process of retrieving a word becomes very similar to comparing static embeddings.

We first created a vocabulary with contextual embeddings and no averaging with the word

embeddings for all the words in the word pairs with English and Norwegian, respectively.

Then for each of the English contextual word embeddings, we found the closest match in

the Norwegian contextual vocabulary. We achieved a correct retrieval if we re-found the
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corresponding word in the Norwegian vocabulary.

To find relevant word pairs, we sampled the first 5,000 sentences of the dataset and

use MUSE to find relevant pairs. From this selection, we have listed the unique words and

word pairs in Table 4.2.

The number of unique words in this test was much lower than the number of word pairs,

which means that certain words are represented many times and depend on contextual

information to find the correct match. The contextual information is encoded into the word

representation through the model. Therefore, we also conducted an experiment where

we only allow a word pair to appear once, so if (“car”, “bil”) appears more than once, we

removed all the pairs after the first.

Word pairs English Words Norwegian Words Unique Word Pairs
23,711 2,266 2,561 2,854

Table 4.2: Word pair counts for contextual word retrieval.

4.7.3 Results Contextual Word Retrieval

Figure 4.7 shows the results from the contextual word retrieval. There is no surprise that

the experiment with unique word pairs has better accuracy, shifting the graph upwards with

approximately 20%. The source and target vocabulary here is limited to 2,854 pairs, while

the experiment where word pairs can appear more than once has 23,711 pairs to search

in. Like with the static word retrieval experiment, Notram scores better than mBERT. The

difference is almost negligible when comparing with and without the mean shift. Especially

at the best performing layer, layer 8, we experienced close to zero improvements in

accuracy using the mean shift.
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(a) mBERT (b) Notram

Figure 4.7: Layer-wise performance for word retrieval using contextual embeddings. The two
highest lines only contain unique word pairs. In contrast, the two lower lines include all the relevant
contextual embeddings from the collection of parallel sentences, even though one word can appear
several times. We used one line for performance with and one without mean shift. The upper lines
are with the mean shift. However, we see little to no difference in this experiment using the mean
shift. The stars mark the peak-performing layer.

4.8 Language Detection using Language Embeddings

We created language-specific embeddings by taking the mean of many word embeddings

Equation 4.4 in a single language and used this to demonstrate whether it was possible to

improve the performance of word retrieval. In this section, we question ourselves: Can we

detect the language a word belongs to using these language-specific embeddings?

First, since the Norwegian vocabulary is more extensive than our English counterpart,

we down-sampled the Norwegian vocabulary to be approximately the same size as the

English. We did this by only including the words in the filtered MUSE benchmark, as

the English words are. Then we split it into a test (20%) and a training (80%) part to

avoid that the word embedding that we evaluated would be part of the mean language

embedding. For every word in the test part belonging to English and Norwegian, we

classified the language by ranking the cosine similarity of word embedding to English

language embedding and Norwegian language embedding.
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yi−l =


1, if si m(si−l ,Len) > si m(si−en ,Lno) and l = en

1, elif si m(si−l ,Len) < si m(si−l ,Lno) and l = no

0, otherwise

(4.6)

Language detection accuracy was measured as the mean of the classification accu-

racy of the English words and the Norwegian words.

accuracy language detection= 1

2T

T∑
i=1

yi−en + 1

2T

T∑
i=1

yi−no (4.7)

4.8.1 Results Language Detection

(a) mBERT (b) Notram

Figure 4.8: Layer-wise language detection performance. The orange (best performing line from
layer 1-) describes the prediction accuracy for the English vocabulary, and the blue line (lowest
from layer 1-) describes the prediction accuracy for the Norwegian language. In contrast, the last
green line describes the combined prediction accuracy of language detection—the stars mark in
which layer the performance peak.

In Figure 4.8 we report our result from the non-parametric language detection between

English and Norwegian. Both Notram and mBERT seem to be highly capable of classifying

a word into its correct language with an accuracy more than 95% already after layer 2.
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This result indicates that layer-specific information is encoded into the word representation

from an early stage. Even the input layer scores high on language detection, way above

the baseline of 50%.

4.8.2 English Noise in Norwegian Text Data

At layer 12 we were somewhat surprised that mBERT performed better than Notram in

classifying the correct language of a word since Notram performed better at word retrieval,

also with the mean shift. We noticed doing qualitative testing that there seemed to be

traces of English in the Norwegian vocabulary. It is a fact that Norwegian borrows many

words from English. However, sometimes we also borrow small phrases like English movie

titles. Therefore, we in Table 4.3 listed a small sample of the words that were detected as

English and not Norwegian from the Norwegian word embedding vocabulary.

Word Sim Diff
lives 0.11

straight 0.08
hype 0.01
libre 0.05
lux 0.08

meles 0.02
halle 0.02

bowers 0.01
loves 0.07
lady 0.06

makes 0.18
stable 0.0

Table 4.3: Words from the Norwegian vocabulary are predicted to be English. The Sim Diff
column quantifies the difference in similarity between English language embedding and Norwegian
language embedding. For example, “makes” is more similar to the English language embeddings,
while “stable” is almost precisely as similar to the English language embedding as the Norwegian
language embedding.

For any English speaker, it is clear that most of the words also exist in the English
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vocabulary. As a Norwegian and English speaker, some words seem more likely to occur in

English texts since they are more frequent in this language than in the Norwegian language.

In other words, it might not be good with 100% accuracy in the language detection because

some of the data might have been in English. We mentioned earlier that we removed

context entries detected as English using Spacy language detection. However, if English is

only part of a sentence, this detection might not have been fully effective in removing all

English phrases.

To provide a more in-depth qualitative analysis of the language detection, we found a

few example sentences from the Norwegian News Corpus where English and Norwegian

are mixed into the same sentence. In Table 4.4 we have listed three of these sentences

and show what language Notram and mBERT detect each word.

From the qualitative analysis in Table 4.4 we found that Notram appears to be best

at identifying Norwegian from English in the sentences, especially when we look at the

last sentence. In the last sentence, mBERT classifies non of the English words as English.

Because we have only provided three example sentences of contextual language detection,

we can not conclude that Notram always performs better than mBERT. However, we argue

that the results indicate that there is more to the results in Figure 4.8. A few more examples

can be found in Appendix B.

4.9 Similarity Analysis from Monolingual and Multilingual

Collections

To discover whether a distribution of word representations is uniformly distributed in latent

space, Ethayarajh (2019) considered the mean cosine similarity of several random word

pairs. He found that subsequent layers, the effect peaking at layer 11, were nowhere near

being uniformly distributed. The average cosine similarity was roughly 0.6 in this layer. In

47



Word Not mB
Jeg no no

husker no no
at no no
jeg no no

spurte no no
“ en no

who en en
are en en
you en en

afraid en en
of en en
” en en
, no no

forklarte no no
naboens no no

kone no no
. no no

Word Not mB
“ en en

How en en
you en en
gon en en
na en en

drink en en
, en en

when en en
the en en
well en en
goes en en
dry en en
” en en
, no en

synger no en
hun no en

. no en

Word Not mB
Det no no
er no no

som no no
å no no

være no no
tilbake no no

på no no
Rødsberg- no no
diskoteket no no

i no no
1985 no no

, no no
jeg no no
gikk no no
på no no

Strupe no no
- no no

make en no
no en no

mistake en no
! no en

Table 4.4: Language detection with language embeddings from Notram and mBERT layer 12. Not
stands for Notram and mB for mBERT. Each word is detected with a language. In cases where the
two models classify differently, the language code is marked in bold.

other words, the word representations only occupy a narrow cone of the latent space.

We were interested in discovering how this effect is when comparing the inter and

intra similarities within and between English and Norwegian. Additionally, we compared the

mBERT and Notram, to determine whether the amount of data affects the distribution of

word representations from two different languages. To obtain an average similarity measure,

we used 1,000 random word pairs drawn from the same collections as in section 4.8.

The resulting inter and intra similarity is shown in Figure 4.9. In addition to the

inter and intra similarity, we also found the cosine similarity between the two respective
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(a) mBERT (b) Notram

Figure 4.9: Average cosine similarity between random collection of words within each language.
The top red line is the cosine similarity between the two language embeddings for English and
Norwegian. In contrast, the three lower lines are average cosine similarities for the 1,000 random
word embedding pairs.

language embeddings for English and Norwegian, marked with the top red line. The

similarity between the two language embeddings is very high in the middle layers with

close to 100% similarity in mBERT and 90% similarity in Notram, but it drops considerably

to around 80% in mBERT and 50% in Notram in the last layer.

Another interesting result from Figure 4.9 is the difference in magnitude of average

cosine similarity between mBERT and Notram. Generally, mBERT has a higher inter

and intra similarity in all the layers except the input with a difference of around 20% in

the layers where the difference is most significant. This result is suggesting that Notram

occupies a bigger cone than mBERT in the latent space. This effect can be due to a set of

reasons where we are not certain which affects the results most. The first is that mBERT is

trained on text data from many languages, and hence it might find words within the same

or two similar languages to be more similar. On the other hand, Notram is trained mainly

on Norwegian and English text data (or other very similar languages) and, therefore can

expand the differences between these two languages more. Another reason might be the

amount of data the model is trained. Notram is initialized on mBERT, and then continued
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trained on more data. We could hypothesize whether training on more data increases the

variability of the word representations.

Figure 4.10: Cosine similarity distributions from the Notram model. The right side marked with
green color is the distribution of intra cosine similarity for Norwegian word embedding pairs. We
have taken 1,000 random pairs. The right and orange side is the inter cosine similarity for word
embedding pairs where one random word is taken from Norwegian and one random word is taken
from English. The dashed lines represent the 25%, 50%, and 75% percentile.

Comparing the average of cosine similarities does not give any information about the

distribution of the similarities. To show how the distributions for cosine similarities look, we

compare in Figure 4.10 a set of violin plots with the cosine similarity distribution for the

intra Norwegian language and the inter Norwegian-English(cross-lingual).

Although the difference in the distribution between Norwegian and English (Cross-

lingual) versus Norwegian alone is not considerably different Figure 4.10, it is enough

to distinguish the two languages, especially in the last layers. We illustrate this again

with a t-SNE plot in Figure 4.11 with 500 randomly chosen words from each respective

vocabulary. The two languages separate into two clusters.
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Figure 4.11: 500 random words from Norwegian and English vocabulary, respectively. Visualized
with 2D plot from t-SNE dimension reduction. Embeddings from Notram layer 12. Orange points in
the upper left corner correspond to English embeddings, and blue points in the lower right region
correspond to Norwegian embeddings.

4.10 Discussion of Multilingual Representation Analysis

This exploratory analysis shows that BERT-based architectures such as mBERT and

Notram tend to align semantics between English and Norwegian because they perform

well on word retrieval tasks. We found that Notram outperforms mBERT in every word

retrieval task. This difference is not so surprising, given that Notram is trained on much

more data, especially for the Norwegian language. Previous work also demonstrates that

Notram is better than mBERT at solving classification tasks for the Norwegian language,

such as named entity recognition and POS-tagging (Kummervold et al., 2021).

For our word retrieval tasks, both static and contextual, the middle layers around layers

7 and 8 performed best. Previous evaluation of word embeddings on semantic similarity
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benchmarks also indicates that the middle layers are more sensitive to semantics (Chronis

& Erk, 2020). Unfortunately, good benchmarks for minor languages like Norwegian do not

always exist. Therefore, we believe it helps to be able to evaluate a model’s semantics

based on alternative ways, such as cross-lingual word retrieval. This test does require the

model to have a multilingual understanding.

The fact that English and Norwegian can be accurately aligned without any super-

vision, only relying on monolingual corpora, is exciting when considering the power of

transferred knowledge form one language to another. Training datasets for minor languages

can be sparse. However, it might be possible to use an English dataset for Norwegian

classification tasks because if the important aspect in the classification set is semantics,

we already know that English and Norwegian share this semantic information in encoding.

Another option is combining both English and Norwegian data to fine-tune a specific task,

which could improve a task since more data often helps achieve better results.

We also believe that multilingual alignment can help improve machine translation.

Finding an appropriate translation is often more complicated than directly translating a

word with a dictionary lookup. Word senses can often be nuanced and not always shared

across languages. With our word retrieval, it is possible to obtain a list of suggestions for

the target language that is not only based on direct translation but considers context.

Even though mBERT performs close to perfect at language detection at layer 12

Figure 4.8, we are skeptical of the results and still believe that Notram might performs

better at detecting the correct language. When looking deeper into the problem, we

started to suspect that there was some English noise in the Norwegian vocabulary of

word embeddings, which might imply that a 100% accuracy is incorrect. For example,

the misclassified words from the Norwegian vocabulary Table 4.3 seemed more likely to

appear in English text than Norwegian text.

We created a more qualitative experiment because we suspected English noise in the

Norwegian vocabulary Table 4.4. We found mixed Norwegian and English text sentences
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to evaluate language detection performance. In this experiment, Notram showed a better

ability to separate English and Norwegian words from the sentence.

Although using BERT for language detection is not the most computationally effective

method, given that the model has 178 million parameters (Abdaoui et al., 2020), it is

interesting at what level it can distinguish two languages. This method could, for example,

be very useful in analysis where one is interested in investigating how the English words

are being used in the Norwegian language.
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Chapter 5

Contextual Property Analysis

Firth (1935) argued that:

“The complete meaning of a word is always contextual, and no study of meaning

apart from a complete context can be taken seriously”

This chapter will examine how this applies to word representations in a contextual

language model. We created a word representation in either the wrong context or without

context. What happens to a word representation if it does not fit into the context of the

surrounding words? How is a word represented if only the word is processed through the

model without surrounding words? We attempted to address these questions by exploring

the contextual embeddings of different words from the Norwegian vocabulary.

5.1 Related Work on Real-Word Spelling Errors

For our experiment of collecting words in the wrong context, we have taken inspiration from

the literature, including real-word spelling errors. A real-word spelling error is a correctly

spelled word but in the wrong context. It typically occurs because the typer either does

not know how to type a word or it misses a stroke on the keyboard. Some words are often
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confused, for example, because they sound similar, such as “than”-“then”, “peace”-“piece”,

“here”-“hear” etc. These are all examples of real-word spelling errors that often appear in

the text.

When attempting to correct a spelling error, real word, or normal non-word spelling

error, the proximity in letters or phonetics often matters when suggesting alternatives. The

set of suggestions for a given spelling is called a confusion set because they are likely to

be confused with the word (Carlson et al., 2001; Mays et al., 1991). In our analysis, we

created a confusion set for each of the words in our vocabulary to make the wrong context

more realistic than substituting with a random word.

5.2 Embeddings of Words in the Wrong Context

We constructed a confusion set to find a realistic wrong context. The confusion set for a

candidate word could only include words from our word embedding vocabulary. In this

section, we explain the steps to how we generated a wrong context and how this affected

the embedding of a word through a similarity experiment.

5.2.1 Confusion Sets

Two commonly used edit distance metrics include Levenshtein (Levenshtein et al., 1966)

and Damerau Levenshtein (Damerau, 1964). In this project, we used the Damerau

Levenshtein distance to calculate character edit distance. The operations for 1 character

edit are:

• Deletion (“cat” -> “ca”, “t”->“”)

• Insertion (“cat” -> “cats”, “”->“s”)

• Substitution (“cat” -> “cet”, “a”->“e”)
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• Transposition (“cat” -> “act”, “ca”->“ac”)

To find relevant confusion candidates for a word in the vocabulary, we compared the

phonetic encoding or the letter encoding, depending on which is the closest to the relevant

word, for each word in the vocabulary of 50,000 words. The maximum edit distances was

set to 3 edits, and there were more than 10 candidates with less than 3 edits, we only

included the 10 closest.

Candidate

Word

Confusion Set

og [“å”, “os”, “g”, “o”, “ol”, “om”, “dog”, “ag”, “òg”, “tog”]

spille [“spillet”, “snille”, “stille”, “pille”, “skille”, “spilte”, “spill”, “spiller”,

“spilles”, “speilet”]

jul [“hjul”, “kul”, “bul”, “jus”, “jol”, “jula”, “hul”, “juli”, “gul”, “pool”]

Table 5.1: 3 words with their confusion sets.

5.2.2 Randomly Inducing Wrong Words in Sentence

We used the Norwegian Treebank1 to obtain contextual word embeddings for words in

the wrong context. The Norwegian Treebank includes a set of tokenized sentences, and

it also contains Part-of-Speech tags as well as tags for named entities (Jørgensen et

al., 2019). For each sentence in the corpus, we first selected a random word from the

tokenized sentence within our vocabulary. Then we switched it out with one of its confusion

candidates, again random selecting among the confusion candidates. Table 5.2 shows 4

example sentences, and which of the words are substituted. When we obtained our word

embedding, we only considered the embedding of the substituted word.

1https://huggingface.co/datasets/NbAiLab/norne
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Sentence Original -> Confusion

Litt forsinket , klokken 20.25 , satte bryllupsgjestene

seg til bords for å nyte gallamiddagen på slettet .

slottet -> slettet

I galla og utsøkte festantrekk kom de til bryllupsmid-

dagen , kongelige , presidenter , familiemedlemmer

, verner og representanter for regjering , storting og

viktige norske institusjoner .

venner -> verner

Jagland skal slede utenrikskomitéen lede -> slede

I manne tilfeller gis klare signaler om politiske

kursendringer i den retning Fr.p. ønsker .

mange -> manne

Table 5.2: Examples of sentences with substitution. The word in bold is the word we induced in the
sentence. In the right column, we state what was the original word in the sentence and what the
new induced word is. We used the confusion set to find the induced word.

5.2.3 Possible Outcomes from Word Embedding Comparing

When we compared a contextual word embedding from a word in the wrong context, there

were three possible outcomes for the closest match. The three possible outcomes were:

the contextual word embedding was most similar to the static embedding of the word

itself, most similar to the static embedding of the original word, or most similar to a static

embedding of another word.

In Figure 5.1 we drew an imaginary scenario of how the embeddings of “desert” and

“dessert” can look when comparing contextual and static embeddings. Every blue point

represents static word embeddings, so in this example, we have a static word embedding

for “dessert,” “candy” and “camel.” The pink dot represents the contextual embeddings of

the word “desert”. However, in this scenario, the word is in the wrong context because it is

confused with “dessert.” Therefore, in this case, “desert” is the word itself, “dessert” is the

original word, and “candy” is some other word. With the proximity in two-dimensional latent
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Figure 5.1: Illustration of imaginary scenario of static and contextual representation of the words
desert and dessert in latent space. The blue points with corresponding figures represent a static
word embedding, while the pink point represents a contextual word embedding from the adjacent
sentence. In this case, the contextual word embedding for “desert” is most similar to the original
word in the sentence “dessert.”

space, this example would predict the outcome as matching the original word “dessert.”

Figure 5.2 describe the process of obtaining a match for a word embedding in the wrong

context.

Figure 5.2: The process of obtaining a match for a word embedding in the wrong context. We
use the example sentence “Jagland skal slede utenrikskomitéen” where “lede” is substituted with
“slede”.
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5.2.4 Results Word Embedding Comparing in Wrong Context

In Figure 5.3 we report the results from the analysis of the contextual embeddings of

words in the wrong context. We have a baseline with evaluated words from real context to

determine how big a portion deviates from its static word embedding. Here, the highest

deviation can be found in the middle layers, with around 15% not matching itself, where

layer 7 deviates the most.

(a) Baseline (b) Wrong context

Figure 5.3: Layer-wise match from contextual embedding to a static standard. The baseline shows
how many words in the testing set match itself versus matching another word. The lower image
with the wrong context shows the same, but this time we only checked the match for words induced
into the wrong context. This difference makes it possible to add a green line (the lowest line), which
counts how many times the word embedding matches the original word. A triangle marks the
lowest-performing layer for both images, and a star marks the best performing layer. In the baseline,
the highest deviation for matching itself is in the 7th layer, while in the wrong context example, it is
the 11th layer.

Words in the wrong context do not match themselves very often in the subsequent

layer Figure 5.3. Especially in the 11th layer, we have a significant portion of words that

match a other word and a small portion that matches the original word. We tested several

words qualitatively and discovered a surprising pattern. The “other” words that were the

closest match did not seem so random. Although the words in the wrong context were

different, many of the same words kept showing up as the closest match. This discovery
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indicated that words in the wrong context did not get an arbitrary representation but rather

shared similar properties. We tested which words were most frequently the closest match

to investigate further. We used the 11th layer as the output embeddings because this was

the layer where the least words matched themselves.

Word Count
sogar 1569

ar 941
ala 426

poden 349
ev 253

nave 197
dett 166

prominent 144
ike 144

versus 143

Table 5.3: The top 10 most frequent matches for words in the wrong context where we have
tested 15,467 words closest match to a vocabulary of 50,000 words. From 15,467 examples, 1,569
words all rank “sogar” as the closest match. Since “sogar” is not a common word in the Norwegian
language, we found this strange.

In Table 5.3 we have listed the top 10 most frequent matches for words in the wrong

context. For example, more than 10% of the tested words match the word “sogar” closest.

28% of the closest word matches are the same 10 words. Since the whole vocabulary

comprises 50,000 word embeddings, matching the same 10 words in 28% of the scenarios

is not random. It rather indicates that the embeddings in the wrong context share some

property. Figure 5.4 illustrates how we believe embeddings in the wrong context cluster

differently than embeddings in from real context. The yellow circles represent word

embeddings from the real context, and the grey circles represent word embeddings from

the wrong context.

To examine these patterns in more detail, we collected 1,000 words present in the

wrong and real context from our evaluation corpus, the Norwegian Treebank. We have
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Figure 5.4: Illustration of how we hypothesized contextual embeddings from real context, marked
with yellow color tending towards the upper left, and embeddings from the wrong context, marked
with grey color tending towards the lower right, cluster in latent space.

one contextual word embedding from a real context and one from the wrong context for

each word. In Figure 5.5 we used t-SNE to reduce the embeddings to 2 dimensions and

plotted the results. The blue color corresponds to embeddings from the wrong context,

while the orange corresponds to real context. Comparing this plot with our hypothesized

figure in Figure 5.4, we observe that the plot does show a clustering between real context

and wrong context.

5.3 Real and Wrong Versus Isolated Context

Static word embeddings can also be created without context. This kind of word embedding

from BERT is often called ISO (isolated) isolated embeddings. ISO embeddings tend to

perform worse than AOC embeddings on benchmarks like word similarity (Bommasani

et al., 2020). How does an ISO word embedding relate to an embedding from real and an

embedding from the wrong context? Can we find any similar properties?
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Figure 5.5: A sample of 1,000 random words from real and wrong contexts respectively reduced
to 2D plot with t-SNE. The 1,000 words have both one real and one wrong context, so the word
collection is the same for both types of contexts. The orange points, tending towards the upper part
of the graph, are embeddings from real context, while the blue points, tending towards the lower
part of the graph, are embeddings from the wrong context. The plot could indicate a separating
feature between real and wrong context, but some of the blue points, so embeddings from the
wrong context, are mixed with the real context cluster.

We first created a set of ISO embeddings from the same collection of words that we

used in Figure 5.5. Thereby we obtained one word embedding from a real context, one

from a wrong context, and one from an isolated context for the same collection of words.

In this analysis, we were interested in exploring if there was any development from the first

to the last layer. Figure 5.6 is a t-SNE reduced plot of the contextual embeddings from

every second layer, including the first input layer and the last output layer. Interestingly, in

the first layers, the embeddings overlap. However, we began to observe clustering of the

embeddings from real, wrong and isolated context from the middle layers. Whether there

is a more substantial relation between wrong and isolated context compared to real and

isolated context is not possible to determine from this plot.
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(a) Layer: 0 (b) Layer: 2 (c) Layer: 4

(d) Layer: 6 (e) Layer: 8 (f) Layer: 10

(g) Layer: 12

Figure 5.6: Scatter-plots from contextual embeddings reduced with t-SNE from real, wrong, and
isolated contexts. The word collection consists of 1,000 words, all represented from the three types
of context. Each word has 3 contextual embeddings in other words. We show the development
from layer 0 to layer 12. The green, isolated embeddings in the input layer cover almost all the other
embeddings. However, as the layers progress real, wrong, and isolated context starts to cluster.
Real context is marked with orange color, wrong context with blue color, and isolated context with
green color. From layer 6 we start to see a clear separation.

From the results in Figure 5.5 and Figure 5.6 we wanted to investigate whether

there was a given direction from real to wrong, wrong to ISO. Finding one direction can

be challenging since each vector has 768 dimensions. Therefore, we created a t-SNE

reduced plot with a small collection of random words and their corresponding embedding
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Figure 5.7: Scatter-plot of contextual embeddings from real, wrong and isolated context with word
examples. The green color is the isolated context, the blue color is the wrong context, and the
orange color is the real context. The suffix “_r”, “_w” and “_i” correspond to real, wrong, and
isolated, respectively. We do not see any common direction from the scatter-plot, e.g., real to wrong
context or wrong to isolated context.

in real, wrong, and ISO embedding Figure 5.7. We observe no specific direction between

real-wrong, real-ISO, and wrong-ISO embedding collections.

To elaborate on the results in Figure 5.7 we looked at the average cosine similarity

between real and ISO, real and wrong, and wrong and ISO embeddings for the same word.

The result is stated in Figure 5.8. We also tested the intra and average cosine similarity

between random word pairs within the real, wrong, and ISO collections. Figure 5.8 states

the resulting intra average cosine similarity for the random word pairs. ISO embeddings

score highest on this test with a peaking similarity in layer 11 with more than 80% average

similarity between the ISO embeddings, showing that words without context become

similar in the model. In this example, we must also note that the ISO embeddings all share

the same position (all the words are placed as the first word in a sentence, and hence
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Figure 5.8: The average cosine similarity is measured from a collection of random word pairs.
The solid lines represent the inter similarities, while the dashed lines represent the intra similarity.
The solid lines compare the same word but from a different context type, while the dashed lines
compare two random words within the same context type. The highest dashed line is intra similarity
for isolated embeddings, which is much denser in representation in the later layers than the other
intra similarities. This distribution is most likely because later layers are more contextual, and
isolated embeddings do not have context.

given the same positional embedding in the input layer if they have the same number of

wordpieces), making them more similar. However, the ISO embedding similarity is likely

not due to the positional embedding because from Figure 5.6 we see that in the input layer

the embeddings from real, wrong and isolated context are overlapping.

In Figure 5.9 we constructed distribution plots for the intra similarities. The green

color (the left violin side) corresponds to real context in both plots, whereas the orange

(the right violin side) distributions are wrong and isolated context, respectively. One thing

to notice is the change between the 11th and 12th layers. In the 11th layer, the wrong

context distribution shows higher cosine similarity than the real context, while in layer 12

the cosine similarity for the wrong context is suddenly lower. This shift does not happen

in an isolated context, where the distribution of cosine similarity is always higher. One
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(a) Real and wrong contextual embeddings.

(b) Real and isolated contextual embeddings.

Figure 5.9: The violin plots show the distribution of cosine similarities between randomly chosen
word pairs within real, wrong, and isolated embeddings collections. The left green distribution
is from the real contextual embedding collection in the upper and lower plot. The right orange
distribution is from the wrong contextual embedding collection in the upper plot. The right orange
distributions are from the isolated contextual embedding collection in the lower plot. Especially in
layer 11, the difference in distribution between real and isolated embeddings is big, both in average
value and the density of the distribution.

interesting result for the ISO embeddings is their spreading, however. Especially in layer

11, the isolated embeddings are more densely represented than embeddings from real

context, which peak at spreading cosine similarity in this layer. We suspect that layer 11 is

66



highly contextual, and the embedding here is not much similar to itself but rather to the

surroundings.

5.4 Discussion of Contextual Property Analysis

Firth argued that the complete meaning of a word is always contextual (Firth, 1935).

According to our analysis, the word representations from BERT also need context to be

able to represent the word’s full characteristics because ISO embeddings are much denser

in representation than embeddings from real context Figure 5.9.

Not all the words in the wrong context deviate from words in a real context. This

deviation is to be expected given how we created the wrong context. Some words in a

confusion set might fit into the same context, so even though we confused two words, it is

still an option that the new infusion in the sentence fits. We suspect that this happened to

some of the words and made the difference between real and wrong context less clear.

Additionally, it has been pointed out that certain words, like stopwords, tend to be more

contextual than e.g., nouns (Chronis & Erk, 2020). This effect may also have affected the

results. We analyzed how the context of a single word affects that word. However, the

word we infuse may affect the rest of the context, as it becomes the context for the rest of

the words in the sentence.

Ambiguous words are likely to affect the results of our analysis. We mentioned in our

chapter 2 Background and Related Work that one shortcoming when using static word

embeddings is conflated meanings in the same word representation. Since we aggregated

contextual embeddings over several contexts, it is expected that our static word embedding

vocabulary also has conflated meanings. We believe that this affects the results, especially

when looking at the baseline in Figure 5.3a. In the middle layers, the deviation from itself is

around 15-20%. This deviation might be due to ambiguous words, where one contextual

word embedding representing one sense may not match the static embedding in our
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vocabulary.

ISO embeddings have a lot higher intra similarity than embeddings from real context

and embeddings from the wrong context Figure 5.9b. One reason is may be that they

share the same positional embedding. However, we also hypothesize that without context,

they converge more to the same embedding because they do not have context to confirm

all the normal properties. For example, without context how should the model encode

an ambiguous word, which sense properties should it use then? We again point to the

fact that AOC word embeddings from BERT have performed much better on similarity

benchmarks than those created in isolated context (Bommasani et al., 2020; C.-L. Liu

et al., 2020).
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Chapter 6

Discussion

In the previous chapters, we have discussed the two experiments separately. Now we wish

to compare and discuss the relevant parts of both experiments.

6.1 Semantic Property Most Apparent in Middle Layers

According to our cross-lingual word retrieval results, semantics appeared most present in

the middle layers around layer 7 and 8 as noticed in Figure 4.4. This is in agreement with

the results in previous work (Chronis & Erk, 2020), which also found the middle layers to

perform best on English benchmarks for semantic similarity. Of course, it does not mean

those semantics are not present in, e.g., later layers, but we believe that the semantics

property is most apparent in the middle layers and that other properties are more apparent

in other layers.

ISO embeddings evaluated on semantic benchmarks have been proven to perform

worse than AOC embeddings (Bommasani et al., 2020; C.-L. Liu et al., 2020). In our

distributional analysis of embeddings from isolated context, embeddings from the wrong

context, and embeddings from real context, embeddings from isolated context are more

densely distributed than embeddings with context Figure 5.9. Such results imply that they
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do not capture all the characteristics they need.

6.2 Ambiguous Words

Ambiguous words are words with multiple senses. The relevant sense is dependent on

the word’s context. To best be able to represent a word, we believe one representation

for each word is the best option. In our experiments, on the other hand, we have used

a static vocabulary of word embeddings with only one representation per word. A static

word embedding vocabulary keeps the problem of conflated meanings which we discussed

in the Background chapter 2 Background and Related Work. This section discusses the

influence ambiguous words may have had in our experiments.

The performance in the @1 match in the static word retrieval task achieves much

lower accuracy with the highest score of around 50% Figure 4.4 compared to the contextual

word retrieval task with a @1 accuracy at 80% Figure 4.7. Although these experiments

differ in many ways (e.g., the number of target words to search in approx. 23,000 against

50,000, and that one experiment only has one embedding for a word while the other allows

multiple) we suspect that the somewhat “poor” performance in the static word retrieval task

may partially be due to ambiguous words. We believe this because the static embeddings

are created from different corpora, where the senses of a word can be different depending

on the context. In addition, since words can be highly ambiguous with many different

nuanced senses, a benchmark such as MUSE with only direct non-contextual translations

may not be able to capture the right relationships.

We also argue that our qualitative results from the cross-lingual sense disambiguation

show an example of the effect of a conflated meaning representation. In the English and

Norwegian sentences, including “love” Table 4.1, non of the two examples lists “love” as

the highest match in the Norwegian vocabulary. In the example with “do” on the other hand,

the word is matched highest to itself in the Norwegian vocabulary. Therefore, we suspect
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that the static word embedding of “love” is a representation of the conflated meaning of

both “to love” and “to promise,” each representing an English and Norwegian sense of

the word. When we looked for the closest word embeddings of a contextual example, we

got the suggestion “garantere” which is semantically similar to the contextual embedding

of “love”. However, this word does not have its meaning conflated. Additional arguments

suggest this effect is that the second and third match for “love” is two inflections of the

word.

The baseline in Figure 5.3a show how words from real context deviate most from

themselves in the middle layers. We believe ambiguous words are contributing to this devi-

ation. For example, the Norwegian example “love” would have resulted in an “other word”

match in the cross-sense disambiguation analysis. This match would have contributed to

the deviation in the baseline.

A small portion of the closest match of words from the wrong context matches the

original word that stood in the sentence Figure 5.3b. We hypothesize that if a spelling

error is prevalent, it would also appear often in the actual data that a model is trained.

Possibly the model might make a sense representation of spelling mistakes. One example

is the word “vert” (host), which is often confused with “vært” (been) because they sound

just the same. “Vært” is much more frequent, so it happens often that this word would be

misspelled to “vert” but not so other the other way around If our hypothesis is true, then the

word “vert” might have a sense representation that is closer to the word “vært” (been) than

the real word “vert” (host). We emphasize that this is only a hypothesis, but it could be part

of the explanation as to why the model can match the original word in approximately 15%

of the time Figure 5.3b (layer 11).
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6.3 Subsequent Layers are Highly Contextual

We have investigated the cosine similarity between many random word pairs from the

same collection and different collections. All the distributional plots of cosine similarities

Figure 4.10 Figure 5.9 show that the word representations are not uniformly distributed.

These distributions agree with the findings in previous work (Ethayarajh, 2019). If one

takes a random word embedding and compares it to many other random word embeddings

from any collection, most of the embeddings would be similar in many dimensions. From

the distributions, we also saw that most of them have a normal distribution because most

random word pairs are similar. However, a small portion of the word embeddings was more

similar, and a small portion was less similar.

The standard deviation increased in the 10th and 11th layer for the contextual em-

beddings in the real and the wrong context. We could see this because the distributional

graphs become more “stretched” in these layers Figure 5.9. However, when we compared

with the distributions from the static embeddings, we did not experience the same increase

in standard deviation Figure 4.10. We add that the isolated embedding has a minimal

standard deviation in layer 11 and is very similar in this layer. We argue that these layers

show much more contextual information. When we took the average over several contexts

in our AOC embeddings, we automatically removed contextual information and made the

distribution denser for these layers.

6.4 An Embedding of Different Characteristics

We have studied word representations from the contextual language model BERT from

different perspectives throughout this thesis. In analyzing the word representations from

Norwegian and English, we found that semantics is part of the representation and proved

this through a word retrieval test. In addition, we found a non-parametric method to detect
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the language of a word representation, which tells us that language characteristics are also

part of the vector representation. Previous work also has sound characteristics such as

syntax and how words within the text relate (Tenney, Das, et al., 2019). Figure 6.1 illustrate

how a contextual word embedding has much information about many characteristics in an

embedding. We have also listed “other?” as there might be more exciting characteristics to

discover within the embedded information.

Figure 6.1: A contextual language embedding has information corresponding to several character-
istics, some like language and semantics we proved in this thesis. Previous work has also proved
other characteristics that are within the embeddings like syntax and word relating (Tenney, Das,
et al., 2019).

Different NLP tasks can benefit from different features, but it might not be necessary

to have all the features. We argue that mapping the features within a contextual embedding

can help the community find where the more relevant information is. For example, if the

task is to translate words, it might be more beneficial to use the middle layers as feature
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extractors than the last layers. By cutting away a few layers, one can also reduce the

computational processing time. The more we know about the model, the better we can

benefit from it.
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Chapter 7

Conclusion

Throughout this thesis, we have studied the properties of word representations from

BERT. The first experiment confirmed that BERT could align semantics across English and

Norwegian because we had a @1 word retrieval accuracy of more than 50%. In addition,

we found that BERT can distinguish between the two languages with almost 100% accuracy

through non-parametric language detection. The second experiment illustrated how the

word representations clustered into groups depending on whether the context was real,

wrong or isolated.

We contribute to the research community by extending the understanding of what

information is encoded in the word representations. By confirming that the BERT archi-

tecture aligns semantics between English and Norwegian from a pre-trained stage, we

explain why it is possible to transfer knowledge from English to Norwegian without parallel

data. We also show that language property is encoded into the word representations and

that this information can be used to perform language detection on each word in a text. By

discovering that a word in a wrong context shares a similar property with other words in a

wrong context, we explain why a BERT model can find a word error in a sentence, even

though the word error was not part of a labeled training dataset. We also show that context

is necessary for a word representation to gain all encoded properties of a word because
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embeddings from isolated contexts are very similar in the last layers.

We hope that our analysis in the future motivates more use of multilingual models

and new ways of using the encoded information, such as real-word error detection.
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Appendix A

Examples of Cross-Lingual Word Sense

Disambiguation

Some sentences are made up, some taken from news corpus Bokmål or Brown corpus.

Sentence Language @3 Norwegian @3 English
The two offices could be com-
bined to achieve better effi-
ciency and reduce the cost of
administration.

En bli, være, slås be, been, was

Mr. Reama , far from really be-
ing retired , is engaged in indus-
trial relations counseling.

En langt, langtfra,
milevis

far, farther, hardly

It was hard to do the job without
any supervision.

En å, vanskelig, slit-
somt

to, can, could

Hans la igjen Batman kostyme
hjemme for å gå og be om
knask eller knep i noe litt med
kosete.

No be, ba, ber ask, requests, re-
quest

Det å bli far til en jente, endret
synet mitt på en del ting.

No far, mor, forelder father, parent, par-
ents

Hun fikk to fingre delvis amput-
ert.

No to, tre, fire three, four, six
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Appendix B

Language Detection Mixed Sentence

Examples

Detected language for each word. Top row is Notram detection and bottom row is mBERT

detection. Sentences are drawn from the Norwegian News Corpus1.

1https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
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Appendix C

Examples Contextual Words Pairs

The contextual word pairs are taken from parallel sentences between English and Norwe-

gian from Riksrevisjonen1. They are aligned with the MUSE bilingual list2.

1https://www.elrc-share.eu/repository/browse/bilingual-english-norwegian-
parallel-corpus-from-the-office-of-the-auditor-general-riksrevisjonen-website/
a5d2470201e311e9b7d400155d0267060fffdc9258a741659ce9e52ef15a7c26/:2/22/2022

2https://github.com/facebookresearch/MUSE
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English Norwegian Word pairs
A and B switch quotas in
order to specialise their re-
spective operations , for ex-
ample for pelagic fish like
mackerel or herring or de-
mersal fish like cod , had-
dock and saithe .

A og B bytter kvoter
innbyrdes for å spesiali-
sere driften på for ek-
sempel pelagisk fisk som
makrell og sild , eller bunn-
fisk som torsk , hyse og sei
.

[ quotas , kvoter ] [ exam-
ple , eksempel ] [ mackerel
, makrell ] [ herring , sild ]
[ cod , torsk ] [ haddock ,
hyse ]

A broad information basis
would enable the ministry
to discuss the organisation
and usefulness of relevant
projects with the responsi-
ble parties .

Et bredt informasjons-
grunnlag vil gjøre de-
partementet rustet til å
dis- kutere innretning og
hensiktsmessigheten av de
aktuelle prosjektene med
de ansvarlige aktørene .

[ broad , bredt ] [ basis ,
grunnlag ] [ ministry , de-
partementet ] [ to , til ] [
projects , prosjektene ] [
with , med ]

A central approval system
has been introduced for
the parties responsible for
pre-engineering for the re-
moval of hazardous com-
ponents and for the par-
ties responsible for execut-
ing construction/demolition
work for demolition and re-
moval of hazardous compo-
nents .

Det er innført sentral
godkjenningsordning for
prosjekterende for området
miljøsanering og for ut-
førende for området riving
og miljøsanering .

[ central , sentral ] [ intro-
duced , innført ] [ demoli-
tion , riving ]

A buyer is free to sell the
credits directly to another
buyer or to trade them on
an exchange .

En kjøper kan fritt velge å
videreselge kredittene di-
rekte til en annen kjøper
eller selge dem på børs .

[ free , fritt ] [ sell , selge ] [
directly , direkte ] [ or , eller
] [ to , til ] [ them , dem ]
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