
Investigating the inner workings
of container image vulnerability

scanners

Mehdi Zarei

Thesis submitted for the degree of
Master in Applied Computer and Information

Technology - ACIT
(Cloud-based Services and Operations)

30 credits

Department of Computer Science
Faculty of Technology, Art and Design

Oslo Metropolitan University — OsloMet

Spring 2022

Investigating the inner workings
of container image vulnerability

scanners

Mehdi Zarei

© 2022 Mehdi Zarei

Investigating the inner workings of container image vulnerability scanners

http://www.oslomet.no/

Printed: Oslo Metropolitan University — OsloMet

http://www.oslomet.no/

Abstract

The use of container technology as a main part of software development
increasing exponentially. Containers do not only provide a huge benefit
for Integration/Continuous Delivery (CI/CD) pipelines, but also simplify
shipping problems. However, the security of container images is a primary
concern. Exploitation of a single vulnerability in an image could have
huge consequences and result in loss of CIA (Confidentiality, Integrity,
Availability) in an application. While there are a variety of image scanners
that create vulnerability reports informing the security teams, there is a lack
of knowledge about the inner workings of container images and how they
interact with different types of images.

First, this thesis describes the history of containers, tools, and techno-
logy related to containers. Second, we discuss some of the most popu-
lar container image scanners and have selected two which are both open-
source and highly ranked. Next, the thesis explains how scanners detect
packages and vulnerabilities. Finally, a few experiments are conducted
with three different types of containers; standard container images, dis-
troless and images that have been slimmed down. These kinds of images
are scanned using the image scanners and the results are compared. Our
findings reveal that:

1. Both selected images scanners use roughly the same algorithm to
detect vulnerabilities

2. Trivy supports more OS and application packages

3. The majority of the detected vulnerabilities are unfixed vulnerabilit-
ies

4. None of the tested scanners were able to detect vulnerabilities when
using slimmed down images.

i

ii

Acknowledgments

I would like to express my appreciation for following people who help and
support me throughout this master thesis and made the entire project more
interesting, educational and fun.

Hårek Haugerud my supervisor for motivation and support me during
doing my master thesis and has made this thesis possible.

Ismail Hasan as a co-supervisor for encouragement, help and guild
lines to overcome the challenges.

Emilien Socchi who submitted this proposal and provide amazing
support during this project. Thank you for all the help and productive
feedback.

Kyrre Begnum who holds perfect classes and courses during the master
program which have changed my view of cloud computing.

I would like to express my gratitude to Oslo Metropolitan University
(OsloMet) for offering me an opportunity in this wonderful master’s
program and thanks all of our professors and lecturer for their guidance
and support me to complete the master’s degree.

Finally, special thanks to my dearest family and Friends for all the en-
couragement and support during the master’s program.

Sincerely, Mehdi

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Thesis outline . 2

2 Background and related work 5
2.1 Virtual machines . 5

2.1.1 Virtual machines and hypervisors 5
2.1.2 Virtual machines vs containers 5
2.1.3 Namespaces and cgroups 6

2.2 Container technology . 8
2.2.1 Container images and registries 8
2.2.2 Docker containers . 8
2.2.3 OCI format for container images 9

2.3 Software vulnerabilities . 10
2.3.1 Common Vulnerabilities and Exposures (CVE) 10
2.3.2 Common Vulnerability Scoring System(CVSS) 11
2.3.3 National Vulnerability Database (NVD) 12
2.3.4 Static and dynamic analysis 12

2.4 Container image security and vulnerability scanning 12
2.4.1 Clair . 13
2.4.2 Anchore . 13
2.4.3 Dagpa . 14
2.4.4 Trivy . 14
2.4.5 Snyk . 15

2.5 Related Work . 15

3 Methodology 17
3.1 Objectives . 17

3.1.1 Data set and prototype 18
3.2 Design phase . 19

3.2.1 Tools and technologies 19
3.2.2 Selected images . 21

3.3 Expected result . 21

v

4 Experiments and results 23
4.1 Analyzing Clair scanner . 23

4.1.1 Comprehensive analysis 23
4.1.2 Identifying The Operating System(OS) 31
4.1.3 Identifying the packages 32
4.1.4 Identifying vulnerabilities in discovered packages . . 34

4.2 Analyzing Aqua Trivy scanner 36
4.2.1 Comprehensive analysis 36
4.2.2 Identifying the Operating System(OS) 37
4.2.3 Identifying packages 40
4.2.4 Identifying vulnerabilities in discovered application

packages . 41
4.2.5 Identifying vulnerabilities in discovered OS packages 42

4.3 Experiments . 43
4.3.1 Scanning standard images 44
4.3.2 Scanning distroless images 44
4.3.3 Scanning slimmed images 46

5 Discussion 49
5.1 Comparison of Trivy and Clair 49

5.1.1 Accuracy . 49
5.1.2 Unfixed vulnerabilities 50
5.1.3 Number of support packages 51
5.1.4 Third party databases 51
5.1.5 Future threats . 51

5.2 Future work . 52

6 Conclusion 53

Bibliography 55

7 Appendix 59
7.1 Clair source code . 59

7.1.1 Identiy the OS . 59
7.1.2 Identify the package 62
7.1.3 Identifying the OS-release 66
7.1.4 Identify the Vulnerabilities 70

7.2 Trivy source code . 75
7.2.1 Identify the OS . 75
7.2.2 Identify the packages 76
7.2.3 Identify vulnerabilities in the application packages . 77
7.2.4 Identify vulnerabilities in the OS packages 78

vi

List of Figures

2.1 VM vs container architecture 6
2.2 Namespaces in Linux kernel 5.13.0 7
2.3 Cgroups in Linux kernel 5.13.0 7
2.4 Architecture of container registry, repository and artifacts . . 9
2.5 JSON format for OCI lifecycle 10

3.1 Thesis methodology . 18
3.2 Overview on design phase . 19
3.3 The design workflow . 20

4.1 Manifest of haproxy . 26
4.2 The Clair scanner container architecture 29
4.3 Trivy architecture . 37
4.4 Number of vulnerabilities in Alpine images 43
4.5 Distroless image size(MB) . 45
4.6 Distroless image vulnerabilities 46
4.7 Distroless image scan by Clair 46
4.8 Slim nginx conatiner with Docker-slim 47

5.1 Number of detected vulnerabilities by Clair and Trivy . . . 50
5.2 Number of vulnerabilities with ignore-unfixed option . . . 50

vii

viii

List of Tables

2.1 Comparison between VMs and containers 6
2.2 Common vulnerability scoring system[42] 11
2.3 Comparison container scanners based on Github insights

visited 31. Mars 2021 (NA= Not Available) 13

4.1 Clair resources updater . 30
4.2 Trivy resources OS pdater . 40
4.3 Trivy resources application updater 42
4.4 Number of vulnerabilities by image scanner 44
4.5 Size and Vulnerabilities in distroless images 45

ix

x

Abbreviations

The following acronyms are used in this report:

• IT – Information Technology
• AWS – Amazon Web Services
• CI – Continuous Integration
• CD – Continuous Delivery
• OS – Operating System
• CIA – Confidentiality, Integrity, Availability
• OCI – Open Container Initiative
• VMM – Virtual Machine Monitor
• LXC – Linux Containers
• QOS – Quality OF Service
• CVSS– Common Vulnerability Scoring System
• CAS – Content-Addressable Storage
• DL – Deep Learning
• CVE – Common Vulnerabilities and Exposures
• CNCF – Cloud Native Computing Foundation
• CLI – Command Line Interface
• JSON – JavaScript Object Nation
• NIST – National Institute of Standard and Technology
• SHA – Secure Hash Algorithm
• RHEL – Red Hat Enterprise Linux
• API – Application Programming Interface
• IaaS – Infrastructure as a Service
• NVD – National Vulnerability Database
• VM – Virtual Machine
• IaC – Infrastructure as Code
• SCAP – Security Content Automation Protocol
• CAS – Content-addressable storage

xi

xii

Chapter 1

Introduction

Last decade the use of virtualization technology increased rapidly which
allowed for having multiple isolated virtual environments in a single
system. OS-level Virtualization technologies are divided into two different
approaches. The former was Hypervisor-based virtualization and the
recent one is container-based virtualization which is known as lightweight
virtualization or containers [9].

Containers were known in the Linux system for a long time and the
first initial release of a Linux container was around 2008 LXC (Linux
Containers project)[28]. Containers provide an isolated environment that
contains all the packages, libraries, files and dependencies that need to
run their application, so can easily set up in a new environment and
run without any dependencies. They not only accelerate workflow and
improved the application deployment process, but also leverage scalability
and flexibility. It allows the creation of multiple servers and replication in
a short time.

Container technologies have become a new trend and most companies
use containers to produce their application. Based on Gartner’s prediction,
more than 70% of global companies have two or more applications
that use container technologies by 2023 [52]. Also the same year, the
container market is predicted to increase from 1.2 billion in 2018 to 4.9
billion(USD)[6].

1.1 Motivation

Most organizations decide to use the core benefit of containers such as
lightweight, portable and considered as a replacement for VMs. They
take into account as a standard way for deploying microservices[44]. A
single container can run small microservices or large applications. Giant
companies like Amazon, Spotify, Netflix and Twitter used micro-services
to deliver their product[44].

1

1.2 Problem statement

The introduction of containers improved software agility, flexibility and
a new way to organize microservices. While they are easier and faster
to deploy, revolutionized Continuous Integration/Continuous Delivery
(CI/CD) pipelines. However they fit into agile and DevOps practices, but
security is the main concern for the system development life cycle.

DevSecOps mindset is delivering better and faster code, without
ignoring the security. While agile development aims to reduce the number
of cycles, DevSecOps try to integrate security in the software development
cycle To produce secure software. Scanner tools could be a part of the
CI/CD pipeline and stop the image push on vulnerabilities. It’s difficult
to ensure that all packages and images are up to date and they lack
malware and vulnerabilities. In addition, a vulnerability in one single
image as a core component of a container could cause a problem in the CIA
triad(Confidentiality, Integrity, Availability) and have a huge consequence
for application.

As far as images are stored, manage and distribute publicly and
programmer use them to build infrastructure, criminals can easily place
malware into images and upload the polluted image to the repository.
Fortinet and Kromtech, two security software organizations, found 17
affected docker images In June 2018. Affected images contain a crypto-
mining program and these images were downloaded 5 million times[49].

What’s more, based on several surveys about image security, around
46% of developers accept that they do not have any idea whether used
images have any vulnerabilities or not [31]. Therefore, more research about
the improvement of security in all components of application especially
images as a main part of microservices is desirable.

This study aims to improve the security of applications that use
microservices. In this thesis, we focus on an efficient way to improve
security on container images which is a core component of microservices.
We will address the following research questions:

1. How do container image scanners detect vulnerabilities?

2. To what extent are current open source container image scanners
able to detect vulnerabilities?

1.3 Thesis outline

The remain part of the essay is structured as the following layout:

Chapter 2 (Background and related Work): The second chapter propose
an important concept of container security and describe more about some
of the famous image scanner which is more popular and has a big com-
munity. In other words, prepared some helpful information related to con-
tainer, images scanner and vulnerabilities which give a broad view to the

2

reader.

Chapter 3 (Approach): This part represents the methodology that we
used to solve the problem and how the researcher approach the task.

Chapter 4 (Results): Will describe the result of the research, install and
compare the vulnerability scanner and explain some metrics found in this
thesis.

Chapter 5 (Discussion): Discuss some challenges that face and how
much this approach was practical. This chapter explains some methods
that help to improve the security of image and proposes future work.

Chapter 6 (Conclusion): Finally in this chapter we answer the question
statements and briefly summarise the whole essay.

3

4

Chapter 2

Background and related work

This chapter will elaborate on the tools and technologies used to answer
the problem statement. Moreover, the chapter intends to describe some
general concepts related to security and containers.

2.1 Virtual machines

A virtual machine is a technology that helps businesses to run multiple
separate OS on one single computer. It’s a technique to enable their use of
resources more effectively, while every virtual machine has a separate OS,
CPU, RAM, Network[43].

2.1.1 Virtual machines and hypervisors

Virtual machines provide a high-level secure system and every VMs has its
own OS, and dedicated hardware. VMs create and run by VMM (Virtual
Machine Monitor) which is a software layer. VMM or hypervisor helps
to manage VMs and are placed between a physical machine and a virtual
machine. Hypervisors have two different types: type 1 whereas the bare
metal would install OS directly onto a physical server. The bare metal
hypervisor was introduced in the 1960s by IBM[36]. VMware ESXi and
Hyper-V are some instances of this type. Another one is type 2 or hosted.
This type needs to run other software on the host and then run a virtual
machine on them. VMware Workstation or Oracle VM VirtualBox are some
clear examples of hosted types.

2.1.2 Virtual machines vs containers

Containers, like VMs, share resources from a host and can deploy many
applications in an isolated environment and can solve resource problems.
VMs isolate OS and resources from each other. Table 2.1 represent the
comparison between containers and VMs. VMs have some drawbacks such
as being large in size and time consuming in both creation and boot. On
other hand, containers boot and start within a second while using the same
kernel of OS[44]. They provide isolation at the process level by some Linux

5

Table 2.1: Comparison between VMs and containers
Parameter Virtual Machine Container

Contenet
Container networking, storage,
memory, library and config file

Files, apps and libraries

Size
Heavyweight and need a multi
GB fore files

They are lightweight and MB in size

Boot time Take minutes to load Take few second to start

Security
VM have own OS and
offer better protection

All share the host OS

Cost Benefit Use resources maximize Not all resources use, Lead to waste
Isolation Fully isolated Provide process level isolation
Providers VMware , Virtual Box, Hyper - V Docker, LXC, LXD

Kernel features like cgroups and namespaces. VMs provide full isolation
and they are more secure compared to containers. The main differences
between containers and VMs could be seen in table 2.1 The main drawback
of containers is security. Since containers use the same OS as a host, they
consequently share a kernel with a host which provides less security. In
contrast, VMs have their own virtual kernel. Fig. 2.1 shows the architecture
of VMs and containers.

Figure 2.1: VM vs container architecture

2.1.3 Namespaces and cgroups

In a Linux kernel, there are some features that isolate processes from each
other and assign resources to a process. As has previously been described,
all containers use the same kernel and share all resources like CPU, RAM,
network and disk[34]. It is clear that when malware exploits on one of
the containers or hosts, as far as they use the same kernel could result in

6

problems for all other containers and platforms. By namespaces, every
process sees the set of its own resources. Linux provides namespaces
including ipc, mnt, net, pid, time, user and uts that each have their own
properties. For instance, the user namespace has own user id and group id.
Fig. 2.2 represent the namespaces in Linux kernel 5.13.0.

Figure 2.2: Namespaces in Linux kernel 5.13.0

Namespaces provide each process with its own view of the system.
Cgroups(abbreviated as Control groups) are another feature that limits and
isolated resources like CPU, RAM, Disk I/O, and network for collection of
the process. There is more than one process running in every container.
So, cgroups limit how much each process could use and it’s one of the
key components in container security. Fig. 2.3 shows the cgroups in Linux
kernel 5.13.0.

Figure 2.3: Cgroups in Linux kernel 5.13.0

7

2.2 Container technology

Container technology was introduced in 2008, while Docker was intro-
duced 5 years later in 2013 [46] using LXC as a environment for execution.
One year later, in 2014, version 0.9 of Docker was released using its own
component named libcontainer, written in the Go language[45] [50].

2.2.1 Container images and registries

Images are a core component of containers and include one or several
different layers. Images are immutable and have a static file. The static file
includes every parameter that needed to run the container. It is possible
to reuse one image to run multiple containers and thereby improve the
performance of containers and reduce the size. Container images need a
shared place to store and distribute which is named a container registry.
The container registry helps developers to upload (push) and download
(pull) into another system or cluster. A container registry divided into 2
different types: public and private. Public registry is used by individual
users and they can directly control the container content. Docker hub is
the most popular container registry among the public type. Another type
of registry is private registry could be on-premises and improve the level
of security. Most cloud providers like Google, AWS and Azure, provide a
private registry[15].

Every container registry contain one or more collections of repositories.
A collection of container images in addition to artifact create a repository. If
several repositories have the same base image, only one of the images store
in the registry. Tag is one of the artifacts that specify the version of image
and each repository is a collection of artifact as can be seen in Fig. 2.4

2.2.2 Docker containers

There existed several container technologies before the introduction of
docker. However, Docker just provided better tools and standards and then
become dominant in the container market. Docker is open source project
Platform as a service that helps developer to build, run, manage, update,
stop and even remove containers. A Docker container is an instance that
could be created by any user and uploaded on registry like a Docker hub.
There are two different methods to able to create a Docker image. Either
with OS images like Linux, Fedora which is called a base image or by using
docker file which has some commands in a file and can create image[41].
Dockerfile is a simple text file that includes some instructions and a list
of commands that the Docker engine will run to build an image. Images
define by the Docker file and every line in the Docker file could represent a
separate layer[16].

Each Docker contains 3 different elements. First is the Docker client
which interacts with the user and container. It helps users to run some
commands and interact with Docker Daemon. The second is Docker
Daemon which gets a command from the Docker client and then mange the

8

Figure 2.4: Architecture of container registry, repository and artifacts

container and Docker hub. The last element is the Docker register which
shares Docker images and it is a place to store images[30].

2.2.3 OCI format for container images

The Open Container Initiative (OCI) is a structure that was launched
by containers leader in the industry like Docker and CoreOS in June
2015[2]. This project is under the Linux Foundation which provides a
standard format for containers and is part of the Cloud Native Computing
Foundation (CNCF). OCI includes two different specifications. The first
one which is runtime-spec defines the lifecycle, configuration and running
environment of each image container. In this specification, there are setting
like Linux namespaces, cgroups and mount location. It shows how to
execute the "filesystem bundle" after downloading and unpacking the
image on the disk. This means that every image should contain sufficient
information like a command, environment variables, etc that container
engines expect to run this image.

OCI runtime-spec and lifecycle

Lifecycle represent the timeline of container and have the following
elements[38];

ociVersion() that shows the version of Open Container Initiative
Runtime Specification.

id()represent the container id and should be unique among all contain-
ers.

9

status() describe state of container and could be one of creating,created,
running, stopped values.

pid() its a container process id and its a required item in Linux, but in
other platform could be optional.

bundle() it shows the path of container’s directory on the host and user
can find the configuration file and file-system of container in this path.

annotations() is optional value and show the property or comment that
associated with container.

Following Fig. 2.5is an example of JSON format for OCI images.

Figure 2.5: JSON format for OCI lifecycle

The second specification is image-spec that name shows define how
we can create an OCI image and what specification need to have. This
part should include filesystem (layer), manifest, serialization and standard
configuration and dependencies. OCI image is a combination of image
configuration, image manifest and files system serialization.[39].

2.3 Software vulnerabilities

Software vulnerabilities can find application weaknesses and a pollute
system environment. There is some method that which this software
could access the system. They can install themselves, install by packet
manager(apt, yum,..) or application package. They can exploit by attackers
or hackers to get access to files or systems.

2.3.1 Common Vulnerabilities and Exposures (CVE)

There are two different types of vulnerabilities which are known vulnerab-
ilities and unknown vulnerabilities. The US launched a system in 1999 to
provide reference-method for known information-security vulnerabilities
and exposures[40]. It is a reference method and standard way for known
vulnerability and exposure.

The syntax for vulnerabilities is CVE prefix + Year + Arbitrary digits. A
year is a year of disclosure of software vulnerability. Some of the companies
that report the vulnerability such as Oracle or red Hat have their own ID
to recognize the malware. They try to give each vulnerability one CVE,
but some of them need to assign a large number of CVEs[14]. It is a

10

Table 2.2: Common vulnerability scoring system[42]
Rating CVSS Score
None 0.0
Low 0.1 - 3.9
Medium 4.0 - 6.9
High 7.0 - 8.9
Critical 9.0 - 10.0

common name dictionary that helps to share data across network security
and identify them. The second one is unknown vulnerabilities which are
undisclosed and not wildly known to the public, but if you find them and
report them to the public, after they become a known vulnerability.

2.3.2 Common Vulnerability Scoring System(CVSS)

Known vulnerabilities are the target of the scanner and they have ID and
severity. Some of the security vendors have their own system to score
the severity of the vulnerability. CVSS (Common Vulnerability Scoring
System) is the scoring system that has some open standards and assigns
a number to vulnerability and evaluates the severity. This standard is used
by CERT and NVD to show the impact of the vulnerability.

CVSS are different types and evaluate the severity of vulnerabilities,
then give them scores according to some metrics[12]. Common Vulnerab-
ility Scoring System changes during the year and the current version is 3.1
which was released in June 2019[42]. There is a different kind of metric that
shows how much impact the assets of the organization if the vulnerability
is exploited. The Score range is different based on the level of impact on the
system. This range defines from 0 to 10 and the highest scope is a higher
degree of vulnerability severity.

As could be seen in table 2.2 there are different levels of severity and it
is very crucial to understand the severity level to do risk analysis and take
proper decision[47].

The Level in the scoring system includes: Critical: This vulnerability
could result in root-level permission in the system and infrastructure. At
this level, hackers do not need any information about a target and do not
need any credentials.

High: Exploitation of this level could result in permission to the system
and could cause downtime or loss of data. However, is more difficult to
exploit in comparison to the critical level.

Medium: In this level, an attacker needs some information about
victims or needs to get access local network. Some hackers do social
engineering for manipulating victim users. Exploitation needs user
permission and provides limited access.

low: In this level, exploitation has little impact on the organization and
needs physical access to the asset or be on the local place[25].

None: There is no potential risk to target the system.

11

2.3.3 National Vulnerability Database (NVD)

National Vulnerability Database is a repository of standard vulnerability
which uses Security Content Automation Protocol (SCAP) to enable the
management of vulnerability and security. NVD is a database for reported
known vulnerabilities using Common Vulnerability Scoring System (CVSS)
to score CVEs. They provide information related to vulnerabilities and
are used by the organization to find out the priority of vulnerabilities and
what should be done to keep their infrastructure safe. CVE is a list of
vulnerabilities and NVD is more database that builds based on the CVE
list and each update on the CVE list appears on NVD[37].

2.3.4 Static and dynamic analysis

Cybercriminals are innovative and try to create new malware(short-term
malicious software). They looking for a way to take control of the
target program and access confidential information. Since attackers create
software vulnerabilities to take control of the system, There are two
different techniques to find vulnerabilities and protect the software. These
approaches are static and dynamic detection. However, some people tried
to integrate dynamic detection with static analysis to improve the efficiency
[54] and some others developed automated detection for vulnerability in
software by using Deep Learning(DL) [10].

Static detection is more simple and fast, so it is an effective way to be a
part of workflow during the development process. The static method uses
some samples and signatures and tries to analyze vulnerabilities based on
their attributes in the repository. In this technique, try to find out malware
behavior without running code [4]. static detection has some challenges
like updating the repository regularly. What’s more, some of the malware
uses obfuscation techniques like changing the code and making it difficult
to detect them by static detection.

Another detection is dynamic which runs the malware in a controlled
environment and then evaluates the malware behavior. In the dynamic
analysis method, first, run the virus, then monitor the process and virus
behavior. Sometimes need a debugger to analyze malware functions. This
dynamic approach is more accurate however both methods have their own
advantages and drawbacks[3].

2.4 Container image security and vulnerability scan-
ning

Image is the main component of the container and some of them can be
infected by viruses or Trojans. This problem happens more frequently
if you run outdated images[53]. Image scanners evaluate the security of
images and containers. There are many scanning tools for scan images and
finding vulnerabilities. These scanners usually collect package information
of applications and help us to protect software and improve security. They

12

Name Stars Contributers Pulls Commits Downloads Last Commit
Trivy 11056 176 25 750 3547330 31.03.2022
Clair 8568 102 8 1508 9397 22.03.2022
Snyk 3831 172 57 4761 2 915 490 31.03.2022
Anchore 3166 31 4 596 1 271 220 30.03.2022
Dagpa 945 7 5 267 *NA 27.07.2021

Table 2.3: Comparison container scanners based on Github insights visited
31. Mars 2021 (NA= Not Available)

do the binary scan in components by finding each layer of image [17].
There is a variety of image scanner tools like Trivy, Snyk, Dagpa, Clair and
Anchore.

The thesis has aimed to evaluate the most popular scanners on the
market. To compare scanners together, access their source code and
compare some of GitHub’s factors. In GitHub stars, meaning as an
appreciation and most stars represent the quality of a project. This table
2.3 compares these scanner based on GitHub feature like the number of
download, community, pull request and stars. The download number for
Clair is low because it’s just the number of Clair v4.4 new version of Clair.
The number of downloads for the Dagpa scanner is not available because as
you can be seen in table2.3 shows that not update for more than 8 months.
The following list presents some of the popular image security scanners;

2.4.1 Clair

An open-source tool available on macOS, Windows and Linux. Clair
scanner is written by Go programming language using static analysis for
finding vulnerabilities in application and container images [1]. This tool
which was created by CoreOS used for finding the security issue in images
by using CVEs. First Clair detects all the layers in the container for
vulnerabilities. There are some resources like (Debian Security Bug Tracker,
Ubuntu CVE Tracker and Red Hat Security Data)[11] which Clair uses these
databases as a reference list for searching vulnerabilities and exposures.

Clair v4.0 engine is a ClairCore package that has some library and
fetches layer and detects them. Clair has an API that communicates with
Clair microservice[11].

2.4.2 Anchore

Image open-source scanner for security that can run alone or in orchestra-
tion platforms such as K8s, Rancher and Amazon ECS. It can use as a plu-
gin in Jenkins to scan CI/CD pipeline. In addition, It is possible to access
throw command line or API and customize security policy to evaluate im-
ages[5]. Anchore uses static analysis to evaluate the container images and
some policy-based compliance systems. Here is the process of analyzing
image in Anchore:

13

In the first step, fetch the image and extract it without execution.
second, will analyze the image with an Anchore analyzer and separate
metadata and classify them. third, will save the result in a database to
use in the future and for audit. Then try to check the result and find
vulnerabilities and update the data and image analysis result. Finally,
notify the user about vulnerability matches[29].

2.4.3 Dagpa

An open-source image scanner that is more than 99% written in Python.
It performs static analysis to find vulnerabilities and malware. To perform
scanning, first imported all of the known vulnerabilities into MongoDB and
then searched in this database to find vulnerabilities and exploits during
analysis. As a result of storing reports and analyses in MongoDB, you can
easily see and maintain the history of images and containers.

Dagpa for discovering vulnerabilities using ClamAV- is an antivirus
engine- for detecting the malicious threat [13]. Dagpa support different
type of Linux: Redhat/ CentOS/ Fedora, Debian/ Ubuntu, Alpine. Dagpa
is also able to analyze dependencies based on OWASP dependency check
(is software that checks and detects malware in application dependencies)
and Retire.js(use a different library in JavaScript to find vulnerabilities)
Java, Python, PHP, Nodejs [19].

It also uses Falco (cloud-native run-time security for detecting suspect
behavior in real-time)for monitoring running containers with help of
Docker daemon[24].

2.4.4 Trivy

In 2019, another open-source image scanner was created by Teppei Fukuda
and developed by Aqua Security. Trivy, not only detect vulnerability in
Os packages and applications but is also able to scan IaC(Infrastructure as
Code) file like Terraform and k8s to find misconfiguration which could be
a potential threat for your deployment[7]. Trivy easily installs and can start
scan containers, just download and run[8]. These features of the Trivy scan-
ner are described in the following list:

Simple installation: Just with a few command in package manager like
yum, you can install it and update it later.

Fast and accurate: It takes a few seconds to scan the image and show
the vulnerabilities ID and fixed version. Trivy downloads all of the security
advisors to GitHub and removes duplication. Then make DB in GitHub
and update it every 12 hours. The database file is a light use key/value
database and does not have any setup. Trivy check GitHub Advisory
Database and other data sources in another repository which include
security patches[8].

Support variety of vendors: Trivy support most OS like alpine, Red Hat,
CentOS, Debian, Ubuntu, Oracle, openSUSE, Photon OS, and has a plan to
support Fedora and windows in the future. Also, accept multiple formats

14

for scanning an image in container registries like Tar file, local image, OCI
image format or docker file.

It is possible to set up client/server mode for your environment. Server
cache some same repetitive layer in the image that scanned before and does
not need to do it again for all of the containers in software or application.
It is possible to configure the port number in the server to make it more
secure[8].

2.4.5 Snyk

Snyk is another scanner that provides different products such as Synk code,
Synk container, Synk infrastructure as code. Its also able to integrate with
IDE, CI/CD pipeline, registry and management tools. There is two way to
use Synk. First, by using Synk CLI which is a command-line to scan for
vulnerabilities, It is possible to install CLI with npm, scoop or manually.
when running the command to scan container with Snyk, first check locally
in docker daemon if it is not already available, then download images from
the registry. After that check, the software installed in the image and then
Synk service returns the vulnerabilities list.

The second one is Snyk API and is available for paid plans. This method
which is only available on HTTPS needs a token from Snyk , to use API,
need to register with Snyk and use a token for authorization. Synk has
a different pricing plan and is only free for individual users and some
limited tests. Big companies and organizations should buy a business plan
or enterprise plan which has advanced control and report [51].

2.5 Related Work

This section provides some related work on this technology.

Emilien socchi and jonathan luu in 2019 during their thesis[23] " A deep
dive into Docker Hub’s security landscape " developed tools called Docker
imAge analyZER(DAZER) that analyze different types of docker images.
Their software which was written by Python found out most of the vulner-
abilities handed in from parent to child image. They evaluate the security
of Docker Hub by using their analyzer to collect metadata from any type
of available image on four different repositories as Official image, Com-
munity, Verified and Certified. They by using DAZER discovered that there
are fewer vulnerabilities in the majority of Official, Community and Certi-
fied images compare to Verified images.

in [33] Kaur, Mathieu Dugre, Aiman Hanna and Tristan Glatard at "An
analysis of security vulnerabilities in container images for scientific data
analysis" present how vulnerabilities on images increase security risk and
compare 4 different image scanners- Vuls, Anchore, Clair and Singularity
Tools (Stools) to scan container images that used in neuroscience data ana-
lysis. They describe how outdated packages and unused packages cause

15

vulnerabilities. The solution to reducing the number of vulnerabilities in
images could be to update the software and remove the unused package.

Another paper is[32] that Mubin Ul Haque† and M. Ali Babar in “An
Empirical Study of Exploitability and Impact of Base-Image Vulnerabilit-
ies” present how one vulnerability in an image could drive a security attack
in different software. They check the largest docker registry - Docker Hub
and evaluate base images. They used Anchore which uses more sources
for the vulnerability database and update every 6 hours to do in-depth vul-
nerability analysis. They discovered that vulnerability on 261 base images
used on 4,681 container applications in GitHub.

Markus Linnalampi in his master thesis [35] "outdated software in
container images" in 2021 discuss how container become most popular in
software development. Then explained how to detect outdated software
from container images by scanners and best practices to make them more
secure. Finally provide a new pipeline for scanning containers in the CI
pipeline.

16

Chapter 3

Methodology

In this chapter we will explain about required action to address the problem
statement question" most popular open-source image scanners interact
with images and detect vulnerabilities? What could be done to make them
more efficient and improve the level of image security?". Also, describe
some flowcharts, the design phase and some key aspects to do the project.

3.1 Objectives

The objective of this project is to put all of the tools and technologies from
the background into the frame to make a prototype. To make clear proto-
type thesis approach is divided into 3 different steps. The first step is to
design the model The second phase is to do some experiments and in final
step analysis the result. As mentioned before, methodology in this project
needs three phases that present in Fig. 3.1.

1- Design
(a) Create an environment to install multiple VMs with same specifica-

tion to install a container scanners which imply in this research.
(b) Define which number of container scanners include in this project.
(c) Define a set of images involve in this research.

2- Experiment
(a) Identify hardware and infrastructure that need to install VMs and

container scanners.
(b) Install the container vulnerability scanners and other tools.
(c) Perform scanning and collect quire data.

3- Measurement and analysis
(a) Run task and install all of the scanners to evaluate and test

requirements and the environment.
(b) Perform a scanner for images and evaluate the accuracy.
(c) Collect metadata, and vulnerability from the database.
(d) Collect data and Compare results from each experiment.

17

Figure 3.1: Thesis methodology

3.1.1 Data set and prototype

In this step need to decide on the vulnerability scanner and OCI container
image that need to use to conduct this project. There were some criteria
to choose vulnerability scanners. The most important factor was being an
open-source scanner and having a big community. As can be seen in this
table 2.3 there is 5 popular container scanner including Trivy, Clair, Snyk,
Anchore and Dagpa. Based on our criteria, Snyk which is also used in
Docker Hub is a commercial scanner for an enterprise company and it is
out of scope in this essay. Moreover, some scanners like dagpa have old
commits as you can see in Fig. 2.3. In addition, Dagpa does not have a
big community behind it compared to others and seems that not actively
supported. Clair, Anchore and Trivy were founded in 2015, 2016 and
2019 respectively. To invest in this research, have chosen Clair as a First
developed image scanner and Trivy as a fast growing scanner with lots of
features.

18

3.2 Design phase

This phase is a combination of several models to install selected container
scanners on VMs and evaluate the scanner container performance. Fig. 3.2
represent the design phase that includes installing different technology to
get the result. There are different layers and all of them are connected and
need to work properly to achieve the goal. The first layer is the hardware
host system, then VMM which controls hardware and assigns hardware to
VMs. Then we install Trivy and Clair as selected image scanners for the
experiment.

Figure 3.2: Overview on design phase

1. Hardware Layer: The first layer is the physical server which is
situated in Oslo Metropolitan University(OsloMet) server room.

2. Hypervisor: Is an OpenStack cloud computing platform in OsloMet
which provide IaaS and fulfills the requirement to run instances on it.

3. Virtual Machine: Created 2 different VM and installed Ubuntu server
LTS 20.04 for this purpose.

4. Container Scanner: selected container security scanner was Trivy and
Clair to install and evaluate their performance.

3.2.1 Tools and technologies

This section explains about tools and technologies used in this project.
This project is based on the OsloMet university environment and hard-
ware provided by computer department.The following tools used in this
research:

19

Figure 3.3: The design workflow

1. Go version go1.16.15: Mostly refer as Golang is an open-source
programming language designed by Google in 2007 and announced
in 2009. Go influenced by the C language, but more simple. It is
designed to improve the programming productivity in some areas
like a networked machine or multi-core[21]. It could be seen that most
container security scanners were written by Go.

2. Ubuntu 20.04.1 LTS

3. Docker Engine - Community version 20.10.14

4. Clair scanner

5. Aqua Trivy

6. Docker slimmer

20

3.2.2 Selected images

In this part, we select some images to analyze how accurate container scan-
ners find out vulnerabilities. We do not focus on any special images and
applications. As far as this study is not related to the particular company
and has a general purpose, In this research tries to select the most popu-
lar official images that have more than 1 billion downloads and more than
10k stars. In addition, picked some application packages to compare both
selected scanners together. This image was widely used and its variety of
operating systems and application packages to evaluate scanner images.
The following list is some selected sets of image containers that will evalu-
ate in this study.

1. alpine: This is an open-source Linux Operating System, it is also a
lightweight images base that is small and more secure. It chooses by
most companies as a base image due to its lack of vulnerability.

2. redis: As the most popular open-source key-value data store. Redis
is an abbreviation of REmote DIctionary Server.

3. mySQL: This is another open-source software that is a leading
relational database for web-based programs.

4. node.js: Application which is written in javaScript and use for
networking applications.

5. nginx: Not only provide an open source proxy server but is also use
for load balancing and a web server.

6. python: High-level programming language that has a simple syntax
and is similar to the English language.

7. debian: One of the open-source Linux distributions is the free
operating system.

8. ubuntu: Is a Debian-base Linux OS that is free and has a different
edition.

9. java: High-level and object-oriented programming language.

10. PostgreSQL: Is a relational database to store data and retrieve it later.
It also is a default database for the Clair container scanner.

these image was widely used and its variety of operating system and
application packages to evaluate scanner images.

3.3 Expected result

Image scanners use static analysis and expected that Trivy and Clair have
the same algorithm to find out vulnerabilities. They have their database

21

and some sort of repository as an updater. For scan images, the scanner
connected to the images registry gets a different layer. After that, Scan lay-
ers, and release the operating system and application packages. then up-
date their database based on the resources and finally match them with the
local vulnerabilities database. In addition to OS, the application package
could be affected by vulnerabilities like log4j which discover in December
2021 in the java Library. As long as Clair and Trivy are the popular vul-
nerability scanner, I expected both of them to analyze operating system
packages and application packages. It supposes that the main approach
for discovering malware is checking the package manager in the operating
system and finding out the list of installed packages. Then, detect these
packages version and check them for vulnerabilities.

Trivy and Clair rely on their database to match and find the vulner-
ability. Both of them need their database to store vulnerabilities from all
distributions. Every operating system has a different version and includes
lots of information and source. Another expectation could be based on the
verity of the package, they need any other 3rd tools for a running database.

Finally, in the experiment, we scan some standard images, distroless
images and slimmed-down images. The slim image only contains kernel
and runtime dependencies. They do not have any package manager or
shell. After scanning both It is expected that the vulnerability scanner was
not able to scan slim images or not find any vulnerabilities.

22

Chapter 4

Experiments and results

The first part explains how Clair and Trivy work, and find OS packages,
application packages and vulnerabilities. What’s more, will be conducted
some experiment that is into 3 different categories. the first category is to
scan standard images by both scanners and evaluate their accuracy. The
second type of experiment is to scan Distroless images and compare the
result to normal images. In the last part, slimmed down the standard
images and scan them again to see the result.

4.1 Analyzing Clair scanner

Clair software is available on different operating systems like Windows,
Linux, and macOS platforms. Also, it comes in different implementation
methods. It’s possible to install based on client-server which makes it
complex in installation and it is not a convenient way to always have a
dedicated server[27]. Another method is standalone which is more suitable
for our experiment. This standalone is maintained by CoreOS and actively
supported at this time of writing. Clair detects malware with known
vulnerabilities or weaknesses. The first step they need to identify layers,
packages and images version, then check with the vulnerability database
as a reference and detect them.

This section dig into source code and explain some of the module and
functions. It’s important to understand how they connect to resources
to update the vulnerability database and how they fetch layers and find
vulnerabilities in packages.

4.1.1 Comprehensive analysis

Clair scanner is modular design and relay on ClairCore package. This
image scanner was developed by CoreOs and acquired by RedHat in 2018.

ClairCore as a core engine of Clair implements the security scanner
and uses the Postgres database which is a free and relational open-source
database. In Fig. 4.2 can be seen that ClairCore have 3 main components
including LibIndex, postgresSQL and LibVuln. Libindex is a service that
gets the manifest and indexes it. Index report is an internal data structure

23

and represents the container images that this report can be sent and fed to
libVuln to check with matcher and find out the vulnerabilities and produce
a vulnerability report. Both LibIndex and LibVuln daemons save their
information such as distributions, vulnerabilities and packages from their
source to postgresSQL database as a content addressable.

Content addressed storage

The PostgreSQL database stores all of the data from manifests and layers.
Additionally, it stores the vulnerabilities found by the LibVulne module.
The point is that all of the data will be saved as content addressable. In
Content-Addressable Storage, an abbreviation named CAS is a method that
saves data based on their content, not their address or location. It helps to
retrieve data with high speed from fixed content like document[18].

Some of the images like Ubuntu are using in many containers as a base
layer, To create a new container, it just needs to add other layers on top of
that. When Clair starts to scan the container, and store all of the layers in
the database, and when fetches the layers recognize that the Ubuntu layer
has in the database. It means that just download from the registry once
base layer and use it again.

#https://github.com/quay/claircore/blob/main/cmd/cctool/inspector.go
1 func Inspect(ctx context.Context, r string)

(*claircore.Manifest, error)
2 ref, err := name.ParseReference(r)

3 repo := ref.Context()
4 auth, err := authn.DefaultKeychain.Resolve(repo)

5 rt, err := transport.New(repo.Registry, auth,
http.DefaultTransport, []string{repo.Scope("pull")})

6 desc, err := remote.Get(ref, remote.WithTransport(rt))

7 img, err := desc.Image()
8 h, err := img.Digest()

9 ccd, err := claircore.ParseDigest(h.String())

10 out := claircore.Manifest{
Hash: ccd,

11 return &out, nil
}

The following step happen when start to scan image with Clair vulner-
ability scanner:

1- In spect function is the function that send images to registyr and get
the manifest as an output. Inspect function use name package from golang
which parse the input image by reference interface. This interface have
some data including repository context.

24

type Reference interface {
fmt.Stringer
// Context accesses the Repository context of the reference.
Context() Repository
// Identifier accesses the type-specific portion of the reference.
Identifier() string
// Name is the fully-qualified reference name.
Name() string
// Scope is the scope needed to access this reference.
Scope(string) string
}

As can be seen every manifest include digest and layers which both
of them are json file. Every image have their unique digest and could be
identify among other images.In the first step, claircore will check the im-
age registry to get information from the container and image layer and
metadata. ClairCore uses inspec.go file that inspects the registry for spe-
cified image manifest with a pointer to layer. This file uses the container
registry library in golnag to work with resources in the container registry
like images and layers. Inspect Function as you can see in the file, need two
input which is "ctx" as a context type and "r" string. Context is a package
in golang which listen to an event and notice if cancels this event or passes
request data. This data after pass could have tag along or trace ID for mon-
itoring and logging this variable. Another input is the name of images with
a tag as an input string. The output is an array of a manifest. each manifest
includes hash digest and layers in json files. The manifest as output defines
as a struct which is a variable type in golang. Its abbreviation of structure
contains a collection of fields. The manifest result show the layers and how
able to retrieve them. here is manifest structure:

type Manifest struct {

Hash Digest ‘json:"hash"

Layers []*Layer ‘json:"layers"
}

After parsing image, Name get string and return a repository refer-
ence(ref, err := name.ParseReference(r)) line 2. Then save this repository
in repo variable and authenticate it by keychain library. Its important to re-
cognize that names and layers are valid. in line 5 transport package handle
and pull repo and do handshake authentication. you can see the digest
number when you run the pull command in your system.

mehdi@ubuntu:~# docker pull ubuntu:20.04
20.04: Pulling from library/ubuntu

25

e0b25ef51634: Pull complete
Digest: sha256:9101220a875cee98b016668342c489ff0674f247f6ca20dfc91b91c0f28581ae
Status: Downloaded newer image for ubuntu:20.04
docker.io/library/ubuntu:20.04

Then in line 6 by get method from remote package have access to image
descriptor and save in int desc variable. In line 7 by image method this
descriptor change to images and in line 8 this images save in hash digest.
Then use claircore parsDigest to make sure this digest is well-formed.

Digest is a hash of data and use by claircore. In line 10 produce manifest
which is final output of this function and sent as a input to libvul function.
Fig. 4.1 shows that each manifest contain multi layers and some configur-
ation data which hashed. Image manifest is a json file which is not only
content addressable but also include layers order and link to retrieve them
from registry.

Figure 4.1: Manifest of haproxy

Each container builds up several layers and each of them presents
metadata. Each layer could change except the first layer which is read-
only and all other layers build on it. All the layers stick together and create
a container.

the latest release for Clair is v4.4.1 at this time which was released last
month in April 2022. After version 4 Clair uses authentication itself. Its
keyserver protocol which use to sign and verify requests. former versions
of Clair used another service for authentication called JWT Proxy which
could configure to sign the outgoing request and authenticate the incom-
ing request from other services.

26

2- The second step is sending the manifest to LibIndex package in Clair-
Core. In this step As you can see in Fig 4.2 Library index is a function that
fetches the container layers and identify the packages index the content and
then provides the index report. This report includes the packages, reposit-
ories, and distributions. This step is also called indexing which submits a
manifest, fetch layers, index the content, and then provide an index report.
This operation is performed by the Index function of the “libindex.go” file.
Index performs a scan and index of each layer within the provided Mani-
fest. This package has different functions that will take options and de-
pendencies, system locks of instance as an input, and returns libindex as
output. This package includes different functions such as a scan and new
to get the package and produce the Libindex report.

#https://github.com/quay/claircore/blob/main/libindex/libindex.go
1 func New(ctx context.Context, opts *Opts, cl *http.Client)

(*Libindex, error) {
2 ctx = zlog.ContextWithValues(ctx, "component",

"libindex/New")
3 err := opts.Parse(ctx)
4 dbPool, err := initDB(ctx, opts)
5 store, err := initStore(ctx, dbPool, opts)
6 ctxLocker, err := ctxlock.New(ctx, dbPool)
7 l := &Libindex{

Opts: opts,
store: store,
client: cl,
cl: ctxLocker,

}
8 l.fetchArena.Init(cl, os.TempDir())

9 pscnrs, dscnrs, rscnrs, err :=
indexer.EcosystemsToScanners(ctx, opts.Ecosystems,
opts.Airgap)

10 vscnrs := indexer.MergeVS(pscnrs, dscnrs, rscnrs)
Hash: ccd,

11 l.Opts.vscnrs = vscnrs
return l, nil

}

in line 2 add key-value pairs of the relevant context. in this part using
zerolog via context all logging in Clair core is done by zlog.

Then the “initDB” function of init.go library in libindex call to initialize
a Postgres pool.Pool based on the given libindex.Opts.

LibIndex will run linindex.opts as a connection string and store data.
After that the “initStore” function of “claircore/libindex/init.go” call to

initialize a indexer.Store . “Store” object which is an interface for dealing
with objects libindex needs to persist:

Then Locker provides context-scoped locks and stores them into ctx-

27

Locker in line 6 and after that libindex is valued for scanning and index-
ing a Manifest. Line 8 an instance of “fetchArena” will be created by init
function. this instance keeps trace of all layer which fetched. Line 9 After
that, the “EcosystemsToScanners” of “claircore/internal/indexer/ecosys-
tem.go” file will call to extracts multiple ecosystems and returns their dis-
crete scanners and store them into array of Package Scanner as “pscnrs”, ar-
ray of Distribution Scanner as “dscnrs” and an array of Repository Scanner
as “rscnrs”. Then the function “MergeVS” of “claircore/internal/indexer-
/versionedscanner.go” merges these lists of scanners into a single list of
VersionedScanner as “vscnrs”. The with the “RegisterScanners” of “clair-
core/internal/indexer/postgres/registerscanners.go” file, the results will
store into postqres database. LibIndex is also going to store this inform-
ation in its postgres database. This is an optimization because next time
LibIndex is asked to scan the same layers that it already scanned before. It
will instead of going to the image registry download the layers and per-
form the scanning. It will instead be able to find the previous results in its
database and use those results to construct a new index report and send it
quickly back to the client. and in the last line scanner version will be set
into L which is the Index report.

The following list shows the structure of the Index Report.

type IndexReport struct {
1 Hash Digest ‘json:"manifest_hash"‘
2 State string ‘json:"state"‘
3 Packages map[string]*Package ‘json:"packages"‘
4 Distributions map[string]*Distribution ‘json:"distributions"‘
5 Repositories map[string]*Repository ‘json:"repository"‘
6 Environments map[string][]*Environment ‘json:"environments"‘
7 Success bool ‘json:"success"‘
8 Err string ‘json:"err"‘
}

1. This is manifest hash key that describe IndexReport

2. Shows the state of this Index

3. Shows the discovered package in this particular manifest key with
package ID

4. Represent the discovered distribution in this particular manifest key
with distribution ID

5. Shows the discovered repositories in this particular manifest key with
repository ID

6. Demonstrate list of environment that a package was discovered

7. Check that index operation finished successfully.

28

8. show the error in case of index operation not able to finish

In the last step, IndexReport receives data that contains full information
about what content was located on the image. Libvuln is connected to
the updater and performs fetch and parsing information from security
database from sources like RedHat security data, Ubuntu trackers, Debian
trackers, Oracle Linux security data, Alpine security database, and
National Vulnerability Database(NVD). .[11] . This updater has two
different interface parsers and fetcher. fetcher is called when a new security
advisory is available. parser is an interface that is called to check the
contents of security advisory and read data from them. Then pars them
into the array to put into ClairCore vulnerability. This library is connected
directly to the database and stores vulnerabilities for further matching.

The vulnerability will match this content with the information from its
vulnerability database and based on this matching LibVuln will produce a
vulnerability report and send it back to the client. The Vulnerability report
contains the information from the IndexReport, which means the content
of the image as well as the list of all vulnerabilities.In addition, Claircore
will set a severity base on vulnerability. All of the company have their own
severity database and ClairCore map them to these 6 categories. Unknown,
Negligible, Low, Medium, High, Critical. For some companies that do not
provide severity in vulnerability, ClairCore maps them to unknown.

. Fig. 4.2 shows the big picture of the container scanner architecture.

Figure 4.2: The Clair scanner container architecture

in summery:

29

Table 4.1: Clair resources updater
Num packages Resources Updater
1 Alpine https://cve.mitre.org/
2 Ubuntu https://people.canonical.com/~ubuntu-security/oval/
3 Oracle https://linux.oracle.com/security/oval/
4 Debian https://www.debian.org/security/oval/
5 RHEL https://access.redhat.com/security/data/oval/
6 Suse https://support.novell.com/security/oval
7 Photon https://packages.vmware.com/photon/photon_oval_definitions/
8 AWS Linux https://alas.aws.amazon.com/
9 Python (app) https://github.com/pyupio/safety-db/

1. The Clair scanner uses the CLI interface that uses the inspect function
to connect to the image registry

2. Images manifest is the output of this function which contain layer and
digest. Fig. 4.1 is an example of manifest. This manifest also shows
where this layer could be download.

3. In this step, the image manifest which is Json file will send to
LibIndex and by reading, the data will understand where should
download layers.

4. ibIndex check database for layer and if not able to find them in the
local database,

5. Download layer from images registry. After download will do image
scanning to find out which kind of content is in these image layers.
This content includes package, distribution, and packages. Also,
these data are stored in the postgres database for the future. For
example, if next time the layer of the same image comes to LibIndex,
first will check the database and don’t need to download it from the
images registry. This database is used as a cache for next time.

6. Return index report that includes repository, distribution, and
packages.

7. Index report will send to LibVuln packages.

8. LibVuln uses a matcher which is a check updater and updates the
database regularly. when the first time installs the Clair, it takes
around 30 minutes to download the vulnerabilities from the updater.
updater is a vulnerability database from different packages on the
internet that could be seen in 4.1

9. Vulnerability report which is the final report will send to ClairCore.

30

4.1.2 Identifying The Operating System(OS)

Clair is able to find vulnerabilities in images that use one of the following
packages or distributions including Ubuntu, Debian, RHEL, Suse, Oracle,
Alpine, AWS Linux and VMWare Photon. At the time of writing the report,
Python packages are the only application package for which Clair can find
vulnerabilities.

It defines path and fallbackpath which are two locations that could
be found os-release. then using "Scan" function to report information
about distribution in the provided layer. This function use zlog package
in line 2 which is the logging package by zerolog. It also generates the
log context. Line 4 uses a reader which is a function that looks at a layer
closer and opens the layer. in line 5 create a tar file system from the layer
otherwise give an error. After that, start looking for the os-release file base
on provided value in line 6. In this part try to open the tar file system and
by Debug function read the name it is the same as an os-release. Finally,
if find the file close the file in line 7 and save the os-release file in the
rd variable.There is a list of supported ubuntu packate in 7.1.1. Then in
line 7 use the toDist function that returns the distribution, version from
the provided file. This function will use parse and split the os-release file
content into key-value pairs. The output of the function is OS distribution.
7.1.3 represent the scanner.go source code.

#https://github.com/quay/claircore/blob/main/osrelease/scanner.go
const (

Path = ‘etc/os-release‘
FallbackPath = ‘usr/lib/os-release‘

)

1 func (s *Scanner) Scan(ctx context.Context, l *claircore.Layer)
([]*claircore.Distribution, error) {

2 defer trace.StartRegion(ctx, "Scanner.Scan").End()
ctx = zlog.ContextWithValues(ctx,

"component", "osrelease/Scanner.Scan",
"version", s.Version(),
"layer", l.Hash.String())

3 zlog.Debug(ctx).Msg("start")
defer zlog.Debug(ctx).Msg("done")

4 r, err := l.Reader()
5 sys, err := tarfs.New(r)

var rd io.Reader
6 for _, n := range []string{Path, FallbackPath} {

f, err := sys.Open(n)
if err != nil {

zlog.Debug(ctx).
Str("name", n).
Err(err).
Msg("unable to open file")

continue
}

31

7 defer f.Close()
8 rd = f

break
}
if rd == nil {

zlog.Debug(ctx).Msg("didn’t find an os-release file")
return nil, nil

}
7 d, err := toDist(ctx, rd)

}
8 return []*claircore.Distribution{d}, nil
}

4.1.3 Identifying the packages

Clair uses the Scan function to find packages. This function looks for
"status" file in directories because installed packages it can find in this
file. If it is not able to find any database for packages, will return null.
This function gets an instance of Context and a pointer of Claircore’s layer
as input and returns a pointer to an array of Claircore’s package. In
line 2 have used defer statements to delay the execution of this package.
Trance packages have some facility to generate traces and loge the event
during execution. In line 3 trace will log the layer along with additional
information. ContextWithValues is a helper that takes pairs of strings and
adds them to the Context via the baggage package. In line 4, it gets the
component, the version and the layer and adds them to the ctx. In lines
5 and 6 Debug starts and “done” message ending the operation with the
debug level. In line 7 the Reader method of “layer.go” calls to read the
layer and store it in “rd”. In line 8, package new from tarfs creates a file
from the rd. From lines to 9 to 15 at first, a map keyed by the directory
is created as “loc” then if the name of the package is “status” and “d”
which “fs.DirEntry” is not a directory then one score will add one score
to “loc[dir]” also, if the name of the package is “info” and “d” is a directory
will add one score to loc[dir]. and finally in line 15 a "score" of 2 of “loc[dir]”
means this is almost certainly a “dpkg” database. This for loop will repeat
until find the directory or give the error . After finding the status file will
open and read data such as name, package and version. At line 30 returns
array of Claircore’s package

#https://github.com/quay/claircore/blob/main/dpkg/scanner.go
1func (ps *Scanner) Scan(ctx context.Context, layer

*claircore.Layer) ([]*claircore.Package, error) {

2 defer trace.StartRegion(ctx, "Scanner.Scan").End()
3 trace.Log(ctx, "layer", layer.Hash.String())
4 ctx = zlog.ContextWithValues(ctx,

"component", "dpkg/Scanner.Scan",
"version", ps.Version(),
"layer", layer.Hash.String())

5 zlog.Debug(ctx).Msg("start")

32

6 defer zlog.Debug(ctx).Msg("done")
7 rd, err := layer.Reader()

if err != nil {
return nil, fmt.Errorf("opening layer failed: %w", err)

}
defer rd.Close()

8 sys, err := tarfs.New(rd)
}

9 loc := make(map[string]int)
10 walk := func(p string, d fs.DirEntry, err error) error {

}
switch dir, f := filepath.Split(p); {
case f == "status" && !d.IsDir():

loc[dir]++
13 case f == "info" && d.IsDir():

loc[dir]++
}

}

if err := fs.WalkDir(sys, ".", walk); err != nil {
return nil, err

}
zlog.Debug(ctx).Msg("scanned for possible databases")

var pkgs []*claircore.Package
for p, x := range loc {

15 if x != 2 { // If we didn’t find both files, skip this
directory.

continue
}
ctx = zlog.ContextWithValues(ctx, "database", p)
zlog.Debug(ctx).Msg("examining package database")

// We want the "status" file.
fn := filepath.Join(p, "status")
db, err := sys.Open(fn)
switch {
case errors.Is(err, nil):
case errors.Is(err, fs.ErrNotExist):

zlog.Debug(ctx).
Str("filename", fn).
Msg("false positive")

continue
default:

20 return nil, fmt.Errorf("reading status file from layer
failed: %w", err)
}

21 found := make(map[string]*claircore.Package)

tp := textproto.NewReader(bufio.NewReader(db))
Restart:

hdr, err := tp.ReadMIMEHeader()
for ; err == nil && len(hdr) > 0; hdr, err =

33

tp.ReadMIMEHeader() {
name := hdr.Get("Package")
v := hdr.Get("Version")
p := &claircore.Package{

Name: name,
Version: v,
Kind: claircore.BINARY,
Arch: hdr.Get("Architecture"),
PackageDB: fn,

}
if src := hdr.Get("Source"); src != "" {

p.Source = &claircore.Package{
Name: src,
Kind: claircore.SOURCE,
Version: v,
PackageDB: fn,

}
}

found[name] = p
30 pkgs = append(pkgs, p)

}

4.1.4 Identifying vulnerabilities in discovered packages

Libvul is a package that using Index Report and create a Vulnerability re-
port. This package have some function like Scan and EnrichedMatch func-
tion. EnrichedMatch receives an IndexReport and creates a Vulnerabili-
tyReport containing matched vulnerabilities. In line 2 extract the IndexRe-
port and save in records.IndexRecords returns a list of IndexRecords de-
rived from the IndexReport and store them in ‘recoreds’. At line 3 GO-
MAXPROCS sets the maximum number of CPUs that can be executing
simultaneously. Lines 4 a pool creates to run matchers to match group.
At line 6 WithContext method returns a new group to ‘mg’ and an as-
sociated Context derived from ctx to ‘mctx’. from line 6 to 20 match
group with context by using workers. The rest of the function pool will
set up to watch the matchers and attach results to the report and finally
use atomic to track closing the results channel. The final claircore Vul-
nerability Report is compose of Hash, Packages, Environments, Distribu-
tions, Repositories, map[string]*claircore.Vulnerability, map[string][]string
for PackageVulnerabilities. The source code is available on 7.1.4

vr := &claircore.VulnerabilityReport{
Hash: ir.Hash,
Packages: ir.Packages,
Environments: ir.Environments,
Distributions: ir.Distributions,
Repositories: ir.Repositories,
Vulnerabilities: map[string]*claircore.Vulnerability{},
PackageVulnerabilities: map[string][]string{},

}

34

#https://github.com/quay/claircore/blob/main/internal/matcher/match.go
1 func EnrichedMatch(ctx context.Context, ir

*claircore.IndexReport, ms []driver.Matcher, es
[]driver.Enricher, s Store) (*claircore.VulnerabilityReport,
error) {

2 records := ir.IndexRecords()
3 lim := runtime.GOMAXPROCS(0)
4 mCh := make(chan driver.Matcher)
5 vCh := make(chan map[string][]*claircore.Vulnerability, lim)
6 mg, mctx := errgroup.WithContext(ctx)

for i := 0; i < lim; i++ {
mg.Go(func() error { // Worker

var m driver.Matcher
for m = range mCh {

select {
case <-mctx.Done():

return mctx.Err()
default:
}
vs, err := NewController(m, s).Match(mctx, records)
if err != nil {

zlog.Error(ctx).
Err(err).
Msg("matcher error")

continue
}
vCh <- vs

}
return nil

})
20 }

// Set up a pool to watch the matchers and attach results to the
report.

var vg errgroup.Group
vg.Go(func() error { // Pipeline watcher
Send:

for _, m := range ms {
select {
case <-mctx.Done():

break Send
case mCh <- m:
}

}
close(mCh)
defer close(vCh)
if err := mg.Wait(); err != nil {

return err
}
return nil

})
vg.Go(func() error { // Collector

35

for pkgVuln := range vCh {
for pkg, vs := range pkgVuln {

for _, v := range vs {
vr.Vulnerabilities[v.ID] = v
vr.PackageVulnerabilities[pkg] =

append(vr.PackageVulnerabilities[pkg], v.ID)
}

}
}
return nil

})

4.2 Analyzing Aqua Trivy scanner

Trivy is a vulnerability image scanner that analyzes the operating system
and application packages and artifacts. In addition, Its is fast and even able
to scan misconfiguration in Iac. It’s integrated with CI/CD pipeline. Trivy
doesn’t rely on any particular database and has its own compact database
in Github called Trivy-db.

4.2.1 Comprehensive analysis

Trivy can Scan different artifacts such as images, file systems like host
machines, and Git repositories. In addition, able to work in both
Standalone or Client/server mode[8]. In client/server mode, which is the
best choice if you like to scan images in a different location and do not
like to download databases in each place. Trivy download vulnerability
database in the server, and then all of the clients should connect to the
server. Trivy clients are connected to the container registry and to the Trivy
server to get vulnerability results.

In standalone mode, first, download vulnerability information from
GitHub Trivy-database Ttivy database. Trivy-db is an internal database
that gets information from the following list and updates automatically
every 6 hours. hours[48] Trivy-db uses a bolt to store vulnerabilities
which is a key/ value database. Bolt is a Go language project that doesn’t
need a full database server like Postgress and provides a fast and reliable
database. This database saves data as a bucket. The database contains
different buckets like vulnerability, severity, and vulnerability ID supplied
by vendors. As previously mentioned, NVD has numerous vulnerabilities
unrelated to any Specific package o language. This database does not store
an NVD database to reduce the size of the database.

1. Trivy download the vulnerability information from Trivy-db.

2. Trivy has a cache inside. in this step, check layers with this cache
situated in home/.cache and include both fanal and db directory and
then will pull the missing layer from a container registry.

36

https://github.com/aquasecurity/trivy-db

Figure 4.3: Trivy architecture

3. After that, analyze one layer and store information into the cache; this
applies to all layers

4. Continue step 3 for other layers until the end.

5. Detect vulnerability with detector module and report it.

4.2.2 Identifying the Operating System(OS)

Trivy support many OS packages and version. For example, Trivy support
all version of Linux Ubuntu. Every operating system has its own variable,
eolDates, and contains a list of all versions that support it. for Ubuntu,
Its located in https://github.com/aquasecurity/trivy/blob/main/ pkg/-
detector/ospkg/ubuntu/ubuntu.go

var (
eolDates = map[string]time.Time{

"4.10": time.Date(2006, 4, 30, 23, 59, 59, 0, time.UTC),
"5.04": time.Date(2006, 10, 31, 23, 59, 59, 0, time.UTC),
"5.10": time.Date(2007, 4, 13, 23, 59, 59, 0, time.UTC),
"6.06": time.Date(2011, 6, 1, 23, 59, 59, 0, time.UTC),
"6.10": time.Date(2008, 4, 25, 23, 59, 59, 0, time.UTC),
"7.04": time.Date(2008, 10, 19, 23, 59, 59, 0, time.UTC),
"7.10": time.Date(2009, 4, 18, 23, 59, 59, 0, time.UTC),
"8.04": time.Date(2013, 5, 9, 23, 59, 59, 0, time.UTC),
"8.10": time.Date(2010, 4, 30, 23, 59, 59, 0, time.UTC),
"9.04": time.Date(2010, 10, 23, 23, 59, 59, 0, time.UTC),
"9.10": time.Date(2011, 4, 29, 23, 59, 59, 0, time.UTC),

37

"10.04": time.Date(2015, 4, 29, 23, 59, 59, 0, time.UTC),
"10.10": time.Date(2012, 4, 10, 23, 59, 59, 0, time.UTC),
"11.04": time.Date(2012, 10, 28, 23, 59, 59, 0, time.UTC),
"11.10": time.Date(2013, 5, 9, 23, 59, 59, 0, time.UTC),
"12.04": time.Date(2019, 4, 26, 23, 59, 59, 0, time.UTC),
"12.10": time.Date(2014, 5, 16, 23, 59, 59, 0, time.UTC),
"13.04": time.Date(2014, 1, 27, 23, 59, 59, 0, time.UTC),
"13.10": time.Date(2014, 7, 17, 23, 59, 59, 0, time.UTC),
"14.04": time.Date(2022, 4, 25, 23, 59, 59, 0, time.UTC),
"14.10": time.Date(2015, 7, 23, 23, 59, 59, 0, time.UTC),
"15.04": time.Date(2016, 1, 23, 23, 59, 59, 0, time.UTC),
"15.10": time.Date(2016, 7, 22, 23, 59, 59, 0, time.UTC),
"16.04": time.Date(2024, 4, 21, 23, 59, 59, 0, time.UTC),
"16.10": time.Date(2017, 7, 20, 23, 59, 59, 0, time.UTC),
"17.04": time.Date(2018, 1, 13, 23, 59, 59, 0, time.UTC),
"17.10": time.Date(2018, 7, 19, 23, 59, 59, 0, time.UTC),
"18.04": time.Date(2028, 4, 26, 23, 59, 59, 0, time.UTC),
"18.10": time.Date(2019, 7, 18, 23, 59, 59, 0, time.UTC),
"19.04": time.Date(2020, 1, 18, 23, 59, 59, 0, time.UTC),
"19.10": time.Date(2020, 7, 17, 23, 59, 59, 0, time.UTC),
"20.04": time.Date(2030, 4, 23, 23, 59, 59, 0, time.UTC),
"20.10": time.Date(2021, 7, 22, 23, 59, 59, 0, time.UTC),
"21.04": time.Date(2022, 1, 22, 23, 59, 59, 0, time.UTC),
"21.10": time.Date(2022, 7, 22, 23, 59, 59, 0, time.UTC),
"22.04": time.Date(2032, 4, 23, 23, 59, 59, 0, time.UTC),

}
)

Trivy has an Analyse function to identify OS type by looking at the
specific filename and realizing the operating system. For instance, Ubuntu
OS type could find in etc/lsb-release. The first step defines a variable with
the file name that shows the operating system and version. In the following
examples, every operating system has a file that shows the release and
version. The following is some example of files and information inside
the files.

var requiredFiles = []string{"etc/lsb-release"}
var requiredFiles = []string{"etc/alpine-release"}
var requiredFiles = []string{"etc/os-release"}

ubuntu@trivy:~$ cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=20.04
DISTRIB_CODENAME=focal
DISTRIB_DESCRIPTION="Ubuntu 20.04.1 LTS"
ubuntu@trivy:~$

Or for Debian

38

debian@oslomet:/etc$ cat os-release
PRETTY_NAME="Debian GNU/Linux 11 (bullseye)"
NAME="Debian GNU/Linux"
VERSION_ID="11"
VERSION="11 (bullseye)"
VERSION_CODENAME=bullseye
ID=debian
HOME_URL="https://www.debian.org/"
SUPPORT_URL="https://www.debian.org/support"
BUG_REPORT_URL="https://bugs.debian.org/"
debian@oslomet:/etc$

Trivy defines a variable with this path and then uses a regular
expression to find this file by Analyse function. At first, set isubuntu to
false. Then in line 2, the NewScanner function uses the Scan function,
which looks for the file and checks the file path for requiredFiles which is a
string and ists equal to "etc/lsb-release." At the top, lsb-release contains
some information like DISTRIB_ID=Ubuntu, and in line 4, check if it’s
equivalent to ubuntu or not. If the condition is true, continue and check
the release version. Then in line 7, type all of the characters after the 16th
character, which is the version. In top example is 20.04. Finally, line 8 will
return the ubuntu and version.

#https://github.com/aquasecurity/fanal/blob/main/analyzer/os/ubuntu/ubuntu.go
1func (a ubuntuOSAnalyzer) Analyze(_ context.Context, input

analyzer.AnalysisInput) (*analyzer.AnalysisResult, error) {
isUbuntu := false

2 scanner := bufio.NewScanner(input.Content)
3 for scanner.Scan() {

line := scanner.Text()
4 if line == "DISTRIB_ID=Ubuntu" {

isUbuntu = true
continue

}

5 if isUbuntu && strings.HasPrefix(line, "DISTRIB_RELEASE=") {
6 return &analyzer.AnalysisResult{

OS: &types.OS{
Family: aos.Ubuntu,

7 Name: strings.TrimSpace(line[16:]),
},

}
8 return nil, xerrors.Errorf("ubuntu: %w", aos.AnalyzeOSError)
}

Table 4.2shows the different operating system packages that Trivy
support:

39

Number OS packages Resources updater
1 Alpine https://secdb.alpinelinux.org
2 AWS Linux https://alas.aws.amazon.com/,
3 Debian https://salsa.debian.org/security-tracker-team/security-tracker
4 RHEL https://www.redhat.com/security/data/metrics/
5 Oracle https://linux.oracle.com/security/oval/
6 Ubuntu https://git.launchpad.net/ubuntu-cve-tracker
7 Suse https://ftp.suse.com/pub/projects/security/cvrf
8 Photon OS "https://packages.vmware.com/photon/photon_cve_metadata/
9 CBL-Mariner https://github.com/microsoft/CBL-MarinerVulnerabilityData
10 AlmaLinux https://errata.almalinux.org/
11 Rocky Linux https://download.rockylinux.org/pub/rocky

Table 4.2: Trivy resources OS pdater

4.2.3 Identifying packages

Trivy will find vulnerabilities in application and operating system pack-
ages. Trivy uses files and a directory to find out a package. To get in-
formation about the package, should check some directories located in
"var/lib/dpkg/" The following const shows the directories that Trivy will
parse and look for package information.

Trivy uses two different functions to return the list and status of pack-
ages. The first function is "parseDpkgInfoList" that used to get the list
of packages. This function get file path and parses " /var/lib/dpkg/in-
fo/*.list". Then by the scan function in line 2, check the file path. This scan
function uses (Regular Expression)RegEX to check the file path. This func-
tion has different rules. For example, file content contains a keyword and
should scan, or the file path should scan by this special rule until able to
find the secret. This function adds a file if it is still a directory. In line 4, this
function checks if the path is equal to the "/" and continues until the file is
not a directory and in Line 5, check the installed file. In line 8, add the last
file. In line 10, return the list of installed files.

Second function is parseDpkgStatus function that will parses the "
/var/lib/dpkg/status or /var/lib/dpkg/status/*". source version and
name of package are available of dpkg and Trivy use it to find package
and version. for Alpine, this file is situated in "lib/apk/db/installed".

https://github.com/aquasecurity/fanal/blob/main/analyzer/pkg
/dpkg/dpkg.go
const (

version = 2
statusFile = "var/lib/dpkg/status"
statusDir = "var/lib/dpkg/status.d/"
infoDir = "var/lib/dpkg/info/"

)
1 func (a dpkgAnalyzer) parseDpkgInfoList(scanner *bufio.Scanner)

(*analyzer.AnalysisResult, error) {

40

var installedFiles []string
var previous string

2 for scanner.Scan() {
3 current := scanner.Text()
4 if current == "/." {

continue
}

5 if !strings.HasPrefix(current, previous+"/") {
6 installedFiles = append(installedFiles, previous)

}
7 previous = current

}

// Add the last file
8 installedFiles = append(installedFiles, previous)

9 if err := scanner.Err(); err != nil {
return nil, xerrors.Errorf("scan error: %w", err)

}

10 return &analyzer.AnalysisResult{
SystemInstalledFiles: installedFiles,

}, nil
}

4.2.4 Identifying vulnerabilities in discovered application pack-
ages

Line 2 returns a driver type according to library type by NewDriwer
function to detect vulnerabilities in libraries. For example, if the library
type is pip or pipenv, the related driver type is a python package. If was
not able to find packages, return the error. Line 4 uses a detect function that
gets the driver and filetypes package and returns the vulnerability. This
detect function with Small "d" uses another function to find vulnerability
based on the type and version of the driver. Finally, detect function will
return the vulns variable, which is the output of Detect function.

#https://github.com/aquasecurity/trivy/blob/main/pkg/detector/
library/detect.go
1 func Detect(libType string, pkgs []ftypes.Package)

([]types.DetectedVulnerability, error) {
2 driver, err := NewDriver(libType)
3 if err != nil {

return nil, xerrors.Errorf("failed to new driver: %w", err)
}

4 vulns, err := detect(driver, pkgs)
5 if err != nil {
6 return nil, xerrors.Errorf("failed to scan %s vulnerabilities:

%w", driver.Type(), err)
}

41

Table 4.3: Trivy resources application updater
Number packages Resources Updater

1 PHP
https://github.com/FriendsOfPHP/security-advisories
https://github.com/advisories(composer)

2 Python
https://github.com/pyupio/safety-db
https://github.com/advisories(pip)

3 Ruby
https://github.com/rubysec/ruby-advisory-db
https://github.com/advisories(Arubygems)

4 node.js
https://github.com/nodejs/security-wg
https://github.com/advisories(Anpm)

5 Rust https://github.com/RustSec/advisory-db

6 Java
https://github.com/advisories(Amaven)
https://gitlab.com/gitlab-org/advisories-community

7 Go https://gitlab.com/gitlab-org/advisories-community
8 .Net https://gitlab.com/gitlab-org/advisories-community

return vulns, nil
}

4.2.5 Identifying vulnerabilities in discovered OS packages

After discovering the operating system and repository, and package type,
Trivy tries to detect vulnerabilities. In line 2, use the newDriver function
to recognize the operating system family, supported or not. If there
is a supported OS, then put it in the driver variable; otherwise, it
returns an unsupported OS error. In line 4, the supported version uses
IsSupportedVersion function that gets the operating system family and
name and checks that this OS family can scan using the operating system
scanner. In other words, this function checks whether this OS version is
in the EOL list or not. For example, Ubuntu has its scanner and detect
function in their file. If this operating system is on the list, then call detect
function for this special operating system detect function for each operating
system will get OS version, repository and package type as input and
return detected vulnerability as an output.

#https://github.com/aquasecurity/trivy/blob/main/pkg/detector/
ospkg/detect.go
1 func (d Detector) Detect(_, osFamily, osName string, repo

*ftypes.Repository, _ time.Time, pkgs []ftypes.Package)
([]types.DetectedVulnerability, bool, error) {

2 driver, err := newDriver(osFamily)
if err != nil {

3 return nil, false, ErrUnsupportedOS
}

4 eosl := !driver.IsSupportedVersion(osFamily, osName)

42

5 vulns, err := driver.Detect(osName, repo, pkgs)
6 if err != nil {

return nil, false, xerrors.Errorf("failed detection: %w", err)
}

7 return vulns, eosl, nil
}

4.3 Experiments

One of the main approaches to evaluating software is installing and doing
experimental analysis. This section has tried to set up some different kinds
of images and scan them with image scanners. There are three different
types of images selected for scanning and experiment. Standard images,
Distroless images, and slimmed down one. The goal for choosing these
different kinds of images was popularity and security. The first standard
images are widely used images from registries.

The second set is Distroless images which are lightweight without a
package manager. The main reason to select Distroless images was that
most image scanners use the package manager to find packages and then
vulnerabilities in packages. We tried to evaluate the scanner. Scanners
can find vulnerabilities or how they interact with this kind of image. The
third type, a slim one, removes the package manager and some files that
most scanners are looking for to find the package. The slim version of the
containers has been used docker-slim to remove the extra layer. The result
represents how the scanner interacts with images and finds vulnerabilities.

Figure 4.4: Number of vulnerabilities in Alpine images

43

Table 4.4: Number of vulnerabilities by image scanner
Image name Tag Trivy Clair ignore-unfixed
alpine latest 0 1 0
redis latest 76 76 2
mysql latest 182 182 1
node.js latest 980 980 20
nginx latest 130 130 2
python latest 1023 1023 20
debian latest 76 76 2
ubuntu latest 17 17 4
java latest 1612 12 754
postgres latest 109 109 2

4.3.1 Scanning standard images

In this part, some selected images will be provided to both image scan-
ners and compare their results. All of the images are the latest tag.
Table 4.4shows the number of vulnerabilities that Trivy and Clair, as a
vulnerability scanner, detect. It’s clear that most of the results are the
same, and both found the same number of vulnerabilities in images. One
notable number is Alpine vulnerability which is different. Clair found
one vulnerability which is CVE-2020-28928, with low severity. Trivy
scans the image and not able to detect any vulnerability. Trivy sht-
tps://secdb.alpinelinux.org as a data source for vulnerability in Alpine,
while Clair uses https://cve.mitre.org/ as a resource for matching vulner-
abilities. They are Alpine Linux databases and contain the vulnerable pack-
age; however, they include a different number of vulnerabilities.

The significant difference in the number of vulnerabilities is in the
Java image. Trivy detected more than 1600 vulnerabilities, while Clair’s
result shows that this image contains 12 vulnerabilities. This result
was predictable because Trivy can scan the application package and
have a data source. Clair supports python programming language and
detects a vulnerability in Python packages. Trivy uses GitHub Advisory
Database for Python packages, a security vulnerability database from open-
source software. Clair uses safety DB as a database for python package
vulnerabilities.

4.3.2 Scanning distroless images

Google provides distroless images that don’t contain package managers,
shells, or extra applications. Most distroless images use Debian as a base
operating system[20]. The use of images in the application lifecycle will
increase security. These so-called distroless images remove as much as
possible from OS but still have two major components. In the container,
these components include userspace, like the C library(glibc, muslc)and
encryption libraries.

The second component is the kernel that runs on hardware or

44

Table 4.5: Size and Vulnerabilities in distroless images
Distroless Image Size(MB) Detected by Trivy Detected by Clair
base-debian11 124 79 79
gcr.io/distroless/base-debian11 20.03 14 0
Python3 920 1038 1038
gcr.io/distroless/python3 54.20 47 0
java 643 1612 12
gcr.io/distroless/java 210 33 0
nodejs 995 980 980
gcr.io/distroless/nodejs 166 14 0

VM. In other words, distroless images have necessary packages in the
image. Therefore, they are minimal in size. The smallest one is
gcr.io/distroless/static-debian11, around 2 MB, while the Debian image is
124 MB [20]. Smaller size means lower CPU, RAM, and resources. This
smaller size has a considerable benefit in cloud computing, such as fewer
network costs and faster pull and deployment.

First, to experiment, pull some examples of distroless images from The
Google cloud platform and compare them with the same standard images.
After pulling dirstroless images into the system have tried to scan them
with both Trivy and Clair scanners.

Table 4.5 compares four different container images group in some
features like size and number of vulnerabilities. A Trivy scanner scanned
these images. It shows that Trivy analyzes files and doesn’t just look
at installed packages. Distroless images do not have status file in
/var/lib/dpkg/status.but they do still contain glibc, openssl, libssl, etc.

Figure 4.5: Distroless image size(MB)

When compare normal and distroless images, Its clear that in all of
the distoless images size and vulnerabilities reduced significantly. in
normal Application images java have the most number of vulnerability

45

which is more than 1600 and following by python packages with 1038
vulnerabilities. In normal images debian with 79 vulnerabilities are the
lowest while decrease to 14 in distroless images. The highest number of
vulnerability in distroless images is 47 which is 22 vulnerabilities less than
debian as a lowest number in normal images. This 4.6 bar chart compares
the number of vulnerabilities detected in distroless images with standard
images by Trivy.

After that, pulled the images into the system to experiment with the
Clair scanner. When starting a scan with Clair, It not able to detect
vulnerabilities. Clair uses a package manager to detect vulnerabilities, and
as far as distroless images don’t contain any package manager or even
shell, Clair cannot discover any malware. Figure . 4.7 represents the result
of scanning the distroless image with Clair. When comes to size all of 4
distroless images are less than nodejs image. The bar chart . 4.5 compares
the size of standard images with distroless images.

Figure 4.6: Distroless image vulnerabilities

Figure 4.7: Distroless image scan by Clair

4.3.3 Scanning slimmed images

One of the primary techniques to increase the security in the container im-
ages is using some slimmer tools to remove the extra layers. They optimize
the image container, which causes them smaller and more secure. There
is some different application that use analysis technique to optimize con-
tainer images. Fig. 4.8 shows that the nginx container was 142MB in size
and, after using slimmer, decreased to 21.1MB, around 11X smaller than

46

usual. Some of this application like docker slim minimize containers up to
30X [22].

Figure 4.8: Slim nginx conatiner with Docker-slim

Hardening images for all organizations that use containers are a part of
IT security strategy. One approach could be using images with more minor
vulnerabilities or adding image scanners in CI/CD pipeline. Distroless
images improve security with less layer and vulnerabilities. Instead,
another problem arise with them and their maintenance. As we mentioned,
they don’t have any package manager or bash. Still, they need to update
base dependencies and proper maintenance. as mentioned before, the
Alpine base image is around 5 Mb in size and is considered the most secure
image. It is possible to install the library and customize your own images
based on your need.

47

48

Chapter 5

Discussion

5.1 Comparison of Trivy and Clair

In this chapter, we first compare some features in Trivy and Clair, then
discuss experiments and results. Both Trivy and Clair are open-source
scanners that analyze images and provide vulnerability reports. Some
factors could be important when comparing them.

5.1.1 Accuracy

Image scanner detects vulnerabilities and reports them along with severity.
The accuracy rate represents how well it could use for the security team
to find vulnerabilities and patch them. Accuracy is an essential factor
for the scanner to give a proper report. when compare the result of
scanner together, It shows that both of them are accurate. It’s clear that
most of the results are the same, and both found the same number of
vulnerabilities in images. One notable number is Alpine vulnerability
which is different. Clair found one vulnerability which is CVE-2020-
28928, with low severity. Trivy scans the image and not able to detect
any vulnerability. Trivy shttps://secdb.alpinelinux.org as a data source
for vulnerability in Alpine, while Clair uses https://cve.mitre.org/ as a
resource for matching vulnerabilities. They are Alpine Linux databases and
contain the vulnerable package; however, they include a different number
of vulnerabilities.

The significant difference in the number of vulnerabilities is in the
Java image. Trivy detected more than 1600 vulnerabilities, while Clair’s
result shows that this image contains 12 vulnerabilities. This result
was predictable because Trivy can scan the application package and
have a data source. Clair supports python programming language and
detects a vulnerability in Python packages. Trivy uses GitHub Advisory
Database for Python packages, a security vulnerability database from open-
source software. Clair uses safety DB as a database for python package
vulnerabilities. When it comes to distroless images, Clair not able to find
vulnerabilities while Trivy support these kind of images. Trivy using the
file scanning instead of looking for special location.

49

Figure 5.1: Number of detected vulnerabilities by Clair and Trivy

5.1.2 Unfixed vulnerabilities

Container security scanners detect a lot of vulnerabilities, and as could
be seen in table 4.4 applications like java and python have more than
1000 vulnerabilities. After scanning the images, some Linux distributions
like Debian latest have 76 vulnerabilities. As we mentioned before, some
Linux distributions like Ubuntu and Red Hat will provide information
related to CVEs and how to patch them. After the investigation into
detected vulnerabilities is released, most of them are unfixed. It means
that the vendors, regardless of upstream, did not provide any patch
for vulnerabilities. These vulnerabilities have low severity or do not
significantly affect the application.

Figure 5.2: Number of vulnerabilities with ignore-unfixed option

Trivy provides options like "–ignore-unfixed" that can compare the
number of vulnerabilities without this option. Here is an example of using
this option:

50

root@trivy:/home/ubuntu# trivy image --ignore-unfixed ubuntu:latest

Fig. 5.2 represents by using the –ignore-unfixed option, the number of
vulnerabilities will decrease significantly. The highest decreasing number
of vulnerabilities is related to nodejs and python. Both have around 1000
in the number of vulnerabilities and have reduced to 20 with unfixed. By
using the unfixed option, all of the vulnerabilities in images are reduced
to 20 or less except java image. It shows that most of the detected
vulnerabilities by the scanner are unfixed. Vulnerability reports provide all
vulnerabilities, and the security team in every organization could review
the list and ensure that the image could leave with unpatched issues.

5.1.3 Number of support packages

There is essential to support a variety of vendors from OS packages and
application packages. Clair detects vulnerabilities in OS packages that
are present in table 4.1. Clair can only find vulnerabilities in python
packages, while Trivy has more data sources and support more application
packages. Trivy supports most of the OS packages and has a plan to
support windows. The list of supported OS packages is present in table4.2.
Trivy is also able to detect vulnerabilities in distroless images. The list of
application packages that Trivy support can be see in table4.3.

5.1.4 Third party databases

Database plays a vital role in every application, especially scanning tools.
All the packages will check with the database and return report. Clair
relay on Postgres database, which is content based storage. It is a
fundamental element in Clair scanner to deliver the service, and if the
database goes down, it is likely unable to provide service anymore. Red
Hat recommends having automatic replication and fail-over for Postgres
database[26]. Running another PostgresSQL instance needs more resources
and maintenance. Trivy uses Trivy-db, which is available on GitHub.
This CLI tool has all vulnerabilities from different sources like NVD,
Debian, and update resources that are mentioned in 4.3and manipulates the
vulnerability database. Trivy-db is a key-value database and the internal
Update is every 6 hours. When you start scanning images, the first step is
updating the build-in policy and then scanning the images.

5.1.5 Future threats

Trivy and Clair are open-source projects which do static analysis in
container images to detect vulnerabilities. Clair was the first developed
scanner and was created in 2015. Trivy was developed in 2019, and the
same year was acquired by Aqua security. One of the main advantages of
open source software is that it doesn’t involve copyright and is free to use.
Although Aqua is a cloud security company and tries to secure a cloud-
native Environment, It’s a potential risk that this company will change its
vision in the future and not provide Trivy as an open-source license. They

51

can remove the code and then start to offer a commercial to the users and
organizations.

5.2 Future work

During research about this project and experimenting with some tools,
there are the following steps for future work.

Future work could be using a vulnerability scanner in the software de-
velopment lifecycle. Both Trivy and Clair have a standalone mode suitable
for CI/CD pipeline. This method can automate the process and perform
scanning images that build. Integrating them within the CI/CD could be
interesting, and check which ones fit into this pipeline.

Finally, during the experiment and scan images, when using a slimmer
scanner not able to find vulnerabilities. However, Trivy provides some new
features compared to the old scanner, such as scanning file systems and Git
repositories. There seems to be a strong need for an effective vulnerability
scanner that relies not only on particular files.

52

Chapter 6

Conclusion

The main goal of this thesis was to address the following research
questions:

1. How do container image scanners detect vulnerabilities?

2. To what extent are current open source container image scanners
able to detect vulnerabilities?

Scanning the image at first glance is very simple. but there are many
images, and each of them has an unsimilar kernel, shell, package, and other
components and needs a different implementation for each distribution.
The results show that most available images have vulnerabilities and need
to scan before using them in software development. Clair uses Claircore
as the main component and a Postgres database for saving the results.
Trivy main component is fanal and uses Trivy-db, a separate repository
located on GitHub. Both Trivy and Clair are modular and use similar
algorithms to detect vulnerabilities. They look at specific files and retrieve
information about the Os and application packages. Python package is the
only application that Clair can find vulnerabilities.

Most of the vulnerabilities reported by Trivy and Clair are unfixed
vulnerabilities. As these vulnerabilities don’t considerably impact the
application, vendors do not provide patches for them. Most likely, they do
not significantly affect the systems or applications. The algorithms reveal
that image scanners rely on the same file systems to find vulnerabilities.
Experiments confirm that when using some slimmer, like docker-slim,
which removes the extra libraries, neither Trivy nor Clair can scan the
images and find vulnerabilities.

in conclusion, there is no doubt that the container images should be
unthreatened. The solution could be using some secure image like alpine
as a base image and optimizing it.

53

54

Bibliography

[1] /security/what-is-cve. 2021. URL: https://www.redhat.com/en/topics/
security/what-is-cve (visited on 23/02/2022).

[2] About the OCI. 2021. URL: https://opencontainers.org/about/overview//
(visited on 19/02/2022).

[3] Ashish Aggarwal and Pankaj Jalote. ‘Integrating static and dynamic
analysis for detecting vulnerabilities’. In: 30th Annual International
Computer Software and Applications Conference (COMPSAC’06). Vol. 1.
IEEE. 2006, pp. 343–350.

[4] Amr Amin et al. ‘Androshield: Automated android applications vul-
nerability detection, a hybrid static and dynamic analysis approach’.
In: Information 10.10 (2019), p. 326.

[5] Anchore Image Scanner. 2019. URL: https://anchore.com/ (visited on
09/02/2022).

[6] Application container market". 2021. URL: https://www.marketsandmarkets.
com/Market-Reports/%20application-container-market-182079587.htm
(visited on 19/01/2022).

[7] aquasecurity.CNCF.io. 2022. URL: https://www.cncf.io/online-programs/
trivy-open-source-scanner-for-container-images-just-download-and-run/
(visited on 06/02/2022).

[8] aquasecurity.github.io. 2022. URL: https://aquasecurity.github.io/trivy/
v0.23.0/ (visited on 06/02/2022).

[9] Thanh Bui. ‘Analysis of docker security’. In: arXiv preprint arXiv:1501.02967
(2015).

[10] Saikat Chakraborty et al. ‘Deep learning based vulnerability detec-
tion: Are we there yet’. In: IEEE Transactions on Software Engineering
(2021).

[11] Clair Documentation. 2022. URL: https://quay.github. io/clair/whatis.
html (visited on 21/02/2022).

[12] clair-scanner. 2020. URL: https : / / github . com / arminc / clair - scanner
(visited on 21/02/2022).

[13] clamav engine/. 2022. URL: https : / / www . clamav . net/ (visited on
06/02/2022).

55

https://www.redhat.com/en/topics/security/what-is-cve
https://www.redhat.com/en/topics/security/what-is-cve
https://opencontainers.org/about/overview//
https://anchore.com/
https://www.marketsandmarkets.com/Market-Reports/%20application-container-market-182079587.htm
https://www.marketsandmarkets.com/Market-Reports/%20application-container-market-182079587.htm
https://www.cncf.io/online-programs/trivy-open-source-scanner-for-container-images-just-download-and-run/
https://www.cncf.io/online-programs/trivy-open-source-scanner-for-container-images-just-download-and-run/
https://aquasecurity.github.io/trivy/v0.23.0/
https://aquasecurity.github.io/trivy/v0.23.0/
https://quay.github.io/clair/whatis.html
https://quay.github.io/clair/whatis.html
https://github.com/arminc/clair-scanner
https://www.clamav.net/

[14] Common Vulnerabilities and Exposures. 2022. URL: https://en.wikipedia.
org / wiki / Common _ Vulnerabilities _ and _ Exposures (visited on
09/03/2022).

[15] Container images and registries. 2022. URL: https://www.redhat.com/
en/topics/cloud-native-apps/what- is- a- container- registry (visited on
06/03/2022).

[16] Container images and registries. 2022. URL: https://docs.microsoft.com/
en-us/azure/container-registry (visited on 06/03/2022).

[17] container-security-scanners/. 2021. URL: https : / / geekflare . com /
container-security-scanners/ (visited on 29/01/2022).

[18] Content-addressable storage. 2022. URL: https://en.wikipedia.org/wiki/
Content-addressable_storage (visited on 31/03/2022).

[19] dagda image scanner. 2022. URL: https://github.com/eliasgranderubio/
dagda/ (visited on 26/01/2022).

[20] Distroless Container Images. 2022. URL: https : / / github . com /
GoogleContainerTools/distroless (visited on 07/05/2022).

[21] Docker containers vulnerability scan. 2022. URL: https ://go .dev/doc/
(visited on 25/04/2022).

[22] DockerSlim in Githubn. 2022. URL: https ://github.com/docker - slim/
docker-slim (visited on 03/05/2022).

[23] jonathan luu Emilien socchi. ‘A deep dive into Docker Hub’s security
landscape "’. In: (2019).

[24] Falco, the cloud-native runtime security project,/. 2022. URL: https://falco.
org/ (visited on 09/02/2022).

[25] Laurent Gallon. ‘On the impact of environmental metrics on CVSS
scores’. In: 2010 IEEE Second International Conference on Social Comput-
ing. IEEE. 2010, pp. 987–992.

[26] Get Postgres and Clair. 2022. URL: https : / / access . redhat . com /
documentation/en-us/red_hat_quay/2.9/html/manage_red_hat_
quay/clair-initial-setup (visited on 04/05/2022).

[27] Go programming language. 2022. URL: https://github.com/arminc/clair-
scanner (visited on 21/04/2022).

[28] History container. 2020. URL: https://www.redhat.com/en/blog/history-
containers (visited on 02/02/2022).

[29] how Anchore Enterprise work. 2022. URL: https ://docs .anchore .com/
current (visited on 22/02/2022).

[30] Delu Huang et al. ‘Security analysis and threats detection techniques
on docker container’. In: 2019 IEEE 5th International Conference on
Computer and Communications (ICCC). IEEE. 2019, pp. 1214–1220.

[31] Vipin Jain et al. ‘Static Vulnerability Analysis of Docker Images’. In:
IOP Conference Series: Materials Science and Engineering. Vol. 1131. 1.
IOP Publishing. 2021, p. 012018.

56

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-registry
https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-registry
https://docs.microsoft.com/en-us/azure/container-registry
https://docs.microsoft.com/en-us/azure/container-registry
https://geekflare.com/container-security-scanners/
https://geekflare.com/container-security-scanners/
https://en.wikipedia.org/wiki/Content-addressable_storage
https://en.wikipedia.org/wiki/Content-addressable_storage
https://github.com/eliasgranderubio/dagda/
https://github.com/eliasgranderubio/dagda/
https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless
https://go.dev/doc/
https://github.com/docker-slim/docker-slim
https://github.com/docker-slim/docker-slim
https://falco.org/
https://falco.org/
https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html/manage_red_hat_quay/clair-initial-setup
https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html/manage_red_hat_quay/clair-initial-setup
https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html/manage_red_hat_quay/clair-initial-setup
https://github.com/arminc/clair-scanner
https://github.com/arminc/clair-scanner
https://www.redhat.com/en/blog/history-containers
https://www.redhat.com/en/blog/history-containers
https://docs.anchore.com/current
https://docs.anchore.com/current

[32] Omar Javed and Salman Toor. ‘Understanding the Quality of Con-
tainer Security Vulnerability Detection Tools’. In: arXiv preprint
arXiv:2101.03844 (2021).

[33] Bhupinder Kaur et al. ‘An analysis of security vulnerabilities in
container images for scientific data analysis’. In: GigaScience 10.6
(2021), giab025.

[34] Si-yao Liu, Qiang Li and Bin Li. ‘Research on isolation of container
based on Docker technology’. In: Computer Engineering & Software 36
(2015), pp. 110–113.

[35] MarkusLinnalampi. ‘outdated software in container images "’. In:
(2021).

[36] Shannon Meier et al. ‘IBM systems virtualization: Servers, storage,
and software’. In: IBM Redbook, May (2008).

[37] National Vulnerability Database. 2022. URL: https : / / nvd . nist . gov/
(visited on 21/02/2022).

[38] OCI Runtime and Lifecycle. 2022. URL: https : / / github . com /
opencontainers / runtime - spec / blob / main / runtime . md (visited on
03/03/2022).

[39] OCI specefication. 2022. URL: https://github.com/opencontainers/image-
spec (visited on 19/02/2022).

[40] Overview of CVE history. 2022. URL: https : / /www . cve . org /About /
History#Overview (visited on 09/03/2022).

[41] Amit M Potdar et al. ‘Performance evaluation of docker container
and virtual machine’. In: Procedia Computer Science 171 (2020),
pp. 1419–1428.

[42] Qualitative severity rating scale. 2022. URL: https://www.first.org/cvss/
specification-document (visited on 21/02/2022).

[43] Sogand Shirinbab, Lars Lundberg and Emiliano Casalicchio. ‘Per-
formance evaluation of container and virtual machine running cas-
sandra workload’. In: 2017 3rd International Conference of Cloud Com-
puting Technologies and Applications (CloudTech). IEEE. 2017, pp. 1–8.

[44] Sari Sultan, Imtiaz Ahmad and Tassos Dimitriou. ‘Container security:
Issues, challenges, and the road ahead’. In: IEEE Access 7 (2019),
pp. 52976–52996.

[45] Chris Swan. Docker drops lxc as default execution environment. 2019.

[46] The first introudction of docker. 2020. URL: https ://www.docker .com/
(visited on 26/01/2022).

[47] Anshu Tripathi and Umesh Kumar Singh. ‘On prioritization of vul-
nerability categories based on CVSS scores’. In: 2011 6th International
Conference on Computer Sciences and Convergence Information Techno-
logy (ICCIT). IEEE. 2011, pp. 692–697.

[48] Trivy Database in Githubn. 2022. URL: https://github.com/aquasecurity/
trivy-db (visited on 29/04/2022).

57

https://nvd.nist.gov/
https://github.com/opencontainers/runtime-spec/blob/main/runtime.md
https://github.com/opencontainers/runtime-spec/blob/main/runtime.md
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/image-spec
https://www.cve.org/About/History#Overview
https://www.cve.org/About/History#Overview
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://www.docker.com/
https://github.com/aquasecurity/trivy-db
https://github.com/aquasecurity/trivy-db

[49] Olufogorehan Tunde-Onadele et al. ‘A study on container vulnerab-
ility exploit detection’. In: 2019 IEEE International Conference on Cloud
Engineering (IC2E). IEEE. 2019, pp. 121–127.

[50] Steven J Vaughan-Nichols. ‘Docker libcontainer unifies Linux con-
tainer powers’. In: ZDNet, June (2014).

[51] What is Snyk. 2022. URL: https://docs.snyk.io/ (visited on 10/03/2022).

[52] Katrine Wist, Malene Helsem and Danilo Gligoroski. ‘Vulnerability
analysis of 2500 docker hub images’. In: Advances in Security,
Networks, and Internet of Things. Springer, 2021, pp. 307–327.

[53] Robail Yasrab. ‘Mitigating docker security issues’. In: arXiv preprint
arXiv:1804.05039 (2018).

[54] Ruoyu Zhang et al. ‘Combining static and dynamic analysis to dis-
cover software vulnerabilities’. In: 2011 Fifth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing.
IEEE. 2011, pp. 175–181.

58

https://docs.snyk.io/

Chapter 7

Appendix

7.1 Clair source code

7.1.1 Identiy the OS

Listing 7.1: Ubuntu as an example

#https://github.com/quay/claircore/blob/main/ubuntu/releases.go
package ubuntu

import (
"github.com/quay/claircore"

)

type Release string

const (
Artful Release = "artful" // deprecated
Bionic Release = "bionic"
Cosmic Release = "cosmic"
Disco Release = "disco"
Precise Release = "precise" // deprecated
Trusty Release = "trusty"
Xenial Release = "xenial"
Eoan Release = "eoan"
Focal Release = "focal"
Impish Release = "impish"

)

var AllReleases = map[Release]struct{}{
Artful: struct{}{},
Bionic: struct{}{},
Cosmic: struct{}{},
Disco: struct{}{},
Precise: struct{}{},
Trusty: struct{}{},
Xenial: struct{}{},
Eoan: struct{}{},
Focal: struct{}{},

59

Impish: struct{}{},
}

var ReleaseToVersionID = map[Release]string{
Artful: "17.10",
Bionic: "18.04",
Cosmic: "18.10",
Disco: "19.04",
Precise: "12.04",
Trusty: "14.04",
Xenial: "16.04",
Eoan: "19.10",
Focal: "20.04",
Impish: "21.10",

}

var artfulDist = &claircore.Distribution{
Name: "Ubuntu",
Version: "17.10 (Artful Aardvark)",
DID: "ubuntu",
PrettyName: "Ubuntu 17.10",
VersionID: "17.10",
VersionCodeName: "artful",

}

var bionicDist = &claircore.Distribution{
Name: "Ubuntu",
Version: "18.04.3 LTS (Bionic Beaver)",
DID: "ubuntu",
PrettyName: "Ubuntu 18.04.3 LTS",
VersionID: "18.04",
VersionCodeName: "bionic",

}

var cosmicDist = &claircore.Distribution{
Name: "Ubuntu",
Version: "18.10 (Cosmic Cuttlefish)",
DID: "ubuntu",
VersionID: "18.10",
VersionCodeName: "cosmic",
PrettyName: "Ubuntu 18.10",

}

var discoDist = &claircore.Distribution{
Name: "Ubuntu",
Version: "19.04 (Disco Dingo)",
DID: "ubuntu",
VersionID: "19.04",
VersionCodeName: "disco",
PrettyName: "Ubuntu 19.04",

}

var preciseDist = &claircore.Distribution{
Name: "Ubuntu",

60

Version: "12.04.5 LTS, Precise Pangolin",
DID: "ubuntu",
VersionID: "12.04",
PrettyName: "Ubuntu precise (12.04.5 LTS)",

}

var trustyDist = &claircore.Distribution{
Name: "Ubuntu",
Version: "14.04.6 LTS, Trusty Tahr",
DID: "ubuntu",
PrettyName: "Ubuntu 14.04.6 LTS",
VersionID: "14.04",

}

var xenialDist = &claircore.Distribution{
Name: "Ubuntu",
Version: "16.04.6 LTS (Xenial Xerus)",
DID: "ubuntu",
PrettyName: "Ubuntu 16.04.6 LTS",
VersionID: "16.04",
VersionCodeName: "xenial",

}

var eoanDist = &claircore.Distribution{
Name: "Ubuntu",
Version: "19.10 (Eoan Ermine)",
DID: "ubuntu",
PrettyName: "Ubuntu 19.10",
VersionID: "19.10",
VersionCodeName: "eoan",

}

var focalDist = &claircore.Distribution{
Name: "Ubuntu",
Version: "20.04 LTS (Focal Fossa)",
DID: "ubuntu",
PrettyName: "Ubuntu 20.04 LTS",
VersionID: "20.04",
VersionCodeName: "focal",

}

var impishDist = &claircore.Distribution{
Name: "Ubuntu",
Version: "21.10 (Impish Indri)",
DID: "ubuntu",
PrettyName: "Ubuntu 21.10",
VersionID: "21.10",
VersionCodeName: "impish",

}

func releaseToDist(r Release) *claircore.Distribution {
switch r {
case Artful:

return artfulDist

61

case Bionic:
return bionicDist

case Cosmic:
return cosmicDist

case Disco:
return discoDist

case Precise:
return preciseDist

case Trusty:
return trustyDist

case Xenial:
return xenialDist

case Eoan:
return eoanDist

case Focal:
return focalDist

case Impish:
return impishDist

default:
// return empty dist
return &claircore.Distribution{}

}
}

7.1.2 Identify the package

Listing 7.2: Identify the package by scanner
#https://github.com/quay/claircore/blob/main/dpkg/scanner.go
package dpkg

import (
"bufio"
"context"
"crypto/md5"
"encoding/hex"
"errors"
"fmt"
"io"
"io/fs"
"net/textproto"
"path/filepath"
"runtime/trace"
"strings"

"github.com/quay/zlog"

"github.com/quay/claircore"
"github.com/quay/claircore/internal/indexer"
"github.com/quay/claircore/pkg/tarfs"

)

62

const (
name = "dpkg"
kind = "package"
version = "4"

)

var (
_ indexer.VersionedScanner = (*Scanner)(nil)
_ indexer.PackageScanner = (*Scanner)(nil)

)

type Scanner struct{}

func (ps *Scanner) Name() string { return name }

func (ps *Scanner) Version() string { return version }

func (ps *Scanner) Kind() string { return kind }
// It does not respect any dpkg configuration files.
func (ps *Scanner) Scan(ctx context.Context, layer

*claircore.Layer) ([]*claircore.Package, error) {
// Preamble
defer trace.StartRegion(ctx, "Scanner.Scan").End()
trace.Log(ctx, "layer", layer.Hash.String())
ctx = zlog.ContextWithValues(ctx,

"component", "dpkg/Scanner.Scan",
"version", ps.Version(),
"layer", layer.Hash.String())

zlog.Debug(ctx).Msg("start")
defer zlog.Debug(ctx).Msg("done")

rd, err := layer.Reader()
if err != nil {

return nil, fmt.Errorf("opening layer failed: %w", err)
}
defer rd.Close()
sys, err := tarfs.New(rd)
if err != nil {

return nil, fmt.Errorf("opening layer failed: %w", err)
}

loc := make(map[string]int)
walk := func(p string, d fs.DirEntry, err error) error {

if err != nil {
return err

}
switch dir, f := filepath.Split(p); {
case f == "status" && !d.IsDir():

loc[dir]++
case f == "info" && d.IsDir():

loc[dir]++
}

63

return nil
}

if err := fs.WalkDir(sys, ".", walk); err != nil {
return nil, err

}
zlog.Debug(ctx).Msg("scanned for possible databases")

// If we didn’t find anything, this loop is completely skipped.
var pkgs []*claircore.Package
for p, x := range loc {

if x != 2 { // If we didn’t find both files, skip this
directory.

continue
}
ctx = zlog.ContextWithValues(ctx, "database", p)
zlog.Debug(ctx).Msg("examining package database")

// We want the "status" file.
fn := filepath.Join(p, "status")
db, err := sys.Open(fn)
switch {
case errors.Is(err, nil):
case errors.Is(err, fs.ErrNotExist):

zlog.Debug(ctx).
Str("filename", fn).
Msg("false positive")

continue
default:

return nil, fmt.Errorf("reading status file from layer
failed: %w", err)

}

found := make(map[string]*claircore.Package)

tp := textproto.NewReader(bufio.NewReader(db))
Restart:
hdr, err := tp.ReadMIMEHeader()
for ; err == nil && len(hdr) > 0; hdr, err =

tp.ReadMIMEHeader() {
name := hdr.Get("Package")
v := hdr.Get("Version")
p := &claircore.Package{

Name: name,
Version: v,
Kind: claircore.BINARY,
Arch: hdr.Get("Architecture"),
PackageDB: fn,

}
if src := hdr.Get("Source"); src != "" {

p.Source = &claircore.Package{
Name: src,
Kind: claircore.SOURCE,
Version: v,

64

PackageDB: fn,
}

}

found[name] = p
pkgs = append(pkgs, p)

}
switch {
case errors.Is(err, io.EOF):
default:

zlog.Warn(ctx).Err(err).Msg("unable to read entry")
goto Restart

}

const suffix = ".md5sums"
ms, err := fs.Glob(sys, filepath.Join(p, "info", "*"+suffix))
if err != nil {

return nil, fmt.Errorf("resetting tar reader failed: %w",
err)

}
hash := md5.New()
for _, n := range ms {

k := strings.TrimSuffix(filepath.Base(n), suffix)
if i := strings.IndexRune(k, ’:’); i != -1 {

k = k[:i]
}
p, ok := found[k]
if !ok {

zlog.Debug(ctx).
Str("package", k).
Msg("extra metadata found, ignoring")

continue
}
f, err := sys.Open(n)
if err != nil {

return nil, fmt.Errorf("unable to open file %q: %w", n,
err)

}
hash.Reset()
_, err = io.Copy(hash, f)
f.Close()
if err != nil {

zlog.Warn(ctx).
Err(err).
Str("package", n).
Msg("unable to read package metadata")

continue
}
p.RepositoryHint = hex.EncodeToString(hash.Sum(nil))

}
zlog.Debug(ctx).

Int("count", len(found)).
Msg("found packages")

65

}

return pkgs, nil
}

7.1.3 Identifying the OS-release

Listing 7.3: Claircore OS-release
#https://github.com/quay/claircore/blob/main/osrelease/scanner.go
package osrelease

import (
"bufio"
"bytes"
"context"
"fmt"
"io"
"runtime/trace"
"sort"
"strings"

"github.com/quay/zlog"

"github.com/quay/claircore"
"github.com/quay/claircore/internal/indexer"
"github.com/quay/claircore/pkg/cpe"
"github.com/quay/claircore/pkg/tarfs"

)

const (
scannerName = "os-release"
scannerVersion = "2"
scannerKind = "distribution"

)

// Path and FallbackPath are the two documented locations for the
os-release

const (
Path = ‘etc/os-release‘
FallbackPath = ‘usr/lib/os-release‘

)

var (
_ indexer.DistributionScanner = (*Scanner)(nil)
_ indexer.VersionedScanner = (*Scanner)(nil)

)

// Scanner implements a scanner.DistributionScanner that examines
os-release

66

type Scanner struct{}

func (*Scanner) Name() string { return scannerName }

func (*Scanner) Version() string { return scannerVersion }

func (*Scanner) Kind() string { return scannerKind }

// Scan reports any found os-release Distribution information in
the provided

// layer.

func (s *Scanner) Scan(ctx context.Context, l *claircore.Layer)
([]*claircore.Distribution, error) {

defer trace.StartRegion(ctx, "Scanner.Scan").End()
ctx = zlog.ContextWithValues(ctx,

"component", "osrelease/Scanner.Scan",
"version", s.Version(),
"layer", l.Hash.String())

zlog.Debug(ctx).Msg("start")
defer zlog.Debug(ctx).Msg("done")

r, err := l.Reader()
if err != nil {

return nil, fmt.Errorf("osrelease: unable to open layer: %w",
err)

}
defer r.Close()
sys, err := tarfs.New(r)
if err != nil {

return nil, fmt.Errorf("osrelease: unable to open layer: %w",
err)

}

// Attempt to parse each os-release file encountered. On a
successful parse,

// return the distribution.
var rd io.Reader
for _, n := range []string{Path, FallbackPath} {

f, err := sys.Open(n)
if err != nil {

zlog.Debug(ctx).
Str("name", n).
Err(err).
Msg("unable to open file")

continue
}
defer f.Close()
rd = f
break

}

67

if rd == nil {
zlog.Debug(ctx).Msg("didn’t find an os-release file")
return nil, nil

}
d, err := toDist(ctx, rd)
if err != nil {

return nil, err
}
return []*claircore.Distribution{d}, nil

}

// ToDist returns the distribution information from the file
contents provided on

// r.
func toDist(ctx context.Context, r io.Reader)

(*claircore.Distribution, error) {
ctx = zlog.ContextWithValues(ctx,

"component", "osrelease/parse")
defer trace.StartRegion(ctx, "parse").End()
m, err := Parse(ctx, r)
if err != nil {

return nil, err
}
d := claircore.Distribution{

Name: "Linux",
DID: "linux",

}
ks := make([]string, 0, len(m))
for key := range m {

ks = append(ks, key)
}
sort.Strings(ks)
for _, key := range ks {

value := m[key]
switch key {
case "ID":

zlog.Debug(ctx).Msg("found ID")
d.DID = value

case "VERSION_ID":
zlog.Debug(ctx).Msg("found VERSION_ID")
d.VersionID = value

case "BUILD_ID":
case "VARIANT_ID":
case "CPE_NAME":

zlog.Debug(ctx).Msg("found CPE_NAME")
wfn, err := cpe.Unbind(value)
if err != nil {

zlog.Warn(ctx).
Err(err).
Str("value", value).
Msg("failed to unbind the cpe")

break
}
d.CPE = wfn

68

case "NAME":
zlog.Debug(ctx).Msg("found NAME")
d.Name = value

case "VERSION":
zlog.Debug(ctx).Msg("found VERSION")
d.Version = value

case "ID_LIKE":
case "VERSION_CODENAME":

zlog.Debug(ctx).Msg("found VERISON_CODENAME")
d.VersionCodeName = value

case "PRETTY_NAME":
zlog.Debug(ctx).Msg("found PRETTY_NAME")
d.PrettyName = value

case "REDHAT_BUGZILLA_PRODUCT":
zlog.Debug(ctx).Msg("using RHEL hack")
d.PrettyName = value

}
}
zlog.Debug(ctx).Str("name", d.Name).Msg("found dist")
return &d, nil

}

// Parse splits the contents r into key-value pairs as described in
// os-release(5).
//
// See comments in the source for edge cases.
func Parse(ctx context.Context, r io.Reader) (map[string]string,

error) {
ctx = zlog.ContextWithValues(ctx, "component", "osrelease/Parse")
defer trace.StartRegion(ctx, "Parse").End()
m := make(map[string]string)
s := bufio.NewScanner(r)
s.Split(bufio.ScanLines)
for s.Scan() && ctx.Err() == nil {

b := s.Bytes()
switch {
case len(b) == 0:

continue
case b[0] == ’#’:

continue
}
eq := bytes.IndexRune(b, ’=’)
if eq == -1 {

return nil, fmt.Errorf("osrelease: malformed line %q",
s.Text())

}
key := strings.TrimSpace(string(b[:eq]))
value := strings.TrimSpace(string(b[eq+1:]))

switch value[0] {
case ’\’’:

value = strings.TrimFunc(value, func(r rune) bool { return
r == ’\’’ })

value = strings.ReplaceAll(value, ‘’\’’‘, ‘’‘)

69

case ’"’:

value = strings.TrimFunc(value, func(r rune) bool { return
r == ’"’ })

value = dqReplacer.Replace(value)
default:
}

m[key] = value
}
if err := s.Err(); err != nil {

return nil, err
}
if err := ctx.Err(); err != nil {

return nil, err
}
return m, nil

}

var dqReplacer = strings.NewReplacer(
"\\‘", "‘",
‘\\‘, ‘\‘,
‘\"‘, ‘"‘,
‘\$‘, ‘$‘,

)

7.1.4 Identify the Vulnerabilities

Listing 7.4: Identify the vulnerabilities
#https://github.com/quay/claircore/blob/main/internal/matcher/match.go
package matcher

import (
"context"
"encoding/json"
"runtime"
"sync/atomic"

"github.com/quay/zlog"
"golang.org/x/sync/errgroup"

"github.com/quay/claircore"
"github.com/quay/claircore/internal/vulnstore"
"github.com/quay/claircore/libvuln/driver"

)

// Match receives an IndexReport and creates a VulnerabilityReport
containing matched vulnerabilities

func Match(ctx context.Context, ir *claircore.IndexReport, matchers
[]driver.Matcher, store vulnstore.Vulnerability)
(*claircore.VulnerabilityReport, error) {

70

// the vulnerability report we are creating
vr := &claircore.VulnerabilityReport{

Hash: ir.Hash,
Packages: ir.Packages,
Environments: ir.Environments,
Distributions: ir.Distributions,
Repositories: ir.Repositories,
Vulnerabilities: map[string]*claircore.Vulnerability{},
PackageVulnerabilities: map[string][]string{},

}

// extract IndexRecords from the IndexReport
records := ir.IndexRecords()
// a channel where concurrent controllers will deliver

vulnerabilities affecting a package.
// maps a package id to a list of vulnerabilities.
ctrlC := make(chan map[string][]*claircore.Vulnerability, 1024)
// a channel where controller errors will be reported
errorC := make(chan error, 1024)
// fan out all controllers, write their output to ctrlC, close

ctrlC once all writers finish
go func() {

defer close(ctrlC)
var g errgroup.Group
for _, m := range matchers {

mm := m
g.Go(func() error {

mc := NewController(mm, store)
vulns, err := mc.Match(ctx, records)
if err != nil {

return err
}
// in event of slow reader go routines will block
ctrlC <- vulns
return nil

})
}
if err := g.Wait(); err != nil {

errorC <- err
}

}()
// loop ranges until ctrlC is closed and fully drained, ctrlC is

guaranteed to close
for vulnsByPackage := range ctrlC {

for pkgID, vulns := range vulnsByPackage {
for _, vuln := range vulns {

vr.Vulnerabilities[vuln.ID] = vuln
vr.PackageVulnerabilities[pkgID] =

append(vr.PackageVulnerabilities[pkgID], vuln.ID)
}

}
}
select {
case err := <-errorC:

71

return nil, err
default:
}
return vr, nil

}

// Store is the interface that can retrieve Enrichments and
Vulnerabilities.

type Store interface {
vulnstore.Vulnerability
vulnstore.Enrichment

}

// EnrichedMatch receives an IndexReport and creates a
VulnerabilityReport

// containing matched vulnerabilities and any relevant enrichments.
func EnrichedMatch(ctx context.Context, ir *claircore.IndexReport,

ms []driver.Matcher, es []driver.Enricher, s Store)
(*claircore.VulnerabilityReport, error) {

// the vulnerability report we are creating
vr := &claircore.VulnerabilityReport{

Hash: ir.Hash,
Packages: ir.Packages,
Environments: ir.Environments,
Distributions: ir.Distributions,
Repositories: ir.Repositories,
Vulnerabilities: map[string]*claircore.Vulnerability{},
PackageVulnerabilities: map[string][]string{},
// The Enrichments member isn’t constructed here because it’s
// constructed separately and then added.

}
// extract IndexRecords from the IndexReport
records := ir.IndexRecords()
lim := runtime.GOMAXPROCS(0)

// Set up a pool to run matchers
mCh := make(chan driver.Matcher)
vCh := make(chan map[string][]*claircore.Vulnerability, lim)
mg, mctx := errgroup.WithContext(ctx) // match group, match

context
for i := 0; i < lim; i++ {

mg.Go(func() error { // Worker
var m driver.Matcher
for m = range mCh {

select {
case <-mctx.Done():

return mctx.Err()
default:
}
vs, err := NewController(m, s).Match(mctx, records)
if err != nil {

zlog.Error(ctx).
Err(err).
Msg("matcher error")

72

continue
}
vCh <- vs

}
return nil

})
}
// Set up a pool to watch the matchers and attach results to the

report.
var vg errgroup.Group
vg.Go(func() error { // Pipeline watcher
Send:

for _, m := range ms {
select {
case <-mctx.Done():

break Send
case mCh <- m:
}

}
close(mCh)
defer close(vCh)
if err := mg.Wait(); err != nil {

return err
}
return nil

})
vg.Go(func() error { // Collector

for pkgVuln := range vCh {
for pkg, vs := range pkgVuln {

for _, v := range vs {
vr.Vulnerabilities[v.ID] = v
vr.PackageVulnerabilities[pkg] =

append(vr.PackageVulnerabilities[pkg], v.ID)
}

}
}
return nil

})
if err := vg.Wait(); err != nil {

return nil, err
}

// Set up a pool to run the enrichers and attach results to the
report.

eCh := make(chan driver.Enricher)
type entry struct {

kind string
msg []json.RawMessage

}
rCh := make(chan *entry, lim)
eg, ectx := errgroup.WithContext(ctx)
eg.Go(func() error { // Sender
Send:

for _, e := range es {

73

select {
case eCh <- e:
case <-ectx.Done():

break Send
}

}
close(eCh)
return nil

})
eg.Go(func() error { // Collector

em := make(map[string][]json.RawMessage)
for e := range rCh {

em[e.kind] = append(em[e.kind], e.msg...)
}
vr.Enrichments = em
return nil

})
// Use an atomic to track closing the results channel.
ct := uint32(lim)
for i := 0; i < lim; i++ {

eg.Go(func() error { // Worker
defer func() {

if atomic.AddUint32(&ct, ^uint32(0)) == 0 {
close(rCh)

}
}()
var e driver.Enricher
for e = range eCh {

kind, msg, err := e.Enrich(ectx, getter(s, e.Name()), vr)
if err != nil {

zlog.Error(ctx).
Err(err).
Msg("enrichment error")

continue
}
if len(msg) == 0 {

zlog.Debug(ctx).
Str("name", e.Name()).
Msg("enricher reported nothing, skipping")

continue
}
res := entry{

msg: msg,
kind: kind,

}
select {
case rCh <- &res:
case <-ectx.Done():

return ectx.Err()
}

}
return nil

})
}

74

if err := eg.Wait(); err != nil {
return nil, err

}

return vr, nil
}

// Getter returns a type implementing driver.EnrichmentGetter.
func getter(s vulnstore.Enrichment, name string) *enrichmentGetter {

return &enrichmentGetter{s: s, name: name}
}

type enrichmentGetter struct {
s vulnstore.Enrichment
name string

}

var _ driver.EnrichmentGetter = (*enrichmentGetter)(nil)

func (e *enrichmentGetter) GetEnrichment(ctx context.Context, tags
[]string) ([]driver.EnrichmentRecord, error) {

return e.s.GetEnrichment(ctx, e.name, tags)
}

7.2 Trivy source code

7.2.1 Identify the OS

Listing 7.5: Ubuntu OS release.

#https://github.com/aquasecurity/fanal/blob/main/analyzer/os/ubuntu/ubuntu.go
package ubuntu

import (
"bufio"
"context"
"os"
"strings"

"golang.org/x/xerrors"

"github.com/aquasecurity/fanal/analyzer"
aos "github.com/aquasecurity/fanal/analyzer/os"
"github.com/aquasecurity/fanal/types"
"github.com/aquasecurity/fanal/utils"

)

func init() {
analyzer.RegisterAnalyzer(&ubuntuOSAnalyzer{})

}

75

const version = 1

var requiredFiles = []string{"etc/lsb-release"}

type ubuntuOSAnalyzer struct{}

func (a ubuntuOSAnalyzer) Analyze(_ context.Context, input
analyzer.AnalysisInput) (*analyzer.AnalysisResult, error) {

isUbuntu := false
scanner := bufio.NewScanner(input.Content)
for scanner.Scan() {

line := scanner.Text()
if line == "DISTRIB_ID=Ubuntu" {

isUbuntu = true
continue

}

if isUbuntu && strings.HasPrefix(line, "DISTRIB_RELEASE=") {
return &analyzer.AnalysisResult{

OS: &types.OS{
Family: aos.Ubuntu,
Name: strings.TrimSpace(line[16:]),

},
}, nil

}
}
return nil, xerrors.Errorf("ubuntu: %w", aos.AnalyzeOSError)

}

func (a ubuntuOSAnalyzer) Required(filePath string, _ os.FileInfo)
bool {

return utils.StringInSlice(filePath, requiredFiles)
}

func (a ubuntuOSAnalyzer) Type() analyzer.Type {
return analyzer.TypeUbuntu

}

func (a ubuntuOSAnalyzer) Version() int {
return version

7.2.2 Identify the packages

Listing 7.6: Discover the application

#parseDpkgStatus parses /var/lib/dpkg/status or
/var/lib/dpkg/status/*

#https://github.com/aquasecurity/fanal/blob/main/analyzer/pkg/dpkg/dpkg.go

76

func (a dpkgAnalyzer) parseDpkgStatus(filePath string, scanner
*bufio.Scanner) (*analyzer.AnalysisResult, error) {

var pkg *types.Package
pkgMap := map[string]*types.Package{}

for scanner.Scan() {
line := strings.TrimSpace(scanner.Text())
if line == "" {

continue
}

pkg = a.parseDpkgPkg(scanner)
if pkg != nil {

pkgMap[pkg.Name+"-"+pkg.Version] = pkg
}

}

if err := scanner.Err(); err != nil {
return nil, xerrors.Errorf("scan error: %w", err)

}

pkgs := make([]types.Package, 0, len(pkgMap))
for _, p := range pkgMap {

pkgs = append(pkgs, *p)
}

return &analyzer.AnalysisResult{
PackageInfos: []types.PackageInfo{

{
FilePath: filePath,
Packages: pkgs,

},
},

}, nil
}

7.2.3 Identify vulnerabilities in the application packages

Listing 7.7: Identify vulnerability in applicaiton package

#https://github.com/aquasecurity/trivy/blob/main/pkg/detector/library/detect.go
package library

import (
"golang.org/x/xerrors"

ftypes "github.com/aquasecurity/fanal/types"
"github.com/aquasecurity/trivy/pkg/types"

)

// Detect scans and returns vulnerabilities of library

77

func Detect(libType string, pkgs []ftypes.Package)
([]types.DetectedVulnerability, error) {

driver, err := NewDriver(libType)
if err != nil {

return nil, xerrors.Errorf("failed to new driver: %w", err)
}

vulns, err := detect(driver, pkgs)
if err != nil {

return nil, xerrors.Errorf("failed to scan %s vulnerabilities:
%w", driver.Type(), err)

}

return vulns, nil
}

func detect(driver Driver, libs []ftypes.Package)
([]types.DetectedVulnerability, error) {

var vulnerabilities []types.DetectedVulnerability
for _, lib := range libs {

vulns, err := driver.DetectVulnerabilities(lib.Name,
lib.Version)

if err != nil {
return nil, xerrors.Errorf("failed to detect %s

vulnerabilities: %w", driver.Type(), err)
}

for i := range vulns {
vulns[i].Layer = lib.Layer
vulns[i].PkgPath = lib.FilePath

}
vulnerabilities = append(vulnerabilities, vulns...)

}

return vulnerabilities, ni

7.2.4 Identify vulnerabilities in the OS packages

Listing 7.8: Detect Vulnerability in Ubuntu

Detect function scans and returns the vulnerabilities
#

https://github.com/aquasecurity/trivy/blob/main/pkg/detector/ospkg/detect.go

func (s *Scanner) Detect(osVer string, _ *ftypes.Repository, pkgs
[]ftypes.Package) ([]types.DetectedVulnerability, error) {

log.Logger.Info("Detecting Ubuntu vulnerabilities...")
log.Logger.Debugf("ubuntu: os version: %s", osVer)
log.Logger.Debugf("ubuntu: the number of packages: %d",

len(pkgs))

78

var vulns []types.DetectedVulnerability
for _, pkg := range pkgs {

advisories, err := s.vs.Get(osVer, pkg.SrcName)
if err != nil {

return nil, xerrors.Errorf("failed to get Ubuntu
advisories: %w", err)

}

installed := utils.FormatSrcVersion(pkg)
installedVersion, err := version.NewVersion(installed)
if err != nil {

log.Logger.Debugf("failed to parse Ubuntu installed package
version: %w", err)

continue
}

for _, adv := range advisories {
vuln := types.DetectedVulnerability{

VulnerabilityID: adv.VulnerabilityID,
PkgName: pkg.Name,
InstalledVersion: installed,
FixedVersion: adv.FixedVersion,
Layer: pkg.Layer,
Custom: adv.Custom,
DataSource: adv.DataSource,

}

if adv.FixedVersion == "" {
vulns = append(vulns, vuln)
continue

}

fixedVersion, err := version.NewVersion(adv.FixedVersion)
if err != nil {

log.Logger.Debugf("failed to parse Ubuntu package
version: %w", err)

continue
}

if installedVersion.LessThan(fixedVersion) {
vulns = append(vulns, vuln)

}
}

}
return vulns, nil

}

// IsSupportedVersion checks is OSFamily can be scanned using
Ubuntu scanner

func (s *Scanner) IsSupportedVersion(osFamily, osVer string) bool {
eol, ok := eolDates[osVer]
if !ok {

log.Logger.Warnf("This OS version is not on the EOL list: %s
%s", osFamily, osVer)

79

return false
}
return s.clock.Now().Before(eol)

}

80

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Problem statement
	Thesis outline

	Background and related work
	Virtual machines
	Virtual machines and hypervisors
	Virtual machines vs containers
	Namespaces and cgroups

	Container technology
	Container images and registries
	Docker containers
	OCI format for container images

	Software vulnerabilities
	Common Vulnerabilities and Exposures (CVE)
	Common Vulnerability Scoring System(CVSS)
	National Vulnerability Database (NVD)
	Static and dynamic analysis

	Container image security and vulnerability scanning
	 Clair
	Anchore
	Dagpa
	Trivy
	Snyk

	Related Work

	Methodology
	Objectives
	Data set and prototype

	Design phase
	Tools and technologies
	Selected images

	Expected result

	Experiments and results
	Analyzing Clair scanner
	Comprehensive analysis
	Identifying The Operating System(OS)
	Identifying the packages
	Identifying vulnerabilities in discovered packages

	Analyzing Aqua Trivy scanner
	Comprehensive analysis
	Identifying the Operating System(OS)
	Identifying packages
	Identifying vulnerabilities in discovered application packages
	Identifying vulnerabilities in discovered OS packages

	Experiments
	Scanning standard images
	Scanning distroless images
	Scanning slimmed images

	Discussion
	Comparison of Trivy and Clair
	Accuracy
	Unfixed vulnerabilities
	Number of support packages
	Third party databases
	Future threats

	Future work

	Conclusion
	Bibliography
	Appendix
	Clair source code
	Identiy the OS
	Identify the package
	Identifying the OS-release
	Identify the Vulnerabilities

	Trivy source code
	Identify the OS
	Identify the packages
	Identify vulnerabilities in the application packages
	Identify vulnerabilities in the OS packages

