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Abstract

Rapid advancements in Machine Learning (ML) have made it possible to
equip computers with the ability to analyze, recognize and understand
emotions. Facial Emotion Recognition (FER) is a technology that analyzes
facial expressions in images to reveal information about a person’s
emotional state. Researchers from a variety of sectors are becoming
increasingly interested in FER as it has a wide range of applications, but
of special importance is human-computer interaction.

In this thesis, a main purpose is to evaluate how can transfer learning
influence model performance, and can traditional sequential-built models
be reduced by transfer learning and still obtain similar accuracies. Seven
categories of emotions are categorized from the The Facial Expression
Recognition 2013 (FER-2013) database containing a total of 35887 images.
The dataset is divided with a k-fold split method of 10 folds in order
to separate independent training and testing indices. Among many
techniques for FER, deep learning models have shown a great potential
for powerful automatic feature extractions and computational efficiencies,
especially the Convolutional Neural Network (CNN)’s. This thesis will
investigate the performance of one sequential-built CNN model, one pre-
trained Resnet50 model and one pre-trained VGG16 model. Each model is
compared and evaluated based on chosen metrics such as f1 and confusion
matrices. Finally, a few selected images from the Japanese Female Facial
Expres- sion (JAFFE) database is presented to the models as an experiment
to introduce unseen facial expression images.

Results show that a sequential base model of only a few convolutions
ran on 50 epochs gave accuracy result of 89.7%, with an average time of
training per k-fold of 21 minutes. The two pre-trained models had fewer
convolutions and gave accuracy results of 86.5% without fine-tuning after
only 20 epochs. Average training time was 12 minutes per k-fold. Use of
slightly more epochs would have given more similar results. A pre-trained
model with the use of transfer learning is therefore a recommended choice
for saving computational training time and model building, but still receive
similar accuracies in results.
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Acronyms

Descriptions are itemized in alphabetical order and only specifies the most
important ones

AI Artificial Intelligence.

ANN Artificial Neural Networks.

API Application Program Interface.

AUC Area Under the Curve.

CNN Convolutional Neural Network.

DL Deep Learning.

FACS Facial Action Coding System.

FER-2013 The Facial Expression Recognition 2013.

GPU Graphics Proceccing Unit.

ILSVRC ImageNet Large Scale Visual Recognition Challenge.

JAFFE Japanese Female Facial Expression.

KDEF Karolinska Directed Emotional Faces.

ML Machine Learning.

OsloMet Oslo Metropolitan University.

R&D Research and Development.

ResNet Residual Neural Network.

SVM Support Vector Machine.
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Chapter 1

Introduction

The background for the thesis, formulation of a problem statement and
research questions, as well as goal for the project and the outline of this
Master Thesis is first presented.

This thesis is the final work for a Master in Applied Computer and
Information Technology at the Oslo Metropolitan University (OsloMet) in
Oslo, Norway.

1.1 Background & Motivation

Communication between robots and humans are crucial when we look at
the fast development of technology in the direction of Artificial Intelligence
(AI). One important part of human communication is the emotions behind
expressed words. The goal of emotion recognition is to extract, evaluate,
and comprehend people’s emotional behavior traits (Tian, 2021). Emo-
tion detection can be utilized for a variety of purposes, including enhan-
cing people’s health, improving human to machine communication, and
identifying customers’ emotional states in order to provide them with more
tailored and high-quality services. Emotions can be detected from both
speech, gestures and body language, but this thesis will purely focus on
facial expressions, a non-verbal communication technique.

Facial expressions are unique in that they are the only part of the face
that changes rapidly and in a number of complex ways. We can impress-
ively identify diverse expressions and set them apart with only a quick
glance, without necessarily knowing the person (Kaulard et al., 2012). Hu-
man emotions by facial expressions and gestures differ by very small facial
changes. In recent years, the cross-cultural communication has increased
with more international students, travelers, and migrants today than ever
before (Fang et al., 2021). It is crucial to comprehend how gender and cul-
tural differences impact the recognition of the same facial expression.

1



1.2 Goal

The purpose of this thesis is to develop a program or model that can dis-
tinguish various human emotions. Using Machine Learning (ML), the pro-
gram should be able to distinguish between human emotions and classify
each feeling into one of seven categories, including neutral.

Another goal is to optimize the model by finding and combining al-
gorithms that give a satisfactory prediction percentage. It is of specific in-
terest to run the program on a training dataset and then examine its effect-
iveness and subsequently test it on other datasets. Different ethnic iden-
tities should be present in the other datasets than in the original training
dataset. The current work will design a ML model using software develop-
ment based on prior research on relevant materials.

1.3 Problem formulation

The project will investigate ML methods for emotion recognition, i.e. a sys-
tem that can automatically recognize the emotions of an individual person.
The work will use a dataset containing six different facial expressions in
addition to neutral, to train the Artificial Intelligence (AI) model, namely:

Sadness, Anger, Disgust, Fear, Happiness, Surprise and Neutral.

Research questions to be asked and answered are:

• Which Deep Learning model is better for facial emotion recognition?

• How can transfer learning influence model performance?

• How well does the model perform on a different dataset containing
facial expressions other than the one it was trained on?

1.4 Scope & Limitations

This thesis will not cover all facial emotions. A selection of emotions will be
focused on since there are too many different emotions. The context of the
emotions can not be taken into account, only facial emotions found in the
database are to be considered. Not all ML models will be compared, only a
selection of the most common ML models used in previous research papers
focusing on emotion recognition or facial expressions will be considered.
One ML model will be chosen from the comparison and used for the
subsequent research questions. The emphasis on programming language
and development environment will be limited to suit a one-semester thesis.

2



1.5 Research method

The method for carrying out this project follows the principles of a Research
and Development (R&D) project. An initial task is to acquire a wide range
of knowledge within the chosen topic by reading literature and searching
information from relevant research papers.

The next part of the method was to divide the thesis tasks into smaller
parts, examine what needs to be done, and describe the goal of each task.
The thesis is then divided into smaller parts with these main themes:

• Investigate common types of ML algorithms used in research articles
focusing on FER

• Research on building a ML environment

• Collecting several databases containing different emotional expres-
sions

• Build and implement a ML program

• Create one DL model and two pre-trained models for transfer
learning. Compare model performance and their average percentage
results

• Test the trained ML models on unseen image samples

In this context, an algorithm is the logic to solve a task that can be
programmed in any programming language. For our purpose, algorithms
will be combined such that feature recognitions can be learned.

A model is the outcome of predictive algorithms used on relevant
datasets.

1.6 Thesis outline

As an overview for the reader, the main structure of the report is as outlined
below in a stepwise manner to clarify which factors are needed to answer
the problem statement and fulfill the scope of the current work.

Chapter 1 is the Introduction and provides information on the background
for the assignment, goal formulation and problem statement, scope of work
and structure of the thesis report.

Chapter 2 is on Theoretical background, covering basics of emotions, di-
gital images, AI, ML and DL. Database selection, CNN models, metric
definitions and transfer learning are also covered.

Chapter 3 is the Literature Review present and critically analyse relevant
work and their findings.

3



Chapter 4 is on Methods used, describing database collections, data pre-
processing and implementation of ML program.

Chapter 5 is on Results from model performance.

Chapter 6 is on Discussion of the results and parameters involved.

Chapter 7 is on the Conclusions for findings and work done to conclude
on research questions. The thesis work will seek improvement in methods
to extend the current knowledge and will identify the most efficient meth-
ods to answer research questions and solve the scope of the work.

Chapter 8 is the Bibliography used as background for the research.

Appendices are added for detailed descriptions as referred to in the main
sections.
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Chapter 2

Theoretical background

This chapter will provide a short overview of the basic concepts of
emotions, digital images and data pre-processing. A quick comparison
of Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning
(DL) is presented. Then, CNN models, metrics and transfer learning are
presented.

2.1 Emotional categories

Classification of emotions have a long history and may date as far back
as to the first century where a Chinese encyclopedia called the "Book of
Rites" described seven feelings, i.e. joy, anger, sadness, fear, love, disliking,
and liking. In 1972, Ekman published a list of universal facial emotions
(Landowska, 2018 p. 14), consisting of six emotions: anger, disgust, hap-
piness, sadness, fear, and surprise. Others like Robert Plutchik (Rodrigues
and Pereira, 2018 p. 850) used eight, which he grouped into four pairs of
polar opposites. These are: joy-sadness, anger-fear, trust-distrust, surprise-
anticipation. However, with Ekmans definitions, it became easier to pro-
cess emotions when the six universal facial expressions were described
more specifically, as:

Anger Lowered eyebrows, glared eyes, tightened lower eyelids, tightened
and narrowed lips, and thrusted jaw

Fear Raised, pulled together eyebrows, tensed lower eyelids, and a lightly
opened mouth

Disgust Narrowed eyebrows, wrinkled nose, and a curled upper lip

Happiness Smile and wide eyes

Surprise Raised eyebrows, wrinkled forehead, widely opened eyes,
dropped jaw, and a opened mouth

Sadness Dropped eyelids, lowered corners of the mouth, downcasted eyes,

5



and pouted lips.

Figure 2.1: Ekman’s 6 Basic Emotions. From Ekman’s six Basic Emotions and
How They Affect Our Behavior, by Harrison 2021.

Above is an illustration of Ekman’s six basic emotions in Figure 2.1.
Later in 1978, based on work of anatomists, Paul Ekman and Wallace V.

Friesen translated emotions into muscle movements (Ekman and Friesen,
1978).

Figure 2.2: Muscles of Facial Expression, lateral view. From Anatomy and
physiology, by Betts et al. 2013.

In 2002 Joseph C. Hager contributed to a significant update to create a
Facial Action Coding System (FACS) in "Facial Action Coding System: Salt
Lake City: A Human Face" (2002).
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Figure 2.3: Action Units of facial expressions. From Facial expressions, by
Lansley 2022.

If no specific expression was identified, a neutral expression was added
in addition to the six universal facial expressions. Psychologist have over
time added several other expressions, like the shown disgust.

Individual facial muscles and their movements are numbered and called
Action Units by FACS. FACS is now a common standard for categorizing
physical facial expressions that describe an emotion (Paul Ekman Group
LLC, 2020).

By identifying muscle movements by specific numbers or action units, one
can digitally represent emotions by concluding on which muscles are ac-
tivated. E.g.

Emotion Action units
Happiness 6+12
Sadness 1+4+15
Surprise 1+2+5B+26
Fear 1+2+4+5+7+20+26
Anger 4+5+7+23
Disgust 9+15+17

Table 2.1: Table showing Emotion Action Units

The intensity of each indicated action can also be graded from weak to
strong by characters A to E in order to arrive at the most likely conclusion
for the expressed emotion.

FACS also have additional codes for eye positions, instant behavioural ac-
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tions like speaking and also head movements like tilting, looking sideways,
up/ down or other combinations of these.

The latter classification of head movements can easily be used for augment-
ing training- or test data-sets by flipping, mirroring and rotating original
pictures with known expressions. A large increase in samples is beneficial
for numerical training in a machine learning algorithm.

From the combined sciences of anatomists and psychologist it is shown
that human emotions can be broken down to specific and manageable in-
formation items that are suitable for digitization. Once a numerical rep-
resentation of a facial emotion is obtained, further computerization with
numerous algorithms is made possible.

The current work will apply algorithms for the purpose of identifying ex-
pressed emotions in a test dataset, and eventually from a random facial
picture. For this purpose, so called Artificial Intelligence (AI) is used for
identifying muscle movements via machine learning rules for facial expres-
sions, as defined by the FACS standard. The machine learning algorithms
employ AI techniques within the category of ANN.

2.2 Digital Images

A natural image taken with a camera, telescope, microscope, or other op-
tical device exhibits a constantly changing array of colors and color tones.
A natural image must first be translated into a computer-readable form or
digital format before it can be processed or displayed by a computer. This
procedure is applicable to all photos, regardless of their origin or intricacy,
or whether they are in black and white (grayscale) or full color (Spring et
al., n.d.).

To convert a continuous-tone image into a digital format, the analog image
is divided into individual brightness values. The analog representation of a
miniature young starfish imaged with an optical microscope is presented in
Figure 2.4(a). The image is then sampled in a two-dimensional array Figure
2.4(b). Brightness levels at specific locations in the analog image are stored
and converted into integers Figure 2.4(c). The goal is to turn the image into
an array of discrete points, each of which contains unique brightness or
tonal range information and may be defined by a specific digital data value
in a given place. The output is a numerical representation of the intensity
for each sampled data point in the array, which is generally referred to as a
picture element or pixel.

8



Figure 2.4: Creation of Digital Images. the arrow shows the progression in
the level of detail of information which can be extracted from the images.
From Basic Properties of Digital Images, by Spring et al. n.d.

The Figure 2.4 above represents a greyscale image. When we look at
a digital image, we normally see three color channels, which are the Red-
Green-Blue channels, sometimes known as the "RGB" values. It has been
demonstrated that combining these three can make any color palette. When
working with a color image, we must remember that the image is made up
of many pixels, each of which contains three separate RGB channel values
(Das, 2021).

Figure 2.5: RGB color channels of an image. From Convolution Neural
Network for Image Processing — Using Keras, by Das 2021

Figure 2.5 above illustrates the data structure of an RGB image. The
difficulty with photos with several color channels is that we have massive
amounts of data to work with, making the procedure computationally
costly. In other words, imagine a difficult process in which a Neural
Network or other machine learning algorithm must deal with three
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different types of data (in this case, R-G-B values) to extract characteristics
from photos and categorize them into relevant categories.

2.2.1 Data processing

This section will look at data processing from the perspective of an image.
In most circumstances, many preprocessing steps are required before the
dataset can be fed into the network. This is required in order to prepare the
data for training.

The network design as well as the input data type must be carefully con-
sidered when creating an effective neural network model. The number
of images, image height, image width, number of channels, and number
of levels per pixel are the most frequent image data input parameters. A
colored image has three data channels that correlate to the hues Red, Green,
and Blue (RGB), and a greyscale image has one data channel. The most
common pixel levels are [0,255] (Nikhil, 2019).

Uniform aspect ratio: The majority of neural network models assume a
square-shaped input image, which means that each image must be eval-
uated for squareness and cropped accordingly. Cropping can be used to
choose a square portion of an image.

Image Scaling: Resizing photos to a lesser resolution is a standard process
when working with an image-based dataset. This is especially important
if the computer lacks a cutting-edge Graphics Proceccing Unit (GPU), as
the model would otherwise be extremely slow. The model will be more ef-
fective and more efficient as a result of the down scaling, but some details
from the original resolution will be lost. As a result, it’s critical to exper-
iment with various scales in order to discover the best balance between
maintaining enough vital elements and having an effective model.

One Hot Encoding: Another important data pre-proceccing of images is
called one hot encoding. A one hot encoding is a binary vector represent-
ation of categorical information. Many machine learning algorithms are
unable to operate directly with categorical data. The categories must be
numerically transformed (Brownlee, 2019).

Normalizing image inputs: Data normalization is a crucial step that as-
sures that each input parameter (in this case, pixel) has a consistent data
distribution. This allows for faster convergence while training the network.
By removing the mean from each pixel and dividing the result by the stand-
ard deviation, data is normalized. A Gaussian curve centered at zero would
be the distribution of such data. We need positive pixel numbers for picture
inputs, so we might scale the normalized data in the range [0, 1] or [0, 255]
(Nikhil, 2019).

Dimensionality reduction: The RGB channels could be combined into a
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single gray-scale channel. When the neural network performance is al-
lowed to be invariant to that dimension, there are typically considerations
to lower other dimensions or make the training problem more manageable.
If color has no significance in your images to classify then its better to go
for grey scale images to avoid false classification and complexities.

2.3 Artificial intelligence

Artificial Intelligence is an area of computer science that tries to develop
programs that have some intelligence, such as performing tasks based on
multiple and different or stochastic inputs, with results that resemble reas-
oning, concluding or planning.

Intelligence also involves learning, classification and storing memories or
saved data for future reference by processing e.g. pictorial images.

Artificial intelligence is in this context an application of machine learning,
or perhaps the application is better described as artificial learning.

Figure 2.6: Correlation between AI, ML and DL. From Is machine learning
required for deep learning?, by Suman 2019.

2.3.1 Machine Learning

Machine learning is an integrated part of AI. The field of machine learning
is concerned with the question of how to construct computer programs that
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automatically improve with experience (Mitchell, 1997).

Figure 2.7: Machine Learning in contrast to classical programming. From
Autonomous Driving: Object Detection using Neural Networks for Radar and
Camera Sensor Fusion, by Geisslinger 2019.

Machine Learning may be an algorithm or procedure that uses sets of
input data with known outputs or answers to create rules. These are further
used to predict outputs for new and random data for a specific area under
investigation. As shown in Figure 2.7, compared to classical programming,
one must know and create the rules themselves to be able to output answers
from programmed rules.

Supervised learning

Supervised machine learning will learn relationships between data inputs
and outputs by a set of rules.

All data is labelled and the algorithms learn to predict the correct output
from processing and interpretation of known input data (Brownlee, 2016).

Unsupervised learning

In unsupervised machine learning, all data is unlabelled and the algorithm
learn an underlying pattern in input data by its enhanced complexity and
skills to sort and classify processed data. The purpose of unsupervised
learning is to detect common patterns in the data.

Unsupervised learning can be used to reduce large dimensions of complic-
ated dataset by sorting similar data to a set of classes before supervised
learning is performed on separate classes of data.

2.3.2 Deep Learning

Deep Learning is a set of algorithms that tries to resemble the structure of
a human brain with its numerous interconnectivities, and is thus called an
artificial neural network.

12



As opposed to Machine Learning that use sets of input data with known an-
swers for features, deep learning algorithms may extract features from raw
pixel data, called feature learning. This is illustrated in Figure 2.8, where
DL can skip feature extraction compared to ML. Traditional machine learn-
ing approaches require the manual implementation of various computer
vision techniques in order to extract the appropriate features prior to clas-
sification. Convolution layers from CNN’s are used to extract features from
the layers automatically.

Figure 2.8: In a DL model, the feature extraction step is unnecessary. The
model can recognize these unique characteristics of a car and make correct
predictions without the help of a human doing feature extraction. From
Artificial Intelligence vs. Machine Learning vs. Deep Learning: What’s the
Difference?, by Oppermann 2022.

A deep learning algorithm is tweaked for the task at hand such
that results and predictions will improve by training on more and more
examples. Parameters are introduced for measuring the accuracy and
precision of algorithms.

Benefits of using CNN versus traditional ML

Deep learning algorithms scale source data in different ways. By expand-
ing or augmenting datasets by e.g. flipping, mirroring and rotating original
pictures with known expressions, more and more picture patterns or fea-
tures may match patterns found in new pictures and give correct interpret-
ations.

Augmenting datasets by artificially changing source data in a machine-like
procedure, this will increase the capacity to recognize and classify features
in new pictures. Classifications are made in stages of different resolutions,
in blocks connected as a neural network.
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2.4 Selecting ML dataset

Datasets can be loaded directly from places like the UCI Machine Learning
repository.

Pandas may be used to load the data as well as to explore data by stat-
istics and visualizations. UCI datasets have been asssembled over a long
time and have smaller but some famous datasets like the iris flower dataset
from 1936. Dataset assemblies are often referred to as repositories.

OpenML is another and newer repository that can be searched by wanted
names, and it has a web API to easily retrieve data.

Kaggle has many large datasets that also can be searched by name. The
ImageNet image recognition tasks, where archtectures of VGG, Inception
and ResNet were trained have datasets of photographic and video-graphic
content with a size of more than 160 GB.

As the number of datasets increase, and have different free content, inform-
ation on availability may be updated in a “List of datasets for machine-
learning research” on Wikipedia.

Datasets of many GB are normally not downloaded; they are loaded
as network libraries, accessed by requests in Python functions, however
provided that a good internet connection is available.

Scikit-learn can download dataset data using a built in real-time API in-
terface.

TensorFlow can also be used for download in machine learning projects,
however an API need to be installed separately.

Each dataset have different APIs that may return slight differences in
formats such that it may be required that e.g. Scikit-learn must be used
to re-format or create the dataset to be processed.

2.4.1 Subdividing data sets

A dataset usually contain samples of a similar nature. We want to train a
candidate model to predict a specific feature of these samples, and we want
a training set to check if the model is fit for purpose. Metrics are used to
evaluate the model, and if found reasonable, the model is ’fitted’ for use
with this training dataset.

We also may wish to validate the model on a different part of the train-
ing dataset and have a data/validation/ folder with a separate validation
dataset. This will enable further optimizations on parameters like aug-
mentations, blocking, dropouts, sizing etc to obtain optimum weights or
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strengths for each feature recognition. Results from the validation dataset
may give new candidate models that may need to be trained all over again
from scratch, without use of previous weight result.

After studying the validation metrics, this may result in a better and new
candidate model that may be chosen for further testing. A combination of
the train and validation dataset may be used on the chosen best model for
this purpose. Comparing metrics in this way is called cross validation.

In addition, we need to keep a part of the complete dataset separated for
use in the testing process. A test dataset is not used in previous training
and/ or validation steps since test data shall be unseen data for the model.
Testing will give an estimate on how the model will behave when it is de-
ployed for public use. If a candidate model is trained correctly, test scores
are not expected to be very different from the previous cross validation res-
ults.

2.4.2 Splitting datasets

A common approach for splitting datasets is to use a 80 % train- and 20%
test-split for cross-validation (Feick, 2022). Usually, datasets do not contain
thousands of features in each class and are much smaller than required for
getting unbiased estimates. Re-sampling strategies like validation testing
that result in new candidate models may be necessary. The common
division of train and test is illustrated in Figure 2.9 below.

Figure 2.9: A common approach of dividing train test split with 80% and
20%. From Evaluating Model Performance by Building Cross-Validation from
Scratch, by Feick 2022.

A more advanced procedure for splitting datasets is to use a k-fold
strategy where the whole dataset is divided into k folds, and where the last
fold is the test-data section. The model is run repeatedly on the dataset,
however a different fold is defined as the test fold each time. This gives a
total of k models to be fitted and evaluated. The procedure is illustrated
in Figure 2.10 below. Metrics for the tested model can be calculated as the
mean of all runs. If the dataset is split into folds of 20%, a 5-fold setup will
enable the test fold to visit 100% of the dataset.
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Figure 2.10: A more advanced approach of dividing train test split with k
folds. From Evaluating Model Performance by Building Cross-Validation from
Scratch, by Feick 2022.

It is noted that randomly splitting datasets requires that the number of
examples in each class is quite even. Otherwise, results can be misleading
if the classification problem has a severe class imbalance, where e.g. one
class has less than 10% of what other large samples have.

To prevent inaccuracies, the original class distribution from the whole data-
set must be preserved in each split. A technique to modify splits with a
class label that preserves the distribution is called stratified train-test splits,
or stratified k-fold cross-validation.

Another method of preventing inaccuracies from class imbalance is use of
under- or oversampling. This is just to reduce or create multiple copies of
pictures in an overpopulated class or a minority class in the training data-
set. If one class has only 10% of what other classes have, oversampling can
be done one or more times to increase the occurrence 10x.

2.4.3 Ethical considerations on dataset

Ethical considerations play a role while recognizing human emotions.
When it comes to Machine Learning, it is especially important to evaluate
on which data the software is trained on. How does this training dataset
function on real-life situations, where e.g. male European facial expressions
are processed, if the dataset used to train the model only comprises female
Japanese facial expressions?

By experience, ethical considerations may be a major challenge for univer-
sal software in this category. It is crucial to not misinterpret human images
with other species, especially if minorities or groups with challenges are in-
volved. However, in the subgroup of species emotions, misinterpretation
may be of less importance than identification of different species.
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2.5 Artificial Neural Networks

From the concepts of DL, AI and ML, the outcome of ML is to get a model
that can do predictions on data that is introduced to the model. Data may
either be of the form where membership to a class shall be predicted, or
where a value shall be predicted from other variables.

As opposed to predicting values as a regrression problem, sorting pictures
into classes of emotions is a classification problem. Classification for these
purposes can be made with a Decision Tree model, a Support Vector Ma-
chine model or a Neural Network model.

Algorithms based on Artificial Neural Networks have proven useful in in-
terpretation of pictures and gives a satisfactory percentage for prediction
accuracy of e.g. general face recognition in pictures. Algorithms for face
recognition are widely applied in consumer product like digital cameras
and smartphones, where a frame can be seen to appear around faces dur-
ing picture-taking.

Of special interest in this study is the application of ANN on photographic
methods that may be used to interpret facial emotions in pictures, or emo-
tions in face recognitions processed from real-life situations.

2.5.1 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a class of ANN algorithms. A
convolutional neural network uses several blocks of layers during the pro-
cess of filtering, sorting and classifying information from the source. These
layers may be a convolutional layer, a pooling layer, and a fully connected
classifying output layer (Brownlee, 2020).

A convolutional layer is first used to specify the amount of filters to be
used in the learning process of creating feature maps. In addition, proper-
ties of filters are defined, like pixel size used in each filter. A kernel shape
is defined.

A feature map is a two-dimensional map of activated defined features, with
position and strength of a detected feature in an image, in our case a muscle
reaction in an emotion.

Pooling layers are used to downsample feature maps in an attempt to more
easily identify and sort features from patches of the full original picture,
by use of fewer pixels. Calculations may return the maximum, or the most
probable feature value from each patch of the full feature map.

Classifier Layer are used after features have been extracted. The feature
map is interpreted to arrive at a prediction, in our case an emotion of a
face in a photograph. Feature value from each patch can be assembled to a

17



representative full feature map that is interpreted by a classification output
layer. The classification layer will typically predict a value or a set of values
that is used for identification of an emotion.

The key to create effective convolutional neural networks is to find an ar-
chitectural design that best utilize these individual layers, and the combin-
ation and number of layers. Deep CNN’s have e.g. several convolutional
and / or pooling layers.

2.5.2 CNN Parameters

Some functions and parameters are often encountered in a description of a
Convolutional Neural Network and are listed below;

Activation function: The activation functions are located between the
network layers and determine which nodes should be fired, that is, nodes
that are close to one another.

Optimization function: To minimize the error, this function is used to
change weights of a recognition.

Regularization: L1 regularization L2 regularization

Learning rate: This parameter controls how much the weights change
between iterations, or how quickly the network evolves.

Batch size: When working with big training sets, it is common to divide
them into different batches and train each one in turn. The number of
samples in a subset, or batch, is referred to as batch size.

Epochs: An epoch is a complete data cycle. One pass is a prediction, cost
calculation, and weight update learning cycle.

2.6 Analysis Metrics

Regression metrics

A big part of applied machine learning is selection of models, i.e. of several
machine learning methods on a dataset, which model has the best skills to
make good predictions on unseen data? Shall classification based on max-
imum accuracy or minimum loss determine how much an estimate can be
trusted? Or is the difference purely from statistical differences? Statistical
hypothesis testing can be used for this purpose, however use of common
test metrics may give sufficiently good results.
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A number of common analysis metrics may be used to diagnose model
performance on different datasets. In cases where a value shall be predicted
from other variables as a regression problem, commonly used metrics are:

• Mean squared error (MSE)

• Root mean squared error (RMSE)

• Mean absolute error (MAE)

Classification metrics

In cases where membership to a class shall be predicted as a classification
problem, commonly used metrics are:

• Accuracy

• Logarithmic-loss

• Area Under the Curve (AUC)

• Precision

• Recall

• F-measure

Predicting pictures into classes of emotions is a classification problem. Plots
of accuracy, loss and other metrics, and their development over processed
epochs give good indications of model performance.

Blue lines will indicate model performance on a training dataset while or-
ange lines will indicate performance on a test dataset. The relative beha-
viour of these plots give info on model overfitting or underfitting, i.e. if
lines for train- and test-results separate and depart from each other. A well-
fit model will give the same trend for both datasets.

Another useful measure of performance is using a Confusion matrix. It
will in detail show how classifications were made for each feature.

A summary of all analysis metrics can be tabulated in a Classification re-
port.

The purpose of common metrics suitable for judging a classification
problem is summarized:

Accuracy

The most common evaluation metric for classification problems is accur-
acy. Accuracy is the number of correct predictions in relation to all predic-
tions made for a feature, disregarding whether the prediction was correct
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or wrong. An accuracy score of 75% to 95% is desirable. A prerequisite is
actually that there are an equal number of observations in each class to be
evaluated, and that prediction errors are equal in importance.

Classification accuracy is the number of correct predictions relative to the
total number of predictions, simply by dividing 100% correct class predic-
tions by the total number of predictions for that class, whether they were
right or wrong. A model build for a classification problem will almost al-
ways have an accuracy test as a measure. Classification accuracy alone
is however often not enough to make a decision on whether it is a good
model for solving a specific task. In our case with classifying seven emo-
tions, there will be a problem if features like ’happy’ and ’sad’ consistently
falls into ’neutral’ or if one feature like ’disgust’ only have 100 pictures
while other emotions occur more than thousand times in the dataset. The
model may predict a high accuracy value for the majority of classes but will
generally not be good at predicting all emotions. Precision and Recall per-
formance are measures that can be used to better evaluate a classification
problem.

Loss

Loss of membership to a class is a predicted probability between 0 and 1
of belonging to a given class. Correct predictions are rewarded while in-
correct predictions are punished exponentially after a logarithmic scale. A
low log-loss is desirable, where zero is a perfect log loss.

Loss is a function for calculating the model error in training of deep learn-
ing neural networks during predictive modeling. The train dataset has 0 or
1 for belonging to a given feature class while the model will predict a value
between 0 and 1 for pictures in the validation or test dataset. The model
architecture will estimate weight parameters that best map examples to
known output. Predictions close to the correct answer are rewarded while
incorrect predictions are punished exponentially as a logarithmic loss. Loss
function may be different for loss of membership to a logistic class and for
loss of numerical regression. A low loss is desirable, where zero is a perfect
loss.

AUC

AUC is the area-under-curve, where the curve is Sensitivity or a true
positive rate on the y-axis and a false positive rate on the x-axis. An ideal
curve will look like the letter L upside-down. The area under the curve is
regarded to be a summary of the model skill.

Precision

Precision will express the number of correct predictions of all predictions,
including False Positives. A high precision express that recognition of the
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class was very exact.

Precision will express the number of correct predictions of e.g. ’angry’ i.e.
True Positives, divided not only by the number of correct predictions of
’angry’- but also including the incorrect predictions of ’angry’ i.e. from
False Positives of cases that really were other emotions like ’sad’ or ’neut-
ral’. Low precision will indicate a large number of False Positives. High
precision means less false classifications and indicate that a large amount
of specific feature classifications were actually correct. A high precision
express that recognition of the class was very exact.

Recall

Recall will express the number of correct predictions of an emotion relative
to the total number of only those emotions. A high recall express that re-
cognition of the class was almost complete.

Recall will express the number of correct predictions of e.g. ’angry’ i.e.
True Positives, divided not only by the number of correct predictions of
’angry’- but also including the incorrect rejections of ’angry’ i.e. False Neg-
atives. Recall is the number of correct predictions of an emotion relative to
the total number of only those emotions. A low recall indicates many False
Negatives. High recall means less incorrect rejections and indicate that a
large amount of a specific feature was correctly recognized. A high recall
express that recognition of the class was almost complete.

F-measure

An F-measure will consider the relationship between the number of
True/ False Positives and True/ False Negatives and make functions of
combinations.
The F1 Score may be seen as a model that will express the balance between
precision and recall. While precision may summarize the ’exactness’ of the
model, recall may summarize the ’completeness’ of the model. The F1 Score
is expressed as equation (2.1).

F1 = 2
(

precision ∗ recall
precision + recall

)
(2.1)

If both have the same value, F1 will also get that value.

Precision and Recall may be an average of results obtained for each classi-
fied emotion or may have weights added. Results obtained from Precision
and Recall may show if predictions are more exact than they are complete.

Confusion matrix

For a classification problem it is also very useful to create a two-
dimensional cross matrix of number of features that are looked at, with
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known features in one direction and the same estimated features in the
other direction. A populated diagonal with numbers for correctly inter-
preted features will then appear, hopefully with as few as possible incor-
rectly interpreted features outside the diagonal. As an example, disgust
may easily be interpreted as angry, fearful, neutral or even happy. Such a
matrix is called a Confusion Matrix.

Presentation of results from testing the model is done in a main Chapter
5, and results are discussed in Chapter 6.

2.7 CNN models

Before use of effective methods can be employed for image interpretations
in this thesis, it is necessary to investigate which innovations have been
made lately in the field of Artificial Intelligence (AI), Artificial Neural Net-
works (ANN) and Convolutional Neural Network (CNN).
A CNN is an assembled architecture consisting of several layers that filter,
sort and classify information from a digital source like a picture.

Each of the currently widely used architectures brought significant sci-
entific advances to the market, especially during the yearly ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) challenges, the ImageNet
Large Scale Visual Recognition Challenge. The ILSVRC challenges resulted
in rapid advancement in computer vision interpretations and the develop-
ment of successful architectures as convolutional neural network models.

Great advances in creating functional CNN’s were made through innov-
ations in projects like LeNet and ImageNet, that resulted in architectures
like AlexNet, VGG, Inception, and ResNet. These successful architectural
innovations for computer vision tasks were made fairly recent, mainly in
the period of 2012 to 2016.

2.7.1 LeNet

LeNet-5 describes the network as having seven layers with input of
grayscale images with 32×32 pixels. A pattern with a convolutional
layer followed by an average pooling layer is repeated two and a half
times before output feature maps are transferred to connected layers for
classification and a final prediction (Lecun et al., 1998).

2.7.2 AlexNet

The AlexNet architecture has 5 convolutional layers in the feature extrac-
tion part of the model and 3 layers in the classifier part of the model. Con-
volutional layer were necessarily not followed by pooling layers but were
fed directly to another convolutional layer (Krizhevsky et al., 2017).
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2.7.3 VGG16

The VGG architecture makes use of a large number of small filters, down
to the size 3×3 and 1×1. This is different from use of large sized filters
in LeNet-5 and relatively smaller filters in AlexNet. VGG also stack
convolutional layers after each other, however by use of smaller pooling
filters to simulate the effect of a single convolutional layer with a larger
sized pooling filter. Different versions of the architecture are deep with use
of 16 or 19 layers (Simonyan and Zisserman, 2014).

2.7.4 Inception

The Inception/GoogLeNet architecture use a set of parallel LeNet convo-
lutional layers, however consisting of different sized pooling filters (e.g.
1×1, 3×3, 5×5 in each channel). When large filters from several layers or
channels are used, resource use becomes excessive, especially if modules
are stacked. Additional convolutions to smaller filters are used to reduce
computations and temporary output classifications are used as error feed-
back at intermediate layers. Development of a very deep network up to
22-layers has been used (Szegedy et al., 2014).

2.7.5 ResNet

ResNet or the Residual Network introduced the idea of residual blocks in
pairs that make use of shortcut connections where the input is passed on to
a deeper layer, skipping the next, without use of step-wise pooling filters,
as is used in the VGG architecture. Repetition of pairs of residual block are
stacked to a very deep model of up to 152-layers, with a pooling filter at
the end (He et al., 2015).

For reference, error rate during the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) challanges for the described architectures were;
AlexNet obtained an error rate of 0.154, the derived ZF-Net got 0.112,
VGG19 0.073, Inception/GoogLeNet 0.067 and ResNet obtained a very low
0.036 .

The Residual Neural Network (ResNet) is one of the latest CNN that
were developed for Artificial Neural Networks (ANN). The ResNet archi-
tecture consists of more than hundred layers, which is considered to be a
very deep CNN.

ResNet is a particularly suited learning architecture for Image Recognition,
and often outperforms other popular Convolutional Neural Networks.
This was demonstrated during the ILSVRC challanges, where it won in
2015.

More specifically, ResNet is a CNN design that overcomes the "vanishing
gradient" problem, by creating a network of numerous convolutional lay-
ers that numerically outperform more shallow networks. The model makes

23



predictions with a given set of weights and the error is calculated in each
layer.

A gradient descent algorithm will change weights and gradually reduce
the error, meaning that the error will continue improvement and still have
a gradient to better results.

2.8 Transfer learning

Normally, an added convolutional layer close to your Baseline Model input
layer may learn simple one-dimensional features such as lines. Layers in
the middle may combine extracted low level features and learn more com-
plex features, and layers closer to the output may classify the extracted fea-
ture and give weights to different types of recognition. To train and optim-
ize your own model on your own database may be very time-consuming.

The motivation for the transfer learning process was to decrease the re-
quirement for extended training sets. The approach of modifying the
weights and parameters of an already trained network to meet your goal
is known as transfer learning. It is sometimes referred to as using a pre-
trained network.

2.8.1 Pre trained models

A large number of image classification models have been developed over
time, such as for the annual ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC).

It would be a great advantage for development of a new deep convolu-
tional neural network model if these innovations in architectures and train-
ing could be utilized. Models are already trained on millions of images in
numerous categories and have found feature weights that give excellent
performance for specific tasks.

These pre-trained models are usually freely accessible by API’s and parts
of them can be used as-is as an integrated part of new models. Parts will
act as a feature extraction algorithm, or will use found feature weights
as starting points for new interpretation problems. Fortunately, Keras are
available and give access to pre-trained CNN’s and will download model
weights from their libraries. Suitable CNN’s are of the type that use repeat-
ing structures (VGG), inception modules (GoogLeNet) or residual modules
(ResNet).

From the keras applications (Keras Documentation, n.d.), we can pick and
select any of the state-of-the-art models and use it for our problem.

Pictures from CNN models have a predefined format. When models
are loaded into a new Baseline Model from their database, images may be
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Figure 2.11: List of available models in keras. From Keras Documentation,
by Keras Documentation n.d.
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specified to have a new pixel input shape or even be in a grey-scale format
to suit training or model weight calculations in your own model.

If however you would like to benefit from what these architectures already
have obtained in feature recognition or in model weight calculations, your
own picture format must be be transformed to what these models require:

• The VGG16 Pre-trained Model is expected to get square shaped color
images of size 224×224

• The ResNet50 Pre-trained Model is expected to get square shaped
color images of size 224×224

Taking advantage of these pre-trained CNNs as a component for feature or
weight calculation in your own computer vision code for e.g. image- and
emotion recognition is called Transfer Learning.
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Chapter 3

Literature Review

A Literature Review will show that use of Convolutional Neural Network
(CNN) is widely used for image interpretations. Specifically for the
purpose of facial emotion recognition by use of CNN’s, a selection of
papers are reviewed.

The paper ResNet-50 and VGG-16 for recognizing Facial Emotions by
Dhankhar from 2019, explored the VGG-16 and ResNet50 architectures for
recognizing facial emotions using deep learning. They also developed a
Support Vector Machine (SVM) classifier baseline model for comparison
purposes. The article used both the () dataset and the Karolinska Directed
Emotional Faces (KDEF) dataset for testing of their two models. In the in-
troduction they state that they expect their best model to achieve at least
60% test set validation because the winner of Kaggle’s Facial Expression
Recognition Challenge achieved 71.2% accuracy and the top ten contest-
ants achieved at least 60% accuracy.

On the KDEF dataset, overall results on accuracies, precision, and recall
with their models were higher than on the dataset. Surprisingly, all four
models gave better results on the KDEF dataset compared to the dataset,
which is a much smaller dataset. However, the photos in the KDEF data
collection are of greater quality and the dataset contained examples of text
overlay in the image’s background. Below, the results on the KDEF dataset
will be shown and what results application of transfer learning could give.
The results of the SVM (baseline), VGG-16, ResNet50 on the KDEF dataset
are shown in Table 3.1 below.

Accuracy Precision Recall
SVM (baseline) 37.9 % 50.1 % 54.9 %
VGG-16 71.4 % 81.9 % 79.4%
ResNet50 73.8 % 83.3 % 80.7%

Table 3.1: KDEF dataset performance. From ResNet-50 and VGG-16 for
recognizing Facial Emotions by Dhankhar 2019.

Applying transfer learning further improved the results. The results
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after transfer learning was implemented is shown in Table 3.2 below.

Accuracy Precision Recall
VGG-16 73.6% 84.2% 81.1%
ResNet50 76.0% 86.1% 82.5%

Table 3.2: KDEF dataset performance with Transfer Learning. From ResNet-
50 and VGG-16 for recognizing Facial Emotions by Dhankhar 2019.

The findings were even better when transfer learning was used. They
fixed the layer weights of the pre-trained models except for the last few
layers and retrained them on the KDEF dataset. Resnet-50 improved from
73.8% to 76.0%. Precision and recall both improved in the same way. This
demonstrates that their model was able to take learnings from datasets, and
apply them to the KDEF dataset.

The paper Deep learning-based facial emotion recognition for human–computer
interaction applications by Chowdary et al. from 2021, studies emotion re-
cognition techniques by using transfer learning approaches. In this work,
pre-trained networks of Resnet50, VGG19, Inception V3, and Mobile Net
are used. The fully connected layers of the pre-trained ConvNets are elim-
inated, and we add our fully connected layers that are suitable for the num-
ber of instructions in our task. Finally, the newly added layers are only
trainable to update the weights. The experiment was conducted by using
the CK+database and achieved an average accuracy of 96% for emotion de-
tection problems.

The paper Face Recognition using Transfer Learning on VGG16 by Mittal from
2020, used VGG16 and was trained for weeks, using an NVIDIA Titan Black
GPUs. Applying transfer learning gave results presented in 3.3

Accuracy Loss
VGG16 97.3 % 0.63 %

Table 3.3: From Face Recognition using Transfer Learning on VGG16 by Mittal
2020.

The paper Automatic facial recognition using VGG16 based transfer learning
model by Dubey and Jain from 2020, used a VGG16 based transfer learning
model that showed 94.8% accuracy on CK+ and 93.7% on the JAFFE data-
set, and was superior to existing techniques. The proposed technique was
implemented on Google Colab-GPU that was helpful for processing these
data.

The paper Improvement of emotion recognition from facial images using deep
learning and early stopping cross validation by Mohamed et al. from 2022,
present a new approach for emotion recognition from facial images. The
proposed method is based on the association of a pretrained CNN models
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(VGG16, ResNet50) with a multilayer perception (MLP) classifier. The pre-
trained CNN model is used as a feature extractor. They adapt the original
architecture by adding a global average pooling layer (GAP) without any
fine tuning of the network parameters. In order to avoid overfitting for the
MLP classifier, the early stopping criterion was introduced.
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Chapter 4

Methodology

4.1 Existing software

In order to start working with machine learning in Python, a platform for
programming must be created.

Python for the operating system in use must be downloaded and installed
(Linux, OS X or Windows). A package manager may be needed to also in-
stall the SciPy platform and the scikit-learn library - or everything may be
installed at once with Anaconda.

The code then becomes rather simple, starting with Python version;

Numpy
import numpy

Matplotlib
import matplotlib

Pandas
import pandas

Scikit-learn
import sk-learn

4.1.1 Python

Python is one of the largest programming languages for applied machine
learning, available for the Linux-, OS X- and Windows-operating systems.
It has proven efficient for building accurate numerical models for use in AI,
ANN and machine learning projects.

Of great importance to a working Python environment is the availability
of compatible software packages. A package like Anaconda is made for the
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development environment to ease implementations, a main library used
for machine learning is scikit and libraries used for deep learning are Keras,
Theano and TensorFlow.

Use of these packages are via free open-source licenses and may be down-
loaded to a computer in ready-made bundles for ease of installation. Many
packages are made as an Application Program Interface (API) that may
plug-in as ready made for other packages.

4.1.2 Keras

Keras is a deep learning API written in Python, running on top of the ma-
chine learning platform TensorFlow. Keras is a more high-level API of
TensorFlow 2 that makes it a user friendly interface for solving machine
learning problems by reducing the number of user actions required for
common programming tasks and by providing more understandable er-
ror messages.

The focus is on creating building blocks to enable rapid development and
deploying machine learning solutions to many platforms, including mobile
phones.

4.1.3 Scikit-learn

The main library for machine learning in Python is scikit-learn. It will al-
low saving and loading the machine learning models that make numerous
predictions.

A disadvantage with interdependent software environments and contribu-
tions from many developers is that the Python versions used in every part
of the assembled code must carefully be noted in order to avoid compatib-
ility issues in the software development process.

4.1.4 Tensorflow

TensorFlow is an open source library for fast numerical computing created
by Google, especially made for Python programming, although it is created
in the more low-level language C++.

The TensorFlow installation is often made via packages like PyPI and
comes with a number of Deep Learning models that can be experimented
on directly in a web browser. It also has an examples directory and a list of
tutorials to show how different network types and datasets can be used.

4.2 Metrics used

In our case where membership to a class shall be predicted, the following
metrics are used:
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Accuracy

Accuracy is used to measure the number of correct predictions in relation
to all predictions made for a feature, disregarding whether the prediction
was correct or wrong. An accuracy score of 75% to 95% is desirable.

Loss

Loss is used to check the predicted probability between 0 and 1 of
belonging to a given class. A low log-loss is desirable.

AUC

AUC is used to check the model skill, where the area-under-curve is a true
positive rate versus a false positive rate. The result should approach the
looks of a letter L upside-down.

Precision

Precision is used to check if recognition of the class is very exact.

Recall

Recall is used to check how complete the recognition of the class is.

F-measure

The F-measure displays the relationship between Precision and Recall.

Confusion matrix

A Confusion matrix is used to check if the matrix diagonal is populated
with numbers for correctly interpreted features.

4.3 Datasets

We shall introduce a few datasets in this part. The datasets are chosen to be
as large and diversified as feasible in terms of quantity and size.

FER-2013

The Facial Emotions Recognition dataset is available as both .csv file and
.jpg folders.
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Figure 4.1: Extraction of a few images from FER dataset with unique faces
and emotions

JAFFE

The Japanese Female Facial Expression dataset is available as a .csv folder.
JAFFE consists of 213 images of the 7 facial expressions from 10 different
Japanese females.
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Figure 4.2: Extraction of a few images from JAFFE dataset with correspond-
ing labels to the left and three unique faces on the right

4.4 Implementation

Implementation of a model can be done after a database has been made
available on a computer by

1. Collecting a specific set of data

2. Saving data in a data structure

3. A model can then be developed to a stage for testing when the
following elements are completed:

(a) Loading of the dataset
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(b) Preparation of the dataset

(c) Definition of the model

(d) Evaluation of the model

(e) Presentation of performance results

Based on theories as outlined in Chapter 2, a walk-through of the
implementation is presented in the following subsections. For further
details, the model code and algorithms can be consulted. The figure below
shows the data flow of how the models will be trained. All models will get
raw images, pre-processed images, but only the pre-trained models will be
used with transfer learning. A trained prediction model is the result.

Figure 4.3: Emotion Recognition system architecture. Arrows show the
work flow in sequence starting with loading Raw images and ending with
a trained prediction model. By E. Kirkvik

4.4.1 Database collection

This research will collect datasets from databases that are organized in a
comprehensive, systematic and sufficiently detailed manner. Based on lit-
erature studies in Chapter 3, the FER-2013 database will be used as a train-
ing, validation and test set. There are two types of the FER-2013 database
available online, where one database contains folders of .jpg images of faces
(Kaggle, 2020) and the other one is a .csv file (Kaggle, 2018) where the im-
ages have been converted to an array.

If pictures only exist as .jpg, pixels can be converted to a NumPy array
for treatment with Keras. A function img-to-array() exist for this task.

The images will need to be reshaped to a 4-dimensional format of the form
reshape(samples, pixelrows, pixelcolumns, colors). If image pixels shall
be treated by pre-trained models, they need to be prepared to the same Im-
ageNet format the models used. Keras also provides a function preprocess-
input(image) for use with the network models.
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To distinguish the two datasets, they will further be mentioned as FER-
2013 .jpg and FER-2013 .csv.

4.4.2 Dataset Directory Structure

Subdividing data sets is done in a structured manner. According to Brown-
lee (2019), there is a standard way to lay out image data for modeling. After
collecting the database containing the .jpg images, FER-2013 .jpg, they are
sorted first by dataset, such as train, validation and test, and secondly by
their feature class.

First, we create a data/ directory to store all of the image data.

Next, the training dataset will be stored in a data/train/ directory, while
the test dataset will be stored in a data/test/ directory. During training, we
may also have a data/validation/ folder for a validation dataset, but this
must be created manually as the database downloaded did not contain a
separate validation folder.

Based on this we get the following directory structure on the images:

data/
data/train
data/test
data/validation

For the dataset FER-2013 .jpg, it has seven different classes, which are
sadness, anger, disgust, fear, happiness, neutral and surprise. Under each
of the dataset directories, we will have subdirectories, one for each class.
For my dataset there will therefore be seven class directories under each
dataset directory. Images of for example angry faces would then be placed
in the appropriate class directory.

An overview of the final directory structure:

data/
data/train

data/train/angry/
data/train/angry/Training3908.jpg

data/train/disgust/
data/train/fear/
data/train/happy/
data/train/neutral/
data/train/sad/
data/train/surprise/

data/test
data/train/angry/
data/train/disgust/
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data/train/fear/
data/test/fear/PrivateTest166793.jpg

data/train/happy/
data/train/neutral/
data/train/sad/
data/train/surprise/

data/validation

Figure 4.4: Image of computer folders illustrating dataset directory
structure

An alternative to Subdividing data sets is to split and analyse the whole
dataset in k-folds.

4.4.3 Loading datasets and images

Manually loading image data and returning data appropriate for modeling
is done with the Python code. This would e.g. be navigating within a data-
set’s directory structure, loading image data, print the input as checks of
correct loading, giving info on pixel arrays such as range for colors between
0 and 255 and returning image data with feature class integers.

The FER-2013 .csv database contains the same amount of images, only it
is converted to an array of images in a .csv folder. It contains the columns
with names: ’emotion’, ’pixels’ and ’Usage’. I download the FER-2013 .csv to
my computer locally and add a path to it in the Python code. The dataset is
then defined with the variable data, and the dataset can be visually presen-
ted by calling data.head() which prints the first rows and corresponding
rows. This is done with the following code below.
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1 # Create path to dataset
2 path=’C:/data3/fer2013.csv’
3 # Load the dataset
4 data=pd.read_csv(path)
5 # Look at 5 first rows and corresponding columns
6 print(data.head())
7 # More about the dataset
8 print(data[’Usage ’]. value_counts ())

Listing 4.1: Create dataset path and verify database structure

We can verify the database structure by visually looking at the output
which is shown in Figure 4.5 below.

Figure 4.5: Image of PyCharm console of first rows of dataset and its
corresponding columns: emotion, pixels, usage. Can be shown in console
by running data.head()

By printing the ’Usage’ column, we can see that it is already divided into
three categories; ’Training’, ’PublicTest’ and ’PrivateTest’.

Figure 4.6: Image of console output returning total amount of images under
columns ’Usage’ where it is counted 28709 with label ’Training’, 3589 with
label ’PublicTest’ and 3589 with ’PrivateTest’

This shows us that the total dataset consists of a total amout of data
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values:
28709 + 3589 + 3589 = 35887

And 10% PublicTest and 10% PrivateTest, resulting in 80% training data:

35887 ∗ 0.1 = 3588.7

We want to use this categorization further and define it in the code by
these simple lines:

1 # Define train images to be the ones under ’Usage’ Training
2 train_data = data.loc[data.Usage =="Training"]
3 # Define validation images to be the ones under ’Usage’

PublicTest
4 val_data = data.loc[data.Usage=="PublicTest"]
5 # Define test images to be the ones under ’Usage’ PrivateTest
6 test_data = data.loc[data.Usage =="PrivateTest"]

Listing 4.2: Separating Usage by Training PublicTest and PrivateTest

Because we want to use the k fold split function for splitting train and
test, it is preffered to use the whole dataset. We will therefore first combine
the validation and test dataset which are 10% each of the total dataset to use
as a validation set when fitting the model. This means it would have 20% of
the total data for validation. And further combine the test, validation and
train set together with a np.concatenate function to merge the whole dataset
to be used in the k fold function. The code doing this is presented below:

1 # Combining validation and test data to be test dataset
2 test_data = pd.concat ([test_data ,val_data ])
3 ...
4 # Merge inputs and targets to use the whole dataset
5 inputs = np.concatenate ((X_train , X_test), axis =0)
6 #100% dataset is used
7 targets = np.concatenate ((y_train , y_test), axis =0)
8 #100% dataset is used

Listing 4.3: Separating Usage by Training PublicTest and PrivateTest

4.4.4 Analyzing dataset

Before pre- processing and presenting the dataset to an ML algorithm, it is
vital to look at the downloaded dataset to verify its content and get an idea
of what type of pre-processing or image augumentation needs to be done.

Show images

The following function will show one random image from each emotion
folder to illustrate how the images in the database look. The function will
use the total dataset, including test and train folders. This is done by calling
the plot_emotions() function below:

1 ########## Example images from dataset for each emotion
##########

2 def plot_emotions ():
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3 fig , axis = plt.subplots(1, 7, figsize =(30, 12)) # create
figure box

4 fig.subplots_adjust(hspace = .2, wspace =.2) #make spaces
between each image shown

5 axis = axis.ravel() #create a contiguous flattened array
6 for j in range (7): #loop through each of the 7 emotions and

show the image
7 number = data[data[’emotion ’]==j]. index[j]
8 axis[j]. imshow(X_train[number ][:,:,0], cmap=’gray’)
9 axis[j]. set_title(emotions[y_train[number ]. argmax ()])

10 axis[j]. set_xticklabels ([])
11 axis[j]. set_yticklabels ([])

Listing 4.4: plot_emotions function showing one random image from each
emotion

Figure 4.7 below shows the output from the console running the function
above. One image for each of the emotional labels.

Figure 4.7: Results from running function plot_emotions() showing an
image for each of the seven emotions; angry, disgust, fear, happy, sad,
surprise and neutral

Having a further look at the dataset, it is interesting to see the
distribution of datapoints for each emotional label. This can be visualized
by running the function develop_piechart. The function will count amount
of data points for each emotion and visualize it by use of matplotlib library.
The function will use the total dataset, including test and train folders. The
code for develop_piechart is shown below:

1 ######## Show distribution of each emotion in a piechart
#########

2 def develop_piechart ():
3 ...
4 plt.figure (1)
5 plt.pie(x=la_num , labels=lab , autopct=’%3.1f %%’,

startangle =90)
6 plt.title(’Size of each emotion in dataset ’)
7 plt.axis(’equal ’) # Equal aspect ratio ensures that pie is

drawn as a circle
8 plt.show()

Listing 4.5: develop_piechart function illustrating distribution of emotions
in dataset

The output from running the develop_piechart() function above will result
in a figure plot shown in Figure 4.8 below.
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Figure 4.8: Results from running function develop_piechart() showing a
piechart of the distribution for each of the seven emotions followed by
a percentage. These are from lowest to highest: disgust (1.5%), surprise
(11.2%), angry (13.8%), fear (14.3%), sad (16.9%), neutral (17.3%) and happy
(25.0%)

Figure 4.9: A Piechart from running function develop_piechart() function.
It shows a distribution of 80% train data (Train), 10% validation data
(PublicTest) and 10% test data (PrivateTest).
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Dataset category count

As stated in the Kaggle documentation where the FER-2013 dataset was
downloaded from, it contains 7 emotions. It is important to plot a category
count of the amount of each category to verify if the dataset is balanced or
not. I created a function in my code that prints out the amount of images
for each of the seven emotional categories by use of the matplotlib library.
The code is attached below:

1 def plot_bar ():
2 "Function that plots the distribution of image amount for

each emotional category"
3 plt.bar(range(len(la_num)), la_num , tick_label=lab)
4 for a, b in zip(lab_no , la_num):
5 plt.text(a, b + 0.05, ’%.0f’ % b, ha=’center ’, va=’

bottom ’, fontsize =10)
6 plt.title(’Size of each emotion in whole dataset ’)
7 plt.show()

Listing 4.6: plot_emotions function showing one random image from each
emotion

The output is shown in Figure 4.10 below:

Figure 4.10: The horizontal X-axis shows each emotional feature category,
named; angry, disgust, fear, happy, neutral, sad and surprise. The vertical
Y-axis shows number of counted images, ranging from approximately 500
images to 9000 images.

The horizontal X-axis shows each emotional feature category, named;
angry, disgust, fear, happy, neutral, sad and surprise. The vertical Y-axis
shows number of counted images, ranging from approximately 500 images
to 9000 images.
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4.4.5 Data preprocessing

For pre-processing of data, Keras utilities for pre-processing datasets can
be utilized, located in the database tf.keras.preprocessing. Utilities can be
used to go from raw data on disk to a set of tf.data, i.e. dataset that can be
used to train a model. For the FER-2013 .csv dataset We have the following
values of the images:

• Number of images = 35887

• image width, image height = 48 x 48

• 3 channels, pizel levels in range [0-255]

This can be confirmed by running code: "data.shape()" in the program and
getting the output:

Figure 4.11: Running data.shape() in the program returning (number of
images, number of channels), in this case: (35887, 3)

The images already have the same height and width so they have the
same aspect ratio. The neural network will expect images of same square
shape input, so I do not need to do any form of cropping. I also chose to
not do any form of pixel resizing by up-scaling or down-scaling because of
the already low image resolution.

The first part of data processing is to convert the images to nparrays and
32-bit floating number because the weights of a Neural Network are all
float32. The next step is to convert the nparray to One-hot encoding, the
correct input format for an ML algorithm.

Next, the images are normalized by the pixel values for colors, by rescaling
256 colors to be represented by range of [0,1]. This will transfer colors from
integers to real numbers. The actual data and the image lables will be ex-
tracted separately for the program to be able to run correctly. The variables
are defined such as:

• X_train = all train images without corresponding labels. these will be
used to train the model

• y_train = all train labels without corresponding data

• X_test = all test images without corresponding labels. Will not be
used in the training phase but will be used to make predictions to test
the accuracy of the model.

• y_test = all test labels without corresponding data

44



1 # Convert images to an nparray and 32-bit floating number.
Extract only data , without labels

2 X_train = np.array(list(map(str.split , train_data.pixels)), np.
float32)

3 X_test = np.array(list(map(str.split , test_data.pixels)), np.
float32)

4

5 # Converting to One -hot encoding
6 X_train = X_train.reshape(X_train.shape[0], 48, 48, 1)
7 X_test = X_test.reshape(X_test.shape[0], 48, 48, 1)
8

9 # Normalizing
10 X_train=X_train /255 # Can also be called train images , without

corresponding labels
11 X_test=X_test /255 # Can also be called test images , without

corresponding labels
12

13 # Extracting only labels not containing data
14 y_train = train_data.emotion # Can also be called train labels ,

without corresponding data
15 y_test = test_data.emotion # Can also be called test labels ,

without corresponding data
16

17 # Converiting to One -hot encoding
18 y_train = np_utils.to_categorical(y_train , 7)
19 y_test = np_utils.to_categorical(y_test , 7)
20

21 # Look at the final formatted data
22 print(f"X_train shape: {X_train.shape} - y_train shape: {

y_train.shape}")
23 print(f"X_test shape: {X_test.shape} - y_test shape: {y_test.

shape}")

Listing 4.7: Separating Usage by Training PublicTest and PrivateTest

4.4.6 Defining callbacks

Before a neural network can undergo training, a decision must be made on
analysis steps and how many epochs shall be used.

Too many epochs can lead to overfitting while too few may result in an
underfit model.

Functions presented below measure the model performance during
analysis and they may stop the training if further improvements are not
found. Checkpoints are set such that the model at best performing epoch is
saveed and can be called for later use.

1 ################## Callbacks function ########################
2 lrd = ReduceLROnPlateau(monitor=’val_loss ’, patience =20,

verbose=1, factor =0.50, min_lr =1e-10)
3

4 mcp = ModelCheckpoint(’model.h5’)
5

6 es = EarlyStopping(verbose=1, patience =20)

Listing 4.8: Separating Usage by Training PublicTest and PrivateTest
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4.4.7 Building Sequential model

A Baseline convolutional neural network Model will be established as a
typical classification model since emotions are divided into classes.

Since all reviewed literature studies confirm that transfer learning
give a clear improvement in predictions for base sequential models, an
alternative would then be to investigated how much a complicated baseline
model can be reduced to obtain the same accuracy as a less advanced model
that use transfer learning.

By building and analysing a rather complicated baseline model and
comparing results to a less advanced model that use transfer learning, it
will be checked if transfer learning can be used to obtain the same accuracy
with significantly smaller models. Transfer learning can then be used as a
’performance optimizer’ on smaller baseline models that give sufficiently
accurate results with a minimum use of resources.

First, a rather complex baseline sequential model is built. Transfer
Learning on a smaller model will later be used in comparisons with this
model, and results will show how much benefit this gave to a new and
modified model. Transfer Learning from several architectures can be used
but VGG and ResNet will be used. The baseline model built from scratch
is illustrated below.

The model is called Sequential due to its sequence of convolutions and
pooling layers. A CNN network structure is defined as described below.

A structure with four convolutional layers followed by max pooling
and dropout definitions is used, with a flattening out of the network to
fully connected layers for makeing predictions.

The Sequential() structure is summarized as follows:

• Convolutional input layer 32 feature maps with a size of 3×3, a
rectifier activation function and a weight constraint of max norm set
to 3, for 48x48 monocrome images.

• Convolutional layer 64 feature maps with a size of 3×3, padding and
a rectifier activation function.

• Max Pool layer with size 2×2.

• Dropout set to 25%.

• Convolutional layer 128 feature maps with a size of 3×3, padding, a
rectifier activation function and kernel regularisers.

• Max Pool layer with size 2×2.

• Dropout set to 25%.

• Convolutional layer 256 feature maps with a size of 3×3, padding, a
rectifier activation function and kernel regularisers.

• Max Pool layer with size 2×2.

• Dropout set to 25%.
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• Flatten layer Included

• Fully connected layer with 512 units and a rectifier activation
function.

• Dropout set to 50

• Fully connected output layer with 7 units and a softmax activation
function.

A logarithmic loss function is used with the cross entropy algorithm and
defined metrics are used.
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Figure 4.12: Illustration of the CNN Sequential model
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1 model = Sequential ()
2 model.add(Conv2D (32, kernel_size =(3, 3), padding=’same’,

activation=’relu’, input_shape =(48, 48, 1)))
3 model.add(Conv2D (64, kernel_size =(3, 3), activation=’relu’,

padding=’same’))
4 model.add(BatchNormalization ())
5 model.add(MaxPooling2D(pool_size =(2, 2)))
6 model.add(Dropout (0.25))
7

8 model.add(
9 Conv2D (128, kernel_size =(3, 3), activation=’relu’,

padding=’same’, kernel_regularizer=regularizers.l2 (0.01)))
10 model.add(BatchNormalization ())
11 model.add(MaxPooling2D(pool_size =(2, 2)))
12 model.add(Dropout (0.25))
13

14 model.add(Conv2D (256, kernel_size =(3, 3), activation=’relu’
, kernel_regularizer=regularizers.l2 (0.01)))

15 model.add(BatchNormalization ())
16 model.add(MaxPooling2D(pool_size =(2, 2)))
17 model.add(Dropout (0.25))
18

19 model.add(Flatten ())
20 model.add(Dense (512, activation=’relu’))
21 model.add(Dropout (0.5))
22

23 model.add(Dense(7, activation=’softmax ’))
24 model.compile(optimizer=’adam’,
25 loss=’categorical_crossentropy ’,
26 metrics=METRICS)

Listing 4.9: Separating Usage by Training PublicTest and PrivateTest

If a larger network should be designed for the problem, more feature
maps could be used closer to the input and less pooling could then be used.

Simple procedures for choosing the right loss exist. If there is a
classification problem with more than two categories, a loss called
"categoricalcrossentropy" is a natural choice. This is the same for all the
models as it will load a dataset with 7 emotional categories.

The model is later fitted with the train dataset, using a batch size of 32
and with 20-50 epochs.

Better end results will normally be obtained with more epochs. A run with
up to 150 epochs was at one time tested to see if the rate of convergence im-
proved significantly. If there is no significant improvement, fewer epochs
are used.

4.4.8 Building VGG16 model

The model’s architecture cannot be changed because the weights have been
trained for a specific input configuration. This is why a property of the im-
age must be changed from 1 channel grey scale to a 3 channel rgb image.
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I also run the pre-trained model on only 20 epochs compared to the se-
quental model that is run on 50 epochs. This is because the VGG and Res-
net models are already pre-trained and does not need as many epochs as a
non-pre-preained models.

The ImageNet collection is known to contain photos of various vehicles
(sports cars, pick-up trucks, minivans, etc.). We can still import a model
that has been pre-trained on the ImageNet dataset and extract features us-
ing its pre-trained layers. We can however not use the complete architec-
ture of the pre-trained model. Our Target Dataset has only seven classes
for prediction, while the Fully-Connected layer generates 1,000 possible for
output labels. So we will take a pre-trained model like VGG16 and "chop
off" the Fully-Connected layer (also known as the "top" model).

1 def VGG_model ():
2 # Loading the vgg16 model
3 # VGG model must recieve 3 channel data. Resizing 48 x48x1

to 48x48x3
4 img_input = Input(shape =(48, 48, 1))
5 img_conc = Concatenate ()([img_input , img_input , img_input ])
6 base_model = VGG16(include_top=False , weights="imagenet",

input_tensor=img_conc , classes =7)
7

8 for layer in base_model.layers:
9 layer.trainable = False

10

11 # Create a new ’top’ of the model (i.e. fully -connected
layers).

12 # This is ’bootstrapping ’ a new top_model onto the
pretrained layers.

13 model = Sequential ()
14 model.add(base_model)
15 model.add(Flatten ())
16 model.add(Dense (4096 , activation=’relu’))
17 model.add(Dense (1072 , activation=’relu’))
18 model.add(Dropout (0.2))
19 model.add(Dense(7, activation=’softmax ’))
20

21 # summarize the model
22 #model.summary ()
23

24 plot_model(model , to_file=’VGG_model.png’, show_shapes=True
, show_layer_names=True)

25

26 # Compiles the model for training.
27 model.compile(optimizer=’sgd’,
28 loss=’categorical_crossentropy ’,
29 metrics=METRICS)
30 return model

Listing 4.10: Separating Usage by Training PublicTest and PrivateTest
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Figure 4.13: The pre-trained VGG16 model with weights ’imagenet’
illustration of each layer. The trainable layers are freezed, and one Flatten,
Dense(512) and Dense(7) layers are added at the end.

4.4.9 Building Resnet50 model

As an example of existing model architectures, the Resnet50 model used
in pre-training is illustrated. The weight "imagenet" is implemented in the
model. The model’s architecture cannot be changed because the weights
have been trained for a specific input configuration. This is why a change
of a property of the image from 1 channel grey scale to a 3 channel rgb im-
age must be done.

I also only run the pre-trained model on 20 epochs compared to the se-
quental model that was run on 50 epochs. This is because the Resnet model
is already pre-trained and does not need as many epochs as a non-pre-
preained model.

1 def resnet_model ():
2 #from: https :// chroniclesofai.com/transfer -learning -with -

keras -resnet -50/
3 img_input = Input(shape =(48, 48, 1))
4 img_conc = Concatenate ()([img_input , img_input , img_input ])
5

6 base_model = tf.keras.applications.ResNet50(weights=’
imagenet ’, include_top=False ,

7 input_tensor=img_conc)
8

9 for layer in base_model.layers:
10 layer.trainable = False
11
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12 model = Sequential ()
13 model.add(base_model)
14 model.add(Flatten ())
15 model.add(Dense (512, activation=’relu’))
16 model.add(Dense(7, activation=’softmax ’))
17

18 model.summary ()
19 plot_model(model , to_file=’resnet_model.png’, show_shapes=

True , show_layer_names=True)
20

21 model.compile(optimizer=’adam’, loss=’
categorical_crossentropy ’, metrics=METRICS)

22 return model

Listing 4.11: Separating Usage by Training PublicTest and PrivateTest

Figure 4.14: The pre-trained Resnet50 model with weights ’imagenet’
illustration of each layer. The trainable layers are freezed, and one Flatten,
Dense(512) and Dense(7) layers are added at the end.

4.4.10 Tracking and running experiments

1 # Define the K-fold Cross Validator
2 kfold = KFold(n_splits =10, shuffle=True)
3

4 # K-fold Cross Validation model evaluation
5 fold_no = 1
6 for train , test in kfold.split(inputs , targets):
7 model = Sequential_model () #call on Sequential_model (),

resnet_model () or VGG_model ()
8

9 # Generate a print
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10 print(’------------------------’)
11 print(f’Training for fold {fold_no} ...’)
12

13 #steps_per_epoch = train_dataset.n // train_dataset.
batch_size

14 #validation_steps = valid_dataset.n // valid_dataset.
batch_size

15

16 # Fit data to model
17

18 history = model.fit(x=inputs[train], y=targets[train],
19 batch_size =32,
20 callbacks =[lrd , mcp , es],
21 epochs =50,
22 validation_data =( inputs[test], targets[

test]),
23 verbose =1)
24 ...
25 # Increase fold number
26 fold_no = fold_no + 1

Listing 4.12: Separating Usage by Training PublicTest and PrivateTest

4.4.11 Extracting results

Using model.evaluate() from Keras requires the x values: (testimg) and y
values (testimglabel) from the data set and will produce the loss value and
metrics values for the model in test mode. This is used during my testing
and validation phase.

1 # Generate metrics
2 Train_Val_Plot(history.history[’accuracy ’], history.history

[’val_accuracy ’],
3 history.history[’loss’], history.history[’

val_loss ’]
4 )
5

6

7 Train_Val_Plot_All(history.history[’auc’], history.history[
’val_auc ’],

8 history.history[’recall ’], history.
history[’val_recall ’],

9 history.history[’precision ’], history.
history[’val_precision ’],

10 history.history[’f1_score ’], history.
history[’val_f1_score ’]

11 )
12

13 # Evaluate model on test set
14 scores = model.evaluate(inputs[test], targets[test],

verbose =0)
15 ...
16 # Predict on test set
17 results = model.predict(inputs[test], batch_size =128)
18 predicted_classes = np.argmax(results , axis =1)
19 y_classes = np.argmax(targets[test], axis =1)
20 ...
21 # Create confusion matrix per fold
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22 cm = confusion_matrix(y_classes , predicted_classes ,
normalize=’true’)

23 disp = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=lab)

Listing 4.13: Separating Usage by Training PublicTest and PrivateTest

4.4.12 Predicting on new dataset

Keras model.predict() only get the input data (testimg) and produces the
output from the trained model. It does not know anything about the actual
expected value (testimglabel).

Use model.predict() in production, to just get the model output.

When predicting on a new dataset that has not been used to testing, it is
important that the data pre-processin is done in exactly the same way as
on the testing dataset. I therefore initialize all the same pre-processing
steps on the image as mentioned earlier, before calling it to function
plot_image_and_emotion

1 pred1_test = list(modelVGG.predict(img1_batch))
2

3 def plot_image_and_emotion(img_show , img_label , pred_test):
4 """ Function to plot the image and compare the prediction

results with the label """
5

6 fig , axs = plt.subplots(1, 2, figsize =(12, 6), sharey=False
)

7

8 bar_label = lab
9

10 axs [0]. imshow(img_show , ’gray’)
11 axs [0]. set_title(img_label)
12

13 axs [1]. bar(bar_label , pred_test [0], color=’orange ’, alpha
=0.7)

14 axs [1]. grid()
15

16 plt.show()

Listing 4.14: Def plot image and emotion for predicting a test image from
unseen dataset
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Chapter 5

Results

This chapter presents results of the research made. Focus is set on the ob-
tained database, on the type of data it contained and how it was split in a
training and test dataset.

Since the database was fairly large, augmentation of original data was not
needed to increase the number of samples.

However the internal distribution of features was uneven with large dif-
ferences in representative numbers, such that the split into a training- and
test dataset had to be carefully selected by use of a stratified split that pre-
served the original class distribution between features.

The model is shown in its entirety with a logical presentation of the data
sequence necessary to form a model for type classifications.

Results from training and testing the model are analysed and categorised
after type of test. Test results are presented in diagrams and tables to
provide a good overview of obtained results.

Test results and differences between various test types are explained, and
the reliability and validity of findings are assessed, interpreted and evalu-
ated. A separate chapter is added for discussion of results.

Code with standard algorithms are presented by text and explanations of
results are presented in figures and tables, such that a clear, objective and
unbiased judgement of the model can be made.

5.1 Sequential model

5.1.1 .jpg dataset

Metric results

Below is the plotted training history with data from the .jpg dataset.
Training history for model accuracy and model loss from the Fer2013 .jpg
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dataset is presented in Figure 5.1.
The sequential model is used, running 150 epochs on a train and test

dataset. Accuracy and Loss is first shown.

Figure 5.1: Training accuracy and loss for 150 epochs with Fer2013 .jpg
dataset and the Sequential model

The model accuracy is relatively high, up to 89%. But both the train and
test dataset oscillates through epochs.

In Figure 5.2, other metrics are shown for training on the Fer2013 .jpg data-
set with 150 epochs .

Figure 5.2: All training metrics for 150 epochs with Fer2013 .jpg dataset and
the Sequential model

Based on Recall and Precision, the model can be said to find only 30-40%
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of the correct emotions but will classify up to 70-80% of those emotions in
an exact and correct manner.

Confusion matrix

A Confusion Matrix will show a breakdown of all predictions made for an
unseen dataset and is very useful for presenting the accuracy of a model
with several feature classes.

The table below presents cells for predictions on the horizontal x-axis and
cells for groups of correct answers on the vertical y-axis. Contents of cells
are fractions of predictions for each emotion. If all predictions were correct,
all numbers on the matrix diagonal would be 1.0.

It can be seen that except for the emotion of ’disgust’ with ten times less
representation in the dataset, the sum of each row is around 1.0 and that
predictions have a spread away from the true prediction at the diagonal.

Figure 5.3: Image of confusion matrix for the Sequential model with 150
epochs and Fer2013 .jpg dataset
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Classification report

From Scikit-learn, a standardized report for working with classification
problems is easily generated. It gives a quick overview of the model ac-
curacy by using standardized measures.

The classification report function display numerical representations of F-
measures such as precision, recall, f1-score and support for each feature
class.

Figure 5.4: Image illustrating the classification report for the Sequential
model with 150 epochs and Fer2013 .jpg dataset

5.1.2 .csv dataset

Metric results

Below is the plotted training history with data from the .csv dataset.
Training history for model accuracy and model loss from the Fer2013 .csv
dataset is presented in Figure 5.5.

The same sequential model is used here, running 50 epochs on a train
and test dataset. Accuracy and Loss is first shown.
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Figure 5.5: Training accuracy and loss for 50 epochs with Fer2013 .csv
dataset and the Sequential model.

The model accuracy is relatively high, up to 90%, however both the
train and test dataset still oscillates during epochs, training to a lesser de-
gree. 90% was obtained after only 50 epochs compared to an accuracy of
88% in the previous .jpg dataset.

In Figure 5.6, other metrics are shown for training on the Fer2013 .jpg data-
set with 50 epochs.

Figure 5.6: History of training auc, recall, precision, f1 for 50 epochs with
Fer2013 .cvs dataset and the Sequential model.

Based on Recall and Precision, the model can be said to find only 45%
of the correct emotions but will classify up to 77% of those emotions in an
exact and correct manner.
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Confusion matrix

It can be seen also here that except for the emotion of ’disgust’ with ten
times less representation in the dataset, the sum of each row is around 1.0
and that predictions have a spread away from the true prediction at the
diagonal.

Figure 5.7: Image of average confusion matrix for the Sequential model
with 50 epochs and Fer2013 .cvs dataset

The fold with the best percentages is chosen to be presented here, results
from other 10 k folds are found in the Appendix.

Classification report

The classification report function display numerical representations of F-
measures such as precision, recall, f1-score and support for each class.
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Figure 5.8: Image illustrating the classification report for the Sequential
model with 50 epochs and Fer2013 .cvs dataset

Mean time for the model to train on the train set was 1259.8 seconds =
21 minutes.

5.1.3 Data format assessment

Based on numbers for Accuracy, Precision and higher numbers on the
diagonals of the confusion matrices, a significant improvement is seen by
use of the .csv dataset, and significantly fewer epochs are needed to obtain
similar metrics.

It is concluded that the .csv dataset shall be used in further training and
testing.

5.2 Pre-trained VGG16 model

Metric results

The same typical metrics for judging the pre-trained classification problem
are used, but with an added AUC. These are: Accuracy, Loss, AUC, Recall,
Precision and F1 score.

The training history for model accuracy and model loss from the Fer2013
.cvs dataset with a pre-trained VGG16 model over 20 epochs is presented
in Figure 5.9 below. The training history for only fold 1 is shown here, and
all the remaining are attached in the Appendix.
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Figure 5.9: Training accuracy and loss for 20 epochs with Fer2013 .csv
dataset and the pre-trained VGG16 model Fold 1

The model accuracy on the training set is up to 87%, while somewhat
lower for the validation set. The training dataset show no oscillations, al-
though some during validation. This was obtained after only 20 epochs,
and further improvements can be expected with use of more epochs.

In Figure 5.10, the resulting metrics for training on the pre-trained VGG16
dataset with 20 epochs are shown. Also Fold number 1 is chosen here to
correspond with the Figure above.

Figure 5.10: Training auc, recall, precision, f1 for 20 epochs with Fer2013
.csv dataset and the pre-trained VGG16 model Fold 1

Based on Recall and Precision, the model can be said to find an average
of 17% of the correct emotions and will classify up to 67% of those emotions
in an exact and correct manner. This was obtained after only 20 epochs, and
further improvements can be expected with use of more epochs.
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Confusion matrix

Figure 5.11 is Confusion matrix averaging for all 10 k folds

Figure 5.11: Image of confusion matrix for the pre-trained VGG16 model
with 20 epochs and Fer2013 .cvs dataset. Average confusion matrix is
calculated from the 10 k folds

Classification report

The classification report function display numerical F-measures such as
precision, recall, f1-score and support for each feature class.
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Figure 5.12: Image illustrating the classification report for the pre-trained
VGG16 model with 20 epochs and Fer2013 .cvs dataset

The classification reports shows metric results from actual classes vs
predicted classes from the last k fold. Happy and surprise receiving the
highest scores of around 0.5 for precision, recall and f1 score. The emotion
disgust gives the lowest score of of 0.0 for all metrics.

Mean time for the model to train on the train set was 675 seconds = 11.3
minutes.

5.3 Pre-trained ResNet50 model

Metric results

The same typical Metrics for judging the pre-trained classification problem
are used, but with an added AUC:

Accuracy, Loss, AUC, Recall, Precision and F1 score

The training history for model accuracy and model loss from the FER 1
dataset in presented in Figure 5.13 below.
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Figure 5.13: Training accuracy and loss for 20 epochs with Fer2013 .csv
dataset and the pre-trained Resnet50 model

The sequential model was pre-trained using the ResNet model with
’imagenet’ weights, running 20 epochs. The model accuracy on the training
and validation set is high, up to 86%. The training dataset show small
oscillations, somewhat more during validation. As an average, 86.4% was
obtained after only 20 epochs.

In Figure 5.14, the resulting metrics for training on the ResNet dataset
with 20 epochs are shown.

Figure 5.14: Training auc, recall, precision, f1 for 20 epochs with Fer2013
.csv dataset and the pre-trained Resnet50 model

Based on Recall and Precision, the model can be said to find an average
of 12% of the correct emotions and will classify up to 65% of those emotions
in an exact and correct manner.

This was obtained after only 20 epochs, and further improvements can
be expected with use of more epochs.
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Confusion matrix

Figure 5.15 below is the developed average confusion matrix from 10
folds with the pre-trained Resnet50 model with weights "imagenet" and
20 epochs.

Figure 5.15: Average confusion matrix for 10 k folds with pre-trained
Resnet50 model during 20 epochs. Confusion matrix predicted on test
dataset showing highest 0.63 % accuracy of predicting happy-happy labels

It can be seen that except for the emotion of ’disgust’ with ten times less
representation in the dataset, the sum of each row is around 1.0 and that
predictions have a spread away from the true prediction at the diagonal.

Classification report

The classification report function show numerical F-measures such as
precision, recall, f1-score and support for each class.
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Figure 5.16: Classification report from using the pre-trained ResNet50
model on 20 epochs on test datset. Mean time for training on all folds is
687.1 seconds

The classification reports shows metric results from actual classes vs
predicted classes from the last k fold. Happy and surprise receiving the
highest scores of around 0.5 for precision, recall and f1 score. The emotion
disgust gives the lowest score of of 0.0 for all metrics.

Mean time for the model to train on the train set was 687.1 seconds = 11.5
minutes.

5.4 Predictions from testing

Accuracy St.Deviation Loss Epochs
Sequential .jpg 88 % +- - % - % 150
Sequential .csv 89.67% +- 0.193% 1.27% 50
VGG16 pre-trained 86.70% +- 0.131% 1.51% 20
Resnet50 pre-trained 86.26% +- 0.171% 1.61% 20

Table 5.1: Test set results from FER-2013 dataset over average metrics

Judging by these results one may conclude that models are quite equal in
accuracies.

The VGG and ResNet pre-trained models do have a somewhat lower
accuracy and would clearly have benefited from use of more epochs since
most metrics did not reach their asymptotic value. Table values for the
pre-trained models can be said to be conservative estimates.
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Low values for pre-trained models may also arise from use of too few
convolution sequences, however results are not far from results of the more
complex sequential base model.

But it is also very important to consider the other metrics to arrive at a
conclusion, as will be discussed in the next Discussion chapter.

Note however that models were run with a different number of epochs
and that results are for the last epoch. Performance of models should be
evaluated at the same epoch.

Using only 20 epochs may give inaccurate results for the sequential model
without any pre-trained weights, however a low number may be sufficient
when pre-trained models are optimally configured.

5.5 Predictions on unseen datasets

After the model has trained on the train dataset and receiving data of
images and its corresponding labels, it was run on pictures from an unseen
dataset. Examples of how the different models predict a random image is
presented as a demonstration.

Sequential

The Sequential model was used for prediction of the same selection from
the JAFFE dataset.

Figure 5.17: Sequential predicting on a Happy test image from the JAFFE
dataset, with results to the right.

When the sequential model makes predictions on a Happy test image,
the predicted results are highest for Sad and Neutral while Happy is among
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the lowest features, i.e. not an accurate prediction.

Figure 5.18: Sequential predicting on a Sad test image from the JAFFE
dataset, with results to the right.

When the sequential model makes predictions on a Sad test image, the
predicted results are highest for Neutral, however Sad is the second most
likely feature, i.e. still not an accurate prediction.

Figure 5.19: Sequential predicting on an Angry test image from the JAFFE
dataset, with results to the right.

When the sequential model makes predictions on an Anger test image,
the predicted results are highest for fear and sad while Anger is not
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predicted, i.e. a very inaccurate prediction. However, anger, fear and sad
can be considered related emotions..

ResNet50 pre-trained

The ResNet pre-trained model was used for prediction of the same selection
from the JAFFE dataset.

Figure 5.20: Pre-trained Resnet50 predicting on a Happy test image from
the JAFFE dataset, with results to the right.

When the pre-trained Resnet50 model makes predictions on a Happy
test image, the predicted results are highest for Sad and Neutral while
Happy is among the lowest features, i.e. not an accurate prediction.

70



Figure 5.21: Pre-trained Resnet50 predicting on a Sad test image from the
JAFFE dataset with results to the right.

When the pre-trained Resnet50 model makes predictions on a Sad test
image, the predicted results are highest for Neutral and Surprise while Sad
is among the lowest features, i.e. not an accurate prediction.

Figure 5.22: Pre-trained Resnet50 predicting on a angry test image from the
JAFFE dataset with results to the right.

When the pre-trained Resnet50 model makes predictions on an Anger
test image, the predicted results are highest Happy while Anger is not
predicted, i.e. a very inaccurate prediction. However, mouth movements
may have triggered a happy prediction.
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VGG16 pre-trained

Then the VGG16 pre-trained model was used for prediction of the same
selection from the JAFFE dataset.

Figure 5.23: Pre-trained VGG16 predicting on a Happy test image from the
JAFFE dataset, with results to the right.

When the pre-trained VGG16 model makes predictions on a Happy test
image, the predicted result was actually highest for Happy.

Figure 5.24: Pre-trained VGG16 predicting on a Sad test image from the
JAFFE dataset with results to the right.

When the pre-trained VGG16 model makes predictions on a Sad test
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image, the predicted results are highest for Surprise, while Sad is among
the lowest features, i.e. not an accurate prediction.

A sad situation is usually due to a disappointment and can be said to
be closely related to surprise.

Figure 5.25: Pre-trained VGG16 predicting on a Angry test image from the
JAFFE dataset with results to the right.

When the pre-trained VGG model makes predictions on an Anger test
image, the predicted results are highest for Neutral, while Anger is not
predicted, i.e. a very inaccurate prediction.

Comparison

In this test of random images, none of the models gave good predictions.
They did however give similarly bad predictions, proving that small and
simple pre-trained models give similar results as use of more complex
models with several convolutional layers.
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Chapter 6

Discussion

This chapter discusses analytical and critical thinking in relation to results
and analyses, also with reference to arguments described in the literature
review.

6.1 Metric results

Accuracies will improve if more epochs are run. The current results are the
status after only 20 epochs for all models.

Accuracy Loss Recall Precision f1
Sequential .jpg 88 % 1.75 % 20 % 75 % 35%
Sequential .csv 89.60% 1.21 % 41 % 76 % 54%
VGG16 pre-trained 86.70% 1.51 % 17 % 67 % 35%
ResNet50 pre-trained 86.26% 1.61 % 12 % 60 % 29%

Table 6.1: Test set results from FER-2013 dataset after 20 epochs

It was earlier concluded that models were quite equal in accuracies and
other analysis metrics.

Judging by these more complete results, a clear and significant difference is
seen for the Recall parameter for the sequential .csv dataset, which also has
a direct influence on the f1-parameter. Recall is the parameter that indicate
the number of true correct predictions, which means that this is a better
model.

It is seen that use of additional analysis metrics is very important to con-
sider in order to arrive at a conclusion. In this case, indications are that the
Sequential .csv model is better while the VGG16 model is the best of the
pre-trained models when a small base sequential model is used.
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6.2 Choosing datasets

From researching possible datasets containing emotional expressions, I
found a total of five datasets. These are:

• FER-2013 dataset is labelled with one of seven categories: angry,
disgust, fear, happy, sad, surprise, neutral

• JAFFE dataset mentions that it contains anger, happiness, fear,
surprise, disgust and sadness + neutral, but not sure if they are
already pre-labelled

• RAF-DB dataset is labelled with 6 expresssions: angry, disgust, fear,
happy, sad, surprise (plus seemes like one more, neutral?)

• CK+ dataset is labelled with one of eight expression classes: anger,
disgust, fear, happiness, sadness, neutral and surprise, plus the
contempt expression

The FER-2013 dataset was the easiest available as it was publicly posted
on the Kaggle platform. The dataset was available both as a dataset con-
taining folders with images, or a dataset in a .csv format. It was not much
information posted on Kaggle about the .csv dataset, but it could seems
like it used the image dataset and just converted it to an array of images
in digital format. I would probably be able to use the image folder data-
set and converted it myself to a .csv file by runing imgtoarray in a python
function. For this time, I found it easier to download an already converted
dataset from Kaggle.

The reason for changing the dataset from FER image folders to a .csv file
was that it was easier for me to work with np.arrays than working with
an Image classifier. Due to less experience working with Image classifi-
ers earlier and encounter of several error messages when processing the
dataset into labels for visualization, using the planned image structure for
the ML models often gave in/out errors, meaning conversion of images in
my program did not function correctly. I therefore decided to use a .csv
file where documentation of image processing with arrays was more easily
available.

As well as encountering problems with image processing from the FER-
2013 image folders, the highest accuracy percentage score for predicting
the test set would not exceed about 60%. This can be considered quite low,
when I now in retrospect have obtained results as high as 90% accuracy
for prediction on a test set. I also looked at Kaggle to see what others
have posted from their classification matrices or classification reports of
predicted metrics. Many of the models I found did however also report
accuracy percentages of about 60% from running predictions on a test set.
This, in combination with the processing errors, made me consider another
dataset that also did not contain image augmentation or had a pre-defined
train/test split.
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6.3 Splitting in train and test

I first started out by using the already created train/test split in the
downloaded dataset. The split was set to a classic 80% for training and 20%
for testing. However, after running the program and using the pre-defined
splits I was encouraged from my supervisors to use a more advanced k-fold
cross validation split method on the whole dataset.

6.4 Model parameters

A sequential CNN model was established and thereafter subjected to trans-
fer learning. Two main approaches to implementing transfer learning can
employed: Weight Initialization Feature Extraction.

The Weight Initialization method was used and final model behaviour was
assessed by its analysis metrics.

Accuracy is the number of correct predictions in relation to all predictions
made for a feature, disregarding whether the prediction was correct or
wrong. An accuracy score for the best model of up to 90% is found accept-
able. The prerequisite that there should be an equal number of observations
in each evaluated class was circumvented by performing a stratified train-
test split, or a stratified k-fold cross-validation.

Loss of membership to a class was found to be acceptably low, down to
1.5% for the best model. Correct predictions were rewarded more than in-
correct predictions were punished. A lower logarithmic loss is however
desirable, as close to zero as possible, as for a perfect log loss of zero.

For reference, of architectures described in the section describing Convo-
lutional Neural Network (CNN)’s, the AlexNet architecture obtained an
’error rate’ of 0.154, the derived ZF-Net had 0.112, VGG19 0.073, Incep-
tion/GoogLeNet 0.067 and ResNet obtained a very low 0.036.

An F-measure considered the relationship between the number of True/
False Positives and True/ False Negatives. The F1 Score expresses the
balance between ’precision’ and ’recall’, where precision summarized the
’exactness’ of the model and recall summarize the ’completeness’ of the
model. Results obtained from the runs showed that estimates were more
exact than they were complete. The best model found around 30% of
the correct emotions and classified up to 70-80% of those emotions in an
exact and correct manner. Improving the Recall rate will give an overall
improvement to the models,

The Confusion Matrix in the form of a two-dimensional cross matrix of
number of features showed that the diagonal with numbers for correctly
interpreted features was reasonably well populated with few incorrectly
interpreted features outside the diagonals. It was clearly seen that the
disgust feature was scarce and was easily interpreted as angry or fear. The
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best model had more than 65% of cases on the correctly indicated diagonal.

6.5 Predictions on unseen datasets

After the model has trained on the train dataset and recieving data of
images and its corresponding labels, it was run on pictures from an unseen
dataset. A random picture can never be interpreted 100% correctly unless
Accuracy , Recall and Precision are extremely high. These numbers were
below 76% such that some misinterpretations had to be expected.

By selecting only a few random images and performing testing with the
selected models, it was seen that models were working well but they did
not give reasonably good predictions.

Models did however give similarly bad predictions. Analysis metrics
also showed similar behaviour could be expected from all three models.
It is also indicated that especially the pre-trained models could have
benefited from more training, including use of a larger number of epochs.

Considering the different model architectures, it is indicated and
confirmed that small and simple pre-trained models give similar results
as will be obtained from use of more complex models with several
convolutional layers. This may be of importance if a model shall be
implemented on small handheld devices.

Tests were also only made on emotions from a female Asian dataset.
Other datasets were not readily available in an easily usable format, such
that conclusions on estimates for people with other origins could not be
made.

6.6 Challenges with unbalanced datasets

It was found that six of the emotions were quite evenly represented in the
dataset, except for the emotion of ’disgust’ that had ten times less repres-
entation for its class among the data. Results for the confusion matrix of
the worst model also show that ’disgust’-cases were identified correctly
only 1% of the time, however the classification report show that these few
identifications were indeed correct. This have likely influenced the overall
results of the poor model where the model could be said to ’recall’ only
35% of the correct emotions but managed to classify up to 80% of those
emotions in an exact and correct manner. An improvement in Recall from
a low 35% will have a direct effect on the total F1-number for this model.

Correcting the mismatch in representation among emotions is likely to im-
prove the overall performance for the whole model. A solution could be
to oversample or augment the dataset for this emotion only such that its
representation becomes more equal to the others, or it could be left out al-
together, by removing it and use only six emotions.
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6.7 Challenges with implementation of ML program

After collecting the desired dataset an online search was made to find how
to best load the image dataset into the program. From Brownlee (2019)
I found an example that used the ImageDataGenerator class provided by
Keras. After fully implementing this into the code, I found that the class
has been deptricated. From Tensorflow (2022) I see the following message
on the website:

Figure 6.1: Image taken from Tensorflow Documentation web page stating
the ImageDataGenerator class from Keras is depricated.

I then changed my code to use the recommended class instead, to
imagedatasetfromdirectory.

It is important to use time on investigating a preferred class method
for a code before implementing it. It is recommended to visit the
documentation website and check if the module is still active and
recommended by the company that created it.

6.8 Further work

Further work directly connected to the current thesis could be conducted
on the FER-2013 dataset by removing or balancing the "disgust" emotional
category. In all results, it is clearly seen that disgust was poorly trained,
and thus could not be predicted with a sufficiently high accuracy.

If more high-performance hardware had been available, e.g. as in a re-
search project with more resources available, finding and testing additional
datasets with a high mix of people’s origin could be done to see it inter-
pretations of the same feature would vary significantly between people’s
origin.
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Chapter 7

Conclusion

FER is a technology that analyzes facial expressions in images to reveal
information about a person’s emotional state. Rapid advancements in
ML have made it possible to equip computers with the ability to analyze,
recognize and understand emotions.

This thesis investigates which DL model give the best results in
FER. Among many techniques for FER, deep learning models, especially
CNN’s have shown great potential due to their powerful automatic feature
extraction and computational efficiency. In this thesis, one sequential built
CNN model, one pre-trained Resnet50 model and one pre-trained VGG16
model were created. Each model were compared and evaluated.

Seven categories of emotions were categorized from the The Facial
Expression Recognition 2013 (FER-2013) database containing a total of
35887 images. The sequential built CNN model of only a few convolutions
run on 50 epochs gave accuracy result of 89.7% with an average time
of training per k fold of 21 minutes. The two pre-trained models with
imagenet weights run on 20 epochs gave accuracy results of 86.5% without
fine-tuning and average training time of 12 minutes per k fold.

By analysing a rather complicated baseline model and comparing
results to a less advanced model that used transfer learning, it showed that
transfer learning can be used to obtain the same accuracy with significantly
smaller models. Transfer learning can then be used as a performance
optimizer on a smaller baseline model to give a sufficiently accurate model
with minimum use of resources. Even though a limited number of epochs
were run on the pre-trained models, it was seen that validation and test
curves quickly approached training curves at a high level of accuracy. It
is concluded that the base sequential model and the pre-trained models all
performed well and converged towards better values.

Lastly, example images from the Japanese Female Facial Expression
(JAFFE) database were introduced to the trained model to evaluate testing
predictions. A random picture can never be interpreted 100% correctly
unless Accuracy, Recall and Precision are extremely high. These numbers
were below 76% such that some misinterpretations had to be expected.
By selecting only a few random images and performing testing with the
selected models, it was seen that models were working well but they did
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not give reasonably good predictions on the unseen dataset.
Recommendations suggested in the field of Facial Expression Recog-

nition could be to investigate if other pre-trained models will identify fea-
tures to an even higher degree, and with less use of required resources, also
on more diverse datasets.
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Appendix A

Training results for each fold

A.1 VGG16 model

Training of pre-trained VGG16 model with weights "imagenet" during 20
epochs and 10 k folds.

Fold 1

Figure A.1: Train and validation accuracy over 20 epochs with pre-trained
VGG16 model fold 1
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Figure A.2: All metrics over 20 epochs with pre-trained VGG16 model fold
1

Figure A.3: Confusion matrix over 20 epochs with pre-trained VGG16
model fold 1
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Fold 2

Figure A.4: Train and validation accuracy over 20 epochs with pre-trained
VGG16 model fold 2

Figure A.5: All metrics over 20 epochs with pre-trained VGG16 model fold
2
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Figure A.6: Confusion matrix over 20 epochs with pre-trained VGG16
model fold 2

Fold 3

Figure A.7: Train and validation accuracy over 20 epochs with pre-trained
VGG16 model fold 3
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Figure A.8: All metrics over 20 epochs with pre-trained VGG16 model fold
3

Figure A.9: Confusion matrix over 20 epochs with pre-trained VGG16
model fold 3
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Fold 4

Figure A.10: Train and validation accuracy over 20 epochs with pre-trained
VGG16 model fold 4

Figure A.11: All metrics over 20 epochs with pre-trained VGG16 model
fold 4
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Figure A.12: Confusion matrix over 20 epochs with pre-trained VGG16
model fold 4

Fold 5

Figure A.13: Train and validation accuracy over 20 epochs with pre-trained
VGG16 model fold 5
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Figure A.14: All metrics over 20 epochs with pre-trained VGG16 model
fold 5

Figure A.15: Confusion matrix over 20 epochs with pre-trained VGG16
model fold 5
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Fold 6

Figure A.16: Train and validation accuracy over 20 epochs with pre-trained
VGG16 model fold 6

Figure A.17: All metrics over 20 epochs with pre-trained VGG16 model
fold 6
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Confusion matrix over 20 epochs with pre-trained VGG16 model fold 6

Fold 7

Figure A.18: Train and validation accuracy over 20 epochs with pre-trained
VGG16 model fold 7
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Figure A.19: All metrics over 20 epochs with pre-trained VGG16 model
fold 7

Figure A.20: Confusion matrix over 20 epochs with pre-trained VGG16
model fold 7
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Fold 8

Figure A.21: Train and validation accuracy over 20 epochs with pre-trained
VGG16 model fold 8

Figure A.22: All metrics over 20 epochs with pre-trained VGG16 model
fold 8
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Figure A.23: Confusion matrix over 20 epochs with pre-trained VGG16
model fold 8

Fold 9

Figure A.24: Train and validation accuracy over 20 epochs with pre-trained
VGG16 model fold 9
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Figure A.25: All metrics over 20 epochs with pre-trained VGG16 model
fold 9

Figure A.26: Confusion matrix over 20 epochs with pre-trained VGG16
model fold 9
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Fold 10

Figure A.27: Train and validation accuracy over 20 epochs with pre-trained
VGG16 model fold 10

Figure A.28: All metrics over 20 epochs with pre-trained VGG16 model
fold 10
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Confusion matrix over 20 epochs with pre-trained VGG16 model fold 10

Average scores all folds

Figure A.29: Average scores for accuracy and loss with pre-trained VGG
model for all 10 folds on train dataset
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Figure A.30: Calculated accuracy and loss with pre-trained VGG model on
train dataset per fold

A.2 Resnet50 model

Training of pre-trained Resnet50 model with weights "imagenet" during 20
epochs and 10 k folds.

Fold 1

Figure A.31: Train and validation accuracy over 20 epochs with pre-trained
Resnet50 model fold 1
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Figure A.32: All metrics for 20 epochs with pre-trained Resnet50 model
fold 1

Figure A.33: Confusion matrix for 20 epochs with pre-trained Resnet50
model fold 1
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Figure A.34: Train and validation accuracy over 20 epochs with pre-trained
Resnet50 model fold 2

Fold 2

Figure A.35: All metrics for 20 epochs with pre-trained Resnet50 model
fold 2
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Figure A.36: Confusion matrix for 20 epochs with pre-trained Resnet50
model fold 2

Fold 3

Figure A.37: Train and validation accuracy over 20 epochs with pre-trained
Resnet50 model fold 3
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Figure A.38: All metrics for 20 epochs with pre-trained Resnet50 model
fold 3

Figure A.39: Confusion matrix for 20 epochs with pre-trained Resnet50
model fold 3
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Figure A.40: Train and validation accuracy over 20 epochs with pre-trained
Resnet50 model fold 4

Fold 4

Figure A.41: All metrics for 20 epochs with pre-trained Resnet50 model
fold 4
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Figure A.42: Confusion matrix for 20 epochs with pre-trained Resnet50
model fold 4

Fold 5

Figure A.43: Train and validation accuracy over 20 epochs with pre-trained
Resnet50 model fold 5
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Figure A.44: All metrics for 20 epochs with pre-trained Resnet50 model
fold 5

Figure A.45: Confusion matrix for 20 epochs with pre-trained Resnet50
model fold 5
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Figure A.46: Train and validation accuracy over 20 epochs with pre-trained
Resnet50 model fold 6

Fold 6

Figure A.47: All metrics for 20 epochs with pre-trained Resnet50 model
fold 6
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Figure A.48: Confusion matrix for 20 epochs with pre-trained Resnet50
model fold 6

Fold 7

Figure A.49: Train and validation accuracy over 20 epochs with pre-trained
Resnet50 model fold 7
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Figure A.50: All metrics for 20 epochs with pre-trained Resnet50 model
fold 7

Figure A.51: Confusion matrix for 20 epochs with pre-trained Resnet50
model fold 7
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Figure A.52: Train and validation accuracy over 20 epochs with pre-trained
Resnet50 model fold 8

Fold 8

Figure A.53: All metrics for 20 epochs with pre-trained Resnet50 model
fold 8
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Figure A.54: Confusion matrix for 20 epochs with pre-trained Resnet50
model fold 8

Fold 9

Figure A.55: Train and validation accuracy over 20 epochs with pre-trained
Resnet50 model fold 9
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Figure A.56: All metrics for 20 epochs with pre-trained Resnet50 model
fold 9

Figure A.57: Confusion matrix for 20 epochs with pre-trained Resnet50
model fold 9
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Figure A.58: Train and validation accuracy over 20 epochs with pre-trained
Resnet50 model fold 10

Fold 10

Figure A.59: All metrics for 20 epochs with pre-trained Resnet50 model
fold 10
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Figure A.60: Confusion matrix for 20 epochs with pre-trained Resnet50
model fold 10

Average scores all folds

Figure A.61: Average scores for accuracy and loss with pre-trained
Resnet50 model for all 10 folds on train dataset
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Figure A.62: Calculated accuracy and loss with pre-trained Resnet50 model
on train dataset per fold

A.3 Sequential model

Training of Sequential model without weights during 50 epochs and 10 k
folds.

Fold 1

Figure A.63: Train and validation accuracy over 50 epochs with Sequential
model fold 1
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Figure A.64: All metrics over 50 epochs with Sequential model fold 1

Figure A.65: Confusion matrix over 50 epochs with Sequential model fold
1
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Figure A.66: Train and validation accuracy over 50 epochs with Sequential
model fold 2

Fold 2

Figure A.67: All metrics over 50 epochs with Sequential model fold 2
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Figure A.68: Confusion matrix over 50 epochs with Sequential model fold
2

Fold 3

Figure A.69: Train and validation accuracy over 50 epochs with Sequential
model fold 3
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Figure A.70: All metrics over 50 epochs with Sequential model fold 3

Figure A.71: Confusion matrix over 50 epochs with Sequential model fold
3
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Figure A.72: Train and validation accuracy over 50 epochs with Sequential
model fold 4

Fold 4

Figure A.73: All metrics over 50 epochs with Sequential model fold 4
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Figure A.74: Confusion matrix over 50 epochs with Sequential model fold
4

Fold 5

Figure A.75: Train and validation accuracy over 50 epochs with Sequential
model fold 5
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Figure A.76: All metrics over 50 epochs with Sequential model fold 5

Figure A.77: Confusion matrix over 50 epochs with Sequential model fold
5
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Figure A.78: Train and validation accuracy over 50 epochs with Sequential
model fold 6

Fold 6

Figure A.79: All metrics over 50 epochs with Sequential model fold 6
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Figure A.80: Confusion matrix over 50 epochs with Sequential model fold
6

Fold 7

Figure A.81: Train and validation accuracy over 50 epochs with Sequential
model fold 7

130



Figure A.82: All metrics over 50 epochs with Sequential model fold 7

Figure A.83: Confusion matrix over 50 epochs with Sequential model fold
7
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Figure A.84: Train and validation accuracy over 50 epochs with Sequential
model fold 8

Fold 8

Figure A.85: All metrics over 50 epochs with Sequential model fold 8
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Figure A.86: Confusion matrix over 50 epochs with Sequential model fold
8

Fold 9

Figure A.87: Train and validation accuracy over 50 epochs with Sequential
model fold 9
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Figure A.88: All metrics over 50 epochs with Sequential model fold 9

Figure A.89: Confusion matrix over 50 epochs with Sequential model fold
9
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Figure A.90: Train and validation accuracy over 50 epochs with Sequential
model fold 10

Fold 10

Figure A.91: All metrics over 50 epochs with Sequential model fold 10
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Figure A.92: Confusion matrix over 50 epochs with Sequential model fold
10

Average scores all folds

Figure A.93: Average scores for accuracy and loss with Sequential for all 10
folds on train dataset during 50 epochs
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Figure A.94: Calculated accuracy and loss with Sequential model on train
dataset per fold
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