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Abstract 

The current paradigm of cloud computing dictates massive data centers that use 

excessive amounts of energy in order to operate and maintain their services. It is a side 

of the industry that has not been revamped as sustainability has become more and 

more important, but rather one that has followed in its own footsteps and continued to 

grow alongside the ever-increasing demand. 

 

Through modeling and presenting our own architectures, with an underlying focus on 

green energy, we are able to offer new options to how the cloud could be structured. 

While these architectures are deemed different from the classical cloud architecture, 

they are not different enough from already existing technologies. Merging them together 

into a large-scale adaptive architecture creates something that is completely different 

from what is available today, and results in an architecture that challenges the status 

quo.  
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1 Introduction 

Cloud computing, which represents the tech industry’s biggest environmental footprint, 

is entering a new paradigm where resource use challenges established values, such as 

economic and practical considerations. This shift is brought forth from both external 

pressures, as well as from an internal desire to help mitigate climate change. With its 

enormous size, any change within cloud computing would have a profound impact. The 

onus falls on system administrators and engineers to find ways to change the cloud 

from within, while keeping its functionality in place for the rest of the world. 

 

Over the past two decades, ever since Amazon came out with their cloud solution, 

Amazon Web Services (AWS), and released products like their Simple Storage Service 

(S3) and Elastic Compute Cloud (EC2), the use of cloud services has grown rapidly. As 

of 2021, the global cloud computing market was worth 445.3 billion dollars, a number 

that is expected to grow to 947.3 billion dollars by 2026 (MarketsandMarkets, 2021). 

Today, the biggest cloud providers include Amazon with AWS, Microsoft with Microsoft 

Azure (Azure), and Google with the Google Cloud Platform (GCP). These three are 

responsible for providing cloud services for millions of users across the world. 

 

For a cloud user, outsourcing things like computing power and storage to a cloud 

provider is a no-brainer. Not only do they not have to worry about things like 

maintenance and uptime, as this is all handled for them, but their personal resource use 

is also significantly lowered. A cloud user does not have to think about things like 

physical storage locations or manpower to maintain the hardware; They can lean back 

and let someone else handle it, while they reap the benefits of the cloud. Out of sight, 

out of mind. However, somewhere, someone still needs to think about these things, and 

resources still need to be consumed. 

 

The cloud is, contrary to what some might think, not a hovering, omnipotent, magical 

entity, but just someone else's computer. Because of the cloud's immense popularity, 

“someone else's computer” needs to be able to accommodate millions of users at the 
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same time, and thus, constantly needs to consume large amounts of resources. The 

processing units, cooling systems and other hardware that are needed to process the 

user requests are located in large data centers across the world. These data centers 

take up lots of physical space and need a lot of energy to be able to run successfully. 

 

Take Amazon for example, the largest cloud provider on the market today. Amazon has 

84 data centers in 26 geographic regions, with additional expansions planned (Amazon, 

n.d.). Considering that just four data centers are estimated to take up approximately 

95’000 square meters (Swinhoe, 2021), over 200 times the size of Frogner Park, it is 

safe to say that data centers in general take up huge portions of land across the world. 

If data centers didn’t need as much space as they do today, those areas could’ve been 

used for food production, recreational areas or housing, or even as national parks with 

the intent of conserving wildlife. 

 

Large data centers also come with a large need for energy. A couple of years ago, it 

was reported that data centers use more than 2% of all electricity in the world on an 

annual basis (Pearce, 2018). How much of this energy comes from renewable sources? 

Additionally, according to the same source, the data centers also contribute to 2% of the 

world’s CO2 emissions, which is equivalent to the world’s entire airline industry. If data 

centers were much more distributed across the world and placed closer to their energy 

sources, their carbon footprint might be much lower. 

 

It’s time to question whether today's way of handling cloud computing is done in the 

best way, or if it can be improved upon. As of right now, there are no real, well-

established alternatives to turn to, so we continue to do things like we have always done 

them. There are models and concepts that could be much better at handling emissions 

and resource use, like the Plan 9 operating system, grid-, and edge computing, but 

none of them have been translated to today's cloud architecture. There are also cloud 

technologies that focus on having a low environmental footprint, like Azure’s underwater 

datacenter, IncludeOS and the GCP Carbon Footprint report. However, these 
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technologies have never been explored in a context of the alternative models and 

concepts. 

 

By selecting certain qualities from models and concepts like these, it is possible to 

imagine an entirely new way of approaching cloud computing. Instead of having huge 

data centers that take up a lot of space, we can take inspiration from grid- and edge 

computing, where the processing units are smaller and more widely distributed. 

Wireless networks are also a source of inspiration, as units can easily enter and exit the 

network, and they can get power through energy harvesting. These qualities could help 

create a highly distributed cloud platform, which is much more minimalistic in nature 

compared to the infrastructure of today's colossal data centers. 

 

Looking into alternate ways of handling cloud computing and data storage might give us 

groundbreaking knowledge that breaks with the current status quo of how these things 

are handled today. This knowledge can potentially impact future endeavors, and might 

help guide us towards a greener, more sustainable future. However, changing the 

cloud’s architecture to fit the alternate models and concepts is huge and potentially 

disruptive, and might fundamentally change how the cloud works. Research is therefore 

necessary in order to determine how extensive the changes would be, and what impact 

they would have on the cloud. 

1.1 Problem Statement 

The intersection between technology, cloud architecture and green computing is 

becoming more and more relevant. The focal point of this thesis is therefore to explore 

that intersection, through focusing on the following problem statement: 

 

P1: Challenge the status quo by investigating the effects of a highly distributed and 

minimalistic cloud platform driven by a green energy focus. 
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The current status quo of cloud computing is, as described, large data centers that 

cover massive areas and use a lot of electricity. By investigating alternate ways of 

handling cloud computing and its possible advantages, we challenge the status quo. 

 

The investigation involves looking into how cloud computing is done today, how other 

technologies handle themselves, and seeing how their qualities could potentially 

influence cloud computing. As part of the investigation process, we will present different 

options for how a cloud architecture could potentially be structured and operate, 

compare those options to today's cloud architecture, and define whether or not they are 

valid options. The goal of the investigation process is simply to see if there is another 

way of doing cloud computing than the way that has naturally emerged, and not to 

change the existing cloud itself. 

 

A highly distributed cloud platform indicates a cloud platform with hardware that is 

geographically spread out from each other, on a much higher level than today's cloud. A 

minimalistic cloud platform indicates data centers and processing units of a much 

smaller capacity and size than the ones we have today. The cloud platform itself is the 

digital environment that serves as a Platform as a Service, where the cloud users can 

make use of hardware and software tools. The cloud platform runs on the different 

processing units around the world and are accessible through a network connection. 

 

Every technology, concept, location and so on that is presented in this thesis will have a 

green energy focus, meaning an all-encompassing sustainable viewpoint with focus on 

things like renewable energy, responsible consumption etc. Having this viewpoint and 

building our knowledge upon it will ensure that our proposed changes might meet the 

modern expectations of sustainable computing. 

1.2 Outline 

This thesis consists of 7 chapters: introduction, background, approach, results, analysis, 

discussion, and conclusion and future work. This section presents an outline of those 

chapters with a short summary of their contents. 
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● Chapter 1, Introduction: Introduces the problem domain, the impact of 

addressing the problem, and the problem statement and its operatization. 

● Chapter 2, Background: Presents how today’s cloud works and how it came to 

be, in addition to mentioning other distributed computing technologies. Also 

Introduces the concept of “the green pledge”, which is based on sustainability, 

and how it impacts many of our day-to-day choices. 

● Chapter 3, Approach: Outlines a detailed plan for the remaining parts of the 

thesis through presenting the type of research that will be done, additional 

questions that must be discussed in order to answer the problem statement, and 

summaries of the upcoming chapters. 

● Chapter 4, Results: Presents the architectures that intend to challenge the 

status quo by listing their common features, architectural structure, role 

assignment and how they handle running different services. Also introduces a 

comparative tool that will be used during the analysis: The architectural scale. 

● Chapter 5, Analysis, and the Introduction of Plasticity: Looks at the 

presented architectures through a critical lens in order to determine their 

individual qualities, and places them on the architectural scale where they are 

compared to other architectures. It also further improves the solution by 

presenting a large-scale dynamic architecture based on the phenomenon of 

plasticity. 

● Chapter 6, Discussion: Discusses the previous chapters through a reversed 

overlook of the entire thesis and highlights important findings that have been 

made throughout. 

● Chapter 7, Conclusion and Future Work: Summarizes the thesis and presents 

future research ideas which follow from the contributions of this project.  
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2 Background 

2.1 The Cloud 

Although we often speak of “The Cloud” as one thing, it actually consists of millions of 

different pieces coming together to create a variety of different and seamless functions. 

The cloud is a common name used to describe software and services that are available 

through a network connection, instead of on your local computer. Using the cloud 

means outsourcing things like computing and storage to other machines and being able 

to access that data through a digital platform. 

 

No one person or company owns The Cloud as a whole, but everyone can own and 

operate their own clouds. There are many different cloud providers. In addition to 

Amazon, Microsoft and Google, other cloud providers on the market include companies 

like Alibaba, IBM, and Oracle. Some cloud providers also supply their users with tools to 

set up their own clouds. These custom clouds are often created for specific situations, 

like for example the need for cloud computing with high levels of security, or for 

educational purposes. 

 

The cloud is available in three main forms: Public Cloud, Private Cloud and Hybrid 

Cloud. These categories define the way in which the cloud is accessed and run, and not 

their architectural patterns. 

2.1.1 Public Cloud 

A public cloud is a multi-tenant environment, meaning that different cloud users share a 

pool of resources that are automatically allocated to the individual tenants (individual 

users or groups of users). Each tenant’s data is logically isolated from the other tenants 

and can not be accessed by another party, but two different tenants' workloads could 

realistically be running on the same servers at the same time (IBM Cloud Education, 

2020a). The public cloud is the most common type of cloud computing. A public cloud 

user will save money on maintenance and hardware costs as the resources are owned 
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and operated by a third-party service provider, and the cloud users can access the 

services over the internet. The public cloud is also highly reliable thanks to multiple 

servers and data centers across the world that ensures against failures, and it also 

supports the appearance of near-unlimited scalability from on-demand resources 

(Microsoft Azure, n.d.). 

2.1.2 Private Cloud 

A private cloud is a single-tenant environment, meaning that it’s used exclusively by one 

business or organization. This is also referred to as isolated access (IBM Cloud 

Education, 2020b). The cloud can be physically located in an on-premises data center 

or hosted by a third-party service provider. Unlike in the public cloud, the services and 

infrastructure in a private cloud are always maintained on a private network, and any 

hardware and software are dedicated solely to the party that uses the private cloud 

(Microsoft Azure, n.d.). A private cloud allows for more customization and control of the 

available hardware and software, and as a result there is greater visibility into security 

and access control. 

2.1.3 Hybrid Cloud 

A hybrid cloud is a combination between a public and private cloud, which combines 

infrastructure elements from them both in a highly flexible environment. The hybrid 

cloud allows data and applications to effortlessly move between a party's public and 

private cloud, which allows cloud users to take advantage of extra computing power 

only when needed (Microsoft Azure, n.d.). 

2.1.4 Historic Perspective 

The two terms “Cloud” and “Cloud Computing” were introduced in 2006 by the then 

CEO of Google, Eric Schmidt, in a conversation hosted by journalist Danny Sullivan at 

the Search Engine Strategies Conference (Schmidt & Sullivan, 2006). According to 

Schmidt, cloud computing was built on the premise that the data services and 

architecture should be on remote servers “in a cloud somewhere”, hinting at its 

obfuscated nature. As long as users had the right kind of browser or the right kind of 
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access, they would be able to access the cloud. As predicted, this has all come to 

fruition. While “Cloud” and “Cloud Computing” were new words at the time, used to 

describe the new emerging model that was making headway, the underlying concept of 

cloud computing is actually much older. 

 

At the centennial celebration of MIT in 1961, the American computer scientist John 

McCarthy gave a speech in which he presented the idea of computing as a public utility. 

According to him, computing could someday be organized as a public utility, just like the 

telephone system was. Should this happen, the computing utility could become “the 

basis for a new and important industry” (Greenberger, 1962). McCarthy specifies in his 

speech that his ideas are built on the concept of time-sharing computer systems, which 

goes even further back; One of the first papers on the subjects was written and 

presented by Christopher Strachey at the Paris International Conference of Information 

Processing in 1959, and previously unrealizable systems, which McCarthy argues could 

be solved with time-sharing technologies, were discussed already in 1945 

(Greenberger, 1962). 

 

A time-sharing computer system is made up of a large computer that is accessible 

through remote terminals, resulting in better utilization of the equipment by having more 

than one user share the same machine (Bell & Gold, 1972). McCarthy talked about how 

such a system will look to each user like a large private computer (Greenberger, 1962), 

a statement that draws parallels to how we view multi-tenancy today. 

 

Over the next decades, the ideas of computing utility and time-sharing computer 

systems stayed relevant, but they ultimately faded away by the 1990’s. It wasn’t before 

the mid 2000’s when the idea had resurfaced in new forms, largely thanks to Eric 

Schmidt, that it finally took a foothold. 

 

After being reintroduced as cloud computing, the idea of outsourcing computational 

power grew rapidly in popularity and feasibility. Data from the 2008 Gartner Group Hype 

Cycle, a visual representation of how a technology or application will likely evolve over 
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time (Gartner Group, n.d.), put Cloud Computing in the fast-growing phase, specifying 

that it would reach mainstream adoption in two to five years, as seen in Figure 2.1.  

 

 

Figure 2.1: “Hype Cycle”, 2008, Gartner Group. (Retrieved from https://techcrunch.com/2008/08/18/where-are-we-in-

the-hype-cycle/) 

 

The rise in popularity can arguably be attributed to the explosive growth in IT that has 

taken place over the past two decades, which has resulted in billions of internet users 

and infinitely better technology than what was possible just a few years ago. The theory 

that describes this phenomenon is known as Moore’s law. Moore’s law theorizes that 

the processing power of computers doubles every few years, resulting in an exponential 

growth over a short period of time. The theory is grounded in facts from the past years, 

where transistors have gotten smaller, processing power has increased and energy 

efficiency has been improved, resulting in cheap and powerful computers (Intel, n.d.).  

 

https://techcrunch.com/2008/08/18/where-are-we-in-the-hype-cycle/
https://techcrunch.com/2008/08/18/where-are-we-in-the-hype-cycle/
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What started out as basement dwelling server rooms in the 1970’s with monolithic 

mainframe computing installations (Winter, 2009) has grown in line with the 

technological revolution, right alongside the companies themselves. Even though the 

physical space needed for equal amounts of computing power is much smaller, we have 

reached a point where the needed processing power is larger than ever. Huge 

companies, like Amazon, Microsoft, and Google, therefore rely on huge data centers in 

order to operate and provide their customers with their services. Arguably, data centers 

are just oversized server rooms, and not once did we stop to think if that should be the 

standard of the future, we just let it happen. 

 

As part of the technical revolution, new services emerged. Cloud services like 

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-

Service (SaaS) all make it possible for users to outsource things like computing power, 

storage and software maintenance. These kinds of services are on-demand, scalable 

and fast, and greatly reduce costs and increase the efficiency of the IT infrastructure 

(Arutyunov, 2012). Saving time and money appeals to the users, which is why millions 

have flocked to the cloud service providers. 

 

In recent years, we have seen signs of a multicloud emerging. Multicloud is a word used 

to describe the use of cloud services from two or more cloud providers. It can be as 

simple as using Software-as-a-Service from a second cloud provider, but it most 

typically refers to running applications on a Platform-as-a-Service or Infrastructure-as-a-

Service from multiple cloud providers (IBM Cloud Education, 2021). Different clouds 

often have tools that make it easy to send and receive data from other cloud providers, 

like for example GCP’s Data Transfer that can get data from another provider's storage 

bucket by using a Shared Access Signature (SAS), or BigQuery Omni that lets users 

run BigQuery analytics directly on data stored in other clouds (Google Cloud, n.d.). 

 

Collaborative tools like these might make it seem like we are moving towards one 

singular cloud where everything is possible, which we most likely are not. The cloud will 

still be owned and operated by different parties, and the sharing of tools and 
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technologies between them will in most likelihood force the cloud providers to 

continuously come up with technological advances that will distinguish them from the 

others and give them the upper hand. 

2.1.5 A Typical Cloud Architecture 

No matter how the cloud is accessed, there needs to be certain rules in place that 

determine which servers run what services, what responsibilities they each have, etc. 

These rules make up the cloud architecture and decide how the cloud operates. The 

rules are not likely to change, and the architecture itself will be static, even if there are 

dynamic changes happening within it. 

 

To properly be able to do everything that is needed of it, a cloud needs a collection of 

nodes. A node is a point in a network at which pathways to other nodes intersect 

(Oxford Languages, 2022a), which enables them to communicate. “Node” is a common 

name and can be used for many different roles. At its most basic level, a cloud needs a 

managerial controller node that can control the other nodes, worker nodes that actually 

do the work, and one or more types of support nodes (IBM, 2021). These nodes come 

together to create the components of a cloud architecture: a front-and and back-end 

platform, a network, and a delivery model to get the content from the platform to the end 

users (VMWare, n.d. a). If the nodes do not reside in the same location, different types 

of software and virtualizations can be used to trick them into believing that they are. 

2.2 Distributed Computing and Existing Technologies 

Distributed computing refers to a collection of multiple individual, autonomous, 

asynchronous nodes that are geographically separate, yet communicate with each other 

over a communication network that they are all connected to (Kshemkalyani & Singhal, 

2011). When these nodes come together, they are able to offer one seamless system 

that does not bear the marks of being split into pieces. A cloud is one example of such a 

system. There are also many other existing distributed systems. In this thesis, we 

quickly have a look at a selection of them to see how they work. These systems are the 
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Plan 9 OS, CDN’s, grid-, fog- and edge computing, wireless sensor networks, and 

wireless ad hoc networks. 

 

Plan 9 from Bell Labs, also just known as Plan 9, is a distributed operating system from 

the mid 1980’s (Pike et al., 1995). It is based on the principles that everything is either a 

file or file system, all communication is done over a network, and the use of privately 

named namespaces which can only be accessed by their owners (Hancock, 2003). Like 

a cloud, Plan 9 facilitates multiple users that have access to only predefined parts of the 

structure. 

 

Content Delivery Networks, or CDN’s, are made up of distributed servers who work 

together to provide fast delivery of web content (Cloudflare, n.d. a). Arguably, a CDN is 

not a service the end user directly interacts with, but it is a vital part of the modern 

Internet as it helps with load times, bandwidth cost and latency. It is also classified as its 

own system, even though other architectures can incorporate CDN’s to improve their 

network traffic.  

 

Grid computing uses the computing powers from multiple, separate machines to 

accomplish a joint task (Jacob et al., 2005, p. 8). A grid allows for parallel processing, 

and each node might be set to perform a different task to save time. Grid computing can 

in crude terms be thought of as the Avengers of distributed computing, as multiple 

different nodes work towards the same goal, while playing to their own strengths.  

 

Fog- and edge computing are both largely used in data collection. They both make use 

of distributed sensor nodes that are placed in close contact to the data source, at the 

very edge of the network. One of the main differences between the two architectures is 

where the processing is done: Edge computing processes data at the very edge of the 

network, close to the data source itself, while fog computing is hierarchical and can 

perform computing anywhere between the network core and the sensor nodes 

(Yousefpour et al., 2019). One of the common denominators is that fog- and edge 
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computing both contribute to lowering latency and bandwidth costs. Like the CDN, it is 

also classified as its own system, but can also be incorporated into other architectures.  

 

Lastly, wireless sensor networks and wireless ad hoc networks also share a lot of 

similarities with each other, just like fog- and edge computing do, and are also largely 

used in data collection. The architectures often consist of smaller, much more 

distributed sensor nodes that tend to be unsystematically spread over larger geographic 

areas. These nodes communicate with each other by forwarding data over wireless 

communication protocols. In a wireless sensor network, the nodes communicate with 

other nodes within its communication range, while nodes in an ad hoc network 

communicate directly with each other without the need for access points. They therefore 

have no fixed infrastructure (Sandhiya & Bhuvaneswari, 2018). Nodes from both 

architectures are able to derive energy from renewable energy sources through energy 

harvesting (Huang et al., 2018) (Basagni et al., 2013).  

2.3 The Green Pledge 

Pollution intensified with the emergence of the Industrial Revolution in the 18th century 

(History, 2020), but it wasn’t until the 19th century that people started questioning the 

effect it could have on our planet. The phenomenon now known as the greenhouse 

effect (Ekholm, 1901) was discovered by the French scientist Joseph Fourier and 

presented in his 1827 article on the matter (Fleming, 1999). After Fourier, multiple 

scientists further elaborated on the idea, until the Swedish scientist Svante Arrhenius 

published his first estimate of a man-made global temperature change caused by CO2 

in 1896 (Rodhe et al., 1997). Even after these discoveries were made, it took many 

years before the alarm bells began to ring.  

 

In 1965, the US President’s Science Advisory Committee published their report 

“Restoring the Quality of Our Environment” where they warned about melting ice caps, 

rising sea levels and acidification of water sources (President’s Science Advisory 

Committee, 1965), but it still took years before the mainstream acknowledged the 

problem. The 1960’s “hippie” counterculture that rejected the cushy, comfortable 
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middle-class lifestyle their parents had built after the second World War, paved the way 

for radical social and political movements, such as the environmental movement of the 

1970’s (History, 2021). The first Earth Day was held in 1970, and its success led to the 

creation of multiple environmental laws and acts in the US (Earth Day, n.d.). 

 

The last 50 years has brought with it an increasing focus on a greener future, and we 

have entered what some call the fifth industrial revolution which is focused on smart 

green growth for the benefit of our common future (Ellen MacArthur Foundation, 2018). 

In 1987, the Brundtland Report, “Our Common Future”, presented the concept of 

sustainability (Brundtland, 1987), in 2006, former Vice President of the United States, Al 

Gore, raised awareness of the dangers of global warming and called for immediate 

action in his documentary “An Inconvenient Truth” (IMDb, n.d.), and celebrities like 

Leonardo DiCaprio continue to use their platform to fight against climate change 

(Matthews, n.d.). But the younger generations still stand at the center, just like they did 

in the 1970’s; Climate activist Great Thunberg organized school strikes for climate 

change (Crouch, 2018), people are criticizing blockchain technologies and NFT’s 

because of the impact they have in the environment, and even in a world full of fast 

fashion (Nguyen, 2020), the secondhand market is rapidly growing (Khusainova, 2021). 

 

The green pledge represents the collective vow we as a global population have taken, 

even if it’s done unconsciously on an individual level. The zeitgeist of today is 

characterized by secondhand shops, handmade objects, small businesses, public 

transport, co-working spaces, multifunctioning establishments, smart cities, renewable 

energy, clean eating, and sustainable living. There are of course cultural and economic 

differences that impact people's individual lifestyles, but the idea of constantly striving 

for a better life for ourselves and our descendants seems to be pretty much ingrained 

into us. People are looking to revert the changes we’ve made on the environment, and 

many of our daily tasks and routines reflect that by default, because the focus on a 

greener feature can be found all around us. Not only that, but actively going against the 

green pledge and making choices that contribute to unsustainable solutions and 

polluting will get you shunned as you are tampering with someone else's future. 
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2.4 Summary 

The cloud is only one of many examples of distributed computing technologies. A 

common denominator for all of them is that they are based on one architecture with 

predefined roles that each have their own areas of responsibility and tasks they can 

perform. Although some of the architectures are built on technologies that make use of 

green technology, none of them have been designed specifically with a green focus. 

Seeing that sustainability and a green future form the basis for many other areas in our 

lives, perhaps it’s time to introduce that aspect to cloud architectures as well.  
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3 Approach 

To fully prepare the reader for the rest of the thesis, this chapter will outline the actions 

that will be performed in order to be able to extract specific answers from the research. 

The research will be based on the problem statement, which was specified in the 

introductory chapter as follows: Challenge the status quo by investigating the effects of 

a highly distributed and minimalistic cloud platform driven by a green energy focus. 

 

The research will be divided into two main phases: designing and presenting our cloud 

architectures and analyzing and discussing their planned functionalities and impact. A 

detailed plan for these phases will be described in this chapter, while the actual phases 

themselves will be further outlined in their own, upcoming chapters later in the thesis.  

3.1 Research Approaches 

There are different ways of approaching a research project, which can be divided into 

three main methods: comparative research, exploratory research, and review studies. 

 

Comparative research is a research method that relies on comparing two or more things 

to draw conclusions related to a hypothesis. This research method is very traditional in 

the sense that any experiments, expected outcomes, test subjects, control groups, etc. 

are well defined and documented, and that there is a certain process that needs to be 

followed. This all ensures that articulating falsifiable problem statements can be done 

straightforwardly. The purpose of comparative research is to find any similarities or 

differences between the things that are being compared. 

 

Exploratory research is more flexible compared to comparative research and does not 

require the researchers to follow a specific recipe to get their answers. It is a type of 

research that aims to get insight into a problem that has not yet been fully defined, but 

which will become clearer as the exploratory research itself happens. Exploratory 

research won’t necessarily result in any concrete answers, and it can be difficult to 

determine when the research is “done”. However, the requirements regarding openness 
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and documentation of one's choices is even bigger compared to other research 

approaches. This research method is ideal when a problem domain needs to be 

explored and understood in depth, and the answers that can be derived from this type of 

research might inspire other researchers to dig deeper into the problem.  

 

Review studies, or survey studies, is a research method that bases itself upon previous 

research, statistical analysis, or literature. It is often used in medical research and other 

evidence-based domains. A specific research paper might only look at a small part of a 

given problem domain, but a review study will gather up all the separate puzzle pieces 

and create an overview of a research field's current status, based on the individual 

conclusions. By sampling and analyzing the available data, it’s therefore possible to 

reach a generalized conclusion of a problem domain that can help move research 

forward within its field. 

 

This thesis can best be described as exploratory research, as the problem is not yet 

clearly defined. This approach brings with it the potential risk of having too much 

creative freedom. The cloud is built on a well-established architecture, but any potential 

issues within the architecture have not yet been mapped out, so there are no 

predefined, specific problems to latch onto, meaning that it can be difficult to gauge the 

workload. Documenting the approach is therefore important, as it forces the researcher 

to really think about their plan and to determine whether they are doing enough, or if 

there are clear deficiencies in their planned approach. The thesis also contains aspects 

of comparative research, as certain aspects of alternate cloud architectures are set up 

against today's infrastructure. 

 

To address the risks outlined above, we have set clear limits for ourselves when it 

comes to what we will focus on during this thesis. These focus areas have been partially 

described in the “Problem Statement”-section, and will also be presented in more detail 

in the upcoming sections of this chapter. 
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3.2 Research Objectives 

The objective of this thesis is to design and present different variants of a highly 

distributed and minimalistic cloud platform architecture that challenges today's status 

quo, and to discuss their functionality and potential impact on their end users and 

physical environment. The upcoming presented architectures will be used as the basis 

for the discussion of how the status quo is being challenged, and the exploratory 

investigation process encapsulates the whole thesis as this is all speculatory and not 

grounded in actual implementations. During the analysis and discussion sections, the 

presented features and functionalities will be discussed in order to answer the 

exploratory questions that have been derived from the problem statement itself, if 

possible. These questions are as follows: 

 

● In what way can we most drastically challenge the status quo? 

● What effect does a green energy perspective have on a highly distributed and 

minimalistic cloud platform? 

● Is a highly distributed and minimalistic cloud platform realistically feasible? 

3.3 Results 

The “Results”-chapter will contain the presentation of three highly distributed and 

minimalistic cloud platform architectures. For each of the proposed architectures, we will 

go into details about role assignment and how the architectures handle unreliability and 

running certain services. In addition to this, we will also go into details about some 

common features that apply to all the proposed architectures, regardless of how they 

are structured. These common features concerns are all mainly about how the nodes 

themselves function, both based on their software and hardware capabilities. 

 

Taking time, cost, and workload into consideration, it’s not feasible to create the setup 

needed for an actual distributed cloud platform, which is why we have to make do with 

exploratory research and discussions in order to be able to draw conclusions that are 

actually worthwhile. The end goal is to have expanded the horizon and gained insight 
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into how an imagined, distributed, minimalistic cloud platform could potentially work, and 

not to actually build such a system ourselves. 

3.4 Analysis 

The “Analysis”-chapter will look at the modeling and presentation of the proposed 

architectures through an expert lens. In it, we will place the architectures on our 

architectural scale, compare them to each other and discuss which of them is the most 

groundbreaking approach, i.e., which one is the most likely to challenge the current 

status quo. We will also determine which one of the approaches is the cheapest, and 

the most realistic. The most groundbreaking, the cheapest and the most realistic 

approach will in all likeliness not be the same.  

 

Lastly, we will present a large-scale adaptive architecture which is a combination of the 

other architectures, and has a better chance of challenging the status quo on its own. 

3.5 Discussion 

The “Discussion”-chapter will include a backwards look at the entire thesis, starting at 

the end of the analysis chapter and ending up at the introduction. Throughout the 

chapter, we will highlight and discuss important points that have been made throughout 

the thesis. These points include, but are not limited to wasting resources, green energy 

as a fundamental assumption and the impact of wireless communication. 

3.6 Conclusion and Future Work 

The “Conclusion and Future Work”-chapter will be based on what we discussed and 

arrived at in the “Analysis”- and “Discussion”-chapters. Here, we present the 

conclusions for the exploratory questions we presented under the “Research 

Objectives”-section. As this is the last chapter of the thesis, it will also include a 

summary of what has been done, as well as a summary of future work that is potentially 

needed in this problem area. 
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4 Results 

In this chapter, we will present different architectures that are intended to challenge the 

way the cloud is set up to work today. For each architecture, we will discuss how it 

handles role assignment, unreliability, running services, and how it compares to today's 

cloud. There will also be an analysis that will determine if the architecture is radical 

enough to challenge the status quo. However, before we do that, we will have a look at 

some common features we assume are being shared by all the different architectures 

that will be presented.  

4.1 Common Features 

We envision that all the proposed architectures share some common features, no 

matter how the nodes relate to each other or how they communicate. These common 

features are related to how the proposed architectures handle what roles each node can 

take on, it’s capability towards energy harvesting from renewable energy sources, how 

the nodes themselves are smaller and more minimalistic than traditional cloud 

computing processing units, downtime, and resilience, how the nodes are 

geographically distributed and how they communicate with each other, as well as how 

the services are run on containers. These common features will all be described in 

further detail in the upcoming sections. 

4.1.1 Roles and General Role Assignment 

In our architectures, there are three different types of roles a node can take on: 

controller, compute, and support (IBM, 2021). As mentioned, these are the types of 

nodes a cloud architecture needs at its most basic level. Having a certain role means 

having certain responsibilities, and those responsibilities might entail running actual, 

cloud-specific services. 

 

A controller node can be thought of as a manager in the architecture. It is responsible 

for keeping track of compute nodes and their status, automating device operations 
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through configurations and container image updates, and identifying potential issues, 

and suggesting fixes to the problems, among other things (Cisco, n.d.). 

 

A controller node can also be responsible for directing the traffic to the compute nodes, 

but having this additional responsibility increases the chance of a total collapse of the 

cloud if it were to disconnect. This is because we not only lose the ability to keep track 

of the compute nodes, but they also do not receive any data and will essentially be 

useless. By only keeping track of the compute nodes, and not also being responsible for 

the network flow, the compute nodes will continue to work to some extent even if the 

controller nodes were to disconnect; We just wouldn’t be able to see its status or update 

any configurations until everything is back to normal. Multiple nodes in an architecture 

can be controllers, this means that there can be more nodes that are responsible for 

organizing the cloud architecture itself.  

 

A compute node is what we typically think about as a worker node. It is responsible for 

running services deployed by users, like websites or data processing, and it serves as 

the endpoint where the cloud users can access these services. If a compute node is 

inaccessible, the services it’s running are also inaccessible to its users, unless there are 

systems in place where another compute node shares the workload. This is typically 

done by implementing capabilities like load balancers, where multiple compute nodes 

run the same service, and users are directed to different nodes in order to distribute the 

incoming network traffic (NGINX, n.d.). 

 

A support node supports the other two types of nodes, but it’s mainly responsible for 

supporting the compute nodes. It can provide things like different storage solutions, key-

value stores, and caching for the cloud itself. Support nodes can also serve as 

intermediate waypoints and help deliver data packages to the correct places, 

asynchronously.  

 

The assignment of the controller-, compute- and support roles can be done in three 

main ways, with additional variations for each architecture which will be described in 
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more detail under each respective section, further down in the thesis. The three main 

ways to do role assignment are fixed, dynamic combination and free multiplicity. These 

three possibilities are in reality points on a scale, as displayed in Figure 4.1. Fixed- and 

free multiplicity role assignment each constitutes an end point, while dynamic 

combination role assignment makes up the midpoint. More detailed examples of how 

role assignment can be done will be given further down, when we present how roles are 

assigned for each of the different architectures.  

 

 

Figure 4.1: The role assignment scale 

 

Fixed role assignment indicates a predetermined assignment as either a controller-, 

compute- or support role. If a node were to disconnect, it will be assigned the same role 

once it re-connects to the network. The predetermination can for example be grounded 

in hardware capabilities, physical location etc. One of the benefits of fixed role 

assignment is that since everything is preplanned, there is little to no need for a 

restructuring of the architecture when a node becomes inaccessible, which is something 

that can be a costly endeavor because certain nodes (storage- and computing nodes) 

would have to get all the data they need to run their respective services. This won’t be 

needed if a node is re-assigned the same role time and time again. In a sense, fixed 

role assignment can therefore be cheaper than the other alternatives, as the data 

doesn’t have to continuously be reassigned to new nodes. However, while fixed role 

assignment is a completely valid way to do role assignment in certain situations, and 

constitutes the norm in any conventional cloud today, it breaks with one of the 

fundamental qualities we have envisioned for our architectures, which is the dynamic 

aspect. As fixed role assignment facilitates an architecture where the structure is pre-

planned, and a controller node will forever be assigned as a controller node, there will 

be no algorithms or processes in place to analyze the architecture and dynamically 

assign roles, which is not what we envision.  
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Free multiplicity role assignment indicates, as the name suggests, a free role 

assignment to many roles simultaneously. With free multiplicity role assignment, we 

assume that each node can be assigned up to three roles at the same time, which 

would mean it is responsible for performing all the different tasks that belong to each 

one of the roles it’s currently assigned. As this comes with a high need for processing 

power, there needs to be some sort of system in place in order to limit how much each 

node is actually doing in order to keep the nodes small in size, which is a feature we get 

more into further down. However, just because each node can be assigned up to three 

roles at the same time, it doesn’t mean they always will be. The actual role assignment 

is based on processes that analyze the different capabilities of the nodes and 

designates them with the different roles. This means that each node can gain and lose a 

role at any given time based on its current qualities and the state of the cloud.  

 

Dynamic combination role assignment lies right between fixed and free multiplicity role 

assignment. It somewhat incorporates features from them both; A given node can be 

reassigned the same role again and again, but it will always be based on an analysis of 

the node's current capabilities. Unlike in the free multiplicity role assignment, dynamic 

combination role assignment does not allow a node to have multiple roles at the same 

time, but rather facilitates an architecture where the nodes dynamically switch between 

the roles and their responsibilities. 

 

As both free multiplicity and dynamic combination role assignment take the node's 

current capabilities into account when assigning them as a controller-, compute- or 

support node, they are both at risk of becoming much more expensive than, for 

example, the fixed role assignment. However, they facilitate a much more dynamic 

environment, which is what we want for our proposed architectures. 

4.1.2 Energy Harvesting 

Energy harvesting, or power harvesting as it's also known as, is the process of deriving 

energy from external sources and storing it in small, wireless devices which then uses 
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that very energy storage in order to function. Being directly connected to an energy 

source is what makes the devices able to be truly wireless, as they don’t need to be 

connected to an external power grid to get energy. 

 

The energy is harvested from renewable energy sources, such as solar power, thermal 

energy, wind energy or hydropower. This means that the devices can be directly 

connected to objects like wind turbines, watermills, and solar panels, and that they store 

and run on a percentage of the total harvested energy those objects collect. The 

harvesting hardware could also be attached to the node, making it a fully integrated 

capability. 

 

We assume that the different nodes in our proposed architectures rely on energy 

harvesting. This is what makes the high level of distribution, which will be discussed 

more further down, possible. This way, controller-, compute- and support nodes can be 

placed right on top of buildings, inside or next to rivers and waterfalls etc., ensuring 

close proximity to the cloud’s end users. The problem with energy harvesting dependent 

nodes, however, is that they are completely reliant on the natural environment around 

them to ensure uptime. If the sun doesn’t shine on a solar panel, if the water levels are 

low, or if the wind is at a standstill, there will not be any energy produced, and the nodes 

will consequently be unavailable. This will in turn limit the capacity of the cloud, and 

potentially make services temporarily inaccessible. 

 

Being placed outside will also put the nodes at the mercy of the “weather gods” as the 

risk of wear and tear is considerably higher than if they were to be sheltered by a roof, 

four walls and stable temperatures. A resilient architecture, as described in the previous 

section, is therefore vital to keep our cloud up to par with already existing solutions. 

 

A more unconventional, though still highly functional, way of looking at energy 

harvesting is to connect devices to objects that produce energy as a biproduct, such as 

exercising equipment. If a cloud computing node were to be connected to a treadmill or 

a stationary bike, its availability would be limited to whenever people use that equipment 
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to exercise, which would be the only time energy to charge the batteries would be 

produced. Even though it’s possible to build an architecture that makes use of nodes 

like these whenever they are available, we have not based our architectures on this 

exact approach; Energy harvesting, in the context of this thesis, only relates to a direct 

connection to a natural, renewable energy source. This means that none of the energy 

will go to waste during transport or through performing tasks like cooling etc. Excessive 

energy also won’t be produced, all of which results in a lowered carbon- and general 

environmental footprint, consequently resulting in a truly green cloud. 

4.1.3 Small Nodes 

Thanks to the technological innovations over the past years, as we described in relation 

to Moore’s law earlier on in the thesis, processing units today are much smaller and 

more powerful than they were just a few years ago. They are also much more 

affordable. If we look at the processing power of a phone or a Raspberry Pi compared 

to the first computers, we can easily see just how far we’ve come.  

 

A Raspberry Pi 4 Model B, which was released in 2019, has up to 8GB RAM, a Quad 

core Cortex-A72 64-bit CPU, support for both ethernet and wireless connection, and a 

Micro-SD card slot for data storage (Raspberry Pi, n.d.). Micro-SD cards come in sizes 

up to 1TB (Athow & Hanson, 2022). A Raspberry Pi is also built so it can be upgraded 

with different add-ons, for example Bluetooth connection and 5G modems. An Apple 

iPhone 13 Pro Max, which was released late in 2021, has 6GB RAM, a Hexa-core CPU, 

support for wireless and Bluetooth communication, and up to 1TB storage space 

(GSMArena, n.d.). Both these devices are considerably small; Approximately 5.1 x 8.6 

cm and 16 x 7.8 cm, respectively. The Kenbak-1 from the 1970’s on the other hand, 

which is recognized as the first personal computer (Computer History Museum, n.d.), 

had 0.000000256GB RAM (256 bytes), did not have a CPU as it used transistor–

transistor logic, and had an average execution speed of below 1000 instructions per 

second. The device was approximately 10.8 x 48.9 x 29.2 cm in size, which is not huge 

like the first computers which took up entire rooms (Department of Computer Science 

and Statistics, n.d.). Still, its processing power and speed compared to the Raspberry Pi 
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and iPhone shows the extent of the technical advances that have happened over the 

past 50 years.  

 

Modern phones and microcomputers like Raspberry Pi’s are exactly the kinds of 

devices we assume make up the nodes in our proposed architectures; Small, powerful, 

and relatively affordable. Arguably, not all the nodes will necessarily be of the same 

type and size, as we will get more into under the sections for each respective 

architecture, but they will commonly be smaller and less technically complicated than 

today’s cloud standard. This, in combination with high distribution of the nodes (which 

will be described in further detail in the next section) and energy harvesting, means that 

the nodes can be hidden in plain sight, so as to not serve as visual disturbances and 

use energy which no one else uses that does not come from a power plant. 

 

It’s also not unthinkable that two or more nodes can be connected to the same energy 

source and reside in the same area. There can for example be a box with slots for 

multiple Raspberry Pi’s, which allows the hardware to be easily put in place and 

connected to the same energy source; Sort of like how it’s done in a server rack or a 

computer case. Thanks to the small size, even the boxes that house many of them can 

be quite small and not take up much space. 

4.1.4 Availability 

If a node were to disconnect from the network, there needs to be a system in place to 

keep the cloud architecture from collapsing, which would result in faulty services that 

the users won’t be able to use sufficiently, let alone access. 

 

We assume that when a node disconnects and becomes unavailable, it’s either 

because something unpredictable happened, like some sort of a physical event 

affecting it, resulting in a hard disconnect, or it was scheduled to happen due to certain 

criteria being met, like running low on battery power, resulting in a more graceful 

disconnect. These criteria could be anything from recognizing that the energy is 
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currently expensive, to being done with performing a task, to having close to no users 

accessing the services, for example at nighttime.  

 

A hard disconnect means disconnecting from the network without any prior warnings. 

The cloud would suddenly lose a node and its services and processing power. At times 

like these, it’s vital to have some sort of system in place that eliminates the risk of a 

complete crash. A cloud architecture that allows its nodes to do a graceful disconnect, 

as we call it, will have these kinds of systems in place. This way, the nodes can foresee 

the circumstances that will cause them to disconnect and send some kind of signal to 

their controllers in order to warn them of the upcoming change. This requires sensors 

and some sort of monitoring service so that the nodes can look at trends and historical 

data to determine when it’s most beneficial to disconnect from the network. This is the 

kind of data each node wants to communicate to its controllers for them to be aware of 

which nodes are most favorable to use. Each architecture could deliberately choose to 

disconnect a node if its energy source is not efficient or cheap enough at the current 

time, and there are other nodes that would be more beneficial to use. In totality, graceful 

disconnects are nothing new and most clouds have the feature in place to manually put 

a node into "maintenance mode" But here, we envision a level of automation to allow 

nodes to signal their impending disconnect, and the controllers take action. 

 

Because of everything that needs to be in place to successfully disconnect from the 

network without leaving it in shambles, the disconnect itself will absolutely be an 

intended action, unlike the hard disconnect. We assume that all the nodes in our 

proposed architectures have the kind of system in place that is needed to support a 

graceful disconnect, so that we at all costs can avoid a potential hard disconnect from 

the rest of the network.  

4.1.5 Containers 

Containers are small, independent units of software that packages up code and its 

dependencies, so applications can run equally as quickly and reliably from one 
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computing environment to another (Docker, n.d.). There are different types of container 

tools that will both containerize and run the applications, like Docker and Kubernetes. 

 

We assume that all the nodes in our proposed architectures support containers. This is 

in no way a radical proposition. Container technologies are used worldwide by millions 

of users and different operating systems each day, so it’s a well-ingrained phenomenon 

in the industry today. This also means that in terms of software platforms, our proposed 

architectures are unable to challenge the status quo of cloud computing, since we are 

basing them on existing technologies. 

 

Having containerized applications will help when re-downloading code to a node once it 

has been assigned a role that requires it (support- and compute nodes). Containers are 

highly portable and moving them to a new place won’t really affect how well the 

application runs. Containers also increase the resilience of the architecture, as they can 

quickly and automatically be turned on again if they for whatever reason stop running.  

4.1.6 Resilience 

Resilience is defined as “the capacity to recover quickly from difficulties” (Oxford 

Languages, 2022b), which is an important quality to have for nodes in a cloud 

architecture. If a node can quickly get back online, it will limit the amount of time the 

cloud has low processing power, no database connections or lack of controller nodes. 

 

Processes that increase the resilience of a node and ensure that they get back up 

quickly after a disconnect are especially important in the case of a hard disconnect, as 

the node hasn’t had time to prepare itself and the rest of the cloud architecture for its 

departure. If there are external factors that cause a node to disconnect without warning 

and turn off, the processes behind the resilience would somehow have to be built into 

the hardware. If the node has lost power, it needs to be turned on again as soon as it 

has access to power again, or if it somehow got turned off and disconnected for another 

reason, there needs to be some sort of timer built in so it can be regularly tried to be 

turned on again. 
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Resilience also applies to the containers that run the actual services cloud users will 

make use of and is a phenomenon that is already built into container software, such as 

Docker (Docker Docks, n.d.). Having resilient containers means that whenever a service 

goes down, the container responsible for that service will automatically regenerate and 

bring the service back up. Because this happens so quickly and seamlessly, the end 

user will most likely not even realize the service they wanted to access was unavailable 

for a fraction of time.  

4.1.7 Distribution and Wireless Communication 

In all our proposed architectures, we assume that the nodes are spread out over 

relatively large geographical areas, stretching from cities into forests, hills, and deserts, 

resulting in a highly distributed architecture. The figure below depicts a landscape with a 

forest, a waterfall, solar cells, a radio mast, and a small city. The following figure depicts 

where nodes might be placed in such a landscape. These nodes are just examples of 

geographic distribution, and they do not follow the upcoming color coding, nor are they 

yet connected to each other to follow an architectural pattern. 

 

 

Figure 4.2: Landscape 
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Figure 4.3: Nodes in landscape 

 

Data on the Internet is moving at the speed of light, and some users might not think too 

much about loading times and delays. But as latency, that is the time it takes for data to 

pass from one point on a network to another, is impossible to completely eradicate due 

to distance and Internet infrastructure equipment, long distances between nodes due to 

high distribution could negatively impact the user experience. If there are instabilities in 

some areas, latency will also increase. From an economic perspective, this could result 

in less development in those areas, because of the inevitable problems that will come 

along anyways. A high amount of latency results in poor performance and can prompt a 

user to stop using a service due to frustration. It also negatively affects things like 

search engine optimization (Cloudflare, n.d. b). Therefore, it should be minimized, if 

possible. 

 

Many physical devices in many different places also means that there are many points 

of potential failure. Any physical maintenance or complete replacement of the devices 

will need a lot of manpower, which is a costly and time-consuming endeavor.  

 

An important point we make is that regardless of any problems brought forth, a truly 

highly distributed architecture is what makes our proposed architectures so radically 
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different from everything that exists today and is truly what makes trying to challenge 

the current status quo even possible. Distribution and energy harvesting might therefore 

be the two most important features of the ones we present, in addition to wireless 

communication which forms the basis for the network. 

 

We expect our nodes to communicate through 5G and/or 4G signals. This, in 

combination with energy harvesting, allows the nodes to be completely wireless, which 

again will impact their ability to be highly distributed. Devices like radio masts need to 

be part of the communication network to help forward the traffic, as the nodes can’t 

transfer all the data over large distances on their own. The radio masts themselves 

need to be distributed across the whole geographical area that makes up the cloud 

architecture to make sure every node has the same base level of communicability.  

 

The “G” in 4G and 5G stands for “generation”. 4G and 5G are both two generations of a 

broadband cellular network technology, where 5G is the newest addition (Verizon, 

2022). Each new generation builds on the preceding generations, so 5G can be 

considered the “best one” so far. 5G has the capacity to handle high speed 

communication and high data rates with up to 100Mb per second downloaded and 

50Mb per second uploaded for wide area coverage and supports up to 1 million 

connected devices per square kilometer (Australian Government, 2017). Even though 

4G isn’t as technically advanced with its 10Mb per second data downloaded, it still has 

incredibly fast download speeds (iSelect, n.d.). In addition, they can both be supported 

simultaneously. This means that large-scale architectures with many wireless nodes 

won’t be a problem.  

4.2 Aligning Our Common Features to The Architectural Scale 

Earlier, we presented examples of different distributed computing architectures. These 

architectures, in addition to the cloud architecture, can be placed along a horizontal 

scale where they go from more fixed to more distributed. The two extremes are made 

up of the cloud (more fixed, and what we want to get furthest away from) and wireless 
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ad hoc networks (more distributed, and furthest away from the cloud architecture). 

Figure 4.4 depicts this scale, which we have decided to name the architectural scale.  

 

 

Figure 4.4: The architectural scale 

 

We wanted to investigate how the different features that have been presented up until 

this point will affect the architectures, and where they can be placed on the architectural 

scale as a result. As we haven’t moved into specifics about each individual architecture 

quite yet, and as there are three of them that are going to be presented, we won’t be 

able to place them on a specific point on the scale yet, but it’s still possible to determine 

the general area of where they belong. This will be done by structurally going through 

each one of the features in the previous section (role types, general role assignment, 

energy harvesting, small nodes, availability, containers, resilience, high distribution and 

4G/5G communication), and see if each one of them pushes our architectures more 

towards the fixed end of the scale, or the more distributed end. 

 

The table below displays the aforementioned features and which direction on the scale 

each one of them pushes our architectures, and Figure 4.5 shows the approximate area 

on the scale our architectures reside on, before we go into further detail for each 

architecture further down, where their individual placement will likely change.  

 

Feature Direction 

Role Types Has no implication on direction 

General Role Assignment Towards the more distributed end (Right) 

Energy Harvesting Towards the more distributed end (Right) 
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Small Nodes Towards the more distributed end (Right) 

Availability Has no implication on direction 

Containers Has no implication on direction 

Resilience Has no implication on direction 

High Distribution Towards the more distributed end (Right) 

4G/5G Communication Towards the more distributed end (Right) 

Table 4.1: Directional impact on the architectural scale from the common features 

  

 

Figure 4.5: The approximate area our architectures will reside on 

 

As we can understand from Figure 4.5, our proposed architectures likely share a lot of 

similarities with edge computing, wireless sensor networks and wireless ad hoc 

networks, simply based on the common features. They also share some general 

similarities with fog computing, since fog- and edge computing are so alike, which is 

why the approximate area also covers the halfway point between fog- and edge 

computing. Role types, availability and resilience has no real impact on the direction as 

these are all qualities, we expect to have in a modern cloud platform architecture. All the 

other qualities (general role assignment, energy harvesting, small nodes, roles, high 

distribution, containers and 4G/5G communication) push the architectures towards the 

more distributed end. This means that they challenge the status quo, as no qualities 

push the architectures towards the cloud architecture on the fixed end. Challenging the 
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status quo of the cloud involves proposing an entirely different architecture to what 

exists today, and thus the architectures have to be as different as possible from today’s 

data center structure.  

4.3 Architectures 

We propose three different architectures that differ in the way of connectivity and role 

assignment; A hierarchical architecture, a meshed architecture, and finally a graphed 

architecture, which is split into two sub-architectures due to differences in portraying 

their individual qualities. The architectures share some common features related to role 

types, availability, container technology, resilience, energy harvesting, minimalism, 

distribution, and communication, as have been described in the sections above. There 

are also similarities related to role assignment and the potential disconnect of a node 

from the cloud. For each proposed architecture, we also suggest a variety of options 

that would change the final solution, resulting in a salad-bar-inspired ability to create 

one’s own architecture. The different options will also be described in further detail 

under each section, respectively. 

 

As a reminder to the reader, we will again reiterate that the proposed architectures are 

not yet complete blueprints that can be used in order to implement alternative ways of 

handling cloud computing, but are more so intended to make the reader aware that 

there is a possible variety of design patterns. 

4.3.1 Architecture 1: Hierarchical Architecture 

In the hierarchical architecture, the nodes are configured in a hierarchical pattern. 

Figure 4.6 shows a section of the architecture with an uneven structure, where some 

branches are deeper than others. The figure includes all three role types (controller-, 

compute- and support roles), and their individual color coding is described in the table 

below. This color coding will also be reused for every upcoming figure depicting both the 

hierarchical architecture, the meshed architecture, and the graphed architectures. 
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Role Color Pattern (Explanation) Color Pattern (Actual) 

Controller Solid black 

 

Compute Solid white 

 

Support White with black stripes 

 

Table 4.2: Color coding for nodes in upcoming figures 

 

The arrows between the nodes in Figure 4.6 indicate which nodes have control over 

which. Normally in a figure like this, the arrows could also represent the dataflow in the 

architecture, but not in this case. As we described in the “Roles”-section earlier on, 

there are certain problems that could occur if the controller nodes are also in charge of 

the dataflow. As we want to limit the number of potential problems that could occur, the 

controllers in our architecture will only be in charge of managing the other nodes, while 

the communication and dataflow happens through wireless communication, as 

described in the “Communications”-section. 

 

 

Figure 4.6: A section of an uneven hierarchical architecture 
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As the figure shows, the hierarchical architecture would potentially allow for an uneven 

hierarchical structure. This means that some branches can be deeper than others, and 

therefore also contain more nodes. In turn, this means that two controller nodes at the 

same level of the hierarchical architecture could have control over a different number of 

nodes downstream. As long as the controller nodes have the capacity to manage all the 

nodes, they set to have control over, there likely won’t be any issues. Allowing for an 

uneven hierarchy also means that it’s easy to add new nodes to the architecture, as 

they can be placed at the bottom of an existing branch without having to restructure the 

whole architecture in order for it to be rebalanced.  

4.3.1.1 Role Assignment 

We assume that the role assignment in the hierarchical architecture will be based on 

dynamic combinations. In this case, it means that the different nodes have the 

possibility to be assigned different roles at different times but will only ever have one 

role at a time. It also means that the entire architecture could change based on certain 

criteria (while still retaining a hierarchical structure), which will be discussed in the 

upcoming “Handling unreliability”-section. 

 

We assume that the role assignment will be based upon factors such as geographical 

distance, or specified capabilities, like signal strength for communicating with other 

nodes. In the following figures, Figure 4.7, and Figure 4.8, we see the same six nodes 

which are placed in the same physical configuration. In Figure 4.7, the nodes are 

hierarchically configured based on geographical location, where the controller node is 

given its role based on its position relative to the other nodes. Here, the controller is 

placed approximately the same length from each one of the leaf nodes.  
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Figure 4.7: Hierarchical role assignment based on geographical location 

 

In Figure 4.8, the nodes are hierarchically configured based on a given arbitrary 

capability, in this case signal strength caused by close proximity to the radio mast. Even 

though the nodes are geographically located in the same way as in Figure 4.7, here the 

top right node fulfills the criteria which makes it more eligible to serve as a controller. 

 

 

 

Figure 4.8: Hierarchical role assignment based on signal strength 

 

As the cloud architecture grows, more nodes would be added. To keep control over all 

the nodes, we assume that the final stage of the hierarchical architecture will implement 

both a geographical- and a capability-based role assignment, resulting in a large-scale 

layered hierarchical architecture, as depicted in Figure 4.9. Here, the architecture is first 

hierarchically divided into different geographical zones based on geographical, to limit 

the nodes that are talking to each other. Without such a zoning approach, two nodes 

with a large geographical distance could end up being connected, which could result in 
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different forms of delay and lack of optimization. Within the zones, any node could 

theoretically be assigned any role based on its capabilities. 

 

 

Figure 4.9: Large-scaled hierarchical role assignment based on both geography and signal strength 

 

We’ve talked about assigning roles based on capabilities throughout this chapter, but 

what are the actual processes behind this type of role assignment? It would require an 

architecture-wide algorithm that analyzes each node's status as it's being 

communicated. This algorithm would take the different capabilities into consideration 

when deciding what roles to assign. 

 

Each node will have some level of resilience, signal strength, connection to affordable 

green energy, etc. For the hierarchical architecture, we propose that the least stable 

nodes, with the highest chance to become disconnected, should be assigned the 

controller role. This could potentially be achieved by implementing a variable that 

communicates each node's probability of failure, and those with a high probability are 

more likely to be assigned as controllers. This is a radical approach, and something that 

is not often seen in architectural design, as it might not be entirely intuitive to base the 

architectural design around unreliability. 

 

By having the most unstable nodes serve as the controllers, we ensure that the more 

stable nodes will be assigned as support- and compute nodes. This way, databases and 
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the actual services which users deploy are less likely to go down, as the relevant nodes 

themselves are most likely to be up. It is of course not ideal to have the controller nodes 

be unavailable from time to time, but that is in no way the intent. However, if the 

architecture is in place, the roles have been assigned and the nodes have been 

initiated, we consider the controllers to be the least important role type out of the three. 

If a controller were to disconnect, it would not immediately affect the running services as 

they all run on different nodes, and the only thing we would lose is the current status 

and the ability to do updates and restructuring of the architecture. The other kinds of 

nodes, as we have hinted at earlier in this paragraph, are more important to keep up as 

they are the ones responsible for handling the actual dataflow, and therefore it’s 

important to have processes in place in order to handle unreliability. 

4.3.1.2 Handling Unreliability 

One of the most important things when it comes to handling unreliability is to have a 

system in place that limits the amount of restructuring that must be done. Restructuring 

of the architecture involves re-assigning roles and changing the structure of which 

nodes that communicate with each other. If the architecture is frequently restructured, it 

could be costly as the workload each node has to do is increased (as previously 

described in the “Roles and General Role Assignment”-section). 

 

Temporarily losing a controller node is not the end of the world, but it’s still something 

we want to avoid to be able to have a realistic overview and be able to do real time 

monitoring of the architecture. The simplest way to increase the chance that a node is 

always connected to a controller node, is by assigning at least two controllers to each 

node. This way, there will be a backup node in place if one of the two controllers were to 

temporarily go down. Figure 4.10 displays how a section of the full architecture would 

look connected to two controllers, instead of just one. 
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Figure 4.10: A section of the hierarchical architecture where two controllers control the same nodes 

 

If one of the two controllers were to disconnect, the other nodes are already being 

managed by the second controller. Strictly speaking, this approach requires that there 

are more controller nodes than are needed in order to manage the whole cloud 

architecture. This results in us “wasting” resources, as the second controller could 

theoretically be assigned as a controller and provide services. However, this approach 

also dramatically limits the chance of architectural collapse with limiting the time a node 

is completely without a managerial controller node.  

 

Other approaches need to be backed by more sophisticated algorithms that will partially 

restructure sections of the architecture until the whole thing is too unstable. If too many 

nodes disconnect, larger parts of the architecture will of course have to be restructured, 

but as this will be expensive, it's something we want to avoid. Figure 4.11 and Figure 

4.12 below depicts two additional approaches to handling the loss of controller nodes.  

 



48 
 

 

Figure 4.11: A controller at a higher level takes over the responsibility 

 

 

 

Figure 4.12: A controller at the same level takes over the responsibility 

 

In these approaches, a completely different controller node will take responsibility for 

the nodes when a controller disconnects. These approaches require that each controller 

node has sufficient capacity in order to take responsibility for additional nodes, so that 

every leaf node will still be monitored and connected to the network in order to 

communicate its status and get updates.  

 

The three recently described approaches were initially imagined to be working 

separately, and that only one of them would be incorporated into the architecture at a 

time. However, by introducing all of them to the architecture at the same time and by 

tailoring the algorithms to take effect in different situations, we are enabling dynamic 
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unreliability-handling. First, we are limiting the amount of time a restructuring has to 

happen with two controllers, and if the second controller disconnects, the nodes will be 

taken under the wing by another controller based on that node's current capabilities. 

Here, as everywhere else when talking about capabilities, are we talking about things 

like level of resilience, signal strength, green energy production and connectivity to 

other nodes. These kinds of capabilities are dynamic and can change over time, which 

is why role assignment is based on the current capabilities. 

 

We have talked at length about controller nodes, and little about what to do when losing 

a support- or compute node. If one of these node types were to disconnect, actual 

services would be implicated, and it will also result in more work for the controllers as 

they have to get the architecture successfully back up and running. One of the easiest 

ways of avoiding that is by having backup nodes. These backup nodes will either run 

the same services at the same time, like a pod in Kubernetes, at a layover when one 

node goes down, or they will serve as a classic backup solution for stored data, all 

depending on what type of node it is. What this means in practice is that there must be 

at least two nodes of each type, no matter how large or small the architecture is. In 

larger cloud architectures, this will of course be easier than in a smaller one. 

4.3.2 Architecture 2: Meshed Architecture 

The nodes in the meshed architecture are, as the name suggests, configured in a mesh. 

Figure 4.13 displays an example of how the meshed architecture would look if there 

were 7 nodes in total. In a mesh, every node is connected to each other. This means 

that for a total of n nodes, each node has n-1 links that connect it to the other nodes in 

the same network. The arrows in this figure, like with the one we presented for the 

hierarchical architecture, represent which nodes that have control over the other nodes 

and communicate with each other and. The arrows have nothing to do with actual data 

flow as all the communication and flow of data is done through wireless communication. 
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Figure 4.13: Meshed architecture with simple role assignment 

 

Every node in Figure 4.13 is assigned one role in order to simplify the figure and be able 

to present an architectural overview more clearly and how the nodes control each other. 

The nodes in Figure 4.14, however, are assigned up to three roles simultaneously, 

which is a more complicated and realistic view of how the meshed architecture will 

actually work. In both Figure 4.13 and Figure 4.14, the lines that connect the white 

compute nodes are a representation of communication and software networking so that 

certain services think they are on the same physical network (VMWare, n.d. b). This is 

also reflected by the double arrows that go back to the controller nodes. 

 

 

Figure 4.14: Meshed architecture with more realistic role assignment 
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4.3.2.1 Role Assignment 

In order to actually assign the different roles, there needs to be processes in place, so 

the architecture knows what role to assign each node. In contrast to how it’s done in the 

hierarchical architecture, the nodes in the meshed architecture can have more than one 

role assigned to them at any given time, and they will simultaneously be able to perform 

the tasks required for each of those roles. This means that the meshed architecture is 

based on free multiplicity role assignment. 

 

Like with the hierarchical architecture, the role assignment in the meshed architecture 

can be based on either geography or dynamic capabilities specific to each node. If a 

given node is geographically closer to a collection of other nodes, for example by having 

approximately the same physical distance to all of them, that node is more likely to be 

assigned the role of controller. Any updates of container images or communication of 

status will be less affected by latency issues etc. due to the close proximity. The closer 

distance also affects the required signal strength, and less required signal strength 

means less energy used. 

 

Role assignment based on dynamic capabilities can be caused by many different 

things, as previously mentioned. As the nodes communicate their status, the algorithm 

takes the current capabilities into account and determines if a restructure needs to 

happen to make the architecture cheaper or greener in any way. In the case of a 

disconnect, the algorithm also bases its decisions on these capabilities.  Since a node 

can be assigned multiple roles, the free multiplicity role assignment algorithm must base 

the role assignment on multiple different capabilities. It is therefore less likely for a node 

to serve as both a controller and support node, as these two roles are based on 

completely different capabilities (most unstable and least unstable, respectively). 

4.3.2.2 Handling Unreliability 

Overloading nodes could cause a possible disconnect from the architecture and should 

therefore be avoided. One way of lessening the workload of a node could normally be to 

add additional nodes that could take over some of the workload, but in this 
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circumstance, more nodes is a problem in itself. As the architecture becomes bigger 

and bigger with additional nodes being added, it will require more work for each node, 

and they might get closer and closer to their maximum capacity. This is because each 

node is connected to all the other nodes and has to use a certain percentage of their 

available capacity to send their status and keep in contact with all the other nodes. 

 

We propose the following solution to this potential problem: In order to avoid nodes 

being disconnected due to being overloaded because of a large mesh with many nodes, 

the meshed architecture is able to split into two meshes that are connected by a 

controller if the total capacity of the nodes reaches a certain level. Figure 4.15 displays 

how this would look, where the mesh is displayed as an undistinguishable cloud of 

nodes. Here, the original mesh is split into four sub-meshes through a process similar to 

cell division and ends up forming its own hierarchical structure. The meshes themselves 

make up the bottom layers of the hierarchy, while the other nodes are made up of high-

capacity controllers known as master-nodes. It is also not unthinkable that some 

meshes further down in the hierarchical meshed architecture split, while others do not, 

which results in an uneven hierarchical mesh. 

 

 

Figure 4.15: A mesh restructuring itself into a hierarchical mesh 
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The master-controllers are more stable than the internal controllers, as they are 

responsible for communicating status and configuring updates across multiple meshes. 

When restructuring the architecture from a single mesh to a hierarchical mesh, the 

capability-based role assignment algorithm will take the new context into consideration, 

and assign highly reliable nodes as master-controllers, instead of the unstable ones. 

 

Even though they’re highly reliable, the master-controllers might still disconnect from the 

network. If this happens, there will either be a partial restructuring similar to the ones we 

presented for the hierarchical architecture (Figure 4.11 and Figure 4.12) where the 

meshes would simply be switched over to an available master-controller at the same or 

higher hierarchical layer, or a new node from one of the available meshes will have to 

be appointed to master-controller, and consequently be promoted out of the mesh it 

currently resides within. Figure 4.16 depicts how this promotion looks. 

 

 

Figure 4.16: A node moves out of a sub-mesh after being promoted to a master-controller. While this happens, the 

sub-meshes are disconnected from the rest of the architecture, but can operate within itself. 

 

If there is only one controller node inside the mesh, and this node disconnects, a new 

node will be assigned as controller. This assignment will be based on a line of 

succession, where the next in line based on its current capabilities will be assigned the 

role. Unlike in the hierarchical architecture, this requires no restructuring of the 

architecture because all the nodes are already connected, and a newly appointed 

controller can make use of these existing connections. There will still be a short time 

period before a new node is assigned the controller role where there are no controllers 

in the mesh, and just like in the hierarchical architecture, the best solution for this is to 
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always have two or more controllers in the architecture in order to limit the amount of 

time the cloud architecture will be un-monitorable and un-updatable. 

 

Additionally, if there are few nodes within the sub-meshes in a hierarchical mesh and 

the mesh is in a generally unstable state, the architecture might benefit from reverting 

back into a standard mesh structure. This is depicted in Figure 4.17, and ensures that 

the nodes that are left can again be in strong communication with each other, instead of 

being thinned out in a less-than-ideal, not as strong architectural pattern. 

 

 

Figure 4.17: Hierarchical mesh reverting back into mesh 

 

In the situation of losing a compute- or support node, the same principles as we 

discussed under the “Hierarchical Architecture”-section apply here as well. As actual 

services will most likely be impacted if such a node disconnects, there needs to be at 

least two nodes that are running the same services or storing the same data, depending 

on what kind of node it is, so that there is always an available backup node in place. If 

more than one node has the necessary data available, and especially if these nodes are 

in relatively close range to each other, it doesn’t really matter which one is available and 

which one isn’t. This is the same idea that is behind clustered file systems, where two or 

more physical devices simultaneously mount the file system so it can be accessed and 

managed as one single system (Weka, 2020). Like with the hierarchical architecture, 

always ensuring enough computing power in order to perform tasks, while also 

implementing permanent backup solutions will be easier in larger architectures, since 

there are more nodes to choose from.  
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4.3.3 Architecture 3: Graphed Architecture 

The nodes in the graphed architecture are configured in a graphed structure. A graph 

has a lot of similarities to a mesh, but while a node can be connected to all the other 

nodes, there are no requirements that say they have to be. In a graph, some nodes 

might be connected to a double-digit number of nodes or more, while others might only 

be connected to one. Figure 4.18 displays an example of how the graphed architecture 

might look if there were 7 nodes in total. Like with the two previously presented 

architectures, the arrows in Figure 4.18 represent which nodes that have control over 

the others and which nodes that communicate with each other and says nothing about 

actual dataflow. The arrows between the white compute nodes, a type of node that can 

not be in control of another node on its own, visualize phenomena like software 

networking and status communication. 

 

 

Figure 4.18: A non-weighted graph architecture 

 

Something that is special about the graphed architecture, is that there is a completely 

different way of visualizing the structure of nodes and their connective links, that looks 

dissimilar to previous figures altogether. Figure 4.19 displays a structure where each 

node is seen in relation to the radio mast it uses to communicate to other nodes. A link 

between two nodes means that they have access to the same radio mast. Here, the 

links between the nodes are weighted and non-directional, unlike what they were in 

Figure 4.18. Also unlike previous figures, Figure 4.19 actually displays the architecture 
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through the lens of actual dataflow. Because this approach is so different from the other 

approach, we chose to call this a weighted graph architecture, while the structure that 

was presented in Figure 4.18 is a non-weighted graph architecture. 

 

 

Figure 4.19: A weighted graph architecture 

 

The weight of the links between two nodes is determined by how many jumps the data 

package must perform in order to get from node A to node B. Two distributed nodes that 

are in communication with a radio mast would have a weighted line of 2, as the package 

has to travel from node A, to the radio mast, to node B, for a total number of two jumps. 

If one of the nodes is directly connected to the radio mast (and the radio mast itself has 

a solar panel or wind turbine connected to it to generate power) the total number of 

jumps would be one, resulting in a weighted line of 1. Having two such nodes 

communicating with each other resulting in a weighted line of 0 might seem counter-

intuitive, but we argue this because the radio mast is not a data storage solution, but 

simply something that helps transport the data packages to their final destination. Figure 

4.20 depicts the weighted lines between the type of nodes we just described. 

 

 

Figure 4.20: Different weighted lines as a result of different types of nodes 
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The weight of the links is arguably based on the type of technology that helps forward 

the packages, and not on signal strength or distance. A lower weight number means 

closer connection to the radio mast, and as the nodes in our architecture communicate 

through wireless communication, their distance to the radio mast would impact how the 

algorithm assigns roles. 

4.3.3.1 Role Assignment 

We assume that both graph architectures will be based on free multiplicity role 

assignment, but the weighted graph architecture also shares similarities with dynamic 

combinations or even fixed role assignment. The free multiplicity role assignment 

algorithm can assign additional roles or completely reassign the structure whenever, 

based on the node’s current capabilities that are being signalized through the wireless 

communication. The role assignment algorithm in the weighted graph architecture, 

however, is less likely to reassign roles, causing a more fixed architecture. 

 

The weighted graph architecture has a higher focus on reliable communication, and 

nodes that are near the radio mast are more likely to be assigned the support role. This 

will for example help with quickly sending data from the databases to the other nodes. 

However, just because a node is either directly connected to a radio mast, or just one 

jump away, does not mean that the node is not at risk of disconnecting. This is where 

the weighted graph architecture breaks with previously stated role assignment 

processes and allows the role assignment algorithm to take other qualities into 

consideration, like the type of technology available and future desired behavior. 

 

The role assignment algorithm for the non-weighted graph architecture is, like with the 

previously presented architectures, more likely to assign the controller role to more 

unstable nodes, and the support role to the most stable nodes. The remaining nodes 

must be assigned the compute role, and the algorithm has to take the needed amount 

of processing power into consideration when assigning roles. There can not be too few 

compute nodes, or the cloud will be unable to sufficiently offer services. This is less 
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likely to be a problem thanks to the free multiplicity role assignment, as all other node 

types can also be assigned the compute role and be part of the workforce. 

 

In the non-weighted graph architecture, the role assignment shares similarities with both 

the hierarchical and meshed architecture. It is partially based on geographical location, 

in order for nodes to be in close proximity to the nodes they are connected to and to 

lower the potential latency, and partially based on the node's current capabilities. The 

base configuration and physical placement of nodes could look the same as in a mesh, 

but the end goal is to have a different constellation of communicative lines between the 

nodes. The nodes in the graphed architectures are likely to follow the same justification 

for controller role assignment as the other architectures regarding close proximity, to 

lower latency and increase the efficiency of the cloud. 

 

No matter how many nodes are assigned as controllers in the meshed architecture, they 

have to be assigned in a pattern where every node is reached in the most efficient way 

without potentially wasting resources. Figure 4.21 below depicts two different 

configurations of role assignment for the same physical node structure. The figure 

depicts a non-weighted graph architecture, but the same principle applies for the 

weighted graph architecture as well. 

 

 

Figure 4.21: Inefficient vs. efficient role assignment 

 

On the left side, four nodes have been assigned the controller role due to their 

capabilities. As we can see, the two rightmost controller nodes are connected, but the 
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rightmost controller is only responsible for managing one node. On the right side of the 

figure, we see the same physical structure of nodes, but a different configuration of 

roles. Here, the rightmost controller node is assigned the compute role instead, and the 

middle controller is responsible for managing all the nodes on the right-hand side, which 

are all assigned as compute nodes. This figure illustrates that just because the role 

assignment algorithm is set to follow certain rules, there needs to be additional rulesets 

in place that enforces the most efficient resource use. Like with all the previously 

presented architectures, there needs to be processes and rules in place to handle 

unreliable nodes that are at a risk of disconnecting. 

4.3.3.2 Handling Unreliability 

Completely eliminating the chance of a node disconnecting is impossible, due to both 

external and internal factors like natural catastrophes, hardware failure or code errors. 

Both the non-weighted and weighted graph architecture share similarities with the other 

architectures, and some of the ways of handling unreliability are the same as well. 

 

If more than one node has the controller role, and one of them disconnects, any 

potential restructuring and reassignment of roles will depend on whether the remaining 

nodes are still being managed by a controller or not. Figure 4.22 depicts a situation 

where this is the case. Here, the rightmost controller disconnects from the architecture, 

but since all the nodes it was managing were already also being managed by the middle 

controller, no restructuring needs to happen. By implementing a constant backup 

controller node for each node, there is less chance for the cloud architecture to 

temporarily lose contact with a given node, if one of the controllers disconnects. As we 

also talked about when we presented the hierarchical architecture, a constant backup 

controller results in a lowered chance of losing contact with other nodes, and thus 

results in a more realistic overview with the ability to do real time monitoring. On the 

other hand, as we also previously mentioned, assigning more nodes as controllers than 

those that are strictly needed in order to do the job results in a potential “wasting” of 

resources. Here we will again stress that this is a smaller problem in an architecture that 
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uses free multiplicity role assignment, as controllers can also serve as compute nodes 

and therefore participate in the cloud workforce. 

 

 

Figure 4.22: Example of restructuring in the non-weighted graph architecture when a controller disconnects, but all 
the nodes are already controlled by a second controller. No new lines are drawn. 

 

If a given node is just connected to one controller, however, and that controller 

disconnects, the architecture needs to be restructured in order to regain control over the 

lost nodes. One option is of course to just wait until the original controller node gets 

back on, but this is not ideal as there is no way of knowing how long it will take. 

Therefore, the best solution is to have certain processes in place that will ensure that 

other controllers can take over the managerial role. Figure 4.23 displays how this might 

look. To the left, we see the original structure, and to the right we see the restructure 

that happens after the rightmost controller node has disconnected; The left controller 

has taken over the responsibility for the remaining nodes. 

 

 

Figure 4.23: Example of restructuring in the non-weighted graph architecture when a controller disconnects, and the 
nodes have to be switched to a different controller 
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The disconnect of a support or compute node has, as already described, much more 

dire consequences, as actual cloud services will be implicated. As mentioned, the 

easiest way to avoid unavailable services is to implement backup nodes that will ensure 

that the content is available even if the original nodes go down. To avoid services such 

as websites, game services etc. becoming unavailable, multiple nodes need to be able 

to run the same services, so whenever a node potentially goes down, there is always 

another node ready to take over. The same applies for support nodes that run 

databases or control software networking etc. If nodes like these where to go down, and 

there are no nodes ready to take over the workload, we either have to sit and wait until 

the node comes back online while the cloud users becomes increasingly irritated, or the 

controllers needs to be able to quickly send new instructions to different nodes in the 

architecture so that they can download the data that is needed in order to provide the 

services. This will of course take longer time than what an already configured backup 

solution would, but thanks to the controller, compute and support nodes working 

together, the cloud architecture is able to get the services back up and running again. 

4.3.4 Handling Services 

As there are similarities within the different architectures when it comes to 

configurations, communication and node control, there are bound to be similarities in 

how they handle the different services. Therefore, we chose to collect the information in 

this section to avoid unnecessary repetition for each respective architecture. 

 

It’s not enough for the cloud architectures to be stable and to be able to keep its nodes 

online; The nodes need to be able to run services that can be accessed by the end 

users, as well as services that will be used by other nodes (including services for 

communication, monitoring, software networking etc., all of which we have briefly 

touched upon before). 

 

Let us look at how the different architectures would handle running websites, game 

servers, streaming services and data caching. Three out of four services are services 

end users will typically make use of, while data caching is an important service that 
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helps with making data available faster and allow for a potential increase of bandwidth 

speed as there is less data making its way across the network. By looking into how 

each of the different architectures handle running these services, we get an insight into 

whether or not they can be a viable architecture for a new type of cloud. 

4.3.4.1 Websites 

A website needs content, hosting, and an IP address. When it comes to accessing 

websites, a lot of the traffic is dominated by sending and receiving files that are located 

on the web servers, or in some cases on dedicated databases. These files include code 

and CSS, images, videos, and sometimes API data. A lot of modern websites use 

JavaScript (Elliott, 2019), which can be executed in the user's browser (JavaScript, 

2021). Not only can JavaScript interpret content, but it can also access images, design, 

and API data. This technology helps with eliminating the amount of data that has to be 

transferred from the web server, as transferring code files that can be interpreted on the 

user’s end is a lot more efficient than transferring actual data-files, like HTML. On top of 

that, a lot of the content that is viewable on a webpage can be cached, and therefore 

more quickly accessed, which we will get more into further down.  

 

A website is vulnerable both if every part of the technology stack is located on the same 

node in the architecture, and if it’s spread out over multiple nodes. This is because if 

one of the nodes goes down, the website will become inaccessible. However, if we treat 

the connection between a controller node and its subjects the hierarchy the same way 

we treat a pod in Kubernetes, i.e., a group of one or more containers with shared 

storage and network resources and a specification for how to run the containers 

(Kubernetes, 2022), we are able to build a stable structure that can accommodate 

hosting a website efficiently. In these pod-like structures, the different node types work 

together and are responsible for running services. We can introduce load balancers that 

are able to deliver websites from multiple different web servers (F5, n.d.) in case one or 

more of the compute nodes goes down. Additionally, close proximity to their preferred 

support node allows for quicker and more seamless data transfer.  
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For the hierarchical architecture, a pod-like structure will be made up of the lower levels 

in the hierarchy, while the meshed- and graphed architectures have pod-like structures 

that can cross into each other. Since nodes can be connected to multiple controller 

nodes, each support- and compute node that is needed to successfully run a website 

can therefore be part of multiple pod-like structures, as displayed in Figure 4.24. 

 

 

Figure 4.24: A meshed hierarchy where the bottom compute node is part of two overlapping pod-like structures, 

represented by the greyed-out areas containing one of each role. 

 

One problem with the pod-like structure for the hierarchical architecture is that certain 

websites might only be accessible from certain nodes that are located on certain 

branches. If someone who is geographically further away from those nodes wants to 

access the content, it will impact latency. A solution to this is to make the same content 

available from multiple branches in the hierarchy. As the websites run on containers, 

and as the infrastructure needed to host a website will probably be available on multiple 

branches as a default, the only thing needed is to transfer the container images. The 

same applies to the meshed- and graphed architecture, where different nodes in the 

architecture will be able to serve the same content. If one node goes down, a Domain 

Name System (DNS) will be able to redirect the user's traffic to the one still available.  
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4.3.4.2 Game Servers 

A dedicated game server is needed for online multiplayer gaming, or cloud gaming. For 

most online multiplayer games, the end user needs to use a game client that connects 

them to the main game server. The communication between a game server and a game 

client is a two-way street; The server transmits data about the game’s current state to 

the client to allow the users to view an accurate, real-time version of the game, while the 

client sends the users input so that the server can process that data. Cloud gaming, on 

the other hand, happens entirely on a dedicated server, and the only thing the user 

needs is a screened device they can use to access the games.  

 

A game server does not need to always be connected to a controller, as the service 

lives and operates relatively independently. However, thanks to containers, it’s possible 

to dynamically scale the service if more people are trying to access it through deploying 

additional containers, which would require a connection to the controller and storage. 

 

Game servers which are actively engaged in a game are extremely vulnerable to 

restructuring, as large amounts of data would need to be moved, which will impact how 

the game is running. Even with the addition of a transition phase, where a different node 

gets ready to take over the hosting while the original node is getting ready to 

disconnect, the potential problem of constantly having to move things is still relevant, 

and the experience for the end user would without a doubt be implicated. Therefore, 

game servers are mainly dependent on strong and stable compute nodes with low 

chances of disconnecting thanks to factors such as efficient green energy, availability, 

and resilience. All of these have been described as common features and are therefore 

not related to only one proposed architecture. This means that as long as any of the 

architectures have access to reliable compute nodes with a low chance of 

disconnecting, they should be able to offer game servers. 

 

The weighted graph architecture brings additional assessments into consideration; To 

limit lag, a game server should be able to quickly communicate its state to the users. 
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Therefore, compute nodes with a lower weighted line, meaning that they are closer to a 

radio tower, are more likely to be chosen to operate as game servers.  

4.3.4.3 Streaming Services 

Streaming is a way of viewing video or listening to audio content without downloading 

the files onto your device (Cloudflare, n.d. c). In most cases, the actual media files will 

be located on a server and transmitted to the client when they themselves want to 

access it, but through live streaming, the content will be produced and transmitted in 

real time. Streaming media players, the software used to consume streamed content, 

ensures that a few seconds of the media is loaded ahead of time, so that it can play 

smoothly and continuously without interruptions. This is known as buffering. However, 

over slow connections or on networks with large amounts of latency, streamed media 

can take a long time to buffer, which results in a stuttering and choppy experience. For 

live streaming, this can result in the client receiving the content at a considerable delay. 

However, streaming performance can be improved, and buffering time can be reduced if 

the transmission can go through a Content Delivery Network (CDN) service, which has 

caching at the heart of it (Imperva, n.d.). We will get more into details about caching 

further down. 

 

In our proposed architectures, the content that will be streamed will be stored on the 

support nodes. Then, whenever someone wants to access the content, the compute 

nodes send a request to the support nodes and receives the streaming media content. 

Live streaming will be done peer to peer by two or more compute nodes. To select the 

nodes that are best suited for streaming services, we look at their geographical 

placement. Nodes near radio masts should ideally be support nodes so that data from 

the databases can be accessed and transmitted fast and efficiently to the streaming 

clients, but compute nodes would in many instances (such as live streaming) need a 

good connection as well. 
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4.3.4.4 Caching 

Caching is a technique that stores a copy of a given resource and serves it when it’s 

requested. It can be thought of as a temporary storage solution that will most likely be in 

closer proximity to the user than the actual origin where the data is stored long-term. If a 

network is using caching services and a user is requesting some sort of data, the cache 

will intercept the request and return a copy of the stored resource instead of 

redownloading the resource from the originating server (MDN Web Docks, 2022). This 

helps improve latency and will greatly improve the time it takes for the user to access 

the data. It also contributes to a potential increase of bandwidth speed as large amounts 

of data does not have to make their way across the whole network since they are now 

located in a shorter distance to the radio mast which results in fast and efficient 

transmitting. 

 

Caching services are responsible for storing web content such as images and database 

information, as well as video and audio content. If data has not been accessed in some 

time, it can be deleted from the cache to make space for more frequently used content. 

 

A caching service eliminates the need for streaming services and game servers to be 

located on nodes in close contact with the radio masts, as the caching services can take 

over some of the workload. This does however require that the caching services are 

located on those nodes instead. The same argument we made earlier where we 

specified it's hard to pinpoint a specific node that would do a sufficient job in the 

hierarchical, meshed, or non-weighted graph architecture applies here as well, while the 

weighted graph architecture is visualized in such a way that it’s easy to pinpoint the best 

fitting nodes because of their weighted lines. 
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4.4 Summary  

In this section, we will present a summary of all the important concepts we have 

presented in this chapter. The table below will include the different concepts and their 

meaning. It will also distribute the concepts into different sub-categories, like for 

example “roles” and “architectures”. 

 

Category Concept Explanation 

Scales Role Assignment Scale The scale containing the three 

role assignment methods. 

Architectural Scale The scale containing the different 

distributed technologies on which 

our architectures will be placed 

and compared to the others. 

Role Assignment 

Methods 

Fixed Predetermined role assignment, 

and a node will only ever be 

assigned the same role. 

Dynamic Combinations A node can only have one role at 

a time, and can be assigned the 

same role again after disconnect, 

but it can dynamically change 

based on each node’s status. 

Free Multiplicity A node can be assigned up to all 

three role types simultaneously, 

but will have the responsibility for 

all their included tasks. Can also 

change dynamically. 
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Roles types Controller A manager in the architecture, 

responsible for keeping track of 

other nodes and their status, 

updating container images etc. 

Compute A worker, responsible for running 

services deploys by users. 

Support Supports the other nodes through 

offering storage, key-value 

stores, caching etc. 

Architectures Hierarchical An architecture with hierarchical 

structure where a controller is at 

the root of every new branch. 

Meshed An architecture where each node 

is connected to all the other 

nodes. 

Non-weighted Graph An architecture where the nodes 

can be connected to all the other 

nodes, but they don’t have to. 

Less strict than mesh.  

Weighted Graph An architecture based on the 

dataflow and the technology that 

helps forward that data. An 

alternate way of visualizing the 

graphed architecture. 

Table 4.3: Summary of important concepts  
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5 Analysis, and the Introduction of Plasticity 

In this section, we will further analyze the three proposed architectures and get more 

into details about how they relate to each other, other technologies, and today’s cloud 

architecture. We will also investigate which idea is the most groundbreaking in 

comparison to today’s cloud architecture, which one of the proposed architectures is the 

“cheapest” approach in terms of actual cost, and the most realistic approach, i.e., which 

approach is the most likely to be functionally implemented. The approaches won’t 

necessarily consist of the same architectures. 

 

Lastly, we present a new type of architecture which can be seen as a union of the 

previous ones. It is dynamic and ever-changing and takes each of the individual 

architecture’s strengths and quirks into consideration when dealing with role 

assignment, communication and dataflow. As we will see in more detail further down, 

this architecture introduces the phenomenon of plasticity, which is a quality that enables 

it to take different contexts into consideration and change its architectural pattern. 

5.1 Placement on the Architectural Scale 

The architectural scale, which was originally presented in the “Results”-chapter, is made 

up of a horizontal scale with eight points that represents different architectures that go 

from more fixed on the left, to more distributed on the right. 

 

In the “The Architectural Scale”-section, before any of the architectures were even 

presented, we scoped out a general area that the architectures would potentially fit into, 

based on the common features we had presented. This area (displayed in Figure 4.5) 

goes from the midway point between fog- and edge computing, all the way to wireless 

sensor networks, which is the most distributed architecture on the scale. 

 

Now, let us use the details we have presented about our three proposed architectures, 

as well as details about the different architectures already on the scale, to further 

identify our architectures exact position on the architectural scale. Because we split the 
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graphed architecture into two sub-architectures (non-weighed and weighted graph 

architecture), both of them will get their own individual placement on the architectural 

scale. For each architecture, we will create a new rendition of the architectural scale, 

until we finally have a new, complete scale where every architecture is included. This 

final architectural scale is displayed in Figure 5.4. 

 

The hierarchical architecture fits somewhere between edge computing and wireless 

sensor networks. The edge computing architecture makes use of distributed nodes and 

processes to lower latency and save bandwidth, just like the hierarchical architecture. 

However, our architecture does not fit the traditional data center structure, which edge 

computing still largely makes use of, and it’s also not quite as independent as the 

wireless sensor network, as it relies more on spontaneous formations of networks 

(Sandhiya & Bhuvaneswari, 2018). While the network formation in the hierarchical 

architecture can also change frequently, it's not up to the nodes themselves, and the 

architecture-wide role assignment algorithm is responsible for defining a temporary 

infrastructure that defines which nodes have control over which other nodes, until the 

next time the architectural pattern changes. 

 

Figure 5.1 displays the architectural scale with the addition of the hierarchical 

architecture. 

 

 

Figure 5.1: The architectural scale, with the addition of the hierarchical architecture 

 

The meshed architecture fits between wireless sensor networks and wireless ad hoc 

networks. All three architectures are based on distributed nodes and wireless 

communication, but the wireless ad hoc network is much more independent. It does not 
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rely on a pre-existing infrastructure. Here, the nodes are free to move independently 

and can change communicative links frequently, but while the meshed architecture also 

does not have a strictly pre-existing infrastructure and is prone to frequent changes, it 

still requires some sort of defined frame to operate within. The wireless sensor network 

also requires this infrastructure to be in place and relies on the spontaneously created 

networks to forward their data, just like the meshed architecture. The wireless ad hoc 

network, on the other hand, can run on a much more scattered and chaotic structure. 

 

Figure 5.2 displays the architectural scale with the addition of the meshed architecture. 

 

 

Figure 5.2: The architectural scale with the addition of the meshed architecture 

 

Both the non-weighted and the weighted graph architecture also fits between wireless 

sensor networks and wireless ad hoc networks. The graphed architectures have a lot of 

similarities with the meshed architecture, and therefore a lot of the reasoning behind its 

placement on the architectural scale is the same as it was for the meshed architecture. 

The graphed architectures are both built on distributed nodes and wireless 

communication, just like the wireless sensor networks and wireless ad hoc network, and 

the meshed architecture. The non-weighted graph architecture is more well-adapted to 

frequent changes in its infrastructure, while the weighted graph architecture relies on 

strong wireless connections to radio masts which results in fewer changes when a 

reorganization happens. This places the weighted architecture more towards the 

wireless sensor networks who rely on a certain infrastructure to be in place, while the 

non-weighted graph architecture can be placed closer to the wireless ad hoc networks, 

at the same place as the meshed architecture. 
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Figure 5.3 displays the architectural scale, with the addition of both the non-weighted 

and the weighted graph architecture. Figure 5.4 is the final rendition of the scale, with all 

of our proposed architectures uniformly placed on it. 

 

 

Figure 5.3: The architectural scale with the addition of the graphed architectures 

 

Figure 5.4: The final rendition of the architectural scale 

5.2 Comparison to Today’s Cloud 

Even though distributed computing nodes are not a new concept, and today's cloud 

architecture already actively makes use of them in addition to their large data centers, 

our proposed architectures offer something new in that they are only based on 

distributed computing nodes.  

 

Our architectures completely eliminate the need for large data centers. This will in turn 

save space, as large areas won’t need to be allocated to hold a multitude of nodes. 

Some of the encompassed features that come with data centers are also eliminated 

because of our hardware and node location. This includes cooling, as we envision that a 

node that for example is placed within a waterfall and might even have internal channels 

that will allow the water to flow through it, will manage to cool itself.  
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The nodes in our architectures are also generally smaller than the ones used in a 

traditional cloud architecture, largely because of the absence of data centers and the 

hardware they use. Servers in a server rack tend to be bigger than microcomputers and 

mobile devices, but they might also be a lot stronger and have more processing power. 

However, they also use a lot more energy. Our architectures are built on the assumption 

that a lot of smaller, more distributed nodes will still have enough processing power to 

cover the needs of the cloud users, and through their distribution they would be able to 

seek out cheap and efficient renewable energy sources to save energy. 

 

Perhaps what differentiates our architectures the most from the cloud architecture, is 

their ability to change structure. This can be seen in the meshed architecture when it 

morphs into a hierarchy, or in the graphed architecture which can turn into a mesh.  

 

Despite these differences, the proposed architectures also share some similarities with 

the cloud architecture. These similarities mainly relate to available role types and 

responsibilities, as well as what is needed to be able to provide a secure, resilient cloud 

and wanted services. 

5.3 Most Groundbreaking Approach(es) 

Out of the proposed architectures, the one who are placed furthest away from the cloud 

architecture on the architectural scale is both the meshed- and non-weighted graph 

architecture. Being placed furthest away means that those architectures have the least 

in common with the cloud architecture and can therefore be determined to be the most 

groundbreaking approaches.  

5.4 Cheapest Approach 

Being able to determine exactly which one of the proposed architectures will result in 

the cheapest approach will be hard, because we haven’t spent time looking into cost 

related to hardware, software, operation and maintenance, and that we haven’t built any 

actual prototypes that we can gauge the price from.  
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Additionally, as we have mentioned multiple times throughout this thesis, in order to 

achieve the most robust architecture with the lowest chance of collapsing, there has to 

be a certain number of resources wasted in order to ensure backup of nodes, services 

and data. These wasted resources are contributing to increasing the price of the 

architectures. While a cheaper architecture is possible if we were to skip the inclusion of 

backup nodes, this will without a doubt result in a worse product that can not be trusted. 

 

Taking these things into consideration, we are still able to come up with an educated 

guess of which architecture will be the cheapest approach. Assuming the same sized 

architecture, we have determined the weighted graph architecture to be the cheapest 

option. This is because this architecture is based on fast and efficient data transmission 

based on the nodes’ connection to the closest radio mast. This means that a node can 

quickly be done with their tasks. Additionally, the architecture is based on a more fixed 

role assignment so it uses less resources on calculating which nodes should be 

assigned which roles, and more resources on actual work. 

5.5 Most Realistic Approach 

Does “realistic” refer to cheapest, easiest, fastest, most robust, or something else 

entirely? In this situation, we chose to look at the word to mean “which approach is most 

likely to be chosen by an actual company that wants to try out an alternate cloud 

architecture, based on the qualities we have presented so far?” Here, we have also 

determined that the weighted graph architecture is the most fitting approach. 

 

We imagine that an actual company would want to take cost into consideration, which 

makes the weighted graph architecture a viable option. Furthermore, the weighted 

graph architecture says something about where nodes should ideally be located (close 

to radio masts, and subsequently spread out from there) for the architecture to work in 

the most efficient way, and this can indirectly be used as a kind of map for the company. 

By knowing where nodes should ideally go, they have to spend less time and money 

figuring that out for themselves. 
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Lastly, the weighted graph architecture has a more straightforward role assignment 

algorithm, that is largely based on physical location and distance, and not as much as 

the other architectures on a node's individual capabilities. This means, again, that there 

is time and money to be saved by choosing the weighted graph architecture, even 

though this architecture does not challenge the status quo in the same way as some of 

the other options.  

5.6 Large-Scale Plasticity  

While the proposed architectures are all placed much further to the right on the 

architectural scale than the cloud architecture, which takes up the extreme left point, 

there is something about them that feels off. Almost like they are unfinished. Yes, the 

architectures all accommodate different role types and services, they are built on 

hardware specifications and the presence of resilience and a green energy perspective, 

and they all offer different architectural patterns and structures. But still, none of the 

architectures offer anything new to the table that isn’t already covered by an existing 

technology, nor do they seem like a worthy cloud architecture on their own. Would it 

have been better to further explore and improve something that already existed, instead 

of starting from scratch? Not directly basing our architectures on any existing 

technology allowed us to incorporate whatever features we wanted from whatever 

inspirational source. It is also what now allows us to put all of them together, and to form 

one large-scale dynamic architecture which has plasticity at its core. 

 

We have already presented situations where the architectures are able to morph and 

take on qualities from the other architectures, like when the mesh becomes too big and 

unstable, and it transforms into a hierarchical mesh. The same situation applies to the 

non-weighted graph architecture; It is built on the same free multiplicity role assignment 

as the meshed architecture, which theoretically allows the nodes to enter into a mesh if 

the role assignment algorithm so sees fit. The pieces of the puzzle are already there, 

now we just need to put them together. 
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A large-scale dynamic architecture involves a more complex role assignment algorithm 

than the ones we have talked about up until now. The algorithm itself should be able to 

change along with internal and external circumstances and be able to assign roles 

based on different requirements at different times. Thanks to the algorithm, the large-

scale architecture takes on qualities reminiscent of a living organism that is able to 

adapt and change within its environment. These qualities are thanks to its plasticity. 

 

Here, our previously presented architectures become patterns to be influenced by, and 

not absolute truths to strive for. The entire architectural pattern might change from one 

thing to another in a restructure where enough nodes have been disconnected, or we 

might end up with simultaneous variants of the different architectures, like with the 

hierarchical mesh.  
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6 Discussion  

In order to be able to reach a conclusion that is able to mark the problem statement as 

successfully achieved or not, as well as to be able to answer the three research 

objectives presented earlier on in the thesis, we have to take a look at what we have 

presented so far. Through a reversed overlook at the entire thesis, we will in this 

chapter draw attention to important findings that have been made throughout.  

6.1 A New Discovery 

Through the exploratory research we have conducted, we found that none of our 

proposed architectures offers anything new to the table on their own, nor are they 

different enough from existing technologies. Portraying few differences from already 

established cloud functionalities can be seen as a natural evolution of the cloud, and not 

as something that intends to challenge it. Focusing on just one architecture, instead of 

three, could’ve forced us to further develop it into something unique, with more detailed 

technical descriptions. However, coming up with multiple architectures showed us that 

there are indeed multiple options available regarding how cloud computing is done. 

Additionally, realizing our architectures were indeed too similar does not mean that we 

failed in our quest to challenge the status quo, but rather the opposite, as it helped us 

realize we needed something more in order to really pack a punch. 

 

Combining the proposed architectures into one large-scale dynamic architecture 

created something new and represents our unexpected findings for this thesis. A living 

architecture that adapts and changes based on its given context; An ever-changing 

cloud architecture that will restructure the cloud architecture in different patterns based 

on internal and external circumstances. There are no rules that specify that an 

architecture must be restructured in the same pattern, this is just something we 

originally assumed when presenting our architectures. However, allowing the rules 

around restructuring to be more lenient is what consequently allows the role assignment 

algorithms to mix and match from the different patterns, based on the current situation 

of the cloud. Sort of like using a kaleidoscope; Twisting and turning until the chaos 
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makes sense. The cloud architecture needs some kind of structure to function, but we 

have found that it doesn't necessarily have to look like any predefined structure we are 

familiar with. This architecture is radically different from today's cloud architecture, and 

thus, it is an actual viable contender that can challenge the status quo. 

6.2 Individual Qualities and Overarching Similarities 

If the architectures were to be left to their own devices, determining which approach is 

the most realistic, cheapest and most groundbreaking is a good way to determine their 

individual impact. These are also some of the qualities we imagine that potential 

developers or stakeholders would be interested in if the architectures were to be 

implemented. However, determining which architecture best fit which category was 

harder than anticipated as we didn’t have any actual data to base our choices on. As we 

didn’t have exact numbers to determine things like uptime, computing power, latency 

etc., we had to stick to speculation. Therefore, if these architectures are implemented in 

a future prototype, we might end up seeing different results. 

 

Comparing the architectures to today’s cloud is necessary to see how far we’ve moved 

away from the original cloud architecture, but it was again difficult to gauge exactly how 

different they were. Again, this comes down to lack of quantifiable data. Qualities like 

uptime, computing power, latency are arguably more important in an architecture than 

things like the configuration of nodes, role assignment and level of distribution. On the 

other hand, the latter allowed us to find similarities with the previously existing 

architectures and technologies that are already different from the cloud architecture, 

which by proxy made ours different as well. This allowed us to place our architectures 

far away from the cloud architecture on the architectural scale 

 

As a tool to visualize the general level of differences between different technologies and 

architecture, the architectural scale does a good job. However, while the distance 

between two items on the scale determine their likeness, the scale does not disclose 

any specifics about the technologies. If we were to create a tool like the architectural 
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scale again, implementing a way to differentiate between technological details more 

clearly might result in a different order of the items on the scale. 

 

A cloud structure needs to be able to handle and offer many different services, both to 

the end users, and to other internal actors. In this thesis, we only focused on four 

different services (websites, game servers, streaming and caching), when we perhaps 

should’ve focused on more in order to get a deeper understanding of how the 

architectures would operate, and not just how they were constructed. Of the services 

investigated, we saw that they would all benefit from running on nodes in close 

proximity to a radio mast. However, not all of them are able to do that at the same time 

because of limited capacity, which is why the caching service is likely the best option for 

this as it helps with improving load times, bandwidth cost and latency 

 

Between the architectures there were many similarities of how they handled the 

services, and we saw the same thing regarding how they handled unreliability; While the 

architectures were different on paper regarding their role assignment algorithm and 

architectural structure, they were also really similar to each other, and to existing 

technologies. These similarities are what originally prompted us to look into further 

evolving our solution. 

6.3 Fundamental Assumptions 

Perhaps we should’ve realized our architectures were too similar when we began 

presenting the features that were common between them; A list that continued to grow 

as we wrote it, and that perhaps is even bigger than we’ve given it credit for when we 

take the similarities of role assignment and handling of services and unreliability into 

account. 

 

The common features are all individual, but they also somewhat impact each other. For 

example, energy harvesting makes it possible to place nodes in geographically 

distributed, remote places where they can get energy directly from sunlight or 

hydropower. Being smaller than traditional cloud computing processing units enables 
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the nodes to be placed in waterfalls, on cliff sides or on rooftops without disturbing the 

environment around it. They also won’t need as much energy as more traditionally sized 

ones. Containers will help with resilience because services get back up quickly if they 

fail, and the resilient characteristics of the nodes will in turn benefit the fact that the 

nodes are distributed, as it will be hard to rely on physical manpower in order to ensure 

uptime. The general conclusion that can be drawn is that none of our proposed 

architecture can rely on just one quality, but rather a combination of many. 

 

Through the common features of our proposed architectures, we presented areas we 

found to be important in order to offer a viable cloud architecture, but which we wouldn't 

necessarily focus on in depth. Things like availability, resilience and energy harvesting 

quickly became fundamental assumptions, along with details regarding how the nodes 

communicate and transfer data across the network. Excluding technical details was 

never because we ignored these functionalities, but rather because we chose to focus 

our attention elsewhere. 

 

Green energy itself, which was a significant motivator and inspiration source for the 

thesis, also became an underlying, fundamental assumption. It continues to be an 

important factor throughout, but because we assumed green energy was a part of the 

architectures, we didn’t spend too much time on going into details. To some, this might 

convey that green energy wasn’t as important in the end, which is in no way our 

intention. Our focus on green energy and sustainability might’ve been put on the 

backburner compared to other features, but this is simply a result of where we put our 

attention. Because of the thesis’s exploratory nature and lack of implementations 

throughout, we didn’t look into how we would measure the architecture's “green-ness”, 

nor did we have any tools to do so. Yet we continued to assume the presence of green 

energy and built our architectures around that. 

 

When we assumed the underlying qualities of a reliable, green cloud, we weaved 

ourselves into a paradox; We wanted to have a green cloud that is more conscious 

about energy consumption and physical space, yet when we presented the 
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architectures we found having more resources on hand than necessary and “wasting” 

them to be one of the best ways to ensure robustness. Thankfully, because of the type 

of node our architectures are assumed to be built upon regarding their size, computing 

power and energy harvesting abilities, their green aspect still stands strong. The 

question becomes whether they are indeed strong enough to replace a data center 

structure. Our fundamental assumptions facilitated this, but as we have no numbers to 

refer to, it’s difficult to say for certain. 

6.4 Did We Drift Away from The Original Plan? 

Although we ended up in a different place than we had anticipated, we arguably did not 

drift from what we had planned. Instead, we instead went beyond it, thanks to the idea 

of combining the architectures. The plan to explore alternative architectures that could 

challenge the status quo has guided us along the way and has prompted us to be 

critical and to seek out more unique solutions. 

 

To be able to challenge the status quo we had planned to present different alternatives. 

Exactly how many became a result of the exploratory research, as new doors continued 

to open as we continued to work. Through planning the approach and operationalization 

of the problem statement, we were able to prematurely limit our workload to help us 

avoid getting overwhelmed by new ideas and tasks that would undoubtedly appear 

along the way. Even if the merger of the architectures into the large-scale, plasticity-

based architecture was such an idea, it came as a logical next step when we saw that 

our solution was lacking. Of course, had we spent more time on the original 

architectures, dived into their technical abilities, and deemed them as good enough on 

their own, we might not have come up with the idea of merging them together at all. We 

can therefore argue that the final architecture came as a surprising, yet welcoming 

discovery. 

 

The concept of large data centers, both in size and in terms of energy consumption has 

been central the whole way through. In the background, though presenting the history of 

the cloud, we highlighted that the concept has grown over the years without any real 
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reconsideration as to how it’s done. On the contrary, the introduction of the concept “the 

green pledge” proves that a focus on green and sustainable things has been on the 

forward march for years now, and if you’re not with it, you’re against it. The current 

cloud architecture is but one area where what is being done currently does not reflect 

good on the environmental threat landscape. Throughout the thesis, and manifested by 

the problem statement and potential impact, it becomes clear that our purpose has been 

to challenge the status quo all along. A greener cloud takes up less space and energy 

and reclaiming those resources for things like sustainable food production, affordable 

housing, and wildlife conservation, could positively impact a betterment of our 

environment and future. 
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7 Conclusion and Future Work  

The goal of this thesis was to challenge the status quo by investigating the effects of a 

highly distributed, minimalistic cloud platform driven by a green energy focus. To 

address this, we modeled and presented our own distributed architectures: the 

hierarchical, meshed, non-weighted, and weighted graph architectures. The 

architectures are based on resilient, energy harvesting nodes that communicate through 

wireless mobile networks, can run a variety of services corresponding to the way clouds 

are used today, and have a plan for handling unreliability stemming from variations in 

energy availability and network access. A scale of distribution was developed, 

comprising today's most common distributed architectures. Our novel architectures 

were placed towards the distributed end, on the opposite side of the cloud.  

 

Realizing our architectures had many similarities prompted us to put them together to 

form the large-scale dynamic architecture. This is also where we introduced the term 

plasticity, and found that the rules regarding restructuring didn’t have to be as strict as 

we originally planned for. Adaptability is what lead this architecture to be the most 

drastic challenge to the status quo, as it’s different from any existing solutions. 

 

Concepts like the green energy perspective, which would have contributed to more 

detailed descriptions, became fundamental assumptions, and their effect on the highly 

distributed and minimalistic cloud platform were not able to be measured. The project 

has made important contributions towards a blueprint for a different kind of cloud, which 

is as elusive and ethereal as real clouds themselves, yet provide a stable whole which 

can still be understood as a single system when viewed from afar.  

 

Implement such a system requires more research. As of today, the architecture 

represents an options for an entirely new cloud architecture, as changing the existing 

cloud into our proposed solution would be expensive and potentially disruptive. Future 

work can be divided into software and hardware focused implementations. Through 

prototyping and modeling on an existing cloud, it’s possible to simulate how role 
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assignment and restructuring would work in reality, and implementing nodes in 

geographically distributed locations enables us to look closer at unreliability caused by 

external factors and communication through 4g/5g. Both are viable options in order to 

continuously develop the large-scale dynamic architecture, and further challenge the 

status quo.  
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