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Abstract

U-Net based architecture has become the de-facto standard approach for medical

image segmentation in recent years. Many researchers have used the original

U-Net as a skeleton for suggesting more advanced models such as UNet++ and

UNet 3+. For our project, we also seek to optimize the original U-Net. Rather

than changing the architecture itself, we optimize hyperparameters which does not

affect the architecture, but affects the performance of the model. To optimize the

hyperparameters, we use genetic algorithms. After the genetic algorithms have

converged, we analyze the results and try to understand why the key factors behind

explaining the performance.
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Chapter 1

Introduction

Image segmentation models have been gaining traction over the last years. The

segmentation models are used in a variety of important fields, some fields which

are now being applied to real world applications. One of the most notable fields is

medical imaging. In fact, these networks have become so useful that a hospital in

Bergen has begun using them for tumor detection (E-Helse, 2019). The models are

used as an assistance tool for doctors, yielding the probability of the patient having a

tumor. As well as medical assistance, image segmentation is seeing the real world

application use in self-driving vehicles. Our goal is to optimize the U-Net model,

which is wildly used segmentation model. We seek to optimize the hyperparameters

of the model using genetic algorithms, further increasing the performance of the

model.

1.1 Motivation

When creating an artificial neural network many choices have to be made about the

hyperparameter of the model. Deciding the value of these hyperparameters may

seem arbitrary, as it is extremely difficult to assess the optimal value. If the goal

is to create an acceptable model, then setting the hyperparameters to a common
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value would yield such a model. However, finding the optimal value for these

hyperparameters is how one can push the model to its very limit. Increasing the

performance of a model by even a few percentages, or a fragment of a percentage,

can make a large difference in the long run. Whenever image segmentation models

are applied to real world cases such as determining the probability of cancerous

cells, one percentage increase in performance can be paramount.

A trivial approach to finding the optimal hyperparameters considers testing

all possible configurations generated from the domains of the hyperparameters.

The number of possible configurations is exponential regarding the number of

hyperparameters, while the overall problem is combinatorial. To reduce the

computational runtime of the hyperparameter optimization process, we apply

genetic algorithms. This allows us to go through the configurations methodically

and derive the best or near-best values for the hyperparameters. This method is

especially useful for beginners working with deep learning, as they have not yet built

up an intuition for appropriate hyperparameter values. Though, the method is not

wasted on experts within the field. Even with great intuition and experience, the first

proposed hyperparameter value is rarely the optimal one.

The work reported in Ronneberger et al. (2015) introduced U-Net in 2015, and

since then the model has been applied to several domains within deep learning

computer vision. U-Net is a successful model with many successors. The

successors use U-Net as a skeleton, but seek to further improve the model by

making minor changes to the architecture. However, none of those successors

seeks to improve hyperparameters of the U-Net model itself. We propose

hyperparameter optimization to enhance and improve the U-Netmodel by assessing

the optimal hyperparameter values.
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1.2 Ethical Implications

The project in itself does not introduce any new technology, but rather seeks to

enhance current existing technology. Therefore, the project does not bring in any

new ethical dilemmas.
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Chapter 2

Theory and Background

This section contains deep learning, and machine learning methods relevant to the

project.

2.1 Image Segmentation

The process of image segmentation is to “segment” or “partition” an image

into different categories. For example, the functionality in a Zoom call which

allows you to change your background, uses image segmentation to differentiate

you from the background. This is just one practical example of where image

segmentation can be useful. Image segmentation also has applications in face

recognition, video surveillance, object detection, medical imaging, and more. Some

of these applications work with two-dimensional data, while others work with three-

dimensional data.

There are two types of image segmentation: semantic segmentation, and

instance segmentation.

• Semantic segmentation, where the goal is to classify each pixel in an

image to a category. If you have an image of a forest, the goal of semantic
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segmentation is to divide each tree under the tree category.

• Instance segmentation, which does exactly what semantic segmentation

does but takes it one step further. Instance segmentation seeks to divide

objects of the same category into a sequence, an instance segmentation of

the forest image would then divide the trees into tree 1, tree 2, and so forth.

Figure 2.1: Semantic segmentation vs. instance segmentation (Chollet, 2021).

Figure 2.1 visually displays the difference between semantic and instance

segmentation. The work of this thesis will focus on semantic segmentation and

the phrase will be used interchangeably with image segmentation.

Object detection and segmentation is similar. The goal of object detection is to

find the different classes of objects in a given image. Object detection marks the

detected object with a square frame. Object detection does not describe the shape

of the object, it only shows the location. For some tasks, object detection does not

satisfy the requirement. For example, when trying to detect cancerous cells, the

shape of the cancerous cell is instrumental when determining the severity of the

cancer.

2.2 Convolutional Neural Network

Convolutional Neural Networks (CNN) have proven to be extremely successful

when applied to computer vision tasks. Compared to regular densely connected
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neural networks, CNN have proven to be superior for computer vision. A CNN

usually contains two core operations: convolution and pooling.

2.2.1 Convolution

The origin of the convolutional operation is directly inspired by the biological visual

cortex. In short, it attempts to replicate the receptive field by creating artificial

neurons which slightly overlap to cover the entire visual field. This yields a set

of properties for the CNN that a dense artificial neural network (ANN) is unable to

replicate.

Firstly, a CNN is translation-invariant. After a CNN has learned a certain feature

or pattern, it is able to recognize this pattern in different locations. Regardless of

whether this pattern is at the top left corner of an image, the center, or at the very

edge, the CNN should be able to recognize it. A dense ANN would have to be

retrained to recognize the pattern in a different location. For a dense ANN, there

is no spatial representation for the input, it’s a linear sequence of inputs. As a

result of the translation-invariance, CNN require fewer training samples to learn

representation and it makes CNN better for generalization.

Secondly, the convolutional operation makes the CNN able to learn spatial

information in hierarchies. The very first convolutional operation will seek to learn

the small features of the image. The next convolutional operation will operate on a

slightly smaller sized representation and will seek to learn slightly larger features,

and so forth. Therefore, CNN are able to learn larger and more complex features.

Figure 2.2 represents the LeNet-5 CNN architecture which stems from one of the

most cited papers in deep learning (Lecun et al., 1998).

The convolutional operation works by creating a set of kernels (also known as

filters). The kernel is a rectangle which is given a size, commonly 3x3 or 5x5. If the

input is a two-dimensional image, the kernels slide across the input image, if the

size of the kernel is 3x3, this corresponds to 3 pixels. The stride defines the rate
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Figure 2.2: LetNet-5 (Lecun et al., 1998).

at which the kernel is moving, if the stride is set to be 1, the kernel stops at every

possible location until it has slid through the entire input. If the stride is set to 2, the

kernel will move 2 units at the time.

Figure 2.3: Visualizing the kernel convolution with kernel size 2. The input also contains

padding as can be seen by the border of 0s around the input.

Figure 2.3 shows a sample of how the kernel operates on the given input. In

this figure, the kernel size is 2x2, while the stride is unknown. The values of the

kernel are the trainable weights for a CNN. Here we can also see the output of the

kernel for one iteration of the process. The sum of the output is defined by equation

2.1.

g(x, y) = ω ∗ f (x, y) =
a

∑
dx=−a

b

∑
dy=−b

ω(dx, dy) f (x − dx, y − dy) (2.1)

Here, f (x, y) is the input which the kernel is applied to. While g(x, y) is the
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output which is created by the kernel sliding across the input. The ω represents the

kernel. And dx, dy is the stride, or the rate of change in position. Lastly, a, b is the

size of the input.

A normal convolutional operation consists of many kernels being applied to the

input, which yields a higher dimension output. It is not uncommon to have hundreds

of kernels applied, which will lead to hundreds of outputs. Equation 2.1 defines the

output for only one kernel, to get the complete output of the convolutional layer, all

the outputs generated by all the kernels have to be concatenated.

One can also use convolutional layers to downsample the data. Downsampling

is beneficial for learning the features in a hierarchy as previously discussed. It is

also beneficial to decrease the overhead, as the number of dimensions increases.

Downsampling with convolutional layers is dependent on the size of the stride. For

example, when using stride 2, instead of stride 1, the kernel moves two units at the

time. Looking back at Equation 2.1, this will make the output half the size of the

input. However, more commonly, pooling is used to downsample the data.

2.2.2 Pooling

Pooling can be used to downsample or upsample the data. Pooling is often

preferred over using stride>1 for downsampling. The pooling operation is similar

to the convolutional kernel operation as they both take a window and slide it across

the input. Both kernel and pooling choose the size of the filter, and the size of the

stride. However, the pooling window does not have any trainable weights like the

kernel. Instead of the mathematical relationship between the weights of the kernel

and the current values the kernel window is sliding over, the pooling operation simply

takes the maximum, minimum, or average value in the window. The operations

are respectively called max pooling, minimum pooling, and average pooling. The

former, max pooling, being the most commonly used of the three.

Due to having no trainable weights, the computational overhead of the pooling
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layer is very low compared to the convolutional layer. Though it is still crucial for a

CNN to downsample the data to learn the features in hierarchy.

2.2.3 Batch Normalization

Ioffe & Szegedy (2015) introduced batch normalization and it has quickly become

one of the staple operations within deep learning. Many different neural network

architectures utilize batch normalization, including CNN such as U-Net. Batch

normalization was originally crafted as a normalization technique within neural

networks. As a data preprocessing technique, it is common to normalize the data so

that the input is centered around 0 and has a unit standard deviation. Normalization

leads to stability in the model, while large values might trigger large gradients which

can cause the model to diverge instead of converge. Batch normalization takes the

normalization technique a step further, and seeks to normalize the data within the

network. This is to adjust the internal covariate shift, which refers to the change

of the distribution in data between the layers. Layers constantly have to adjust

themselves to a different distribution for each training step. As a result, this slows

down the convergence. Equation 2.2, 2.3, 2.4, and 2.5 shows the math behind

batch normalization.

µB =
1
m

m

∑
i=1

xi (2.2)

Equation 2.2 is used to calculate the mean of the current batch.

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (2.3)

Equation 2.3 is used to calculate the variance of the current batch.

xi =
xi − uB√

o2
B + ϵ

(2.4)

Using equation 2.2 and 2.3, the data is further normalized.
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yi =
√

xi + β (2.5)

Lastly as a final input, the data is shifted and scaled, this yields the output of the

batch normalization operation.

Though batch normalization was created as a normalization technique to help speed

up the training process and increase stability, it delivers additional unexpected

positive effects in practice. Batch normalization, through testing, has proven to

be a regularization technique, decreasing overfitting and improving generalization.

In fact, it has proven to be a suitable replacement for widely used regularization

techniques such as dropout. To date, there is no proof nor sound science to why

batch normalization works well as a regularization technique. Regularization is

further discussed in Section 2.5.5.

2.3 Skip Connections

Most feed-forward networks only contain connections between layer n and layer (n

+ 1). Networks such as these present a hierarchical view of feature engineering.

The networks learn the small features in the first set of layers, and as the model

progresses and down samples the data, it seeks to learn the larger features of the

input.

Skip connections introduce an iterative method of feature engineering, as opposed

to the hierarchical method. Unlike most feed-forward networks, the networks using

skip connection have an additional connection between layer n and layer (n + r),

where r > 1. Meaning that some layers output is not only sent to the next layer in

the network, but also to another layer further ahead in the network.

Although hierarchical feature engineering has been very successful, it does suffer

from some problems, especially when the network becomes deep. For example,

learning the features of a complex imagemay require a deep network, while learning

the features of a primitive image may not require a deep network. Regardless of the
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Figure 2.4: Skip connections used in ResNet (He et al., 2015).

input, the network is forced to apply the same level of abstraction to every input. By

using skip connections, the network itself can decide how many layers are required

to learn the features of the input. It may heavily abuse the skip connections if the

input is simple, or utilize every regular layer for a complex input. This does not only

grant the network far more flexibility, it also helps speed up the learning process.

There are different types of skip connections, and different architectures use skip

connections to solve different problems. Notable successful networks that use skip

connections are DenseNet (G. Huang et al., 2016), ResNet (He et al., 2015), and

U-Net (Ronneberger et al., 2015).

U-Net utilizes long skip connections. Each block in the encoder has a reflective

skip connection to the decoder as Figure 2.5 displays. Although U-Net has been

successful when applied to image segmentation, the theory behind these skip

connections is not entirely justified. The results are there, but the explanation is

not. Thus, the skip connections is often what successors of U-Net seek to improve.

This will be further explored in section 3.1.
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Figure 2.5: U-Net architecture using long skip connections (Ronneberger et al., 2015).

2.4 Dataset

There are two common methods of training a neural network. The model

can interact with an environment and learn from the interactions, this is called

reinforcement learning. Or the model can learn by getting fed data from a dataset.

The latter is the method for this thesis.

The dataset is a set of samples. One sample can be one image, one record in

a csv-file, one frame from a video, and so forth. Similarly to how humans learn, the

model’s abilities often scale with the amount of data it is given. To train the model

and to properly evaluate the model, the dataset is split into three different parts: the

training set, validation set, and testing set. Each part of the dataset has different

responsibilities.

12



• Though the size of the training set may vary, it is always the largest of the

three sets. Usually the training set contains 60-80% of the total dataset. The

training set is the set which the model adjusts its parameters to, the data that

the model is actually learning from.

• The model does not train on the validation set. The validation set is used by

the developer to see how well the model is generalizing to data it has not seen.

The developer may adjust hyperparameters to further increase the model’s

performance on the validation set. The validation set usually contains 10-20%

of the the total data from the dataset.

• The test set is the final test for the model. When the model is measuring

its performance on the test set, neither the model nor the developer should

tune the model to further increase the performance. The performance on

the test set should be completely unbiased. If the model performs poorly on

the test set compared to the validation set, the developer should rather look

to change the architecture of the model and reevaluate the current solution,

rather than adjusting hyperparameters. Like the validation set, the test set

usually contains 10-20% of the total data from the dataset.

2.4.1 K-fold Cross-Validation

To further determine how well the model performs, cross-validation can be applied.

When using cross-validation the data is split into two sets; the training set and

the test set. The validation set for cross-validation is part of the training set. For

example, when using 5-fold cross-validation, we split the training set into 5 equally

large sets. Then, we train the model on 4 of these sets, and perform validation on

the last set. We then evaluate how well the model performed on the training set and

how well it generalized to the temporary validation set. We then repeat these steps,

but exchange the current validation set with a different chunk of the training set. It

is important that the model does not continue to train from the previously learned
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data, as the model is currently trained on the new validation set. This would cause

severe overfitting and not display how well the model generalizes. Therefore, the

model has to be completely reset for the next training split.

2.4.2 Batch Size

The batch size decides how many training samples are used each time the model

updates its parameters. For example, using batch size 32, the model will propagate

32 training samples, then update the parameters from the given loss.

2.5 Training

To train a neural network we first need the input data and the target data. Feeding

the data to the neural network through forward pass, yields the output data. The loss

of the model can then be calculated by comparing target data and the output data.

Lastly, all the weights of the model are then updated given the loss. The last step

is where the training process becomes difficult. To update all the parameters given

the loss value, and finding out how “responsible” each parameter is for the loss.

This can be answered by applying gradient descent together with backpropagation.

Although there are several methods of training a neural network, gradient descent

is by far most widely used.

2.5.1 Gradient Descent

“Suppose you are lost in the mountain in a dense fog; you can only feel the slope of

the ground below your feet. A good strategy to get to the bottom of the valley quickly

is to go downhill in the direction of the steepest slope. This is exactly what Gradient

Descent does: it measures the local gradient of the error function with regards to the

parameter vector 0, and it goes in the direction of the descending gradient. Once

the gradient is zero, you have reached a minimum!” - Chollet (2021).
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Gradient descent is an optimization technique used when training neural networks.

The goal of gradient descent is to minimize the loss function by iteratively adjusting

the parameters. This is done by taking the partial derivative of the loss function

with respect to each parameter, while treating the other parameters as constants.

Each partial derivative produces the gradient of the parameter, and all the gradients

together yields the gradient vector. The gradient shows which way the parameter

should be adjusted to decrease the loss function. Figure 2.6 shows a convex loss

function in which the function only has one minimum.

Figure 2.6: Gradient descent valley (Ronneberger et al., 2015).

If we are on the left side of the minimum, we should move to the right by

increasing the parameter. If we are on the right of the minimum, we should move to

the left by decreasing the parameter.

There are three different gradient descent methods; batch gradient descent,

stochastic gradient descent, and mini-batch gradient descent.

Batch gradient descent updates the parameters of the model by measuring
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the gradients for each sample in the training set. This assures that the optimization

is always moving in the downwards (Figure 2.6). However, this also makes batch

gradient descent prone to getting stuck in a local minima when the loss function

is not convex. Also, it is also time consuming to calculate the gradient for each

sample.

Stochastic gradient descent (SGD) takes one batch at random for each

training step and calculates the gradients. This makes the training process much

more unstable, making the learning step very unpredictable; but overall the model’s

performance should increase. Due to the nature of SGD, the model will never fully

converge, but rather diverge and bounce around the bottom of the loss function.

SGD is naturally much faster than batch gradient descent, and is better at escaping

local minimas. Therefore, SGD is often the number one choice of gradient descent

methods.

Mini-batch gradient descent is the middle ground between batch gradient

descent and SGD. It takes part of the training data and calculates the gradients.

When it comes to gradient descent methods, mini-batch gradient descent is the

jack of all trades, master of none.

Calculating the gradient vector is done by utilizing the chain rule; this is

backpropagation.

2.5.2 Learning Rate

The learning rate hyperparameter decides the length of each step when adjusting

the gradient. Adjusting the learning rate has several implications on the gradient

descent algorithm. For example, if the step size is too steep, the algorithm may

jump over the minima repeatedly back and forth, causing the optimization to diverge

rather than converge at the minimum. But if the step size is too small, convergence

might be very slow. Deciding the value of the learning rate can be challenging and

dependent on the architecture of the model, the loss function, and the task at hand.
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Unlike the convex loss function in Figure 2.6, other more complicated loss functions

may contain local minima in addition to the global minimum. This introduces

additional challenges, as the gradient descent optimization may get stuck in a local

minima and never find the global minimum. To counter this, momentum is often

added to the learning rate. Meaning that the learning rate decreases for each

iteration of the training process. The earliest epochs of the training process often

have the largest impact on the parameter values. By having a relatively large

learning rate early in the training process, we can approach the valley of the global

minimum and escape the local minima. And by gradually reducing the learning rate,

the global minimum will be reached and not diverged by jumping over the valley due

to a high learning rate.

2.5.3 Adam

Kingma & Ba (2014) introduces Adam (Adaptive Moment Estimation) as an

algorithm for first-order gradient-based optimization of stochastic object functions,

based on adaptive estimates of lower-order moments. Adam is a widely used

gradient descent optimization technique which is inspired by RMSprop and

AdaGrade. Adam takes the best from both RMSprop and AdaGrade and combines

it into one of the most used gradient based optimization algorithms.

AdaGrade adds momentum to the learning rate based on the output of the

gradients.

RMSprop builds further on AdaGrade seeking to improve the optimization.

RMSprop updates the learning rate based on the average of recent magnitudes

of the gradients. This makes RMSprop robust against noisy problems.

Adam calculates the exponential moving average of the gradient and the

squared gradient, while applying beta hyperparameters to control the decay rates

of the moving averages.
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Figure 2.7: Training cost on CIFAR10 CNN comparison between AdaGrade, SGDNestrov,

and Adam (Kingma & Ba, 2014).

Kingma & Ba (2014) compares Adam, SGDNesterov, and AdaGrade in Figure

2.7. They apply the optimization techniques to a CNN model, both with and without

dropout (Section 2.5.5). The figure displays the loss on the training set, which does

not properly display the generalization given the optimization technique.

2.5.4 Epoch

One epoch corresponds to the model being trained on the entire training set once.

Unless the goal is to create a zero-shot learning model, the model should be trained

on the training set for many epochs. When using a low number of epochs, the

model may not be trained well enough to learn the training set, let alone generalize

to the validation set. If both the training and validation error is high, the model is

underfitting. Therefore, the model should be trained until the training error begins to

stabilize. Stabilization in the training error indicates that the model has reached its
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limit given the training dataset, and to train it further may only increase overfitting.

Overfitting occurs when the model works well on the training set, but struggles to

generalize to the validation set. This can be seen if the training error is low, while

the validation error is high.

2.5.5 Regularization

To further reduce overfitting, regularization techniques are applied to the model.

The goal of regularization techniques is to decrease overfitting and increase

generalization. The training error may be higher, but as a reprisal the validation error

decreases. U-Net uses dropout as one of their major regularization techniques.

Dropout, as the name implies, drops randomly selected neurons during forward

pass. In other words, the neurons are deactivated and do not further send any

data to the neuron in the next layer. The amount of neurons which are dropped

is dependent on the dropout rate. A dropout rate of 0.5 would result in half the

neurons getting dropped for the layer. Dropout is usually applied to several layers

in the network. In theory, dropout should result in the model being less dependent

on certain neurons, and rather seek to make every neuron important. Each neuron

should be responsible for achieving a good result. Dropout is only enabled during

training, and is disabled during validation and testing. Meaning that the model uses

all the neurons during validation and testing.
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Chapter 3

Related Work

The related work chapter contains relevant models and methods to the project. As

well as state of the part models for image segmentation.

3.1 U-Net Architectures

This section covers the initial U-Net architecture and architectures which further

expands on U-Net. For our project we use the standard U-Net architecture, but we

do derive some relevant hyperparameter values from the predecessors of U-Net.

As well as some minor design choices they made to further improve U-Net.

3.1.1 U-Net

Ronneberger et al. (2015) proposed U-Net as a solution for segmentation which

required fewer annotated samples. The architecture is based on CNN, but follows

an encoder-decoder structure with skip connections as seen in Figure 2.5. The

encoder uses pooling as part of the downsampling, while upsampling in the decoder

utilizes transpose convolution in favor of pooling. Each convolutional layer in both

the encoder and decoder is followed by a ReLU activation function, while the final

output layer applies the sigmoid activation function yielding each pixel a value
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between zero (0) and one (1). In their original paper, they experiment with their

model on two-dimensional data and achieve state-of-the-art results while requiring

fewer samples for training. However, the authors note that they are certain their

model will be suitable for many other tasks. Indeed, U-Net has been a great

inspiration for many models which are tailor-made for 3D segmentation.

3.1.2 UNet++

Using the original U-Net as a baseline, UNet++ seeks to improve some of the

weaknesses and limitations in U-Net for image segmentation (Zhou et al., 2020).

Their ultimate goal is to achieve higher accuracy for image segmentation. The

authors state their findings which is that a deeper U-Net network is not necessarily

better, and that the optimal architecture depends on the size and difficulty of the

dataset. Therefore, UNet++ seeks to create one architecture which yields the

optimal architecture regardless of the task at hand.

The authors arrive at the UNet++ architecture through an iterative process.

First, they create an architecture namedU-Nete. U-Nete is an ensemble architecture

which combines U-Nets of varying depths into one unified structure. Each U-

Net within this architecture partially shares the encoder, but has its own decoder.

Further they introduce UNet+, which removes the original skip connections and

instead connects every two adjacent nodes in the ensemble. Each node represents

one convolutional block, which consists of upsampling/downsampling, an activation

function, and batch normalization. Lastly, building on the success of DenseNet

(G. Huang et al., 2016), they introduce dense connections in UNet+. This change

yields their final architecture, UNet++.

As a result, UNet++ is more flexible than U-Net, while also outperforming its

predecessor for both 2D and 3D segmentation. However, UNet++ does have an

increased amount of parameters compared to U-Net. UNet++ requires 9.0M while

U-Net requires 7.8M.
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3.1.3 UNet 3+

As UNet++ is built upon U-Net, UNet 3+ is built upon UNet++ (H. Huang et al.,

2020). The authors state that UNet++ does not explore sufficient information from

full scales and there is still a large room for improvement. Exploring the full scale

of the input involves explicitly learning the position and boundary of the object. This

can be especially useful for medical imaging, where the images can contain organs

of varying sizes. In addition to increasing the performance and accuracy, they seek

to reduce the required amount of parameters.

Yet again, the change lies within the skip connections. UNet 3+ uses full-scale

skip connections compared to the densely and nested skip connections used in

UNet++. Figure 3.1 illustrates the comparison between the different architectures

and their skip connections.

As a result, UNet 3+ is able to achieve higher accuracy using the dice metric

while simuntionaly requiring fewer parameters. However, the accuracy is measured

on a dataset which is more fit for the UNet 3+ architecture. The dataset contains

livers and spleens of varying sizes given the image.

Figure 3.1: U-Net, UNet++, and UNet 3+ comparison
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3.2 Neural Architecture Search

NAS (Neural Architecture Search) is a technique used for automatically creating

artificial neural networks. Similiar to evolutionary algorithms, NAS can be used for

hyperparameter optimization. NAS consists of a search space, search strategy,

and a performance estimation strategy. NAS algorithms broadly falls under three

different categories: Reinforcement learning (RL) based NAS algorithms, gradient-

based NAS algorithms, and Evolutionary computation (EC) based NAS algorithms

(ENAS) (Y. Liu et al., 2020).

3.2.1 NAS-Unet

Weng et al. (2019) is the first attempt at applying NAS to medical image

segmentation. NAS-Unet uses the UNet architecture as the backbone of the

model, while applying NAS to find an optimized architecture which outperforms other

variants of UNet for 3D semantic segmentation. In addition, they drastically reduce

the amount of parameters compared to UNet.

The core idea behind NAS-Unet is to create two cell architectures, DownSC

and UpSC, then apply NAS to find the optimized versions of these cells. DownSC

is a block used to downscale the data in the encoder part of the UNet, while UpSC

is a block used to upscale the data in the decoder part of the UNet. They select a

set of primitive operations to the cells which requires their expertise. The authors

state that the operations are chosen by the most popular and successful CNN

architecture for image classification. In addition, they value no redundancy and

less parameters in the operations. The former referring to each operation having

some unique properties, while the latters goal is to reduce the amount of paramters

compared to original UNet. Their search strategy is inspired by DARTS (H. Liu

et al., 2018), which is a gradient-based NAS algorithm. They do adjust DARTS

to accelerate the search process by using Binary Gate, which updates only one

architecture parameter by gradient descent at each step. Unlike DARTS, which
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updates all architecture parameters at each step.

NAS-Unet is applied to Promise12, Chaos, and NERVE datasets. The

datasets consists of medical images taken with Magnetic Resonance Imaging

(MRI), Computed Tomography (CT), and ultrasound (Weng et al., 2019). The

authors conclude that NAS-Unet is able to outperform basline methods like U-Net

and FC-Densenet, while simultaneously requiring less parameters.
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Chapter 4

Methodology

The goal is to find the optimal learning rate, number of epochs, and batch size

for the U-Net architecture. All these hyperparameters have a direct impact on

the performance of the model without changing the architecture. To optimize

the hyperparameters, we use genetic algorithms. This chapter contains the

methodology use to optimize the hyperparameters, and the justification behind the

algorithms and methods we use.

4.1 Genetic Algorithm

Genetic algorithms (GA) are based on the theory of evolution. Though evolution

in real life is complex with many different parts, GA is still able to draw out the

essence of evolution and produce good results. GA consists of a population and

a population consists of a number of individuals (also called solutions). Each

individual consists of genetics. For our task, the genetics are the hyperparameters;

learning rate, number of epochs, and batch size. The individuals are then tested in

the environment. Their genetic, or hyperparameters, are applied to the model and

the model produces a loss. The individuals are then granted fitness based on the

loss, higher loss yields lower fitness, and vice versa. After each individual in the
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population is tested and has received their fitness, this generation is complete. The

last step is for the current population of the next generation. To do so, parents are

selected based on their fitness to reproduce, higher fitness yields higher chance of

becoming a parent; survival of the fittest. The next generation’s population is then

repopulated by the set of parents, and the process begins anew. Optimally, the GA

will converge toward a global optimum where most individuals consist of the optimal

hyperparameter values for the model.

4.1.1 Defining the Search Space

We have defined the search space of the GA to consist of the learning rate, the

number of epochs, and the batch size. However, we still have to define and justify

the range of the hyperparameters. The range could be somewhat arbitrary following

the constraints of the hyperparameter itself. For example, the learning rate could

be limited between 0 and 1. Though such a high learning rate is never used, it

is somewhat pointless to include it. Rather, we should clearly define a productive

range for all the hyperparameters so that the GA may converge faster.

The learning rate is constrained between 0 and 1. Ronneberger et al. (2015) does

not state which exact learning rate they use. However, looking back at related

work that have based their models on the U-Net architecture, the learning rate is

frequently low. For example, Zhou et al. (2020) uses a learning rate of 3e-4 for the

UNet++ model. H. Liu et al. (2018) dives deeper into learning rate as a standalone

hyperparameter. They test different learning rate optimizers and different initial

learning rates. In all their experiments, the learning rate is <0.1. For our experiment

we want to test out the viable learning rates, but we also want to reiterate exactly

why higher learning rates (>0.1) are not seen as frequently. We want to use the GA

to prove that the learning rate will converge towards a lower value, and in addition

find the optimal value. Therefore, we set the limit for the learning rate to be between

0 and 0.35.

The learning rate also has a close relationship with the loss function. When
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the loss function is convex, we don’t have to worry about getting stuck in a local

minima. When there is only one minimum, which is the global minimum, the

optimization algorithm may favor lower learning rates as it converges towards the

global minimum regardless. However, if the loss function is multimodal, the opposite

applies. Multimodal loss functions contain one or more local minimas, which may

encourage initial high learning rates to escape the valleys containing the local

minima. For our tests, we will use a multimodal loss function as will be discussed

in Section 4.2.

Batch Size Deciding the range of the batch size is somewhat trivial. For the range

of batch size, we are more interested in seeing the result which the GA converges

to for the batch size rather than defining the range. The norm in deep learning is to

define the batch size to be a number which is the power of two. We also account for

high batch size requiring more memory. Therefore, we set the range to be between

1-32.

Number of Epochs If evaluating from the training error, the GA would likely

converge towards the highest possible epochs. However, we evaluate the loss,

or fitness, from the validation error. Due to evaluating on the validation set, there

does not have to be an upper limit on the number of epochs. But the limitation of

testing each model for every individual in the population over multiple generations

requires the upper limit to be relatively low compared to how many epochs a model

is commonly trained for. To reiterate, for each individual in the population the model

has to be trained for n epochs. As we use a population size of 100, this boils down

to training 100 models for n epochs. And after all that is done, only 1 generation is

complete. To reach convergence, far more generations are required. However, as

will be discussed later, convergence can be reached relatively early compared to

other GA tasks due to the nature of our task. Therefore, we limit the epoch range

between 1 and 30.

Reiterating the hyperparameter search space:

• Learning rate: 0 < lr < 0.35
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• Batch size: 1 < B < 32

• Epochs: 1 < e < 30

4.1.2 Selection

Further we have to select the individuals which will be used to repopulate the next

generation. A naive approach to selection, is to take the top performing individuals,

and iterate through them to generate the next generation. However, an approach

like this excludes the lesser performing individuals. This is not necessarily always

a good thing. Lesser performing individuals can contain genetics that would be a

great fit when combined with the better performing individuals. Therefore, want a

selection method that favors the best performing individuals, but does not entirely

exclude the lesser performing individuals. Two common methods, which both fulfill

this goal, is roulette wheel selection and tournament selection.

Roulette wheel selection operates as a spin-the-wheel approach. Each

individual is granted a chunk of the wheel based on their fitness. Better fitness

yields a larger chunk of the wheel. A fixed location is appointed to the wheel, then

the wheel is spun. The fixed point when choosing the first parent as the wheel stops

spinning. The process is repeated until enough parents are chosen. An individual

can be a parent multiple times in a row. The roulette wheel selection favors the

individuals with the greatest fitness, while not excluding the individuals with less

fitness.

Tournament selection selects a set of individuals from the population at random.

The set then competes in a “tournament” and the winner of the tournament is

selected to be a parent. The outcome of the tournament is in a sense predetermined,

as the winner of the tournament is the individual with the best fitness. There are no

new tests applied to the tournament participants. Tournament selection has some

built in exclusion for the very worst performing individuals. Say the population size is

100, and the tournament size is 5. With these given values, the 4 lowest performing
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individuals can never be selected as parents. The population does not contain a

tournament set where these 4 are able to win. Figure 4.1 shows an example of

tournament selection.

Figure 4.1: A population containing 15 individuals where tournament selection is applied.

At random, 5 individuals are randomly chosen to compete in the tournament. The winner

of the tournament is based on the predetermined fitness of the individual. In this case,

individual 5 wins the tournament and is selected to be a parent.

Zhong et al. (2005) compares the performance between roulette wheel

selection and tournament selection. They test the selection methods on simple

mathematical functions with different hyperparameters (mutation rate, population

size).

In their experiment using function f (x1, x2) = x2 + x2, population size 100,

mutation rate 15%, tournament selection is able to slightly outperform roulette

wheel selection. After 100 generations, the algorithm with tournament selection

has all worked out the satisfied solution in the 1000 trials, but the one using roulette

wheel selection only hits 952 times on the satisfied solution (Figure 4.2). Further
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experiments with different functions yields the same result. Tournament selection

is able to converge to the global optima for all individuals in fewer generations than

roulette wheel selection.

(a) Roulette wheel selection. (b) Tournament selection.

Figure 4.2: Comparison between roulette wheel selection and tournament selection (Zhong

et al., 2005).

Both roulette and wheel selection and tournament selection fulfill our need, we

use tournament selection due to the results derived from Zhong et al. experiments.

As well as selection, we apply elitism to our GA. Elitism is a method used to ensure

that the very best individuals pass their genetics to the next generation. Instead of

only being able creating offspring, the selected elites automatically pass to the next

generation. The individuals can still become parents by the selection algorithm.

Applying elitism slightly reduces the randomness and helps the GA converge. In

some shorts tests, we try different elite sizes, but end up using 5 as the elite value.

Meaning the 5 best individuals in the population are part of the next generations

population as well.

4.1.3 Crossover

After applying for tournament selection and finding the set of parents, the selected

parents have to reproduce and create new individuals. The new individual consists

of a mixture of the parents genes. There are different methods of crossover,
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most commonly one-point crossover and uniform crossover. Figure 4.3 shows one

point crossover, where a random point in the genes are chosen, the offspring then

consists of the first half from one parent, and the second half from the other parent.

Figure 4.4 shows uniform crossover, where each gene is chosen 50-50% between

the parents. For our task we use uniform crossover.

Figure 4.3: One-point crossover.

Figure 4.4: Uniform crossover.

When performing crossover, we can either take the genes as their values, or

cast the values to binary representations. For example, the batch size gene can

either be one number between 1 and 32, or it can be the binary representation

between 1 and 32. When expressing the gene as only one digit, the crossover

makes the offspring inherit either the complete gene from one parent or the other.

However, while representing the gene as a binary value, the offspring can inherit

the mixture of the gene from both parents. This mixture could represent an entirely

new value, which would increase the exploration in the genetic algorithm.

Exploration is a tradeoff between exploitation. Exploration seeks to explore new

possible solutions in the search space, while exploitation seeks to exploit current

successful solutions. As with any optimization technique, there has to be a balance

between exploration and exploitation. Too much exploration and the GA diverges

and keeps exploring a set of seemingly infinite values. Too much exploitation and

the GA converges to a local minima, unable to find the best possible individuals and
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converge to the global optima.

The selection process is largely responsible for the exploitation of the GA.

Where the selection process, with some randomness, picks out the best individuals

in the population and seeks to further exploit their genetics. The mutation process is

largely responsible for the exploration part of the GA, as it seeks to add new genes

to the population. Crossover, however, is between the middle of exploration and

exploitation. The crossover process is given to the successful parents, but it has

the possibility to change the sequence of the different genes. Every combination of

the genes are part of the search space, and the crossover process helps explore

the different combinations systematically. When using a binary representation, even

more exploration is added to the crossover process, as it now has the ability to alter

the values of the individual genes.

For our project, we mainly focus on using decimal values for the genes.

However, we do experiment with binary values to see the difference between the

results in Section 5.3.

4.1.4 Mutation

When a new individual is created, there is a chance that the individual is mutated.

Mutation alters the genes of the individual. Mutation can happen to one gene or

multiple genes by altering the value of the gene. Alternation causes the gene to

be randomized within the constraints of the gene. By applying mutation new genes

are introduced to the population. If these genes are not good, meaning that they

score a low fitness, the mutated individual carrying the new genes will quickly be

eliminated from the population. However, if the genes are good, the GA will further

exploit the newfound genes and reproduce the individuals

Since mutation is responsible for the exploitation, choosing the chance of an

individual being mutated, or the mutation rate, is the value which is most crucial for

the balance.
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Doerr et al. (2017) explores different mutation rates for optimizing multimodal

functions. In their research they state that when using uniform crossover with a bit-

string representation of size n, the recommended mutation rate is pn = 1/n. For the

bit-string representation of our hyperparameters this would resolve in n = {x, y, z}.

Doerr et al. (2017) argues that the 1/n recommendation could result in overfitting

and convergence to the local optima. In their experiments they observe that a

mutation rate of 2/n or higher leads to higher exploration and a faster convergence.

However, their results are heavily reliant on their task as well and may not transfer

well to our task. Therefore, we experiment further with the mutation rate ourselves

to find the best mutation rate for our project. Acknowledging the results from Doerr

et al. (2017), we set the potential mutation rates to be pn = {15, 20, 25, 30, 35, 40}.

To test the different mutation rates, we initialize the GA as usual, and observe how

the GA converges given the different mutation rates. However, due to these tests

being time-consuming, we use half the data in this experiment. All other variables

which are not part of the genetic code are kept static and the training progress is

made equal for all the tests. Each of the tests are given the exact same training

data and validation data.

4.2 Evaluating the Model

This section goes through the dataset being used and how each model is trained.

The model is evaluated by a loss function, and the loss function is the fitness of

each individual in the population.

4.2.1 Dataset

Weapply our solution to the ultrasound nerve dataset. As withmost medical imaging

datasets, the data is imbalanced. Figure 4.5 displays a record from the dataset,

one for the ultrasound image of the neck, and one for the manually annotated

segmentation of the nerve. As seen, the nerve annotation is small when compared
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to the full image. Some images do not contain a nerve at all. The dataset contains

5600 images where all the images are labeled. We use 560 images to train a

new model with each individuals hyperparameters. And we use 100 images for

the validation. We don’t need to hold out any specific data for the test dataset, as

we don’t use the entire dataset.

(a) Image. (b) Ground truth mask.

Figure 4.5: Ultrasound nerve image (Nerve, 2016)

4.2.2 Loss Function

When evaluating the fitness of an individual, we use the loss function. The loss

function is used to determine the performance of the model. Higher loss grants

lower fitness, and lower loss grants higher fitness.

Loss functions and metrics are used to evaluate the performance of a model.

Loss functions are directly applied to the model through backpropagation, while

metric is more of a human measure for the developer to see how well the model is

doing. The choice of which loss function to use depends on a set of many different

variables: what is the goal of the model, what is the architecture of the model, what

type of data is the model operating with, how imbalanced the dataset is, and more.

When deciding which loss function to use, we have to account for the dataset.

Given that we use the ultrasound nerve dataset, we have to pick a loss functions
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better fit for the imbalance of the data.

Ma (2020) explores different loss functions for segmentation by creating

a taxonomy. In their research, they sort the loss functions into meaningful

categories, while also distinguishing between the different types of loss functions

for segmentation. Ma states in their research that there has not yet been

a comprehensive empirical comparison of all the different segmentation loss

functions. And therefore it is hard to identify the best loss function. However, they do

give some recommendations based on his research. Ma distinguishes the different

loss functions into 4 different types.

1. Distribution-based loss measures the distance between the ground truth

and the prediction. Most commonly used for this category is cross-entropy.

For a balanced dataset, distribution-based loss is recommended.

2. Region-based loss measures the overlapping regions between the ground

truth and the prediction. For a mild imbalance in the dataset, region-based

loss is recommended.

3. Boundary-based loss is a relatively new type of loss that seeks to minimize

the distance between the ground truth and the prediction. As the name

implies, the loss function is calculated as a function of the differentiated

boundary. Boundary-loss is recommended in addition with other loss

functions.

4. Compound loss is a combination of previous categories, for example the

weighted sum between a distribution-based loss and region-based loss. A

mixture of distribution-loss and region-loss, or region-loss and boundary-loss,

is recommended for a highly imbalanced dataset.

Similarly to the taxonomy created by Ma, Jadon (2020) creates a survey of

the different loss functions for segmentation. In their survey, they go through the

different loss functions used for segmentation, and weighs their strengths and
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weaknesses. Jadon also concludes that there is no “one fits all” when it comes

to loss functions for segmentation.

Going back to the ultrasound nerve dataset, a distribution-based loss function is

not recommended. A distribution-based loss function, such as cross-entropy, would

be heavily rewarded if it only predicted “not nerve” for all pixels in the image. The

small loss it would receive when it encounters a nerve by using this method, would

be insignificant when compared to the otherwise success.

Region-based loss is a good fit given that most medical imaging is imbalanced,

while not always heavily imbalanced. We look closer at the dice loss, which

is derived from intersection-over-union (IoU), also known as the Jaccard index

(equation 4.1). According to both Ma and Jadon, this loss function is widely used

for segmentation and works well with imbalanced data.

Jaccard(U, V) =
|U ∩ V|
|U ∪ V| (4.1)

IoU is a method of measuring the overlapping labels. It measures the

overlapping true and false labels, then divides it by the union of the labels. As

expected, this heavily punishes the model by falsely predicting a nerve in the wrong

spot. But in addition, it also punishes the model if it were to only predict false labels

(no nerve) for every input. Encouraging the model to actually find the nerves and

not stall the learning as a distribution-based loss function would. However, this is

one problem with IoU; it is not differentiable. For backpropagation to work, the loss

function has to be differentiable. As a solution, the dice loss is a derivable loss

function which is based on IoU.

DL(y, p̂) = 1 − 2yp̂ + 1
y + p̂ + 1

(4.2)

Here, y is the ground truth, and p̂ is the predicted segmentation. The 1 is

added to the numerator and denominator for edge case scenarios where y = p̂ = 0.
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When deriving the results for this thesis, the dice loss is used when measuring the

performance of one model. Dice loss function is multimodal, which may encourage

higher learning rates so that it may escape local minimas. It’s difficult to estimate

whether or not a convex loss function would be better or not. However, as most

segmentation loss functions are multimodal, it’s good to consider non-convexity.

4.2.3 Optimizer

Each individual in the population will be evaluated with the same configurations.

Zhou et al. (2020) to optimize their UNet++ model. Likewise, we will use Adam to

optimize our model. Adam (Section 2.5.3) adds momentum to the learning rate,

which results in the learning rate hyperparameter not being static.

4.3 Weight Initialization Method

Initialization of a neural network’s weights is very important to assure the stability of

the network. Neural networks often exhibit the quality of successively weaker layers,

or successively stronger layers, especially when the depth of the network increases.

This effect is also known as the vanishing and exploding gradient problem. When

vanishing gradients occur, the gradients which are used to update the weights,

become increasingly small, which stalls the learning process. When exploding

gradients occur, the gradients become increasingly large, which makes the model

unstable and the gradients can not make any reasonable updates.

There are many methods used to combat the vanishing and exploding

gradients. Such as regularization techniques, using a non saturating activation

function like ReLU, clipping gradients, weight initialization methods, and more.

Historically for weight initialization, the weights were given a random value between

a certain small interval such as [−1, 1]. Several different methods have now

emerged which have proven to be effective for creating a stable model.
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4.3.1 Choosing Weight Initialization Method

Boulila et al. (2021) goes through the different weight initialization methods and the

current trends in deep learning. They look into the strengths and weaknesses of

the different methods, and for which type of model they may be best suited. From

their research they look into 5 different initialization methods; all-zeroes/constant,

random, LeCun, Xavier, and He. The all-zeroes/constant and random initialization

are somewhat primitive when compared to the latters. They are both simple and

fall short when compared to LeCun, Xavier, and He. Further, they do an application

case study, looking at which weight initialization method is used within the different

domains. For segmentation, He initialization is often used. For other domains,

Xavier is often used. Interestingly, LeCun is not often used within any domains.

Kumar (2017) goes deeper into the difference between He initialization and

Xavier initialization. Given the experiments and the theoretical insight they propose,

they show that a network with ReLU activation function does not converge with

the Xavier initialization, but does converge with the He initialization. Therefore,

recommending He initialization when using ReLU as opposed to Xavier initialization.

We follow this recommendation, and choose Xavier initialization to be our weight

initialization method.

4.3.2 Reducing Randomness

When going through the search space with the genetic algorithms, it is difficult

to exactly assess how well an individual performed when accounting for the

randomness. One individual may be given a set of initial weights which instantly

yields a set of better weights than the other individuals in the generation. This

does not point to the fact that the individual has a set of better hyperparameters,

but rather that the individual got lucky with its initial weights. The individual is then

given a high reward due to luck, and will likely pass on to the next generation, either

through elitism or as a parent. However, the individual or predecessors are not able
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to replicate the same success from the previous generation, as the luck may have

run out. This will cause stalling in the genetic algorithm, rewarding individuals for

luck instead of the performance. It is costly for the genetic algorithm to get rid of a

falsified individual, and the time would be better spent exploring new individuals, or

expanding on successful individuals.

Therefore, to rid the algorithm with the element of luck, each time a new

generation starts, a new set of initial weights is created. This set of weights is

then applied to each individual in the population. This gives each individual an even

playing field, assuring that one individual is not granted a randomly generated set

of good weights, while one is given a randomly generated set of difficult weights.

Though, this does not entirely ensure that there is no randomness to evaluating

the performance of a individual. The set of weights may be more suited for one

individual’s hyperparameters compared to others. But by creating a new set of

initial weights for each generation, the robustness of the individuals are tested

across multiple generations, eventually yielding the best individuals across multiple

different sets of initial weights.

4.4 Summary

We initialize the genetic algorithm with a population size of 100 individuals. Each

individual holds the potential values for the hyperparameters; learning rate, batch

size, epochs. Each individual is then tested on the nerve dataset, and then tested

on the validation dataset. For every individual in the population, the individuals are

given the same initial weights and the same data. The validation test yields a fitness

based on the dice loss function. The fitness is used to determine the success of the

individual, and the best individuals are selected to reproduce the next generation.

The process for a number of generations, or until the GA converges, meaning that

the performance of the population as whole stagnates.
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Chapter 5

Results

This chapter goes through the results we derived from following our methodology.

All results are evaluated on the models performance for segmentation on the nerve

cell dataset.

5.1 Experimenting with Different Mutation Rates

To evaluate the optimal mutation rate, we run a set of short tests on a minor dataset.

These tests consist of a training set of 100 images from the nerve dataset, and the

epoch range is set between 0 and 1. Due to the low amount of data used, and the

low number of epochs, we evaluate from the training loss, and not the validation loss.

We run these tests to find themutation rate we want to use and to see if there are any

discrepancies between the different mutation rates. Table 5.1 shows the different

range of mutation rates and the performance. The performance is calculated by the

dice loss functions. Regardless of the mutation rate, there is no large different in the

performance. The 15%mutation rate is slightly above the rest, this may be random.

Regardless, we will use 15% mutation rate for our initial experiment.
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Mutation Rate Performance

5% 0.7274

10% 0.7273

15% 0.7465

20% 0.7278

25% 0.7289

30% 0.7366

35% 0.7274

40% 0.7276

45% 0.7272

Table 5.1: Table contains the best found individual after 50 generations given the different

mutation rates.

5.2 Experiment with Decimal Gene Representation

For our initial main experiment we run the GA on part of the nerve cell dataset. The

never cell dataset contains 5600 images, we train the model with each individual’s

hyperparameters on 560 images. Each individual is granted a fitness based on the

dice loss function. We run the GA for a total of 50 generations. Depending on

the task, running GA for only 50 generations can be low, but we show that the GA

converges for 50 generations. We have also ensured that the dataset is somewhat

balanced – our partial dataset does not contain only non-never images.

Table 5.2 contains the information regarding the generation’s best individual

and their hyperparameters. Note that the table can be somewhat misleading,

as there is often not one best individual, but often a set of individuals that

achieve the same fitness of 0.7858. The very first epoch is not very insightful,

as the hyperparameters are completely random at this point. Regardless of the

hyperparameters, the model is still tailored for the task at hand, and the best
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Hyperparameter
Generation

1 10 20 30 40 50

Learning rate 0.0697 0.2238 0.2036 0.1563 0.2036 0.2036

Batch size 2 1 1 1 1 1

Epochs 9 27 15 21 11 11

Fitness 0.5714 0.7858 0.7858 0.7858 0.7858 0.7858

Table 5.2: The hyperparameter values of the best performing individual in the population

across different generations. There may be multiple individuals which have reached the

same highest fitness.

individual is able to reach relatively high fitness. As seen in Figure 5.1, early in

the GA the best individual(s) hit a ceiling for their fitness, unable to push past 0.78

fitness. This may be due to the nature of the dataset and the U-Net model – some

nerves are difficult for the model to segment.

It may also be a clear indicator that the GA converges to a minima, specifically

the valley of 0.78 fitness. Whether or not this is the local minima or global minima

is difficult to assess. Given the architecture of the model, does there exist a set

hyperparameter that is able to reach above 0.78 fitness? If yes, the GA is stuck in

a local minima. If not, the GA is stuck in a 0.78 minima, which is optimal. To further

explore the potential, we increase the exploration in Section 5.3.

We can further evaluate the model by inspecting the predicted segmentation.

For the manual inspection, we use the hyperparameters of the top individual from

Table 5.2. Figure 5.2 and 5.3 shows 3 images; the input, the hand annotated nerve

cell, and the predicted segmentation. For Figure 5.2, the model is able to assess

the locations of many nerve cells by just training for 11 epochs. However, the shape

is often not entirely correct. Also, the model seems to be predicting nerve cells in

images that contain no nerve cells. Figure 5.3 shows some of the better results by

our solution.
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(a) The best fitness achieved by an individual. (b) The average fitness of the elites (top 5

individuals).

(c) Average fitness across the entire population.

Figure 5.1: Displays the fitness of different categories of individuals for each generation.
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Figure 5.2: Ultrasound images of the neck as input on the left side, center shows the hand

annotated nerve, right side shows the prediction by the model. These are some of the worse

results.
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Figure 5.3: Ultrasound images of the neck as input on the left side, center shows the hand

annotated nerve, right side shows the prediction by the model. These are some of the best

results.
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5.3 Experiment with Binary Gene Representation

The decimal gene representation shows signs of the individuals converging to a

local minima. There are no individuals who are able to pass the local minima; 0.78

fitness. Also, many individuals are able to reach this fitness per generation towards

the final generations. Therefore, we have to increase the exploration of the GA, and

lessen the exploitation. Our goal with this experiment is to outperform the decimal

gene representation experiment.

To increase the exploration, we slightly increase the mutation rate. A higher

mutation rate is a direct addition to exploration. As well as higher mutation rate,

the binary gene representation acts as a great exploration technique. Allowing the

individuals to receive newfound genes through the crossover part of the GA. To

decrease exploitation, we reduce the elite size from 5 to 1. Only 1 individual will

automatically carry on to the next generation as opposed to 5. This will add more

diversity to the population.

Hyperparameter
Generation

1 10 20 30 40 50

Learning rate 0.1815 0.0508 0.1295 0.0478 0.2446 0.2894

Batch size 1 1 1 1 1 1

Epochs 30 28 14 12 9 18

Fitness 0.7858 0.7858 0.7858 0.7858 0.7858 0.7858

Table 5.3: The hyperparameter values of the best performing individual in the population

across different generations. There may be multiple individuals which have reached the

same highest fitness.

Table 5.3 shows the fitness binary gene representation. As with the decimal

gene representation, the GA is unable to escape the 0.78 ceiling. The far higher

weight on exploration did not help it escape. Though it is not possible to thoroughly

conclude without testing every possible configuration of the hyperparameters, there
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might not exist a configuration which yields a higher fitness than 0.78 with the given

architecture of the model.

5.4 Batch Size

Interestingly, batch size seems to be the only hyperparameter which converges.

For all individuals with a decent fitness, the batch size is set to 1. With regard

to this, we do not have to account for the batch size when analyzing the different

combinations of hyperparameters. However, as we defined the range of the batch

size in Section 4.1.1, we mostly cared about the convergence. With only 1 in batch

size, the gradients are updated for each image in the dataset. Since the gradients

are not updated in batches, the runtime is increased. The time saved from having

batches is redacted, but the performance increases as a result.

5.5 Epoch

The number of epochs varies. Many individuals are able to reach the minimum of

0.78 fitness, regardless of the number of epochs. One individual is able to reach

0.78 fitness in only 9 epochs, the lowest amount required which has been seen for

all individuals. There does not seem to be a close relationship between the number

of epochs and the learning rate. Few epochs do not result in a higher learning rate,

and many epcosh do not result in a lower learning rate. It would be expected that the

number of epochs followed the same path as the batch size hyperparameter. That

each individual wants to get as much as possible with no regard to time efficiency.

However, the number of epochs seems to be far more irrelevant than the batch size

for this task.
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5.6 Learning Rate

Unlike the batch size, the learning rate does not fully converge towards a set value.

However, compared to the traditional low learning rates seen in recent literature

(Zhou et al., 2020), the learning rate converges towards a much higher value. Most

individuals with good fitness hover around 0.2 as a learning rate. Though, this may

be related to the number of epochs that the models limited to. Fewer epochs means

that the model may want to have as much impact for each epoch.

5.7 Comparison

We compare our found best hyperparameters with the “standard” hyperparameters

on 250 epochs to see how well our result scales. For our hyperparameters we

use one of the top individuals which has a 0.2036 learning rate and 1 batch size.

For the standard hyperparameters we use 0.0003 learning rate and batch size 8.

We evaluate these results on the same exact data as previously tested. This is to

further inspect if our current solutions are stuck in a local minima. Figure 5.4 shows

the fitness curve of the same model with the different hyperparameters.
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Figure 5.4: Comparison between the model with different hyperparameters.

Themodel with standard hyperparameter is able to catch up to our solution after

approximately 40 epochs. This is out of our epoch range, as we set the maximum

number of epochs to be 30. At 30 epochs, the standard version is still below ours

in fitness. The comparison shows clearly that our solution is able to reach a good

fitness in a small amount of epochs, but it is not able to reach the fitness of the

standard version after many epochs. This comparison also reveals that the GA is

either stuck in a local minima, or that using the hyperparameters as genes is not

enough to reach the global minima with the given number of epochs.

5.8 Summary

We first ran a set of tests on a small part of the dataset to find the optimal mutation

rate. However, regardless of the mutation rate, the GA converged to nearly the
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same fitness for the best individual in the population.

We ran the GA for 50 generations with decimal representation of the genes.

The individuals hit the ceiling of 0.78 fitness in an early generation, and could not

get past it in any later generation. To increase the exploration of the GA, we tried

a binary representation of the genes and reduced the elite size from 5 to 1, but the

results were the same. None could get past 0.78 fitness.
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Chapter 6

Discussion and Conclusion

In this chapter, we discuss the project and add our conclusion. Discussion is related

to challenges around the project.

6.1 Limitations

Running the GA for 50 generations requires approximately 5 GPU days with a

NVIDIA Tesla V100 SXM2GPU .We also only use part of the nerve dataset, and not

the entire dataset. Using the entire dataset would require 50 GPU days. In addition

to the runtime, any microchange would render the current result irrelevant, meaning

we would have to run the GA over again with the new changes. Therefore, most of

the final tests were done towards the last month of the thesis.

The original goal of the thesis was to explore both 2D data and 3D data.

Towards the beginning of the thesis we did some experiments with 3D data on a

brain tumor dataset. However, since 3D data contains even more information than

2D data, the runtime becomes too large. Therefore, we only run the GA on 2D data.

With more resources the code could be run on more data and more epochs,

potentially deriving better and more insightful results.
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6.2 Reflection

Looking back at the thesis as a whole there are some things I would have done

differently. Some minor changes could result in better results. For example, in

Section 4.2.2 I go through the different loss functions and justify the choice of using

Dice Loss. At this point I was still uncertain which dataset would be primarily used,

and whether I would test on one or more datasets. Therefore, I chose using Dice

Loss which performs best on imbalanced data, as I knew the data would likely be

medical imaging. However, the Nerve Cell Dataset which we run our tests on, is

heavily imbalanced. A compound loss function would be a better fit for this dataset,

as encouraged by Ma (2020).

As seen in the results, the models quickly converge after a few number of epochs.

Perhaps the learning rate should be set to a far smaller range, to encourage the

projectory seen by the standard curve in Figure 5.4. This way, the GA would not opt

for the quick and potentially premature convergence. It would also force the GA to

respect the epoch hyperparameter, as it was mostly irrelevant in the results.

6.3 Conclusion

Weused genetic algorithms to optimize the learning rate, batch size, and the number

of epochs hyperparameters. Our solution shows that a high learning rate and low

batch size can cause good performance in a low number of epochs. Choosing a

high learning rate, around 0.2 can be beneficial when training the model for a limited

number of epochs. However, as the number of epochs increases, a much lower

learning rate has better performance. We also explored different rates of mutation,

but there was little difference.
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Appendix A

Appendix

A.1 Code Snippets

This section contains some of the core code snippets used to execute our solution.

The code snippets contains abstract methods, but the purpose of the methods

should be evident.

A.1.1 Main Loop

The main loop which iterates through the selected number of generations.

def train(x_train, y_train, x_val, y_val, population):

n_generation = 50

for i in range(n_generation):
for solution in population:

model = u_net()

train(model, x_train, y_train)
loss = validate(model, x_test, y_test)

solution.fitness = 1 - loss

population = update_population(population)

Listing 1: Main loop.
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A.1.2 GA

The GA code used to update the population for each generation.

import numpy as np

def update_population(population):

mutate_rate=15
tournament_size=15
elite_size = 1

new_population = np.empty(shape=(pop_size,), dtype=Solution)
population = np.array(sorted(population,

key=lambda x: x.reward,
reverse=True))

new_population[:elite_size] = population[:elite_size]

for i in range(elite_size, pop_size):
parent_1, parent_2 = tournament_selection(population, tournament_size)
child = uniform_crossover(parent_1, parent_2)
mutate(child, mutate_rate)
new_population[i] = child

Listing 2: GA code.
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