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Abstract: With the aim of improving the reconstruction of stochastic evolution equations from
empirical time-series data, we derive a full representation of the generator of the Kramers–Moyal
operator via a power-series expansion of the exponential operator. This expansion is necessary for
deriving the different terms in a stochastic differential equation. With the full representation of this
operator, we are able to separate finite-time corrections of the power-series expansion of arbitrary
order into terms with and without derivatives of the Kramers–Moyal coefficients. We arrive at a
closed-form solution expressed through conditional moments, which can be extracted directly from
time-series data with a finite sampling intervals. We provide all finite-time correction terms for
parametric and non-parametric estimation of the Kramers–Moyal coefficients for discontinuous
processes which can be easily implemented—employing Bell polynomials—in time-series analyses
of stochastic processes. With exemplary cases of insufficiently sampled diffusion and jump-diffusion
processes, we demonstrate the advantages of our arbitrary-order finite-time corrections and their
impact in distinguishing diffusion and jump-diffusion processes strictly from time-series data.

Keywords: stochastic processes; Kramers–Moyal equation; Kramers–Moyal coefficients; Fokker–Planck
equation; arbitrary-order approximations; non-parametric estimators; Bell polynomials

1. Introduction

The reconstruction of stochastic evolution equations from time-series data in terms of
the Langevin equation and the corresponding Fokker–Planck equation is often challenged
by the inevitably finite temporal sampling of time-series data. Moreover, the Fokker–
Planck equation is restricted to continuous stochastic processes, i.e., diffusion, and thus
cannot adequately describe discontinuous transitions in time-series data. A more general
description of continuous and discontinuous stochastic processes can be constructed using
the Kramers–Moyal equation [1,2] given by

∂

∂τ
p(x, t + τ|x′, t) =

∞

∑
n=1

(
− ∂

∂x

)n
Dn(x)p(x, t + τ|x′, t),

of which the Fokker–Planck equation is a particular case (Dn ≡ 0 for n > 2). The Kramers–
Moyal equation serves as a stepping stone to adequately describe time-series data with
both diffusive and discontinuous characteristics, but it is nevertheless challenged by finite-
time sampling in real-world data. Recent applications of the Kramers–Moyal equation
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include brain [3,4] and heart dynamics [5], stochastic harmonic oscillators [6], renewable-
energy generation [7], solar irradiance [8], turbulence [9], nano-scale friction [10], and X-ray
imaging [11,12].

Previous work has demonstrated that a finite sampling interval ∆t not only influences
the first- and second-order Kramers–Moyal (KM) coefficients [13] but also causes non-
vanishing, higher-order (>2) coefficients [4,14–20]. A more recent example is the jump-
diffusion process discussed in reference [3]

dXt = a(Xt, t)dt + b(Xt, t)dW(t) + ξ(Xt, t)dJ(t), (1)

where a(Xt, t) is a drift function, b(Xt, t) is the diffusion associated with an uncorrelated
Brownian motion or Wiener process W(t), J(t) is a Poisson process with jump rate λ, inde-
pendent of W(t), and ξ(Xt, t) is Gaussian-distributed N (0, s) with zero mean and variance
s. For such jump-diffusion processes, additional influences of the finite temporal sampling
need to be taken into account. As shown in reference [8], jump events produce terms of
order O(∆t) in the KM coefficients of even orders and the jump rate and amplitude induce
terms of order O(∆t2) in all coefficients. These influences are heightened for bivariate
jump-diffusion processes [21], since terms of order O(∆ti), i ≥ 3 impact higher-order (≥4)
coefficients [22].

Although most of the aforementioned studies reported on finite-time corrections for
KM coefficients and/or conditional moments of various orders, we still lack an explicit
arbitrary-order correction or a closed-form solution in which the conditional moments are
represented as functions of the KM coefficients and vice versa. In this article, we derive a
full expansion of the generator of the Kramers–Moyal operator in exponential form for one-
dimensional Markovian processes. This is equivalent to van Kampen’s system-size expansion,
which is taken over a finite time interval τ [23,24]. The derivations presented henceforth are
generally applicable to Markovian diffusion as well as jump-diffusion processes.

On a more general level, our solution is an explicit approximate solution of the Kramers–
Moyal equation [1,2], which generalises the Fokker–Planck equation for discontinuous
processes [13,23,25]. Our approximation of the Kramers–Moyal operator can be taken as an
arbitrary order. In particular, we focus on the solution of this partial differential equation
by representing the Kramers–Moyal operator in an exponential form and equating the
conditional moments with the KM coefficients after representing the exponential operator
as a power series. This representation of the exponential operator can similarly be used in
other problems with an equivalent formulation [26–28] or similar discontinuous stochastic
processes with different jump distributions, e.g., the Gamma distribution [29,30].

2. Mathematical Background

The Fokker–Planck(–Kolmogorov) equation (Kolmogorov forward equation or Smolu-
chowski equation) for the conditional probability density p(x, t + τ|x′, t), that is well-
known within the fields of physics and mathematics, yields the propagation in time and
space of any diffusion (thus continuous) process, is given by [31]

∂

∂τ
p(x, t + τ|x′, t) =

[
∂

∂x
D1(x, t) +

∂2

∂x2 D2(x, t)
]

p(x, t + τ|x′, t). (2)

We restrict our investigation to stationary processes, hence Dn(x, t) = Dn(x). Equation (2)
describes the evolution of, for instance, a Brownian particle (for the case D1(x) = 0), which
results in the known heat equation, or more complicated Markovian motions with drift.
Here, one recognises the function D1(x), the first KM coefficient, commonly denoted as
drift, and the function D2(x), the second KM coefficient, commonly denoted as diffusion or
volatility. The Fokker–Planck equation is, nevertheless, only valid for continuous motions
and thus cannot describe jump-diffusion processes as in the case in Equation (1) or other
stochastic motions with discontinuous paths.
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A more general equation—the so-called Kramers–Moyal equation—takes higher-order
KM coefficients Dn(x), n ∈ N into account

∂

∂τ
p(x, t + τ|x′, t) = LKM p(x, t + τ|x′, t), (3)

where LKM denotes the Kramers–Moyal operator defined as the power series [1,2]

LKM =
∞

∑
n=1

(
− ∂

∂x

)n
Dn(x),

which we will subsequently solve for τ and an appropriate starting condition by exponen-
tiating the Kramers–Moyal operator LKM.

When examining a stochastic process in terms of time-series data, there is no direct
access to the KM coefficients Dn(x) but rather to the conditional moments of the data. The
nth-order conditional moment Mn(x, τ) is given by

Mn(x′, τ) =

∞∫
−∞

(x− x′)n p(x, t + τ|x′, t)dx. (4)

The KM coefficients Dn(x) can be retrieved from the conditional moments Mn(x, τ) via

Dn(x) =
1
n!

lim
τ→0

Mn(x, τ)

τ
.

When dealing with real-world data, we do not have access to infinite temporal resolution,
meaning that the above limit τ → 0 is not possible. A best-case scenario is to analyse the
smallest possible temporal differences. If the data are sampled at ∆t time steps, take

Dn(x) =
1
n!

1
∆t

Mn(x, ∆t).

In order to non-parametrically retrieve the conditional moments Mn(x, τ) from data,
a set of histogram or Nadaraya–Watson estimators can be utilised (see Refs. [29,32] for
details). Here, we will focus not on how to estimate the conditional moments but rather on
how to derive a set of finite-time corrections to estimate the KM coefficients from conditional
moments. These can be retrieved from data with software packages like kramersmoyal [33]
or JumpDiff [34] in Python or Langevin [35] in R.

3. The Formal Solution of the Kramers–Moyal Equation and Its Approximations

First, we explicitly derive the corrective terms and subsequently link these to the
results in reference [36], connecting them to the relation between statistical cumulants and
moments [13].

Let us assume a well-defined initial state of the Kramers–Moyal equation be given
by δ(x− x′). The formal solution of the time-dependent Kramers–Moyal equation (3) is
given by

p(x, t + τ|x′, t) = exp (τLKM)δ(x− x′) =
∞

∑
k=0

(τLKM)k

k!
δ(x− x′), (5)

where p(x, t+ τ|x′, t) is a normalisable function, such that
∫ ∞
−∞ p(x, t+ τ|x′, t)dx = 1, ∀(t, τ).

We will now proceed to show the first-, second-, third-order, and arbitrary-order approxima-
tion to the solution of this partial differential equation with this particular initial condition.
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3.1. The First- and Second-Order Approximations

The first-order approximation of the formal solution of Equation (5) is given by

p(x, t+τ|x′, t) = exp (τLKM)δ(x− x′) =
[
1 + τLKM +O(τ2)

]
δ(x− x′),

yielding for the conditional moments Mn(x′, τ) in Equation (4)

Mn(x′, τ) ' M[1]
n (x′, τ) =

∞∫
−∞

(x− x′)n[1 + τLKM]δ(x− x′)dx

=

∞∫
−∞

(x− x′)nδ(x− x′)dx + τ

∞∫
−∞

(x− x′)n
∞

∑
m=1

(
− ∂

∂x

)m
Dm(x)δ(x− x′)dx

= 0 + τ
∞

∑
m=1

(−1)m
∞∫
−∞

Dm(x)
[(
− ∂

∂x

)m
(x− x′)n

]
δ(x− x′)dx

= τ
∞

∑
m=1

∞∫
−∞

Dm(x)
n!

(n−m)!
(x− x′)n−mδ(x− x′)dx

= τ
∞

∑
m=1

Dm(x′)
n!

(n−m)!
δn,m

= τ(n!)Dn(x′),

where the large square brackets indicate that the derivation operation is limited to the
terms within the brackets. The superscript [1] indicates the order of approximation.

The second-order approximation is obtained in a similar fashion, now including the
quadratic term from the exponential representation Equation (5), i.e.,

p(x, t+τ|x′, t) =
[

1 + τLKM +
τ2

2
LKMLKM +O(τ3)

]
δ(x− x′).

To alleviate the notation, we refer to the KM coefficient without explicit state dependencies,
i.e., Dn. The second-order approximation M[2]

n (x′, τ) of the n-th conditional moment in
Equation (4) reads

M[2]
n (x′, τ) =

∞∫
−∞

(x− x′)n
[

1 + τLKM +
τ2

2
LKMLKM

]
δ(x− x′)dx

= M[1]
n (x′, τ) +

τ2

2

∞∫
−∞

(x− x′)n
∞

∑
p=1

(
− ∂

∂x

)p
Dp

∞

∑
m=1

(
− ∂

∂x

)m
Dmδ(x− x′)dx

= M[1]
n (x′, τ) +

τ2

2

∞

∑
p,m=1

∞∫
−∞

(x− x′)n
(
− ∂

∂x

)p
Dp

(
− ∂

∂x

)m
Dmδ(x− x′)dx

= M[1]
n (x′, τ) +

τ2

2

∞

∑
p,m=1

∞∫
−∞

n!
(n− p)!

(x− x′)n−pDp

(
− ∂

∂x

)m
Dmδ(x− x′)dx

= M[1])
n (x′, τ) +

τ2

2

∞

∑
p,m=1

∞∫
−∞

n!(n− p)! (x− x′)n−p−m

(n− p)!(n− p−m)!
DpDmδ(x− x′)dx

+
τ2

2

∞

∑
p,m=1

m−1

∑
s=0

∞∫
−∞

n!(x− x′)n−p−s

(n− p− s)!

(
m
s

)[(
− ∂

∂x

)m−s
Dp

]
Dmδ(x− x′)dx.
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The first integral is only non-vanishing if n− p−m = 0 and the second integral is only
non-vanishing if n− p− s = 0, with s < n. Hence,

M[2]
n (x′, τ) = M[1]

n (x′, τ) +
τ2

2
(n!)

n−1

∑
m=1

Dn−m(x′)Dm(x′)

+
τ2

2
(n!)

n−1

∑
s=0

∞

∑
m=s+1

(
m
s

)[(
∂

∂x′

)m−s
Dn−s(x′)

]
Dm(x′).

Separating the terms between those with explicit derivatives of the KM coefficients and
those without, it is immediately clear that the second-order approximation follows a
structure given by the partial ordinary Bell polynomials B̂n,m [37]

B̂n,m(x1, x2, . . . , xn−m+1) = ∑
m!

j1!j2! · · · jn−m+1!
xj1

1 xj2
2 · · · x

jn−m+1
n−m+1 . (6)

where the summation is taken over j1, . . . , jn−m+1 ∈ {0, 1, 2, . . . , n−m + 1} such that

n−m+1

∑
r=1

jr = m and
n−m+1

∑
r=1

rjr = n. (7)

The first- and second-order approximations can be written with the help of the partial
ordinary Bell polynomials with m = 1 and m = 2, respectively,

M[1]
n (x′, τ) = (n!)τB̂n,1(D1, . . . , Dn),

M[2]
n (x′, τ) = (n!)

[
τB̂n,1(D1, . . . , Dn) +

τ2

2
B̂n,2(D1, . . . , Dn−1) + Φ[2]

n

]
,

(8)

where Φ[2]
n incorporates all derivatives of the KM coefficients from the 2nd-order corrections,

and is given by

Φ[2]
n =

τ2

2

n−1

∑
s=0

∞

∑
m=s+1

(
m
s

)[(
∂

∂x′

)m−s
Dn−s(x′)

]
Dm(x′).

To simplify the description, we introduce a short-hand notation and take the superscript

(m) in the KM coefficients: D(m)
p (x′) =

(
∂

∂x′

)m
Dp(x′).

These results are in line with those reported for diffusion-type processes [16–19,38],
where the Kramers–Moyal operator LKM = LFP reduces to the Fokker–Planck operator
and we are solely left with the first two KM coefficients, as in Equation (2). In particular,
applying the second-order approximation in Equation (8) to the two first KM coefficients
results in

M[2]
1 = τD1 +

τ2

2

∞

∑
m=1

DmD(m)
1 ,

M[2]
2 = 2τD2 + τ2D2

1 + τ2

[
∞

∑
m=1

DmD(m)
2 +

∞

∑
m=2

mDmD(m−1)
1

]
,

and truncating the sums at second order yields the expressions in reference [16].

3.2. The Third-Order Approximation

Before we introduce the general formalism for the arbitrary-order approximation, we
explicitly derive the third-order approximation

p(x, t+τ|x′, t) =
[

1 + τLKM +
τ2

2
LKMLKM +

τ3

6
LKMLKMLKM +O(τ4)

]
δ(x− x′),
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which leads to

M[3]
n (x′, τ) =M[1]

n (x′, τ) + M[2]
n (x′, τ)

+
τ3

6

∞

∑
q,p,m=1

∞∫
−∞

(x− x′)n
(
− ∂

∂x

)q
Dq

(
− ∂

∂x

)p
Dp

(
− ∂

∂x

)m
Dmδ(x− x′)dx

=M[1]
n (x′, τ) + M[2]

n (x′, τ)

+
τ3

6

∞

∑
q,p,m=1

∞∫
−∞

n!
(n− q− p−m)!

(x− x′)n−q−p−mDqDpDmδ(x− x′)dx

+
τ3

6

n

∑
q=1

∞

∑
p,m=1

p

∑
s=0

∞∫
−∞

n!(x− x′)n−q−s

(n− q− s)!

(
p
s

)[(
− ∂

∂x

)p−s
Dq

]

× Dp

(
− ∂

∂x

)m
Dmδ(x− x′)dx

=M[1]
n (x′, τ) + M[2]

n (x′, τ)

+
τ3

6

∞

∑
q,p,m=1

∞∫
−∞

n!
(n− q− p−m)!

(x− x′)n−q−p−mDqDpDmδ(x− x′)dx

+
τ3

6

n

∑
q=1

∞

∑
p,m=1

p

∑
s=0

m

∑
k=0

m−k

∑
r=0

∞∫
−∞

n!(x− x′)n−q−s−k

(n− q− s− r)!

(
p
s

)(
m
k

)(
m− k

r

)

×
[(
− ∂

∂x

)p−s+r
Dq

][(
− ∂

∂x

)m−k−r
Dp

]
Dmδ(x− x′)dx.

Notice that the first integral is only non-vanishing for the combination q + p + m = n,
which can again be expressed via the partial ordinary Bell polynomial B̂n,m, where m = 3,
for the third-order approximation. The second expression requires q + s + k = n as well as
p + r 6= s ∧m− r 6= k. Separating these again into two expressions, one with and another
without derivatives, we can express the third-order approximation as

M[3]
n (x′, τ) = (n!)

[
τB̂n,1(D1, . . . , Dn) +

τ2

2
B̂n,2(D1, . . . , Dn−1) + Φ[2]

n

+
τ3

6
B̂n,3(D1, . . . , Dn−2) + Φ[3]

n

]
,

(9)

where Φ[3]
n incorporates all derivatives of the KM coefficients from the third-order corrections

Φ[3]
1 =

τ3

6

∞

∑
p,m=1

m

∑
r=0

(
m
r

)[(
− ∂

∂x

)p+r
D1(x)

][(
− ∂

∂x

)m−r
Dp(x)

]
Dm(x). (10)

Here, we compare our derivation to the derivation of third-order approximation in
Gottschall and Peinke [16]. We note that our derivation takes the general form of the
Kramers–Moyal operator, to which the Fokker–Planck operator is circumscribed. From
Equation (9), we derive an identical expression for the Fokker–Planck operator reported
in reference [16]. Since the Fokker–Planck operator is limited to second-order terms, i.e.,
Dn ≡ 0 for n ≥ 3, the sum in Equation (10) can be express in full. For the first conditional
moment M[3]

1 , we obtain the corrective terms Φ̃[3]
1 given by
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Φ̃[3]
1 =

τ3

6

2

∑
p,m=1

m

∑
r=0

(
m
r

)[(
− ∂

∂x

)p+r
D1(x)

][(
− ∂

∂x

)m−r
Dp(x)

]
Dm(x).

=
τ3

6

[
D(1)

1 D(1)
1 D1 + D(2)

1 D1D1 + 3D(1)
1 D(2)

1 D2 + 2D(3)
1 D1D2

+D(2)
1 D(1)

2 D1 + D(2)
1 D(2)

2 D2 + 2D(3)
1 D(1)

2 D2 + D(4)
1 D1D1

]
,

which is identical to Equation (A1) in the Appendix of reference [16]. Similarly, for the
second conditional moment M[3]

2 , we obtain the corrective terms Φ̃[3]
2

Φ̃[3]
2 =

τ3

6

2

∑
p,m=1

m

∑
r=0

p
(

m
r

)[(
− ∂

∂x

)p+r−1
D1(x)

][(
− ∂

∂x

)m−r
Dp(x)

]
Dm(x)

+
τ3

6

2

∑
p,m=1

m−1

∑
r=0

m
(

m− 1
r

)[(
− ∂

∂x

)p+r
D1(x)

][(
− ∂

∂x

)m−r−1
Dp(x)

]
Dm(x)

+
τ3

6

2

∑
p,m=1

m

∑
r=0

(
m
r

)[(
− ∂

∂x

)p+r
D2(x)

][(
− ∂

∂x

)m−r
Dp(x)

]
Dm(x)

=
τ3

3

[
3D1D(1)

1 D1 + 7D(2)
1 D1D2 + 4D(1)

1 D(1)
1 D2 + 3D(1)

1 D(1)
2 D1

+ 4D(1)
1 D(2)

2 D2 + 7D(2)
1 D(1)

2 D2 + 4D(3)
1 D2D2 + D(2)

2 D1D1

+2D(3)
2 D2D1 + D(2)

2 D(1)
2 D1 + D(2)

2 D(2)
2 D2 + 2D(3)

2 D(1)
2 D2 + D(4)

2 D2D2

]
which is in agreement with Equation (A2) in the Appendix of reference [16]. A similar
derivation can be found in Appendix B of reference [8], which also yields congruent
findings for the first two conditional moments of jump-diffusion processes. However, no
explicit expression for all terms is given in either publication.

As a simple rule of thumb, one can confer if the result is correct, as follows: the sum
of the order of the KM coefficients subtracted by the derivation operation must equal n,
the order of the conditional moment being calculated. In the notation used in this work,
the sum of subscripts minus the sum of superscripts must equal the order n of the coefficient
under investigation.

3.3. Arbitrary-Order Approximation

We now derive the arbitrary-order corrections of the Kramers–Moyal operator. This is
done by induction from the previous derivations, whilst disregarding any emerging terms
with derivatives of the KM coefficients

M[m]
n (x′, τ)=

∞∫
−∞

(x− x′)n
m

∑
k=1

τk

k!
Lk

KMδ(x− x′)dx = n!
m

∑
k=1

τk

k!

m

∏
σ(k,n)

Dσ(k,n) + Φ[k]
n

,

with σ(k, n) a partition of a set of k ∈ N obeying Equation (7). This, in turn, is the same as a
collection of partial Bell polynomials, namely

M[m]
n (x′, τ) = (n!)

m

∑
k=1

[
τk

k!
B̂n,k(D1, D2, . . . , Dn−k+1) + Φ[k]

n

]
,
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where we combine terms with derivatives in Φ[k]
n . If we disregard the derivative terms,

the summation has an upper bound, namely m ≤ n. This is directly seen as the Bell
polynomials are similarly bounded, and thus we arrive at

Mn(x′, τ) = (n!)
n

∑
k=1

τk

k!
B̂n,k(D1, D2, . . . , Dn−k+1). (11)

neglecting the derivative terms Φ.
From the perspective of estimation, the aim is to determine the KM coefficients Dn(x′),

however what we have expressed here is the relation of the conditional moments Mn(x′, τ).
As we now have an explicit relation in terms of partial Bell polynomials, we will invert the
relation and express the KM coefficients Dn(x′) as functions of the conditional moments
M1(x′, τ), . . . , Mn(x′, τ).

Note that the first conditional moment M1(x′, τ) is solely a function of the first KM
coefficient D1(x′). The second conditional moment M2(x′, τ) is a function of the second
KM coefficient D2(x′), and by substitution, a function of the first conditional moment
M1(x′, τ), given by Equation (11). Subsequently M3(x′, τ) is a function of D3(x′), M2(x′, τ),
and M1(x′, τ). Thus, by recursively substituting the n− 1 KM coefficients by their expres-
sions via the conditional moments, we obtain a relation of Dn(x′) as a function of the
Mn(x′, τ), Mn−1(x′, τ), . . . , M1(x′, τ) conditional moments.

To this end, we rewrite Equation (11) in terms of the partial exponential Bell polyno-
mials Bn,m

Bn,m(x1, x2, . . . , xn−m+1) = ∑
n!

j1!j2! · · · jn−m+1!

( x1

1!

)j1( x2

2!

)j2· · ·
(

xn−m+1

(n−m + 1)!

)jn−m+1

,

where the summation terms obey the constraints of the Bell polynomials given in
Equation (7). This can be expressed through the partial ordinary Bell polynomials in
Equation (6) as

B̂n,m(x1, x2, . . . , xn−m+1) =
m!
n!

Bn,m(1! · x1, 2! · x2, . . . , (n−m + 1)! · xn−m+1).

Thus, Equation (11) reads

Mn(x′, τ) =
n

∑
k=1

Bn,k(1!τD1, 2!τD2, . . . , (n− k + 1)!τDn−k+1).

We can then utilise the reciprocal relations of the partial exponential Bell polynomials: for a
set of variables y1, . . . , yn, defined as functions of n other variables x1, . . . , xn given by

yn =
n

∑
k=1

Bn,k(x1, x2, . . . , xn−k+1), (12)

the inverse relation holds

xn =
n

∑
k=1

(−1)k−1(k− 1)!Bn,k(y1, y2, . . . , yn−k+1). (13)

With this, we can finally express any KM coefficients Dn(x′) from the nth-order power
series expansion, neglecting the derivative terms Φ, as

Dn(x′, τ) =
1
n!

1
τ

n

∑
k=1

(−1)k−1(k− 1)!Bn,k(M1, M2, . . . , Mn−k+1). (14)
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We note here that these relations are equivalent to the relation between cumulants
and (non-central) moments of a probability distribution [13,36]. LetM(y) be the moment-
generating function, such that

M(y) = 1 +
∞

∑
n=1

µ′nyn

n!
= exp

[
∞

∑
n=1

κnyn

n!

]
= exp[K(y)],

with µ′n the (non-central) moments and K(x) the cumulant-generating function. For n < 4,
the cumulants κn and the central moments are the same (e.g., the mean and variance). This
is not the same for higher cumulants and moments. The relation between the cumulants κn
and the (non-central) moments µ′n is given by the reciprocal relation of the Bell polynomials,
as in Equations (12) and (13). This is in line with our exponential representation of the
Kramers–Moyal operator. Here, the KM coefficients are the cumulants (with the exception
of the τ term).

4. Exemplary Cases with Constant Diffusion and Constant Jumps

Here, we present two illustrative examples: first, a constant diffusion process, the
Ornstein–Uhlenbeck process; secondly, we augment this process with jumps to obtain a
jump-diffusion process. We implement the corrective terms derived thus far to show the
impact of the finite-time corrections. This choice of parameters, i.e., constant diffusion and
constant jumps, considerably simplifies Equation (1) to

dXt = −aXtdt + bdW(t) + ξdJ(t), (15)

where −aXt is the state-dependent linear drift function, with a > 0, also denoted mean-
reverting strength, b > 0 a constant diffusion, W(t) a Brownian motion or Wiener process,
ξ a state-independent and normally distributed jump amplitude with zero mean and
variance s, and J(t) a Poisson process with jump rate λ. Note that the conventional Ornstein–
Uhlenbeck process is recovered if we omit the jump process.

We have derived an expression for the conditional moments Mn(x, τ) as a function
of the KM coefficients Dn(x), given by Equation (11), which is valid for any Markovian
diffusion or jump-diffision process. For our particular application to the Poissonian jump-
diffusion process in Equation (1) we require at least the first six KM coefficients/first six
moments. These are given by

M1 = τD1,

M2 = 2τD2 + τ2D2
1,

M3 = 6τD3 + 6τ2D1D2 + τ3D3
1,

M4 = 24τD4 + 12τ2
(

2D1D3 + D2
2

)
+ 12τ3D2

1D2 + τ4D4
1,

M5 = 120τD5 + 120τ2(D1D4 + D2D3) + 60τ3
(

D2
1D3 + D1D2

2

)
+ 20τ4D3

1D2 + τ5D5
1,

M6 = 720τD6 + 360τ2
(

2D1D5 + 2D2D4 + D2
3

)
+ 120τ3

(
3D2

1D4 + 6D1D2D3 + D3
2

)
+ 60τ4

(
2D3

1D3 + 3D2
1D2

2

)
+ 30τ5D4

1D2 + τ6D6
1.

We invert this expression explicitly using Equation (14) and report on the KM coefficients
as functions of the conditional moments, which are given by
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D1 =
1
1!

lim
τ→0

1
τ

M1,

D2 =
1
2!

lim
τ→0

1
τ

[
M2 −M2

1

]
,

D3 =
1
3!

lim
τ→0

1
τ

[
M3 − 3M1M2 + 2M3

1

]
,

D4 =
1
4!

lim
τ→0

1
τ

[
M4 − 4M1M3 − 3M2

2 + 12M2
1 M2 − 6M4

1

]
, (16)

D5 =
1
5!

lim
τ→0

1
τ

[
M5 − 5M1M4 − 10M2M3 + 30M1M2

2 + 20M2
1 M3

−60M3
1 M2 + 24M5

1

]
,

D6 =
1
6!

lim
τ→0

1
τ

[
M6 − 6M1M5 − 10M2

3 − 15M2M4 + 30M3
2 + 120M1M2M3

+30M2
1 M4 − 270M2

1 M2
2 − 120M3

1 M3 + 360M4
1 M2 − 120M6

1

]
.

We again note that these expressions are valid for any case of diffusion and jump-
diffusion processes. In the first case, where there are no jump terms in Equation (15),
i.e., the Ornstein–Uhlenbeck process, we know that all KM coefficients Dn(x) with n ≥ 3
are zero. However, this is not the case when estimating the coefficients from time-series
data, i.e., from one realisation of the stochastic process sampled at finite resolution. It is
common to find that these terms do not vanish due to finite-time effects. In our second case
with a jump-diffusion process, the KM coefficients Dn(x) with n ≥ 3 can be related directly
to the jump parameters. These relations were derived in reference [3], and are given by

D1(x) = a(x),

D2(x) =
1
2

[
b(x)2 + sλ

]
,

D2n(x) =
snλ

2n(n!)
,

(17)

where 〈ξ2n〉 = (2n!)
2n(n!) 〈ξ2〉n = (2n!)

2n(n!) sn, for Gaussian distributions with zero mean and
variance s.

We will now compare the derived theoretical corrections to KM coefficients estimated
from numerically generated time-series data. In Figures 1 and 2, we display the second-,
fourth-, and sixth-order KM coefficients D2(x), D4(x), and D6(x) estimated with the first-
order, second-order, and full-order approximations given by Equation (16) (or in general
Equation (14)). The full-order approximations have the same order as the KM coefficients,
i.e, second-, fourth-, and sixth-order approximation for D2(x), D4(x), and D6(x), respec-
tively. For the data shown in Figure 1, we use a Euler–Maruyama scheme to numerically
integrate an Ornstein–Uhlenbeck process Equation (15) (without the jump terms) with
parameters: drift a = 1.0 and diffusion b = 0.5 (λ = s = 0.0). We numerically integrate this
process with a coarse time-step ∆t = 0.1 to deliberately emphasise the finite-time effects
on the aforementioned KM coefficients. For example, the second-order KM coefficients
D2(x) takes a quadratic form, despite the fact that the diffusion term is constant. The KM
coefficients D4(x) and D6(x) are not truly zero, as would be expected for purely diffusive
processes [39,40], due to the finite-time effects, but the full-order finite-time correction
approximates the theoretical values with far greater detail.
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Figure 1. Non-parametrically estimated KM coefficients of an Ornstein–Uhlenbeck process (given by
Equation (15) without the jump terms) with drift a = 1.0 and diffusion b = 0.5 (λ = s = 0.0). The
abscissas are re-scaled by the standard deviation σx of x. From left to right are shown the second-,
fourth-, and sixth-order KM coefficients D2(x), D4(x), and D6(x). There are no corrections to the drift
term D1(x). Note that for D2(x) the 2nd-order and the full-order corrections are identical. The impact
of solely using the second-order approximation for D6(x) is also evident. The coefficients D4(x) and
D6(x) are theoretically zero. In all cases, the improvements to the estimation of the respective KM
coefficients Dn(x) are clear. The grey lines indicate the theoretical values. The numerical integration
has a total time of 5× 105 and a time step ∆t = 0.1 (5× 106 datapoints) with a Euler–Maruyama
scheme [33]. Consistent results are obtained when considering a much finer numerical time step ∆t
of integration and subsequently down-sampling the data.

For the data shown in Figure 2 we follow a similar approach, now augmenting
the Ornstein–Uhlenbeck process with Poissonian jumps, i.e., as given in Equation (15).
The parameters are as follows: drift a = 0.5, diffusion b = 0.5, jump amplitude with
a Gaussian distribution with variance s = 0.75 and zero mean, a Poissonian jump rate
λ = 0.6, and a time step ∆t = 0.05. For this process, we know the higher-order KM
coefficients D4(x) and D6(x) reflect the presence of discontinuous paths, which, for our
particular case of the Poissonian jump-Ornstein–Uhlenbeck process, we know the explicit
inversion in Equation (17) (cf. reference [3]). For the chosen coarse time step, we notice
that the estimations do not correspond exactly with the theoretical values, regardless of
the order of finite-time correction chosen. This can likely be traced back to the limitations
of the Kramers–Moyal equation to fully capture discontinuous stochastic processes (cf.
reference [41]). Nevertheless, the higher-order finite-time corrections approximate the
theoretical values with greater accuracy.
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Figure 2. Non-parametrically estimated KM coefficients of a jump-diffusion process given by
Equation (15) with drift a = 0.5, diffusion b = 0.5, jump amplitude s = 0.75, and jump rate λ = 0.6.
The abscissas are re-scaled by the standard deviation σx of x. From left to right are shown the second-,
fourth-, and sixth-order KM coefficients D2(x), D4(x), and D6(x). There are no corrections to the drift
term D1(x). Note that for D2(x) the 2nd-order and the full-order corrections are identical. The impact
of solely using the second-order approximation for D6(x) is also evident. The coefficients D4(x) and
D6(x) are theoretically zero. In all cases, the improvements to the estimation of the respective KM
coefficients Dn(x) are clear. The grey lines indicate the theoretical values. The numerical integration
has a total time of 5× 105 and a time step ∆t = 0.1 (5× 106 datapoints) with a Euler–Maruyama
scheme [33].
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We note here that the parameter estimation from data heavily depends on the number
of data points and the sampling rate of numerically simulated or real-world time-series
data. Real-world time-series data can often be sampled at higher sampling rates, but not
always in such a large number of datapoints. A closer inspection of the limitations of both
the sampling rate and the number of data points in parameter estimation is necessary,
but falls outside the scope of this publication. Moreover, it should be emphasised that, prior
to any examination of time-series data within the purview of either the Fokker–Planck or
the Kramers–Moyal equation, the Markov property of the data must be account for, i.e., a
vanishing memory of the increments of the data. This can be examined, for example, via
the Chapman–Kolmogorov equality [13].

Summarising our findings, we conclude that our proposed arbitrary-order finite-time
corrections considerably help in differentiating one-dimensional purely diffusive processes
and jump-diffusion processes, as these accurately show that higher-order KM coefficients
Dn(x), n ≥ 2 vanish for purely diffusive processes. These arbitrary-order finite-time
corrections should now also be considered for N-dimensional stochastic processes. A first
examination of the second-order finite-time corrections for two-dimensional processes was
recently addressed in reference [22]. Note that the one-dimensional second-order finite-time
correction for these KM coefficients was recently addressed in another publication [34].
Here, it is extended to arbitrary order.

5. Implementation: Symbolic Calculations in Python

In this section, we implement the main results from above to compute the moments
into available software packages, e.g., kramersmoyal [33] and JumpDiff [34] in Python or
Langevin [35] in R, or any self-made parametric or non-parametric estimator. In order to
facilitate numerical implementations of the higher-order corrections, we include a short
Python script to obtain the non-derivative corrections to any desired order, with the desired
truncation of the power-series expansion.

First, we present a Python code to numerically generate the conditional moments
Mn(x′, τ) as functions of the KM coefficients Dn(x′), as given in Equation (14). Here the
parameter n indicates the order of the KM coefficients/moments n and the parameter
m the order of the correction, with m≤ n. We utilise Python’s symbolic language library
sympy [42].

1 # import sympy’s functions
2 from sympy import bell, symbols, factorial
3
4 def M(n, m = 0):
5 # bound m. m = 0 gives all corrections
6 if m < 1 or m > n:
7 m = n
8
9 # generate symbols
10 t = symbols(’tau’)
11 sym = ()
12 for i in range(1, n + 1):
13 sym += (factorial(i)*symbols(’D’+str(i)),)
14
15 # iterate over the Bell polynonials
16 term = (bell(n, 1, sym))*t
17 for i in range(2,m+1):
18 term = term + (bell(n, i, sym))*(t**i)
19
20 return term

To generate the KM coefficients Dn(x′) as function of the conditional moments, the
following must be implemented:

1 # import sympy’s functions
2 from sympy import bell, symbols, factorial
3
4 def D(n, m = 0):



Entropy 2021, 23, 517 13 of 15

5 # bound m. m = 0 gives all corrections
6 if m < 1 or m > n:
7 m = n
8
9 # generate symbols
10 t = symbols(’tau’)
11 sym = ()
12 for i in range(1, n + 1):
13 sym += (factorial(i)*symbols(’D’+str(i)),)
14
15 # generate M term generator
16 def M_(n = n, sym = sym, m = m):
17 term = (symbols(’M’+str(int(n))))
18 for i in range(2,m+1):
19 term = term - (bell(n, i, sym))
20
21 return term / factorial(n)
22
23 # recursive D via n-1 M terms
24 sub = []
25 for i in range(1, n + 1):
26
27 sub += [M_(i, sym, m = m)]
28 for j in range(i):
29 sub[i-1] = sub[i-1].subs(’D’+str(j+1),sub[j])
30
31 return (sub[n-1] / t).expand(basic = True)

6. Conclusions

We have presented a set of arbitrary-order finite-time corrections to the Kramers–
Moyal operator, solved by exponentiating the Kramers–Moyal operator, equivalent to
van Kampen’s system-size expansion. We expressed the exponential operator as a power
series and worked out each element of the series, ultimately combining it in a series
representation via the partial Bell polynomials. We obtained a closed form for the set of
arbitrary-order finite-time corrections relating the conditional moments to the Kramers–
Moyal coefficients. Moreover, by representing the arbitrary-order finite-time corrections
with partial Bell polynomials, we derived a reciprocal relation for the conditional mo-
ments and the Kramers–Moyal coefficients. This provided a closed-form representation
of the Kramers–Moyal coefficients via conditional moments, which is crucial for time-
series data estimation. We included two illustrative cases of poorly sampled diffusion and
jump-diffusion processes with constant diffusion and constant jumps, demonstrating the
suitability of our corrections for a non-parametric estimation of higher-order Kramers–
Moyal coefficients. Our corrections approximated the theoretical values with a high degree
of accuracy and help to distinguish processes with and without jumps. We are confident
that our arbitrary-order finite-time corrections contribute to an improved reconstruction of
stochastic evolution equations from empirical time-series data.
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