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Abstract
Power-grid systems constitute one of the most complex man-made spatially extended structures.
These operate with strict operational bounds to ensure synchrony across the grid. This is
particularly relevant for power-grid frequency, which operates strictly at 50 Hz (60 Hz).
Nevertheless, small fluctuations around the mean frequency are present at very short time scales
<2 s and can exhibit highly complex spatio-temporal behaviour. Here we apply superstatistical
data analysis techniques to measured frequency fluctuations in the Nordic grid. We study the
increment statistics and extract the relevant time scales and superstatistical distribution functions
from the data. We show that different synchronous recordings of power-grid frequency have very
distinct stochastic fluctuations with different types of superstatistics at different spatial locations,
and with transitions from one superstatistics to another when the time lag of the increment
statistics is changed.

1. Introduction

Power-grid systems represent one of the most complex and largest man-made technological structures,
which are permanently active and constantly evolving. These systems supply the power needed for modern
society to function. In order to exchange power between producers and consumers, the grid systems operate
as coupled oscillators in strict phase locking, rotating synchronously at a nominal power-grid frequency
(e.g. 50 Hz or 60 Hz). Understanding the nature of power-grid frequency is crucial as it represents one of
the key observables in power system operation and stability as it measures the power balance in the grid: it
increases in periods of over generation and decreases in periods of scarcity [1]. If frequency deviation
exceeds a threshold dedicated control power plants are ramped up or down to restore the power balance
[2]. At first glance, one could be led to believe that the power-grid frequency is identical across a power
grid. This, however, is not the case, as many studies have indicated [3–7]. Besides oscillations in areas in a
power-grid, denoted as intra-area oscillations [8], and equivalently across areas in a grid, denoted as
inter-area oscillations [9], the presence of other small-scale fluctuations is ubiquitous. These stochastic
fluctuations, i.e., stochastic noise with complex spatio-temporal properties, carry their own physical
relevance and dictate particular physical aspects of each location’s properties. They are influenced by many
different factors, such as demand fluctuations, fluctuations in renewable energy production, control actions,
trading, and so on.

The spatio-temporal complexity inherent in small frequency fluctuations in power grids is immense,
and requires new techniques of analysis to obtain further insight. In this article we apply superstatistical
analysis to this problem, concentrating onto the increment statistics of experimentally measured frequency

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac08b3
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-5513-0580
https://orcid.org/0000-0003-1607-9748
https://orcid.org/0000-0002-3623-5341
https://orcid.org/0000-0002-4818-6997
mailto:l.rydin.gorjao@fz-juelich.de


New J. Phys. 23 (2021) 073016 L R Gorj̃ao et al

fluctuations. Superstatistical methods, as introduced in references [10, 11], provide a general approach to
describe the dynamics of complex non-equilibrium systems with well-separated time scales. These types of
models generate heavy-tailed non-Gaussian distributions by a simple mechanism, namely the superposition
of simpler distributions whose relevant parameters are random variables, fluctuating on a much larger time
scale. Originating in turbulence modelling [12], superstatistics has been applied to many physical systems,
such as plasma physics [13, 14], spin systems [15], cosmic rays [16, 17], self-gravitating systems [18], solar
wind [19], high-energy scattering processes [20–22], ultracold gases [23] and non-Gaussian diffusion
processes in biophysical systems [24–26]. Furthermore, the concept has been successfully applied to other
areas as well, for example to environmental time series (e.g. oxygen concentration in rivers) [27], wind
statistics [28], air pollution [29], bacterial DNA [30], financial time series [31, 32], rainfall statistics [33],
train delays [34], and plane delays [35]. In all these cases, an underlying simple distribution, typically
Gaussian or exponential, is identified to explain the observed heavy tails of the marginal distributions when
integrating over a fluctuating parameter. These tails often decay with a power law, although the precise form
of the tails depends on the kind of superstatistics considered [36].

One of the most commonly used methods to examine the properties of time series data on smallest
temporal scales is to study their increment statistics [37, 38], a technique very well-known from turbulent
flows [11, 12, 39–41]. These increments — a set of differences of the time series with given fixed time lag
— carry the most fundamental stochastic properties of the underlying noise within the data. For our
particular application, these properties include stochastic fluctuations, their scaling properties, and
correlations between fluctuations. One common aspect is the emergence of heavy tailed statistics in
incremental time series, a property well suited to be described by superstatistics. With respect to power-grid
frequency fluctuations, on the one hand we know that two synchronous measurements of the power-grid
frequency in the same synchronous region will be basically identical at timescales >5–10 s. On the other,
recent studies by us [42–44] indicate that at scales <5 s the phase and amplitude synchronisation is not
fully achieved, thus recordings of distant locations show local independent properties.

In this paper, we apply the superstatistical approach to unravel the underlying physics of synchronous
power-grid frequency recordings, taken at six different sites in the Nordic grid. We examine the
characteristics of superstatistical properties in incremental time series of the power-grid frequency. We show
that, as observed in reference [44], at scales roughly >2 s the strong phase locking in coupled power-grid
systems dictates the statistical properties of power-grid frequency. At small timescales, <2 s, each recording,
at a different location, shows distinct superstatistical properties. We also observe that below <2 s there is no
change of the entropic index q, suggesting no change in the superstatistical description in that range.
Generally the southern region of the Nordic grid exhibits higher entropic indices q, indicating that the
internal properties of the processes vary greatly.

Our main result, from the superstatistical perspective of the complexity of the power grid, is that the
grid consists of different spatial regions with different types of superstatistics, which themselves depend on
the time lag chosen for the increment statistics. We observe best fits for a combination of lognormal,
gamma (or χ2), inverse gamma (or inverse χ2), and F-superstatistics in various spatial regions. This
complexity is higher than in, e.g. isotropic turbulent flows, where usually only one type of superstatistics is
observed, which typically is lognormal superstatistics [12].

2. Background and methods of analysis

2.1. Power-grid frequency dynamics
In this article we focus on six synchronous power-grid frequency recordings from the Nordic grid recorded
continuously between 21:00 of the 9th to 09:00 of the 11th of September, 2013, with a time sampling of
0.02 s, sufficient to examine the stochastic properties at each location of the recordings in great detail. The
locations of the recordings are indicated by the acronyms of the universities where the recordings were
taken: Chalmers University of Technology Gothenburg (CTH); Faculty of Engineering, Lund University
(LTH); Royal Institute of Technology Stockholm (KTH); Luleå University of Technology (LTU); Tampere
University of Technology (TTY); Aalto University (AU). These data come from a former
phase-measurement unit network of collaborating universities in the nordic countries, which was in
operation between 2012 and 2014 [45].

In figure 1(a) we show the approximate location of each recording illustrated on a map of the Nordic
grid synchronous area (comprising Norway, Sweden, Finland, and Zealand in Denmark). In panel (b) we
show excerpts of half an hour of recordings, vertically displaced for clarity.

Synchronous power-grid systems operate at a set frequency to ensure synchrony across the synchronous
region—this is the nominal frequency of 50 Hz (60 Hz). From a physical point-of-view, we can understand
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Figure 1. Locations and excerpts of the power-grid frequency recordings. (a) Approximate locations of the recordings across the
Nordic grid: Chalmers University of Technology Gothenburg (CTH); Faculty of Engineering, Lund University (LTH); Royal
Institute of Technology Stockholm (KTH); Luleå University of Technology (LTU); Tampere University of Technology (TTY);
Aalto University (AU). (b) Excerpts of the recordings in a 30 min timescale. The recordings were taken synchronously and have a
time sampling of 0.02 s [46].

each location as a node on a complex network of phase-locked oscillators, each with a given inertial mass
Mi, a damping constant ci, obeying (in a very reductive description)

Mi
d2θi

dt2
= −ci

dθi

dt
+ Pm

i −
∑
j∈W

Pe
j , (1)

with θi the angle of each machine in a co-rotating frame of W interacting machines, Pm
i the power produced

and injected by that machine, and Pe
j the electrical power extracted by all other machines/loads. From a

more practical point-of-view, we do not have access to this information for all synchronous machines i in a
given area. What we can easily extract from a power-grid is, for example, the frequency fi = dθi/dt (or
angular velocity) at a particular location. This is given, in good approximation, by a Langevin equation [47]

dfi

dt
= −γifi + σiΓi(t), (2)

with γ i a friction force (related in some fashion to ci and Mi) and Γi(t) some noise function, possibly
temporally and spatially correlated, with amplitude σi.

Here we are not directly interested in the power-grid frequency, but in the incremental properties of the
six measured time series. The increments of the recordings Δfτ (t) are given by [38]

Δfτ (t) = f (t + τ) − f (t), (3)

where τ is the incremental time lag. In this way we move from a picture in real time t to a ‘scale process’ in
incremental time lag τ , particularly for small τ < 5 s. Note here that by examining incremental processes,
on these short time scales, one basically excludes the deterministic elements of the process and deals solely
with the stochastic characteristics of the fluctuations themselves. This eliminates concerns about
deterministic activity or other long-scale phenomena (>5 s), e.g. dispatch activity, control mechanisms, or
power flow changes.

2.2. Leptokurtic increment statistics
One of the most important properties to study for such incremental time series is their probability
distribution. Some previous studies of power-grid frequency involving a stochastic element already remark
on the distinct features seen at the level of the increments [3–5, 43, 44]. Increments statistics often is
non-Gaussian, displaying heavy tails for small time lags, commonly quantified by the kurtosis κ(Δfτ ), i.e.,
the fourth standardised moment, which is given by

κ(X) = E

[(
X − μX

σX

)4
]
=

E
[
(X − μX)4

](
E
[
(X − μX)2

])2 , (4)
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Figure 2. (a)–(c) PDF of incremental time series Δfτ of power-grid frequency recordings at incremental lags τ = 0.02 s and
τ = 1.20 s (vertically displaced for clarity). (d) Kurtosis κ(Δfτ ) of incremental time series with τ ∈ [0.02 s, 5s]. The horizontal
dotted line indicates the kurtosis of a normal distribution κN = 3. All incremental time series are leptokurtic, i.e. heavy tailed,
and their tails become less pronounced as τ increases. Inset shows τ ∈ [0.02 s, 0.5 s]. Vertical axis in logarithmic scale.

where X is a random variable (representing the increments), E[·] is the expected value, μX is the mean value
of X, and σ2

X its variance.
In figures 2(a)–(c) we display the distributions of the increments at the six locations at the shortest

incremental lag τ = 0.02 s and at τ = 1.20 s in a vertical logarithmic scale. Firstly, we note that rather
distinct distributions are immediately evident — some with considerable heavy tails, some less so. Recall
that a normal distribution, in a vertical logarithmic plot, is an inverted parabola. This is a first, yet clear
evidence for the presence of different local stochastic properties in power-grid frequency fluctuations. There
can be numerous reasons for this: characteristics of the local generation, e.g. renewable energy generation,
nuclear, or fossil fuel, differences of local consumption patterns, distant consumption requiring transferring
power over transmission lines, and so on.

In order to adequately quantify the heavy-tailedness of these incremental time series we examine the
kurtosis κ as a function of the incremental lag τ , in a similar way as this is done in turbulent flows [48]. In
figure 2(d) we show the kurtosis κ(Δfτ ) of the incremental time series Δfτ with τ ∈ [0.02 s, 5 s]. The
horizontal dotted line indicates the kurtosis of a normal distribution, i.e., κN = 3. One can clearly observe
all recordings exhibit κ(Δfτ ) > 3 for all τ , and as τ increases, the kurtosis of the increments tends to
κ(Δfτ�0) ≈ 3.35. Distributions with large kurtosis, i.e., κ > 3, are called leptokurtic (conversely
platykurtic). Similar phenomena were observed for various other power-grid frequency recordings [42, 43],
yet a clear explanation why the incremental time series does not fully relax to a normal distributions with
κ = 3 on a large scale is currently absent.

In the following section we will employ superstatistics as the possible mechanism to explain the presence
of leptokurtic incremental time series. Such a superstatistical approach offers an explanation for the
observed leptokurtic probability distributions. However, for this to work one has to carefully examine if
time scale separation is realised for power-grid frequency fluctuations, such that a superstatistical treatment
is justified.

2.3. Superstatistical generation of leptokurtic distributions
We start from the usual assumption of superstatistics that the underlying equilibrium state of the increment
statistics is a simple distribution, i.e. Gaussian, on a suitable time scale T to be determined. This agrees with
our formulation of the power-grid frequency dynamics as a Langevin equation in (2). We should note here
that the assumption of a locally Gaussian dynamics is the simplest choice in this context and given our data
for the Nordic grid, this assumption seems well justified. However, in more complex situations this
assumption may not always hold, for example for power grids (unlike the Nordic grid) where there is a large
fraction of volatile renewable energy generation, as wind and solar, one may expect some intrinsic
non-Gaussian behaviour already at local level (cf [3–5]). In these settings, one could investigate more
complicated types of models with local processes that are intrinsically non-Gaussian, and then study a
superstatistics with fluctuating parameters for these types of local processes. This would correspond to a
nonlinear generalisation of the drift term in the Langevin equation (2).

The increment statistics of the entire time series can then be viewed as a superposition of Gaussian
distributions with different variances, weighted via a scaling function f(β), in itself a normalised probability
distribution, such that the probability density function (PDF) p(Δfτ ) of the increments Δfτ is given by

p(Δfτ ) =

∫ ∞

0
f (β)pN (Δfτ |β)dβ, (5)

with

pN (Δfτ |β) =

√
β

2π
e−

1
2 βΔf 2

τ (6)
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Figure 3. Obtaining the long superstatistical time T for the incremental time series Δfτ with τ = 0.04 s. Snippets of size δt of
each incremental time series are taken and the average kurtosis is obtained. The long superstatistical time T is obtained at the
crossing where κ = 3, i.e., the distributions are normal (horizontal dotted line). Each circle indicates this crossing, with
respective long superstatiscal times T for each location being TCTH = 0.38 s, TLTH = 0.46 s, TKTH = 1.58 s, TLTU = 0.78 s,
TTTY = 0.56 s, TAU = 1.90 s.

i.e., a normal distribution dependent on a scaling parameter β, regarded as a volatility.
What underlies the description of a superposition of Gaussian distributions has a clear physical

explanation: the process’ internal characteristics change in time. This is not hard to imagine. The amount of
power generation and consumption changes over the day, and so does the contribution of each type of
energy source, the total inertia of the system (linked to the number of conventional generator connected to
the power grid), amongst many other properties of generation, consumption, and power transport.

Two points are crucial here: firstly, the superstatistical distribution f(β) can be different at each spatial
location, as we will see. Secondly, in principle, the shape of f(β) can change for different incremental lags τ .
The PDF f(β) can generally be any appropriate and normalised distribution with support in [0,∞). We will
subsequently discuss four candidate distributions for f(β): the log–normal distribution, the gamma
distribution (or χ2 distribution), the inverse-gamma distribution (or inverse χ2 distribution), and the F
distribution, in line with what was done in reference [10]. In our analysis, we will also show that it is hard
to extract a particular distribution f(β) in an unambiguous way, i.e., many distributions are consistent with
the data.

The procedure to extract f(β) from a given data set is as follows. Under the assumption that different
scales exist in the incremental time series of power-grid frequency recordings, one segments the data into
small sub-slices, called ‘snippets’ in the following. Then one studies each snippet’s probability distribution.
Particularly, one examines each snippet of the incremental time series — for τ = 0.04 s to begin with
— and extracts its kurtosis, which we then average for all snippets with a window of length δt

κδt(Δfτ ) =

〈
1
δt

∑jδt
i=(j−1)δt+1Δfτ

4
i

( 1
δt

∑jδt
i=(j−1)δt+1Δfτ

2
i )2

〉
δt

(7)

with 〈·〉δt the average over each snippets’ length.
For very short snippets the average snippet kurtosis k(δt) is smaller than 3, i.e., the average distribution

shows a lack of tailedness (it is platykurtic). As the snippets increase in size δt, the average kurtosis grows.
As we have seen in figure 2(d), in the limit of the snippet being equal to the entire time series, the kurtosis is
larger than 3, thus there is a certain snippet size — at the long superstatistical time T — at which the
average snippet kurtosis is 3

κδt(Δfτ ) ≡ 3, (8)

and thus the snippets are, on average, Gaussian distributed for this particular time scale.
In figure 3 the procedure of finding the long superstatistical time T is illustrated, for the incremental

time series with τ = 0.04 s. The circles indicate the crossing at which the snippets are normally distributed,
from which we determine the long superstatistical time T. Notice here that this long superstatistical time T
is depending on the location where the time series is measured. It also varies for different incremental
lags τ .

Having obtained the superstatistical timescale T for each time series (see figure 3), i.e., the snippet
length at which the average snippet kurtosis is 3, one can subsequently extract the distribution of the scaling
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Figure 4. Scaling function f(β) of incremental time series at incremental lag τ = 0.04 s. (a) displays a shrunk scaling function
with a maximum value of 1 for visual comparison (f̄ (β) = f (β)/max(f (β))). (b) and (c) display the scaling function f(β) in a
double logarithmic scale. The best fitting distribution is displayed for each location according to the minimisation of the
Kolmogorov–Smirnov distance Dn in (14), as found in table 1. In CTH: gamma; in LTH: F; in KTH and LTU: gamma; in TTY
and AU: inverse gamma. Distributions obtained for τ = 0.04 s. The superstatiscal times T for each location are TCTH = 0.38 s,
TLTH = 0.46 s, TKTH = 1.58 s, TLTU = 0.78 s, TTTY = 0.56 s, TAU = 1.90 s.

function f(β) by extracting the inverse of the variance of each snippet at δt = T

βT(t) =
1

〈Δf 2
τ 〉T − 〈Δfτ 〉2

T

. (9)

We thus get a distribution of values for βT(t) from which we determine the scaling function f(β) by simply
finding its distribution, i.e., examining its histogram. Notice that if all snippets have the same variance then
the function f(β) is very narrow (in the limit it is a single point, i.e., a Dirac delta function). This means
that there are no changes of β and the internal characteristics of the time series remains the same over time.
If the variance of each snippet varies, one obtains a distribution, which is given by f(β).

In figure 4 the underlying distributions f(β) are extracted from the incremental time series at
incremental lag τ = 0.04 s [11], simply by doing a histogram of β as observed in each time slice. In panel
(a) we display the distributions of f̄ (β) = f (β)/max(f (β)), which have been rescaled such that each
distributions’ peak has a maximum value 1, so that they are visually comparable. We immediately see
different widths for f(β) for the different locations.

As stated, we do not assume a priori a specific distribution f(β)—on the contrary, we wish to find this
just from the distribution of the volatilities β in our given data set. Note that many theoretical distributions
can be compatible with the data. We will show that many suggested distributions are compatible, although
the Kolmogorov Smirnov test will point to a particular one as having least distance. One then sees that
different location have different f(β) distributions.

An interesting result is the fact that the shape of the distribution f(β) is influenced by the time lag of the
increment statistics. Accordingly, at larger time lags one obtains different optimal fits. This is shown in
table 2.

We consider here four candidate distributions. A log–normal distribution flogN (β) of two parameters
s > 0 and μ with PDF given by

flogN (β) =
1√

2πsβ
exp

(
− (ln β − μ)2

2s2

)
, (10)

with β ∈ (0,∞). A gamma distribution fΓ(β) of two parameters b > 0 and c > 0 with PDF given by

fΓ(β) =
1

bΓ(c)

(
β

b

)c−1

exp

(
−β

b

)
, (11)
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Table 1. Kolmogorov–Smirnov distance Dn (upper value), given by (14), and
relative percentual difference from smallest Dn (lower value) for volatilities β at
incremental lag τ = 0.04 s. The long superstatistical time T for each location is
also indicated. Four candidate distributions are fitted with a maximum
likelihood estimation: log–normal flogN (β) (10), gamma fΓ(β) (11), inverse
gamma finvΓ(β) (12), and F fF(β) (13). In bold are indicated the smallest
Kolmogorov–Smirnov distances Dn for each location. The percentual values are
calculated via (Dn − min(Dn)) /min(Dn) for each location.

Location T flogN (β) fΓ(β) finvΓ(β) fF(β)

CTH 0.38 s
0.0344 0.0326 0.0473 0.0384
5.5% 0.0% 45.0% 17.7%

LTH 0.46 s
0.0178 0.0988 0.0081 0.0080
124.4% 1141.9% 1.3% 0.0%

KTH 1.58 s
0.0287 0.0180 0.0319 0.0184
59.4% 0.0% 77.2% 2.1%

LTU 0.78 s
0.0251 0.0121 0.0299 0.0147
106.8% 0.0% 146.7% 1.2%

TTY 0.56 s
0.0249 0.0342 0.0239 0.0240
4.2% 43.1% 0.0% 0.4%

AU 1.90 s
0.0023 0.0048 0.0016 0.0024
43.5% 198.0% 0.0% 46.7%

with β ∈ (0,∞) and Γ the gamma function. An inverse gamma distribution finvΓ(β) of two parameters
b > 0 and c > 0 with PDF given by

finvΓ(β) =
bc

Γ(c)

1

βc+1
exp

(
− b

β

)
, (12)

with β ∈ [0,∞). Lastly, we consider as well an F distribution fF(β) of three parameters, v and w positive
integers and b > 0, with PDF given by

fF(β) =
Γ((v + w)/2)

Γ(v/2)Γ(w/2)

(
bv

w

)v/2
βv/2−1(

1 + vb
w
β
)(v+w)/2 , (13)

with β ∈ [0,∞).
Naturally the subsequent question is how to assess which distribution best fits the volatilities β we

extracted. The Kolmogorov–Smirnov test is a non-parametric test that evaluates the equality of two
continuous distribution functions via their cumulative density functions (CDF). The Kolmogorov–Smirnov
distance gives the maximal difference between the empirical cumulative distribution function Fn(β) (for us
given by the the CDF of the empirical f(β)) and a chosen cumulative distribution function F(β) (one of our
four candidate distributions). It is given by

Dn = sup
β

|Fn(β) − F(β)|, (14)

with sup denoting the supremum. We do not have access to the true cumulative distribution function Fn(β)
thus we employ a numerical maximum likelihood estimation for each of the four aforementioned
distributions (10)–(13).

In table 1 we display the Kolmogorov–Smirnov statistics Dn in (14) for each location and all four
distributions for the incremental lag τ = 0.04 s. We note two things: different distributions are a best fit for
different locations, but often the Kolmogorov–Smirnov distance Dn is considerably small for another
distribution as well. The highlighted numbers indicate the smallest Kolmogorov–Smirnov distances Dn.
These are compared percentage-wise by taking the difference of the Kolmogorov–Smirnov distances Dn

divided by the smallest Dn of each location. Whereas in CTH a gamma distribution minimises the
Kolmogorov–Smirnov distance Dn, in LTH the F-distribution is better suited, in KTH and LTU a gamma
distribution is again suited best and lastly in TTY and AU the inverse gamma distribution comes first. Apart
from AU, to which we will return later, there is always another distribution which would fit the empirical
distribution f(β) with a comparably small Kolmogorov–Smirnov distance Dn. In other words, the best
theoretical model cannot be identified unambiguously.

We also note that the best-fitting distribution can change if the incremental time lag τ is changed, e.g.
compare table 1 with table 2. This is not surprizing for two reasons: firstly, the strong coupling between the
locations can influence the statistics of each location. Secondly, the data itself is limited to 36 h of
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Table 2. Kolmogorov–Smirnov distances Dn (upper value), given by (14), and
relative percentual difference from smallest Dn (lower value) for volatilities β at
incremental lag τ = 1.20 s. The two locations LTH and KTH are not examined in
section 3 due to their coupling, leading to large variations in each recordings’
kurtosis. Note the differences of optimal fits as compared to table 1, which is for a
much smaller time lag.

Location T flogN (β) fΓ(β) finvΓ(β) fF(β)

CTH 0.24 s
0.0432 0.0968 0.0545 0.0521
0.0% 123.9% 26.0% 20.4%

LTH∗ 0.26 s
0.0372 0.0591 0.0202 0.0200
85.8% 195.3% 0.9% 0.0%

KTH∗ 112.5 s
0.0222 0.0314 0.0230 0.0228
0.0% 41.3% 3.6% 2.6%

LTU 0.60 s
0.0454 0.0629 0.049 0.0317
43.1% 98.5% 54.6% 0.0%

TTY 0.50 s
0.0216 0.0243 0.0235 0.0168
28.5% 44.5% 40.1% 0.0%

AU 20.84 s
0.0103 0.0047 0.0137 0.0052
118.3% 0.0% 189.8% 10.8%

continuous measurements, which is not sufficient to uncover with exactness the underlying statistics, if
there truly is a single one.

We thus conclude that that there is some ambiguity to identify the precise particular form of
superstatistics from the given data. This nevertheless does not prevent us from examining in detail intrinsic
properties of the incremental time series as a function of the incremental lag τ , as we will do in the next
section.

3. Superstatistical properties as a function of the incremental time lag

In order to ensure that a superstatistical description is viable, we need to determine whether a given time
series achieves a local equilibrium at a scale much smaller than the superstatistical variation time scale of
the parameter β, given by the long superstatistical time T. To do so, we examine the relaxation time of the
correlation function of the incremental time series. Recall that the auto-correlation function is given by

C(t − t′) = E[(X(t) − μX)(X(t′) − μX)], (15)

where for our case here X(t) = Δfτ (t) (or X(t) = β(t)), i.e., we examine the auto-correlation function of the
incremental time series Δfτ (t) (or of the volatilities β(t)). Assuming that the correlation function initially
decays exponentially for the incremental time series, we can extract the decay time ρ of the exponential
relaxation, i.e., ρ such that C(d) = e−1C(0), which dictates the short superstatistical time d.

To ensure a superstatistical description is possible, the short superstatistical time needs to be smaller
than the large superstatistical time d � T, as the names suggest [49]. This guarantees that, locally, each
incremental time series reaches an equilibrium before the larger scale superstatistics changes the physics of
the process. In figure 5 we examine this relation for varying incremental lags τ , confirming that for
incremental lags τ � 1.2 s the relation d � T holds. We mark here a transition time at roughly τ ≈ 1.2 s as
the starting incremental lag where superstatistics loses validity, with the clear exception of the recordings at
AU. We note that in another work by us [44] we show that this is roughly the same scale where the
power-grid frequency increments at different location lose their independence and their phases become
effectively identical to each other. This seems to be simultaneously the scale where the superstatistical
modelling loses validity. Interestingly, the ratio of statistical times T/d decreases with τ (with the exception
of AU), which appears to be in contrast to what is observed in turbulent flows [11].

We have thus uncovered a time scale separation: at very short incremental lags τ < 1.2 s a
superstatistical study is justified (d � T). At incremental lags τ > 1.2 s this clear time scale separation
ceases to exist. In the following we will present our numerical results for the probability density f(β) at very
short lags τ = 0.06 s, at large lags τ = 1.20 s, and for four intermediate choices indicated in figure 5 by
circles, τCTH = 0.30 s, τLTU = 0.70 s, τTTY = 0.16 s, and τAU = 0.38 s. These are the inflection points
observed in figure 5. In figure 6 we display the results. LTH and KTH are not presented since they exhibit a
varying kurtosis and strong correlation, and a somewhat atypical behaviour.

As mentioned before, we cannot unambiguously distinguish between different theoretically possible f(β)
for the different time lags, as for some distributions the Kolmogorov–Smirnov distance Dn (or other
metrics to determine the agreement of a fitting function with the data) are similar. We note that f(β) varies
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Figure 5. Ratio of superstatistical times T/d (long over short superstatistical times) for increasing incremental lags τ , in a double
logarithmic scale. For short incremental lags τ < 1.2 s the ratio T/d is large, ensuring a superstatistical description is adequate.
Noticeably is the fact that T/d decreases for almost all incremental time series, with the exception of AU. The vertical lines, at
τ = 0.06 s and τ = 1.20 s, combined with the four circles (◦) indicated the incremental lag at for which we display scale
functions f(β) found in figure 6. Circles (◦) are τCTH = 0.30 s, τLTU = 0.70 s, τTTY = 0.16 s, and τAU = 0.38 s. LTH and KTH are
excluded due to their strong coupling resulting in abnormal variations of the kurtosis of the incremental lags.

Figure 6. Underlying scaling function f(β) of incremental time series for (a) CTH, (b) LTU, (c) TTY, and (d) AU, for
incremental lags τ = 0.06 s (� top) and τ = 1.20 s (♦ bottom). The delay choices of τ are indicated in figure 5 by the two
vertical dashed lines and the four circles (◦). The distributions are vertically displaced for clarity. Solid lines indicate the best
fitting distributions. The bottom panel displays for each location the correlation function of the incremental time series CΔfτ and
the correlation function of the volatility β(t), Cβ , for the two larger choices of incremental lag τ . The incremental time lags and
best-fitting distributions are: CTH—(�) τ = 0.06 s, flogN (β); (◦) τ = 0.30 s fΓ(β); (♦) τ = 1.20 s flogN (β). LTU—(�)
τ = 0.06 s, fF(β); (◦) τ = 0.70 s fF(β); (♦) τ = 1.20 s fF(β). TTY—(�) τ = 0.06 s, finvΓ(β); (◦) τ = 0.16 s fF(β); (♦) τ = 1.20 s
fF(β). AU—(�) τ = 0.06 s, finvΓ(β); (◦) τ = 0.38 s fF(β); (♦) τ = 1.20 s finvΓ(β). See tables 1 and 2 for the exact
Kolmogorov–Smirnov statistics at each location.

both with the time lag as well as with the location where the measurements are done. Take for example the
recordings at AU: at τ = 0.04 s and at τ = 0.06 s f(β) it resembles an inverse gamma distribution; at
τ = 0.38 s fF(β) an F-distribution; at τ = 1.20 s again an inverse gamma distribution. Assuming this is a
stable result and not just a statistical fluctuation, this means there are transitions from one superstatistics to
another. This phenomenon of transitions between different types of superstatistics giving optimal fits to the
data as a function of the time lag has been previously observed in references [31, 50] for financial time
series (share price differences) as a function of the time lag.

Next, we display for each of the four examined incremental time series correlation functions, both for
the original incremental time series and as well as for the extracted volatility β(t) (figure 6, bottom panels).
From the physical point of view of superstatistics, the correlation of β(t) must be longer than that of the
original incremental time series, as we have previously discussed. This guarantees that each incremental
time series de-correlates faster than the changes in the superstatistical environment, ensuring an
equilibrium is obtained locally before the system’s physics changes. This is verified for all cases.
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Table 3. Entropic index q for three different incremental lags τ = 0.02 s,
τ = 0.04 s, and τ = 1.20 s at CTH, LTU, TTY, and AU. We note here that
the entropic index q at each location does not change much while varying
the incremental lag τ , yet it is different for each location, indicating clearly
the different nature of the fluctuations at each location.

Location τ = 0.02 s τ = 0.04 s τ = 1.20 s

CTH 1.772 1.838 1.799
LTU 1.572 1.618 1.568
TTY 1.506 1.492 1.397
AU 1.119 1.103 1.253

Let us finally quantify the strength of the fluctuations of the volatilities β. If there were no fluctuations
of β, the distribution would be sharply peaked, i.e., in (5), f(β) = δ(β − 〈β〉). Following the original work
[10], we quantify the width of the fluctuations of β via the general entropic index q, defined for any
superstatistics as

q =
〈β2〉
〈β〉2

, (16)

which evaluates the width of the variations of β. As mentioned before, if we observe no variations in β, our
data would not exhibit heavy tails and the entropic index would be just q = 1.

In general one cannot analytically evaluate (5). Depending on the different distributions given in
(10)–(13), one might or might not be able to solve the integral. Nevertheless, for small fluctuations of β the
integral in (5) can be expanded. For small σ2 = 〈β2〉 − 〈β〉2 we obtain

p(Δfτ ) = pN (Δfτ |〈β〉)
[

1 +
1

8
σ2Δf 4

τ +O(σ3)

]
= pN (Δfτ |〈β〉)

[
1 +

1

8
(q − 1)〈β〉2Δf 4

τ +O(σ3)

]
, (17)

with q as given in (16). The expectations 〈βk〉 in (17) are either directly formed with f(β) (type-A
superstatistics) or with a slightly deformed f̃ (β) ∼

√
βf (β) (type-B superstatistics), see reference [10] for

more details. Again, if q = 1, p(Δfτ ) = pN (Δfτ |〈β〉) and we then expect no heavy tails in our increment
distribution.

In table 3 the entropic indices q for CTH, LTU, TTY, and AU, for three different incremental time lags,
are shown. The q-values do not change significantly with τ , which is understandable given that the
correlation times of the volatilities β are far larger than the chosen ranges of τ . What is noticeable is that
each location has a very different entropic index q. This tells us that the width of fluctuations of the
volatilities at each location are very different in amplitude, a spatial heterogeneity for the power grid on
large spatial scales. Whereas large q are observed at CTH, indicating strong fluctuations in β, at AU these
fluctuations are much smaller.

4. Conclusion

In this article we focussed on examining the spatio-temporal complexity of the stochastic properties of six
synchronous recordings of power-grid frequency in the Nordic grid synchronous area, for some example
time series measured in the year 2013. A priori one would expect power-grid frequency to be essentially
indistinguishable across a synchronous power grid due to the strong phase locking at play at each power
generator in the power grid. This nevertheless does not preclude stochastic fluctuations being present in the
recordings — these are indeed ubiquitous and they exhibit complex behaviour on various temporal and
spatial scales.

We have shown that the increment probability densities at six spatially distant locations show heavy tails
which are quite different for each of these locations. We introduced a superstatistical model for this,
considering the incremental statistics as arising from a superposition of Gaussian distributions via a
superstatistical scaling function (a probability density of local variances). We showed that there is time scale
separation in the system (a necessary condition for superstatistics to work) for small time lags, and that
there is a crossover at incremental lags τ = 1–2 s where this description loses validity. This is in line with
previous observations on the emergence of phase synchronisation in the same recordings [44]. Moreover,
we note that although we observe a fast decrease of the kurtosis as we increase each location’s incremental
time lag, the superstatistical properties remain very similar, i.e., the entropic indices q remain constant. This
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indicates that the decrease of the kurtosis for these recordings is not caused by a change in the internal
properties of the system, it is more likely due to the strong phase locking between generator machines.

Although the data have a very high temporal resolution (0.02 s) they cover only 36 h of activities. We
nevertheless can quantify the strength of the fluctuations of the parameter β of the underlying physical
process by studying the entropic index q of each recording, which is a measure for the typical width of the
fluctuations in β. We observe that the entropic index q remains largely constant in the range <1.2 s, yet it is
different for each spatial location, indicating that the physics of the increments is highly inhomogeneous on
a large spatial scale and dependent on the location of the recording in the power grid. This indicates that the
underlying physics of the increment statistics is different at each location, and these fluctuations are
stronger in the southern part of the Nordic grid — the more populated area of the Nordic grid. This points
to the need of having stronger local control mechanisms at points where more power is consumed.

From a superstatistical point of view, a particularly interesting result of our investigation is that the
performed Kolmogorov–Smirnov tests point to different types of superstatistics being relevant at the six
different locations, meaning there are different superstatistical distribution functions f(β) giving the best fits
to the data in the different regions. Of course, this spatial inhomogeneity should still be confirmed with
bigger data sets and longer time series of other power grids in the future. Nevertheless, it is apparently a
phenomenon that deserves further investigation, as it is a phenomenon more complex than for
homogeneous hydrodynamic turbulence, where usually just one type of superstatistics (lognormal
superstatistics) is sufficient. Crossovers from one superstatistics to another occur also as a function of the
time lag for our data, this phenomenon has been previously observed for financial time series in references
[31, 50]. Of course, some caution must be taken here, in the sense that a deeper statistical analysis for larger
and longer data sets is necessary to confirm this result of different types of superstatistics acting in a
co-existing way.

To summarise, power-grid frequency, recorded synchronously across the Nordic grid in our
investigation, exhibits very complex spatio-temporal behaviour, if the small fluctuations around the mean
are carefully taken into account by doing increment statistics. On the one hand, each recording is very
similar given the strong phase-locking within the power grid, on the other hand, the recorded power-grid
frequency fluctuations follow different types superstatistics, depending on the spatial location, and
depending on the time lag considered.

Software: numerical calculations and distribution fittings performed with python’s SciPy [51] and
NumPy [52]. Figures generated with Matplotlib [53].
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