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Abstract: A hierarchical control approach is proposed for hybrid systems with discrete-valued input 

based on fuzzy discrete abstraction and model predictive control (MPC) scheme. The system is firstly 

abstracted to a discrete event system (DES). Then a higher-level supervisor is designed to provide the 

control input alphabet for each discrete state, while a fuzzy model predictive controller is developed for 

the original system in the lower level. Simulation results of emergency frequency control of electric 

power systems are provided to show the superior frequency recovery characteristic of the proposed 

hierarchical control scheme in comparison with two existing control methods. 
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1. INTRODUCTION 

In recent years, one of the most important research topics in 

the area of hybrid dynamic systems is the design of hybrid 

system whose input is restricted to the discrete-valued (or 

symbolic) signals (Minami, 2016). Discrete-valued control is 

a control mechanism that achieves control objectives with 

control actions taking values in a finite alphabet (e.g., bang-

bang control) (Ikeda, Nagahara and Ono, 2017). This kind of 

control signals commonly exists in many types of control 

systems, such as mechanical systems, chemical plants, and 

networked systems (Azuma and Sugie, 2008). In these 

systems, there are usually interactions between different 

components in different forms, such as continuous plant 

output and discrete control symbols, giving rise to a hybrid 

phenomenon. This is partly due to that the dynamics of 

various devices embedded in these systems are discrete in 

nature, such as D/A converters, PWM amplifiers, and 

ON/OFF actuators. The discrete-valued control possesses 

advantages in networked control (no quantization error 

occurs), and it also has important applications to, for 

example, power systems (Woon, Rehbock and Loxton, 

2012), automatic train control (Howlett, 2000), and biological 

systems (Azuma and Sugie, 2008). Take emergency control 

in power systems as an example, the under frequency load 

shedding (UFLS) and under voltage load shedding (UVLS) 

schemes are typical discrete-valued control: the loads to shed 

are always discrete-valued, either large or small. 

Model predictive control (MPC) has been in wide use in 

various industrial domains, e.g. power systems, power 

electronics, and fuel cell control (Thomas, 2012). Wang and 

Mendel (1992a) proved mathematically that with a sufficient 

number of fuzzy partitions and fuzzy rules, a fuzzy system, 

whose output can be expressed explicitly as a linear 

combination of fuzzy (Gaussian) basis functions, can 

approximate any real-valued continuous function defined on 

a compact set to arbitrary accuracy. Intuitively, we could use 

fuzzy model in MPC, constituting fuzzy model predictive 

control. For hybrid systems with solely discrete control input, 

a finite-set MPC algorithm was proposed to reduce the 

computational cost (Thomas, 2012). The predictive procedure 

in the algorithm is achieved by mixed-integer programming 

(MIP) proposed in Bemporad and Morari (1999). In practice, 

mixed-integer linear/quadratic programming (MILP/MIQP) 

is commonly used. Those optimization methods directly yield 

desired control. However, the excessive computational load 

impedes their application to large-scale systems and hybrid 

systems (Thomas, 2012), since the programming problem is 

NP-hard and the time required to solve the problem grows 

exponentially with the scale of the problem (for example, the 

size of control input alphabet). 

Besides, in the viewpoint of discrete event system (DES), the 

control input alphabet consists of so-called “events”. 

Supervisory control theory (SCT), proposed by Ramadge and 

Wonham (1987; 1989), has been widely applied to DES and 

hybrid systems. For large-scale complex systems, modular 

SCT (Wonham and Ramadge, 1988) and hierarchical SCT 

(Feng and Wonham, 2008) were proposed in order to reduce 

the computational overhead. SCT divides the events in 

alphabet into controlled and uncontrolled categories, and the 

controlled events can be enforced or disabled for each 

(discrete) state depending on specifications. In this way, the 

size of control input is reduced for a certain (discrete) state.  

In this paper, we propose a hierarchical control approach for 

hybrid system with discrete inputs. The system is firstly 

abstracted to a DES. Then a supervisor is designed in the 

higher level to provide the (legal) control input alphabet ( 

subset of original alphabet) for each discrete state, while in 

the lower level a fuzzy model predictive controller processes 

the sub-alphabets (with reduced computing overhead) and 

outputs an optimal control input to original plant. 

2. HIERARCHICAL CONTROL APPROACH 

     

Hierarchical MPC of Hybrid Power Systems based on Fuzzy Discrete Abstraction 
 

Jianhua Zhang*, Jiajun Xia** 
 

* Dept. of Computer Science, Oslo Metropolitan University, 0166 Oslo, Norway (e-mail: jianhuaz@oslomet.no) 

** School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, 

China (e-mail: genius901028@163.com)  

Abstract: A hierarchical control approach is proposed for hybrid systems with discrete-valued input 

based on fuzzy discrete abstraction and model predictive control (MPC) scheme. The system is firstly 

abstracted to a discrete event system (DES). Then a higher-level supervisor is designed to provide the 

control input alphabet for each discrete state, while a fuzzy model predictive controller is developed for 

the original system in the lower level. Simulation results of emergency frequency control of electric 

power systems are provided to show the superior frequency recovery characteristic of the proposed 

hierarchical control scheme in comparison with two existing control methods. 

Keywords: Hierarchical control; Fuzzy discrete abstraction; Fuzzy model; Model predictive control; 

Hybrid system; Discrete event system. 

 

1. INTRODUCTION 

In recent years, one of the most important research topics in 

the area of hybrid dynamic systems is the design of hybrid 

system whose input is restricted to the discrete-valued (or 

symbolic) signals (Minami, 2016). Discrete-valued control is 

a control mechanism that achieves control objectives with 

control actions taking values in a finite alphabet (e.g., bang-

bang control) (Ikeda, Nagahara and Ono, 2017). This kind of 

control signals commonly exists in many types of control 

systems, such as mechanical systems, chemical plants, and 

networked systems (Azuma and Sugie, 2008). In these 

systems, there are usually interactions between different 

components in different forms, such as continuous plant 

output and discrete control symbols, giving rise to a hybrid 

phenomenon. This is partly due to that the dynamics of 

various devices embedded in these systems are discrete in 

nature, such as D/A converters, PWM amplifiers, and 

ON/OFF actuators. The discrete-valued control possesses 

advantages in networked control (no quantization error 

occurs), and it also has important applications to, for 

example, power systems (Woon, Rehbock and Loxton, 

2012), automatic train control (Howlett, 2000), and biological 

systems (Azuma and Sugie, 2008). Take emergency control 

in power systems as an example, the under frequency load 

shedding (UFLS) and under voltage load shedding (UVLS) 

schemes are typical discrete-valued control: the loads to shed 

are always discrete-valued, either large or small. 

Model predictive control (MPC) has been in wide use in 

various industrial domains, e.g. power systems, power 

electronics, and fuel cell control (Thomas, 2012). Wang and 

Mendel (1992a) proved mathematically that with a sufficient 

number of fuzzy partitions and fuzzy rules, a fuzzy system, 

whose output can be expressed explicitly as a linear 

combination of fuzzy (Gaussian) basis functions, can 

approximate any real-valued continuous function defined on 

a compact set to arbitrary accuracy. Intuitively, we could use 

fuzzy model in MPC, constituting fuzzy model predictive 

control. For hybrid systems with solely discrete control input, 

a finite-set MPC algorithm was proposed to reduce the 

computational cost (Thomas, 2012). The predictive procedure 

in the algorithm is achieved by mixed-integer programming 

(MIP) proposed in Bemporad and Morari (1999). In practice, 

mixed-integer linear/quadratic programming (MILP/MIQP) 

is commonly used. Those optimization methods directly yield 

desired control. However, the excessive computational load 

impedes their application to large-scale systems and hybrid 

systems (Thomas, 2012), since the programming problem is 

NP-hard and the time required to solve the problem grows 

exponentially with the scale of the problem (for example, the 

size of control input alphabet). 

Besides, in the viewpoint of discrete event system (DES), the 

control input alphabet consists of so-called “events”. 

Supervisory control theory (SCT), proposed by Ramadge and 

Wonham (1987; 1989), has been widely applied to DES and 

hybrid systems. For large-scale complex systems, modular 

SCT (Wonham and Ramadge, 1988) and hierarchical SCT 

(Feng and Wonham, 2008) were proposed in order to reduce 

the computational overhead. SCT divides the events in 

alphabet into controlled and uncontrolled categories, and the 

controlled events can be enforced or disabled for each 

(discrete) state depending on specifications. In this way, the 

size of control input is reduced for a certain (discrete) state.  

In this paper, we propose a hierarchical control approach for 

hybrid system with discrete inputs. The system is firstly 

abstracted to a DES. Then a supervisor is designed in the 

higher level to provide the (legal) control input alphabet ( 

subset of original alphabet) for each discrete state, while in 

the lower level a fuzzy model predictive controller processes 

the sub-alphabets (with reduced computing overhead) and 

outputs an optimal control input to original plant. 

2. HIERARCHICAL CONTROL APPROACH 

     

Hierarchical MPC of Hybrid Power Systems based on Fuzzy Discrete Abstraction 
 

Jianhua Zhang*, Jiajun Xia** 
 

* Dept. of Computer Science, Oslo Metropolitan University, 0166 Oslo, Norway (e-mail: jianhuaz@oslomet.no) 

** School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, 

China (e-mail: genius901028@163.com)  

Abstract: A hierarchical control approach is proposed for hybrid systems with discrete-valued input 

based on fuzzy discrete abstraction and model predictive control (MPC) scheme. The system is firstly 

abstracted to a discrete event system (DES). Then a higher-level supervisor is designed to provide the 

control input alphabet for each discrete state, while a fuzzy model predictive controller is developed for 

the original system in the lower level. Simulation results of emergency frequency control of electric 

power systems are provided to show the superior frequency recovery characteristic of the proposed 

hierarchical control scheme in comparison with two existing control methods. 

Keywords: Hierarchical control; Fuzzy discrete abstraction; Fuzzy model; Model predictive control; 

Hybrid system; Discrete event system. 

 

1. INTRODUCTION 

In recent years, one of the most important research topics in 

the area of hybrid dynamic systems is the design of hybrid 

system whose input is restricted to the discrete-valued (or 

symbolic) signals (Minami, 2016). Discrete-valued control is 

a control mechanism that achieves control objectives with 

control actions taking values in a finite alphabet (e.g., bang-

bang control) (Ikeda, Nagahara and Ono, 2017). This kind of 

control signals commonly exists in many types of control 

systems, such as mechanical systems, chemical plants, and 

networked systems (Azuma and Sugie, 2008). In these 

systems, there are usually interactions between different 

components in different forms, such as continuous plant 

output and discrete control symbols, giving rise to a hybrid 

phenomenon. This is partly due to that the dynamics of 

various devices embedded in these systems are discrete in 

nature, such as D/A converters, PWM amplifiers, and 

ON/OFF actuators. The discrete-valued control possesses 

advantages in networked control (no quantization error 

occurs), and it also has important applications to, for 

example, power systems (Woon, Rehbock and Loxton, 

2012), automatic train control (Howlett, 2000), and biological 

systems (Azuma and Sugie, 2008). Take emergency control 

in power systems as an example, the under frequency load 

shedding (UFLS) and under voltage load shedding (UVLS) 

schemes are typical discrete-valued control: the loads to shed 

are always discrete-valued, either large or small. 

Model predictive control (MPC) has been in wide use in 

various industrial domains, e.g. power systems, power 

electronics, and fuel cell control (Thomas, 2012). Wang and 

Mendel (1992a) proved mathematically that with a sufficient 

number of fuzzy partitions and fuzzy rules, a fuzzy system, 

whose output can be expressed explicitly as a linear 

combination of fuzzy (Gaussian) basis functions, can 

approximate any real-valued continuous function defined on 

a compact set to arbitrary accuracy. Intuitively, we could use 

fuzzy model in MPC, constituting fuzzy model predictive 

control. For hybrid systems with solely discrete control input, 

a finite-set MPC algorithm was proposed to reduce the 

computational cost (Thomas, 2012). The predictive procedure 

in the algorithm is achieved by mixed-integer programming 

(MIP) proposed in Bemporad and Morari (1999). In practice, 

mixed-integer linear/quadratic programming (MILP/MIQP) 

is commonly used. Those optimization methods directly yield 

desired control. However, the excessive computational load 

impedes their application to large-scale systems and hybrid 

systems (Thomas, 2012), since the programming problem is 

NP-hard and the time required to solve the problem grows 

exponentially with the scale of the problem (for example, the 

size of control input alphabet). 

Besides, in the viewpoint of discrete event system (DES), the 

control input alphabet consists of so-called “events”. 

Supervisory control theory (SCT), proposed by Ramadge and 

Wonham (1987; 1989), has been widely applied to DES and 

hybrid systems. For large-scale complex systems, modular 

SCT (Wonham and Ramadge, 1988) and hierarchical SCT 

(Feng and Wonham, 2008) were proposed in order to reduce 

the computational overhead. SCT divides the events in 

alphabet into controlled and uncontrolled categories, and the 

controlled events can be enforced or disabled for each 

(discrete) state depending on specifications. In this way, the 

size of control input is reduced for a certain (discrete) state.  

In this paper, we propose a hierarchical control approach for 

hybrid system with discrete inputs. The system is firstly 

abstracted to a DES. Then a supervisor is designed in the 

higher level to provide the (legal) control input alphabet ( 

subset of original alphabet) for each discrete state, while in 

the lower level a fuzzy model predictive controller processes 

the sub-alphabets (with reduced computing overhead) and 

outputs an optimal control input to original plant. 

2. HIERARCHICAL CONTROL APPROACH 

     

Hierarchical MPC of Hybrid Power Systems based on Fuzzy Discrete Abstraction 
 

Jianhua Zhang*, Jiajun Xia** 
 

* Dept. of Computer Science, Oslo Metropolitan University, 0166 Oslo, Norway (e-mail: jianhuaz@oslomet.no) 

** School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, 

China (e-mail: genius901028@163.com)  

Abstract: A hierarchical control approach is proposed for hybrid systems with discrete-valued input 

based on fuzzy discrete abstraction and model predictive control (MPC) scheme. The system is firstly 

abstracted to a discrete event system (DES). Then a higher-level supervisor is designed to provide the 

control input alphabet for each discrete state, while a fuzzy model predictive controller is developed for 

the original system in the lower level. Simulation results of emergency frequency control of electric 

power systems are provided to show the superior frequency recovery characteristic of the proposed 

hierarchical control scheme in comparison with two existing control methods. 

Keywords: Hierarchical control; Fuzzy discrete abstraction; Fuzzy model; Model predictive control; 

Hybrid system; Discrete event system. 

 

1. INTRODUCTION 

In recent years, one of the most important research topics in 

the area of hybrid dynamic systems is the design of hybrid 

system whose input is restricted to the discrete-valued (or 

symbolic) signals (Minami, 2016). Discrete-valued control is 

a control mechanism that achieves control objectives with 

control actions taking values in a finite alphabet (e.g., bang-

bang control) (Ikeda, Nagahara and Ono, 2017). This kind of 

control signals commonly exists in many types of control 

systems, such as mechanical systems, chemical plants, and 

networked systems (Azuma and Sugie, 2008). In these 

systems, there are usually interactions between different 

components in different forms, such as continuous plant 

output and discrete control symbols, giving rise to a hybrid 

phenomenon. This is partly due to that the dynamics of 

various devices embedded in these systems are discrete in 

nature, such as D/A converters, PWM amplifiers, and 

ON/OFF actuators. The discrete-valued control possesses 

advantages in networked control (no quantization error 

occurs), and it also has important applications to, for 

example, power systems (Woon, Rehbock and Loxton, 

2012), automatic train control (Howlett, 2000), and biological 

systems (Azuma and Sugie, 2008). Take emergency control 

in power systems as an example, the under frequency load 

shedding (UFLS) and under voltage load shedding (UVLS) 

schemes are typical discrete-valued control: the loads to shed 

are always discrete-valued, either large or small. 

Model predictive control (MPC) has been in wide use in 

various industrial domains, e.g. power systems, power 

electronics, and fuel cell control (Thomas, 2012). Wang and 

Mendel (1992a) proved mathematically that with a sufficient 

number of fuzzy partitions and fuzzy rules, a fuzzy system, 

whose output can be expressed explicitly as a linear 

combination of fuzzy (Gaussian) basis functions, can 

approximate any real-valued continuous function defined on 

a compact set to arbitrary accuracy. Intuitively, we could use 

fuzzy model in MPC, constituting fuzzy model predictive 

control. For hybrid systems with solely discrete control input, 

a finite-set MPC algorithm was proposed to reduce the 

computational cost (Thomas, 2012). The predictive procedure 

in the algorithm is achieved by mixed-integer programming 

(MIP) proposed in Bemporad and Morari (1999). In practice, 

mixed-integer linear/quadratic programming (MILP/MIQP) 

is commonly used. Those optimization methods directly yield 

desired control. However, the excessive computational load 

impedes their application to large-scale systems and hybrid 

systems (Thomas, 2012), since the programming problem is 

NP-hard and the time required to solve the problem grows 

exponentially with the scale of the problem (for example, the 

size of control input alphabet). 

Besides, in the viewpoint of discrete event system (DES), the 

control input alphabet consists of so-called “events”. 

Supervisory control theory (SCT), proposed by Ramadge and 

Wonham (1987; 1989), has been widely applied to DES and 

hybrid systems. For large-scale complex systems, modular 

SCT (Wonham and Ramadge, 1988) and hierarchical SCT 

(Feng and Wonham, 2008) were proposed in order to reduce 

the computational overhead. SCT divides the events in 

alphabet into controlled and uncontrolled categories, and the 

controlled events can be enforced or disabled for each 

(discrete) state depending on specifications. In this way, the 

size of control input is reduced for a certain (discrete) state.  

In this paper, we propose a hierarchical control approach for 

hybrid system with discrete inputs. The system is firstly 

abstracted to a DES. Then a supervisor is designed in the 

higher level to provide the (legal) control input alphabet ( 

subset of original alphabet) for each discrete state, while in 

the lower level a fuzzy model predictive controller processes 

the sub-alphabets (with reduced computing overhead) and 

outputs an optimal control input to original plant. 

2. HIERARCHICAL CONTROL APPROACH 

     

Hierarchical MPC of Hybrid Power Systems based on Fuzzy Discrete Abstraction 
 

Jianhua Zhang*, Jiajun Xia** 
 

* Dept. of Computer Science, Oslo Metropolitan University, 0166 Oslo, Norway (e-mail: jianhuaz@oslomet.no) 

** School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, 

China (e-mail: genius901028@163.com)  

Abstract: A hierarchical control approach is proposed for hybrid systems with discrete-valued input 

based on fuzzy discrete abstraction and model predictive control (MPC) scheme. The system is firstly 

abstracted to a discrete event system (DES). Then a higher-level supervisor is designed to provide the 

control input alphabet for each discrete state, while a fuzzy model predictive controller is developed for 

the original system in the lower level. Simulation results of emergency frequency control of electric 

power systems are provided to show the superior frequency recovery characteristic of the proposed 

hierarchical control scheme in comparison with two existing control methods. 

Keywords: Hierarchical control; Fuzzy discrete abstraction; Fuzzy model; Model predictive control; 

Hybrid system; Discrete event system. 

 

1. INTRODUCTION 

In recent years, one of the most important research topics in 

the area of hybrid dynamic systems is the design of hybrid 

system whose input is restricted to the discrete-valued (or 

symbolic) signals (Minami, 2016). Discrete-valued control is 

a control mechanism that achieves control objectives with 

control actions taking values in a finite alphabet (e.g., bang-

bang control) (Ikeda, Nagahara and Ono, 2017). This kind of 

control signals commonly exists in many types of control 

systems, such as mechanical systems, chemical plants, and 

networked systems (Azuma and Sugie, 2008). In these 

systems, there are usually interactions between different 

components in different forms, such as continuous plant 

output and discrete control symbols, giving rise to a hybrid 

phenomenon. This is partly due to that the dynamics of 

various devices embedded in these systems are discrete in 

nature, such as D/A converters, PWM amplifiers, and 

ON/OFF actuators. The discrete-valued control possesses 

advantages in networked control (no quantization error 

occurs), and it also has important applications to, for 

example, power systems (Woon, Rehbock and Loxton, 

2012), automatic train control (Howlett, 2000), and biological 

systems (Azuma and Sugie, 2008). Take emergency control 

in power systems as an example, the under frequency load 

shedding (UFLS) and under voltage load shedding (UVLS) 

schemes are typical discrete-valued control: the loads to shed 

are always discrete-valued, either large or small. 

Model predictive control (MPC) has been in wide use in 

various industrial domains, e.g. power systems, power 

electronics, and fuel cell control (Thomas, 2012). Wang and 

Mendel (1992a) proved mathematically that with a sufficient 

number of fuzzy partitions and fuzzy rules, a fuzzy system, 

whose output can be expressed explicitly as a linear 

combination of fuzzy (Gaussian) basis functions, can 

approximate any real-valued continuous function defined on 

a compact set to arbitrary accuracy. Intuitively, we could use 

fuzzy model in MPC, constituting fuzzy model predictive 

control. For hybrid systems with solely discrete control input, 

a finite-set MPC algorithm was proposed to reduce the 

computational cost (Thomas, 2012). The predictive procedure 

in the algorithm is achieved by mixed-integer programming 

(MIP) proposed in Bemporad and Morari (1999). In practice, 

mixed-integer linear/quadratic programming (MILP/MIQP) 

is commonly used. Those optimization methods directly yield 

desired control. However, the excessive computational load 

impedes their application to large-scale systems and hybrid 

systems (Thomas, 2012), since the programming problem is 

NP-hard and the time required to solve the problem grows 

exponentially with the scale of the problem (for example, the 

size of control input alphabet). 

Besides, in the viewpoint of discrete event system (DES), the 

control input alphabet consists of so-called “events”. 

Supervisory control theory (SCT), proposed by Ramadge and 

Wonham (1987; 1989), has been widely applied to DES and 

hybrid systems. For large-scale complex systems, modular 

SCT (Wonham and Ramadge, 1988) and hierarchical SCT 

(Feng and Wonham, 2008) were proposed in order to reduce 

the computational overhead. SCT divides the events in 

alphabet into controlled and uncontrolled categories, and the 

controlled events can be enforced or disabled for each 

(discrete) state depending on specifications. In this way, the 

size of control input is reduced for a certain (discrete) state.  

In this paper, we propose a hierarchical control approach for 

hybrid system with discrete inputs. The system is firstly 

abstracted to a DES. Then a supervisor is designed in the 

higher level to provide the (legal) control input alphabet ( 

subset of original alphabet) for each discrete state, while in 

the lower level a fuzzy model predictive controller processes 

the sub-alphabets (with reduced computing overhead) and 

outputs an optimal control input to original plant. 

2. HIERARCHICAL CONTROL APPROACH 

     

Hierarchical MPC of Hybrid Power Systems based on Fuzzy Discrete Abstraction 
 

Jianhua Zhang*, Jiajun Xia** 
 

* Dept. of Computer Science, Oslo Metropolitan University, 0166 Oslo, Norway (e-mail: jianhuaz@oslomet.no) 

** School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, 

China (e-mail: genius901028@163.com)  

Abstract: A hierarchical control approach is proposed for hybrid systems with discrete-valued input 

based on fuzzy discrete abstraction and model predictive control (MPC) scheme. The system is firstly 

abstracted to a discrete event system (DES). Then a higher-level supervisor is designed to provide the 

control input alphabet for each discrete state, while a fuzzy model predictive controller is developed for 

the original system in the lower level. Simulation results of emergency frequency control of electric 

power systems are provided to show the superior frequency recovery characteristic of the proposed 

hierarchical control scheme in comparison with two existing control methods. 

Keywords: Hierarchical control; Fuzzy discrete abstraction; Fuzzy model; Model predictive control; 

Hybrid system; Discrete event system. 

 

1. INTRODUCTION 

In recent years, one of the most important research topics in 

the area of hybrid dynamic systems is the design of hybrid 

system whose input is restricted to the discrete-valued (or 

symbolic) signals (Minami, 2016). Discrete-valued control is 

a control mechanism that achieves control objectives with 

control actions taking values in a finite alphabet (e.g., bang-

bang control) (Ikeda, Nagahara and Ono, 2017). This kind of 

control signals commonly exists in many types of control 

systems, such as mechanical systems, chemical plants, and 

networked systems (Azuma and Sugie, 2008). In these 

systems, there are usually interactions between different 

components in different forms, such as continuous plant 

output and discrete control symbols, giving rise to a hybrid 

phenomenon. This is partly due to that the dynamics of 

various devices embedded in these systems are discrete in 

nature, such as D/A converters, PWM amplifiers, and 

ON/OFF actuators. The discrete-valued control possesses 

advantages in networked control (no quantization error 

occurs), and it also has important applications to, for 

example, power systems (Woon, Rehbock and Loxton, 

2012), automatic train control (Howlett, 2000), and biological 

systems (Azuma and Sugie, 2008). Take emergency control 

in power systems as an example, the under frequency load 

shedding (UFLS) and under voltage load shedding (UVLS) 

schemes are typical discrete-valued control: the loads to shed 

are always discrete-valued, either large or small. 

Model predictive control (MPC) has been in wide use in 

various industrial domains, e.g. power systems, power 

electronics, and fuel cell control (Thomas, 2012). Wang and 

Mendel (1992a) proved mathematically that with a sufficient 

number of fuzzy partitions and fuzzy rules, a fuzzy system, 

whose output can be expressed explicitly as a linear 

combination of fuzzy (Gaussian) basis functions, can 

approximate any real-valued continuous function defined on 

a compact set to arbitrary accuracy. Intuitively, we could use 

fuzzy model in MPC, constituting fuzzy model predictive 

control. For hybrid systems with solely discrete control input, 

a finite-set MPC algorithm was proposed to reduce the 

computational cost (Thomas, 2012). The predictive procedure 

in the algorithm is achieved by mixed-integer programming 

(MIP) proposed in Bemporad and Morari (1999). In practice, 

mixed-integer linear/quadratic programming (MILP/MIQP) 

is commonly used. Those optimization methods directly yield 

desired control. However, the excessive computational load 

impedes their application to large-scale systems and hybrid 

systems (Thomas, 2012), since the programming problem is 

NP-hard and the time required to solve the problem grows 

exponentially with the scale of the problem (for example, the 

size of control input alphabet). 

Besides, in the viewpoint of discrete event system (DES), the 

control input alphabet consists of so-called “events”. 

Supervisory control theory (SCT), proposed by Ramadge and 

Wonham (1987; 1989), has been widely applied to DES and 

hybrid systems. For large-scale complex systems, modular 

SCT (Wonham and Ramadge, 1988) and hierarchical SCT 

(Feng and Wonham, 2008) were proposed in order to reduce 

the computational overhead. SCT divides the events in 

alphabet into controlled and uncontrolled categories, and the 

controlled events can be enforced or disabled for each 

(discrete) state depending on specifications. In this way, the 

size of control input is reduced for a certain (discrete) state.  

In this paper, we propose a hierarchical control approach for 

hybrid system with discrete inputs. The system is firstly 

abstracted to a DES. Then a supervisor is designed in the 

higher level to provide the (legal) control input alphabet ( 

subset of original alphabet) for each discrete state, while in 

the lower level a fuzzy model predictive controller processes 

the sub-alphabets (with reduced computing overhead) and 

outputs an optimal control input to original plant. 

2. HIERARCHICAL CONTROL APPROACH 

     

Hierarchical MPC of Hybrid Power Systems based on Fuzzy Discrete Abstraction 
 

Jianhua Zhang*, Jiajun Xia** 
 

* Dept. of Computer Science, Oslo Metropolitan University, 0166 Oslo, Norway (e-mail: jianhuaz@oslomet.no) 

** School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, 

China (e-mail: genius901028@163.com)  

Abstract: A hierarchical control approach is proposed for hybrid systems with discrete-valued input 

based on fuzzy discrete abstraction and model predictive control (MPC) scheme. The system is firstly 

abstracted to a discrete event system (DES). Then a higher-level supervisor is designed to provide the 

control input alphabet for each discrete state, while a fuzzy model predictive controller is developed for 

the original system in the lower level. Simulation results of emergency frequency control of electric 

power systems are provided to show the superior frequency recovery characteristic of the proposed 

hierarchical control scheme in comparison with two existing control methods. 

Keywords: Hierarchical control; Fuzzy discrete abstraction; Fuzzy model; Model predictive control; 

Hybrid system; Discrete event system. 

 

1. INTRODUCTION 

In recent years, one of the most important research topics in 

the area of hybrid dynamic systems is the design of hybrid 

system whose input is restricted to the discrete-valued (or 

symbolic) signals (Minami, 2016). Discrete-valued control is 

a control mechanism that achieves control objectives with 

control actions taking values in a finite alphabet (e.g., bang-

bang control) (Ikeda, Nagahara and Ono, 2017). This kind of 

control signals commonly exists in many types of control 

systems, such as mechanical systems, chemical plants, and 

networked systems (Azuma and Sugie, 2008). In these 

systems, there are usually interactions between different 

components in different forms, such as continuous plant 

output and discrete control symbols, giving rise to a hybrid 

phenomenon. This is partly due to that the dynamics of 

various devices embedded in these systems are discrete in 

nature, such as D/A converters, PWM amplifiers, and 

ON/OFF actuators. The discrete-valued control possesses 

advantages in networked control (no quantization error 

occurs), and it also has important applications to, for 

example, power systems (Woon, Rehbock and Loxton, 

2012), automatic train control (Howlett, 2000), and biological 

systems (Azuma and Sugie, 2008). Take emergency control 

in power systems as an example, the under frequency load 

shedding (UFLS) and under voltage load shedding (UVLS) 

schemes are typical discrete-valued control: the loads to shed 

are always discrete-valued, either large or small. 

Model predictive control (MPC) has been in wide use in 

various industrial domains, e.g. power systems, power 

electronics, and fuel cell control (Thomas, 2012). Wang and 

Mendel (1992a) proved mathematically that with a sufficient 

number of fuzzy partitions and fuzzy rules, a fuzzy system, 

whose output can be expressed explicitly as a linear 

combination of fuzzy (Gaussian) basis functions, can 

approximate any real-valued continuous function defined on 

a compact set to arbitrary accuracy. Intuitively, we could use 

fuzzy model in MPC, constituting fuzzy model predictive 

control. For hybrid systems with solely discrete control input, 

a finite-set MPC algorithm was proposed to reduce the 

computational cost (Thomas, 2012). The predictive procedure 

in the algorithm is achieved by mixed-integer programming 

(MIP) proposed in Bemporad and Morari (1999). In practice, 

mixed-integer linear/quadratic programming (MILP/MIQP) 

is commonly used. Those optimization methods directly yield 

desired control. However, the excessive computational load 

impedes their application to large-scale systems and hybrid 

systems (Thomas, 2012), since the programming problem is 

NP-hard and the time required to solve the problem grows 

exponentially with the scale of the problem (for example, the 

size of control input alphabet). 

Besides, in the viewpoint of discrete event system (DES), the 

control input alphabet consists of so-called “events”. 

Supervisory control theory (SCT), proposed by Ramadge and 

Wonham (1987; 1989), has been widely applied to DES and 

hybrid systems. For large-scale complex systems, modular 

SCT (Wonham and Ramadge, 1988) and hierarchical SCT 

(Feng and Wonham, 2008) were proposed in order to reduce 

the computational overhead. SCT divides the events in 

alphabet into controlled and uncontrolled categories, and the 

controlled events can be enforced or disabled for each 

(discrete) state depending on specifications. In this way, the 

size of control input is reduced for a certain (discrete) state.  

In this paper, we propose a hierarchical control approach for 

hybrid system with discrete inputs. The system is firstly 

abstracted to a DES. Then a supervisor is designed in the 

higher level to provide the (legal) control input alphabet ( 

subset of original alphabet) for each discrete state, while in 

the lower level a fuzzy model predictive controller processes 

the sub-alphabets (with reduced computing overhead) and 

outputs an optimal control input to original plant. 
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In this section, a hierarchical control approach is proposed for 

hybrid dynamical systems. The hierarchical structure consists 

of two layers: high-level supervisor and low-level fuzzy 

predictive controller. The block diagram of the closed-loop 

system is shown in Fig. 1. Depending on different discrete 

states, the parameters of fuzzy predictive controller may vary. 

 

Fig. 1. General configuration of the hierarchical control 

system. 

2.1  Fuzzy Predictive Control 

A general fuzzy predictive control scheme is illustrated in the 

dashed red module in Fig. 2. In fuzzy model predictive 

control system, fuzzy model is used to represent hybrid 

system. 

A. Fuzzy model 

The fuzzy model component in Fig. 1 functions as a function 

approximator of the plant under control. The fuzzy model 

comprises a set of fuzzy rules with properly defined 

membership functions (MFs) and defuzzification approach. 

The physical model of complex system is usually hard to 

obtain. However, the I/O data pairs of the complex plant are 

relatively easy to acquire, hence data-driven modeling 

methods can be applied. In this work, a widely-used fuzzy 

modeling approach, namely Wang-Mendel (WM) method, is 

used to build fuzzy model from the I/O sample data. A 

detailed description of WM method can be found in Wang 

and Mendel (1992b) and Wang (2003). 

For fuzzy modeling, Gaussian MFs are adopted, whose 

parameters can be optimized with evolutionary algorithms. 

With data-driven modeling and parameter optimization 

procedure, a fuzzy rule base can be elicited along with 

appropriate defuzzifier for fuzzy reasoning. 

With the fuzzy rule base and defuzzifier (Zhang, Xia and 

Wang, 2018), we can obtain the analytical description of the 

plant under control as: 

                                        ( )ˆ ,c c dy F x= x .                          (1) 

where ˆ
cy is the model output.   

B. Prediction 

  With the fuzzy model and future control input, prediction 

can be made. Intuitively, an open-loop prediction is: 

( ) ( ) ( ) ( )( )ˆ , , 1, 2, ,
p c c d

y k i y k i F k i x k i i P+ = + = + + =x  (2) 

where P is the prediction horizon. However, there always 

exists error between the model and measured output. In order 

to eliminate the steady-state error between them, we modify 

(2) as: 

      ( ) ( ) ( )ˆ , 1,2, ,p cy k i y k i e k i P+ = + + =  ,              (3) 

where ( )e k is the error term: 

                                  ( ) ( ) ( )ˆ
c ce k y k y k= − ,                     (4) 

C. Optimization 

With the prediction result, the optimization of performance 

index w.r.t. input(s) can be performed. The performance 

index is defined as: 

        ( ) ( ) ( )( )( )
1

min ,
P

c d

i

J k G k i x k i
=

= + +∑ x                (5) 

where ( )G ⋅  is a function of
cx ,

dx , and implicitly y .  

For tracking problem, the performance index becomes: 

       ( ) ( ) ( )( )2

1

min
P

i p r

i

J k y k i y k iω
=

= + − +∑               (6) 

where
ry is the reference output to be tracked and

iω the 

weights. 

The optimal discrete-valued input sequence can be obtained 

by MILP/MIQP.  

2.2  Supervisory Control 

Supervisory control theory was proposed for DES by 

Ramadge and Wonham (1987; 1989). The input symbols of 

DES (“events”) are divided into two disjoint parts: controlled 

events and uncontrolled ones. The occurrence of controlled 

events could be prevented, whereas the uncontrolled ones 

could not. Take power system as an example, generator fault 

is an uncontrolled event; load shedding is a controlled event. 

The supervisor can prevent (or enforce) the controlled events 

from happening (or to happen) according to design needs. 

In this paper, we adopt the SCT methodology. The supervisor 

here serves as a high-level regulator: for different discrete 

states of the hybrid system, some controlled events can be 

prevented and hence removed from the input alphabet. The 

computational load is hence reduced even when the 

optimization procedure in MPC is combinatorial of all 

possible inputs. For multi-task control problems or complex 
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systems, a modular SCT approach was proposed to split the 

control tasks to several sub-tasks and then design “sub-

supervisor” for each sub-task. As long as the behavior 

languages of “sub-supervisors” are non-conflicting and non-

blocking, input alphabet can be further reduced by 

intersection of the sub-alphabets (Wonham and Ramadge, 

1988). 

3. APPLICATION TO EMERGENCY FREQUENCY 

CONTROL OF POWER SYSTEMS 

3.1  Power Systems 

Power systems are typical hybrid dynamical systems. The 

currents, voltage, frequency, and phase angle are continuous 

outputs, they can be quantized to (discrete) linguistic labels to 

characterize system safety. The discrete properties are mainly 

due to the relays, switches and other discrete-dynamic 

components. In addition, the faults and system maintenances 

may also lead to different trajectories of system evolution. 

 

Fig. 2. Schematic of a power system under operation. 

Fig. 2 depicts the state transitions of a power system. The 

system is mostly in state “Safe”. Some small disturbance, 

such as small increment in load, may cause system state 

transition to “Alert”; large disturbance may transit system 

state to “Emergency”. Emergency control would be required 

when the system state is in “Emergency”. 

3.2  Emergency Frequency Control 

According to O’Sullivan and O’Malley (1996), the model of 

power system frequency is given by: 

      ( ) ( ) ( )( )0

02
G L

kin

fd
f t P t P t

dt W
∆ ≈ × ∆ −∆                (7) 

where ( ) ( )0f t f f t∆ = − , ( ) ( )0G G GP t P P t∆ = − , 

( ) ( )0L L LP t P P t∆ = − , 
0kinW  and 

0f  are the initial kinetic 

energy and frequency of the generators, and 0GP  and 
0LP  

are the initial active power of generators and loads. 

That is, the system frequency ( )f t  is a function 

of ( )GP t and ( )LP t . The relationship between the 

characteristics of active power of load and system frequency 

is given by (Lin et al., 2008): 

              ( ) ( )
0

L

i

i

i N

LNP t
f t

a
f

P
∞

=

=
 

⋅  
 

∑                              (8) 

where
LNP denotes the active power load at rated 

frequency Nf , the loads irrelevant to frequency are constant 

impedance (such as lights and electric stove), and the 

induction motors and pumps constitute the power 

components.  

Fig. 3 illustrates primary and secondary frequency regulation 

of power system at continuous level. In Fig. 3(a), the power 

frequency characteristics of load (PL) and generator (PG) 

crossover at the initial operating point (f0, P0); when there is 

an increment in load, the power frequency characteristics is 

shifted up to PL’ (red line); and the new operating point 

becomes (f0’, P0’); this is called primary frequency 

regulation. In Fig. 3(b), after primary frequency regulation 

(blue line), the spinning reserve is released and the power 

output of generator is increased, the power frequency 

characteristics of generator is shifted up to PG’ (red line) and 

the frequency is decreased to f0’’; if the spinning reserve is 

sufficient to cover the increment in load, the final power 

frequency characteristics of generator can be shifted up to 

green line to maintain frequency f0 (secondary frequency 

regulation).

 

Both primary and secondary frequency regulations are 

achieved with automatic generation control (AGC) and 

generator governor and are applied whenever there is 

disturbance. 

We denote conventional UFLS scheme as Method I. Lin et 

al. (2008) proposed a new UFLS scheme, which is denoted as 

Method II. Inspired by Method II, we propose the following 

method (denoted our method) for our problem:  

Step 1: Divide the load as in Steps 2’ and 3’ in Method II as 

follows: 

Step 2’: Divide the loads as capable of being shed and 

incapable of being shed. 

       
(a)                                         (b) 

Fig. 3. The frequency regulation of power system: (a) 

primary; (b) secondary. 



6784	 Jianhua Zhang  et al. / IFAC PapersOnLine 53-2 (2020) 6781–6787
 

 

     

 

Step 3’: For the loads capable of being shed, divide them as 

coarsely tuned loads and fine tuned loads: 

a) The coarsely tuned loads are larger and cannot be re-

closed by UFLS controller; 

b) The fine tuned loads are smaller and can be re-closed by 

the controller. 

Step 2: Based on the division, the general input alphabet is 

{N, CR, CF, R }, where N stands for doing nothing; CR 

stands for shedding a coarsely tuned load; CF stands for 

shedding a fine-tuned load; and R stands for re-closing a fine-

tuned load. 

Step 3: Perform abstraction of the power system by a DES. 

Step 4: Design a supervisor for this DES: for each discrete 

state, only part of the input alphabet is enabled;  

Step 5: Apply FPC to the sub-alphabet and determine the 

optimal input as follows: 

a) If the system can be restored (predicted by the model) with 

the optimal input, then calculate its settling time 
st (with the 

prediction), and the time for next action is set to 
st k t∆ = ⋅  

with 1k ≤ ; 

b) If the system cannot be restored, set 
ct t∆ = , where 

ct  is 

the computational time required by FPC. 

Step 6: Loop back to Step 5. 

4. SIMULATION RESULTS AND ANALYSIS 

4.1 Simulation Setup 

As an illustrative example, we adopt the IEEE 14-bus test 

case (Fig. 4), which represents an approximation of the 

American Electric Power system as of Feb. 1962 and has 14 

buses, 5 generators and 11 loads.  

The rated power of generators is 120 MW. Set the total 

consumption of loads as 480 MW + 90 MVA, in which 60% 

are capable of being shed (red in Fig. 4), namely 288 MW + 

54 MVA. Under the same assumption as in Lin et al. (2008), 

80% of the shedding loads are equally divided to 5 coarsely 

tuned loads, 46.08 MW + 8.64 MVA each (load L1 to L5) and 

the other 20% are equally divided to 3 fine-tuned loads, 19.2 

MW + 3.6 MVA each (load L6 to L8). The loads incapable of 

being shed are L9 to L11, with L9 = 96 MW + 18 MVA and 

L10=L11= 48 MW + 9 MVA. 

Furthermore, to match real industrial loads, the parameters in 

(8) are set as (Lin et al., 2008)
0 1 3

0.1, 0.55, 0.35a a a= = = . 

In simulations, the loads weighed by 0a are simulated by 

constant impedance and the loads weighed by 1a and 3a are 

simulated by induction motors. 

 

Fig. 4. The IEEE 14-bus test case. 

The simulation is carried out for 300 s. At 103 s, generator G4 

is down, leading to a rapid drop in output power. Meanwhile, 

other generators are slowly releasing their spinning reverse 

respectively to compensate for the deficiency. 

The specifications for emergency frequency control are 

( )47Hz 0.5 st f ≤ ≤ , ( ) 49.5 Hzf ∞ ≥ and
[ )

( )
0,

max 51 Hz
t

f t
∈ +∞

≤ . 

These control objectives implies that the final value of 

frequency must fall within the interval [49.5, 51] Hz. 

Moreover, for economic consideration, the loads need to be 

shed as little as possible. This additional requirement would 

also be taken into account in controller design. 

4.2 Design of Supervisor 

To design the high-level supervisor, the hybrid plant (i.e., 

power system) must be abstracted to a DES. Using the fuzzy 

l-complete approximation approach proposed in Zhang, Xia 

and Wang (2018), a fuzzy abstraction of power system can be 

realized. 

Assume that the frequency f ∈  is located in the target 

interval [49, 51] Hz, then we choose the MFs as (Fig. 5): 

( ) ( )2
50

exp
0.0144A

x
xµ

 −
 = −
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

, 

( ) ( )2
49.7

exp
0.0577B

x
xµ

 −
 = −
  



, 

( ) 49.5
0.5 0.5* tanh

0.04C

x
xµ − = −  

 


, 

( ) 50.1
0.5 0.5* tanh

0.04D

x
xµ − = +  

 

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also be taken into account in controller design. 

4.2 Design of Supervisor 

To design the high-level supervisor, the hybrid plant (i.e., 

power system) must be abstracted to a DES. Using the fuzzy 

l-complete approximation approach proposed in Zhang, Xia 

and Wang (2018), a fuzzy abstraction of power system can be 

realized. 

Assume that the frequency f ∈  is located in the target 

interval [49, 51] Hz, then we choose the MFs as (Fig. 5): 

( ) ( )2
50

exp
0.0144A

x
xµ

 −
 = −
  



, 

( ) ( )2
49.7

exp
0.0577B

x
xµ

 −
 = −
  



, 

( ) 49.5
0.5 0.5* tanh

0.04C

x
xµ − = −  

 


, 

( ) 50.1
0.5 0.5* tanh

0.04D

x
xµ − = +  

 


. 

 

 

     

 

 

Fig. 5. The four MFs used by fuzzy abstraction. 

The measurement symbol set of system frequency 

is [ ], , ,A B C D , where ( ) ( ): 49.9,50.1 HzA f t ∈ , 

( ) ( ]: 49.5,49.9 HzB f t ∈  and ( ) [ ]: 0,49.5 HzC f t ∈  are 

Safe, Alert, and Emergency state in Fig. 2, respectively, and 

( ): 50.1HzD f t ≥ denotes overshooting. 

For the state of Restoration, the following state set fX of 

finite-state machine can be obtained: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, , , , , , , , , ,

, , , , , , ,

, , , , , , , ,

, , , ,

, , , ,

f
X

A A A B A D B A B B B C C B C C D D D A

AA A AA B AA D AB A AB B AD A AD D

BA A BA B BA D BB A BB B BB C BC B BC C

CB B CB C CC B CC C

DA A DA B DA D DD A DD D

=

 
 
 
 
 
 
 
 
 

    (9) 

The state in fX takes into account both the previous and 

current output of the system. Moreover, the measurement 

symbol in round bracket is Guardian State, meaning the 

potential next output. Then fX can be divided into four sub-

sets: Safe, Alert, Emergency and Restor.. The first three sub-

sets are disjoint, but there are intersections with the last one 

(Restoration), i.e., we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }Safe , , , , , , , ,A A A B A D AA A AA B AA D DA A DA B DA D=

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }Alert , , , , , ,B A B B B C AB A AB B BB B BB C=

( ) ( ) ( ) ( ) ( ){ }Emergency , , , ,C B C C BC B BC C CC C=  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , , , , ,

Restor. , , , , , , , ,

, , , , , ,

A A A D B A B B C B C C D D

AA A AA D AD A AD D BA A BA B BA D BB A

BB B CB B CB C CC B CC C DD A DD D

=

 
 
 
  

 

Therefore, the supervisor can be designed based on the 

following four rules:  

R1: For Safe states, nothing is done by UFLS, the control sub-

alphabet is {N};  

R2: For Emergency states, the sub-alphabet is {N, CR, CF};  

R3: For Restoration states, the sub-alphabet is {N, CF, R}; 

R4: For Alert states, the sub-alphabet is generally{N}; for the 

states whose guardian state is C, the sub-alphabet is {N, CF}. 

4.3 Fuzzy Model Predictive Control 

As depicted in Fig. 1, the lower-level controller is realized 

via fuzzy model predictive control. The fuzzy model 

predictive controller is composed of three components: fuzzy 

model, prediction, and optimization. 

The fuzzy model consists of a collection of fuzzy if-then 

rules and the associated MF parameters. The Wang-Mendel 

(WM) method for data-driven fuzzy modelling is used to 

generate automatically the fuzzy rule base from numeric data. 

Moreover, particle swarm optimization (PSO) is used to 

optimize those MF parameters of fuzzy model.  

According to (7), ( )d
f t

dt
∆  is dependent on the system 

inputs ( )GP t  and ( )LP t ; hence fuzzy model has three 

inputs: ( )GP t , ( )LP t , and ( )1f t − . Each I/O domain is 

partitioned into seven fuzzy subsets. The initial MF 

parameters are empirically set and then optimized with PSO. 

The initial setting of PSO algorithm is as follows: 1000 

iteration steps, swarm size 20, learning rate c1=c2=1.4972, 

inertia weight 0.9. After optimization, the fuzzy partition of 

each input/output variable (i.e., 3 input and 1 output for the 

fuzzy model) is shown in Fig. 6 and the fuzzy rule base 

comprising 18 fuzzy production (if-then) rules is presented in 

Table 1. The training and testing data is acquired via 

PSCAD/EMTDC 4.2.0. 

4.4 Simulation Results and Discussions 

The system output (i.e., frequency) is shown in Fig. 7. At 

t0=103 s, generator G4 is down, leading to a rapid drop in 

output power. This caused an emergency state of the whole 

system. Meanwhile, other generators are slowly releasing 

their spinning reverse respectively to make up the deficiency. 

At t1=103.84 s, the discrete state is evolved from BB(B) to 

BB(C) and then control needs to be applied. The input sub-

alphabet is {N, CF}, with the fuzzy model we predict that 

control input CF is the optimal. However, the system cannot 

be restored by prediction. So after 0.1s (
ct ) at t2=103.94 s, a 

control action still needs to be applied. The discrete state of 

system is still BB(C), one more fine-tuned load must be shed. 

Since the power deficiency is much larger than the 

consumption of two fine-tuned loads, the system cannot be 

restored immediately. 

Table 1. Fuzzy rule-base of the fuzzy model. 

PG(t) PL(t) f(t-1) f (t) 

1 1 1 2 

1 1 2 3 

1 2 2 2 

2 1 1 2 

3 1 1 2 

3 2 3 2 

3 2 4 5 

3 2 5 5 

3 2 6 5 

3 2 7 7 

5 1 1 2 
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Fig. 7. The simulation result of UFLS by our method. 

After a time delay of 0.1s, at t3=104.04s the discrete state of 

system becomes CC(C) and the input sub-alphabet is then 

{N, CR, CF}; CR is selected because it would restore the 

system. Hence we adopt CR and calculate the settling time 

st and chose 
1

4
st t∆ = ⋅  as the holding time of control input 

CR. Fig. 8 shows the model prediction with control input CR. 

( )1
* 149.24 104.04 11.3

4
t∆ = − =  s. Then at t4 = 104.04+11.3 

= 115.34 s, the system state belongs to Restor. and the input 

sub-alphabet is {N, CF, R}. With performance optimization, 

the control input R performs the best even with selection of 

different weights in performance index (see Table 2). 

We present the simulation results of Method I and Method II: 

Method I: Set the frequency thresholds if = 49 Hz, jf = 49.5 

Hz and frequency step size stepf = 0.3 Hz, the simulation 

result is shown in Fig. 9(a). 

Method II: Set the pick-up frequency 1f = 49.2 Hz and 

frequency change rate 

thresholds 1.8 Hz/s, 0.15 Hz/s, 1 Hz/s
f rs rf

F F F= = − = − ; qK = 

70%, 0.5,pK = 0.5,IK = 2DK = as in Lin et al. (2008), 

the simulation result is shown in Fig. 9(b). 
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Fig. 8. Model prediction at t3=104.04 s with control CR. 

Table 2. Performance index under different weights. 

(w1,w2) CF N R 

(0.1,0.9) 0.8420 0.8610 0.8793 

(0.2,0.8) 0.8380 0.8573 0.8753 

(0.3,0.7) 0.8341 0.8535 0.8712 

(0.4,0.6) 0.8301 0.8498 0.8671 

(0.5,0.5) 0.8261 0.8461 0.8630 

(0.6,0.4) 0.8222 0.8424 0.8590 

(0.7,0.3) 0.8182 0.8387 0.8549 

(0.8,0.2) 0.8143 0.8350 0.8508 

(0.9,0.1) 0.8103 0.8313 0.8467 

At t0=103 s, generator G4 is down, the instantaneous power 

deficiency is 83 MW, so when f(t
1
)=49.1791 Hz < 49.2 Hz at 

t1=104.16 s, an amount of load mostly approaching to 

83*70%=58.1 MW should be shed, so one coarsely tuned 

load (48 MW) and one fine-tuned load (10 MW) are 

simultaneously shed after a delay of 0.2s. The next execution 

time is calculated by PID algorithm as Dt=0. 4183 s. So at 

t
2
=104.78 s, d f dt∆ =1.1351 Hz/s , 

-0.15= =1.1351 =1.8rs Ff d f dt f< ∆ < , another fine-tuned 

load should be shed. The next execution time is t
3
=105.28 s, 

-0.15= =0.7862 =1.8rs Ff d f dt f< ∆ < , one more fine-tuned 

load should be shed. 

Then the five control performance indices (i.e., settling time 

st , overshoot, duration of emergency state, steady-state 

frequency f(), and peak frequency fmax) of Method II and 

our method is compared in Table 3. 

  
(a) PG(t)                           (b) PL(t) 

  
(c) f(t-1)                            (d) f(t) 

Fig. 6. The seven fuzzy MFs covering model I/O 

variables. 
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After a time delay of 0.1s, at t3=104.04s the discrete state of 

system becomes CC(C) and the input sub-alphabet is then 

{N, CR, CF}; CR is selected because it would restore the 

system. Hence we adopt CR and calculate the settling time 

st and chose 
1

4
st t∆ = ⋅  as the holding time of control input 

CR. Fig. 8 shows the model prediction with control input CR. 

( )1
* 149.24 104.04 11.3

4
t∆ = − =  s. Then at t4 = 104.04+11.3 

= 115.34 s, the system state belongs to Restor. and the input 

sub-alphabet is {N, CF, R}. With performance optimization, 

the control input R performs the best even with selection of 

different weights in performance index (see Table 2). 

We present the simulation results of Method I and Method II: 

Method I: Set the frequency thresholds if = 49 Hz, jf = 49.5 

Hz and frequency step size stepf = 0.3 Hz, the simulation 

result is shown in Fig. 9(a). 

Method II: Set the pick-up frequency 1f = 49.2 Hz and 

frequency change rate 

thresholds 1.8 Hz/s, 0.15 Hz/s, 1 Hz/s
f rs rf

F F F= = − = − ; qK = 

70%, 0.5,pK = 0.5,IK = 2DK = as in Lin et al. (2008), 

the simulation result is shown in Fig. 9(b). 
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Fig. 8. Model prediction at t3=104.04 s with control CR. 

Table 2. Performance index under different weights. 

(w1,w2) CF N R 

(0.1,0.9) 0.8420 0.8610 0.8793 

(0.2,0.8) 0.8380 0.8573 0.8753 

(0.3,0.7) 0.8341 0.8535 0.8712 

(0.4,0.6) 0.8301 0.8498 0.8671 

(0.5,0.5) 0.8261 0.8461 0.8630 

(0.6,0.4) 0.8222 0.8424 0.8590 

(0.7,0.3) 0.8182 0.8387 0.8549 

(0.8,0.2) 0.8143 0.8350 0.8508 

(0.9,0.1) 0.8103 0.8313 0.8467 

At t0=103 s, generator G4 is down, the instantaneous power 

deficiency is 83 MW, so when f(t
1
)=49.1791 Hz < 49.2 Hz at 

t1=104.16 s, an amount of load mostly approaching to 

83*70%=58.1 MW should be shed, so one coarsely tuned 

load (48 MW) and one fine-tuned load (10 MW) are 

simultaneously shed after a delay of 0.2s. The next execution 

time is calculated by PID algorithm as Dt=0. 4183 s. So at 

t
2
=104.78 s, d f dt∆ =1.1351 Hz/s , 

-0.15= =1.1351 =1.8rs Ff d f dt f< ∆ < , another fine-tuned 

load should be shed. The next execution time is t
3
=105.28 s, 

-0.15= =0.7862 =1.8rs Ff d f dt f< ∆ < , one more fine-tuned 

load should be shed. 

Then the five control performance indices (i.e., settling time 

st , overshoot, duration of emergency state, steady-state 

frequency f(), and peak frequency fmax) of Method II and 

our method is compared in Table 3. 
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Fig. 6. The seven fuzzy MFs covering model I/O 

variables. 

 

 

     

 

 

Table 3. Comparison of control performance between 

Method II (Lin et al., 2008) and our method. 

 
st [s] 

Overshoot 

[%] 

duration of 

emergency 

state [s] 

f() 

[Hz] 

fmax 

[Hz] 

Method II 61.7 1.09 10.72 49.97 50.52 

Our method 75.24 0.42 25.34 49.89 50.10 

Interestingly, if we re-close a fine-tuned load at time t
3
, 

(similar to the last step in our method) the simulation result is 

displayed in Fig. 8. We can observe that the system 

frequency can also be restored, with 
st = 69.66 s, overshoot 

0.97%, duration of emergency state 19.28 s, f()=49.89 Hz, 

and fmax=50.38 Hz. However, more load can be kept during 

restoration, implying better economic gains. 

By comparing the control performance indices, we can see 

that Method II can restore the system faster than our method 

but with larger overshooting, which may negatively impact 

the stable operation of the whole power system. Moreover, if 

we take into consideration both frequency and output power, 

we can find that the proposed method is superior to other two 

methods from Table 4. 

Table 4. Performance comparison of three UFLS methods. 
(w1,w2) Method I Method II Our Method 

(0.1,0.9) 0.8443 0.8747 0.8793 

(0.2,0.8) 0.8434 0.8646 0.8753 

(0.3,0.7) 0.8425 0.8546 0.8712 

(0.4,0.6) 0.8416 0.8445 0.8671 

(0.5,0.5) 0.8406 0.8344 0.8630 

(0.6,0.4) 0.8397 0.8244 0.8590 

(0.7,0.3) 0.8388 0.8143 0.8549 

(0.8,0.2) 0.8379 0.8043 0.8508 

(0.9,0.1) 0.8370 0.7942 0.8467 

5. CONCLUSIONS 

In this paper, we proposed a hierarchical control approach for 

hybrid system with discrete inputs. We firstly abstract the 

system to a DES. Then we design a supervisor in the higher 

level to provide legal control input alphabet for each discrete 

state and a fuzzy model predictive controller in the lower 

level to select the optimal control symbol for the original 

system. Simulation results showed that the proposed 

hierarchical control scheme leads to superior frequency 

recovery characteristic of the UFLS. 
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Fig. 9. Simulation results of two existing UFLS methods. 


