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Abstract. Deep Neural Networks (DNNs) have become the de-facto
standard in computer vision, as well as in many other pattern recogni-
tion tasks. A key drawback of DNNs is that the training phase can be
very computationally expensive. Organizations or individuals that can-
not afford purchasing state-of-the-art hardware or tapping into cloud
hosted infrastructures may face a long waiting time before the training
completes or might not be able to train a model at all. Investigating
novel ways to reduce the training time could be a potential solution to
alleviate this drawback, and thus enabling more rapid development of
new algorithms and models. In this paper, we propose LightLayers, a
method for reducing the number of trainable parameters in deep neural
networks (DNN). The proposed LightLayers consists of LightDense and
LightConv2D layer that are as efficient as regular Conv2D and Dense
layers, but uses less parameters. We resort to Matrix Factorization to re-
duce the complexity of the DNN models resulting into lightweight DNN
models that require less computational power, without much loss in the
accuracy. We have tested LightLayers on MNIST, Fashion MNIST, CI-
FAR 10, and CIFAR 100 datasets. Promising results are obtained for
MNIST, Fashion MNIST, CIFAR-10 datasets whereas CIFAR 100 shows
acceptable performance by using fewer parameters.

Keywords: Deep Learning, Lightweight model, Convolutional neural
network, MNIST, Fashion MNIST, CIFAR-10, CIFAR 100, Weight de-
composition

1 Introduction

Deep learning techniques have revolutionized the field of Machine Learning (ML)
and gained immense research attention during the last decade. Deep neural net-
work provides state-of-the-art solution in several domains such as image recog-
nition, speech recognition, and text processing [20]. One of the most popular
techniques within deep learning is Convolutional Neural Network (CNN), which
possesses a structure that is well-suitable specially for image and video pro-
cessing. A CNN [16] comprises a convolution layer and dense layer. CNN has
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emerged as powerful techniques for solving many classification [14] and regres-
sion [12] tasks. Additionally, CNN has produced promising results in various
applications areas, including in the medical domain, with applicability in dia-
betic retinopathy prediction [3], endoscopic disease detection [23], and breast
cancer detection [19].

Recently, developing deeper and larger architectures has been a common
trend in the development of state-of-the-art methods [4]. Most of the time, we
can observe that deeper networks especially with large and complex datasets lead
to better performance. One of the major drawbacks of CNNs are that they often
require an immense amount of training time compared to other classical ML
algorithms. Hyperparameter optimization for fine-tuning the model is another
challenging task that increases dramatically the overall training time to achieve
optimum results from any model. CNN models often require powerful Graphical
Processing Units (GPUs) for training, which can span over days, weeks, and
even months, with no guarantee that the model will produce satisfactory results.
A long training process also consumes a lot of energy and is not considered
environmental friendly. Furthermore, long training is demanding in terms of
resources as a large amount of memory is required which renders it difficult
to deploy it into low-power devices [11]. The requirements for the expensive
hardware and high training time complicate the use of models with large number
of trainable parameters to be deployed it into portable devices or conventional
desktops [20].

A potential way to address these issues is the introduction of lightweight
models. A lightweight model can potentially be built by reducing the number
of trainable parameters within the layers. In an effort towards reducing the
training time and complexity of CNN models, we propose LightLayers, which
is a combination of LightDense and LightConv2D layers, that focuses on CNNs
and more particularly on creating both a lightweight convolutional layer and a
lightweight dense layer that are both easy to train. Lightweight CNN models are
computationally cheap and can be deployed various applications for carrying out
online estimation. Therefore, the main goal of the paper is to present a general
model to reduce the number of parameters in a CNN model so that it can be
used in various image processing or other applicable tasks in the future.

The main contributions of the paper are:

– LightLayers, a combination of LightConv2D and LightDense layers, is pro-
posed. Both layers are based on matrix decomposition for reducing the num-
ber of trainable parameters of the layers.

– We have investigated and tested the proposed model with four different pub-
licly available datasets: MNIST [16], Fashion MNIST [26], CIFAR10 [13], CI-
FAR100 [13], and showed that the proposed method is competitive in terms
of both accuracy and efficiency when the number of training parameters used
are taken into consideration.

– We experimentally show that good accuracy can be achieved by using a rel-
atively small number of trainable parameters with MNIST, Fashion MNIST,
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and CIFAR 10 dataset. Moreover, we found there was a significant reduction
in the number of trainable parameters as compared to Conv2D.

2 Related Work

In the context of reducing the cost of network model training, several approaches
have been presented. For example, Xue et al. [27] presented a Deep Neural Net-
work (DNN) technique for reducing the model size while maintaining the ac-
curacy. For achieving this goal, they used singular value decomposition (SVD)
on the weight matrix in DNN, and reconstructed the model based on inherent
sparseness of the original matrices. The application of DNN for mobile applica-
tions has become increasingly popular. The computational and storage limitation
should be taken into account while deploying DNN into such devices.

To address this need, Li et al. [17] proposed two techniques for effectively
learning from DNNs with a smaller number of hidden nodes and smaller number
of senones set. The details about both the techniques can be found in the litera-
ture [17]. Similarly, Xue et al. [28] introduced two SVD based techniques to solve
the issue related to DNN personalization and adaptation. Garipov et al. [8] de-
veloped a tensor factorization framework for compressing fully-connected layer.
The focus of their work was to compress convolutional layers which would poten-
tially excel in image recognition tasks by reducing the memory complexity and
high computational cost. Later, Kim et al. [10] proposed energy-efficient kernel
decomposition architecture for binary-weight CNNs.

Ding et al. [7] proposed CIRCNN, an approach for representing the weights
and processing neural networks by the use of block-circulant matrices. CIRCNN
utilizes Fast Fourier Transform based fast multiplication operation which simul-
taneously reduces the computational and storage complexity causing negligible
loss in accuracy. Chai et al. [25] proposed a model for reducing the parame-
ters in deep neural networks via product-of-sums matrix decomposition. They
obtained good accuracy on the MNIST and Fashion MNIST datasets with a
smaller number of trainable parameters. Another similar work is by Agrawal et
al. [2], where they designed a lightweight deep learning model for human activity
recognition that is sufficiently computationally efficient to be deployed in edge
devices. For more recent works on matrix and tensor decomposition, we refer
the reader to [6, 15].

Kim et al. [11] proposed a method for compressing CNN to be deployed
into a mobile application. Mariet et al. [18] proposed another efficient neural
network architecture that reduces the size of neural network without hurting
the overall performance. Novikov et al. [20] converted dense weight matrices
of fully-connected layers to Tensor Train [21] format such that the number of
parameters are reduced by huge factor by preserving the expressive power of the
layer.

Lightweighted networks have gained attention in computer vision (for in-
stance, in the area of real-time image segmentation [9, 22, 24, 29]). Real-time
applications are growing because the lightweight models can be an efficient so-
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Fig. 1: Comparative diagram of Conv2D layer and LightConv2D layer

lution for resource constraints and mobile devices. Only a lightweight model
demands lower memory that leads to a lower computation and faster speed.
Therefore, developing a lightweight model can be a good idea for achieving real-
time solutions, and it can also be used for other applications too.

The above studies show that there is great potential for lightweight networks
for computer-vision tasks. With large amounts of training data, it is likely that
a model with huge numbers of trainable parameters will outperform the smaller
models—if one can afford the high training costs and resource demands at in-
ference time. However, there is a need for models with low-cost computational
power and small memory footprints [11], especially for mobile applications [11]
and portable devices. In this repsect, we propose LightLayers that are based
on the concept of matrix decomposition. LightLayers uses fewer trainable pa-
rameters and shows the state-of-the-art tradeoff between parameter size and
accuracy.

3 Methodology

In this section, we introduce the proposed layers. Figure 1 shows the comparison
of a Conv2D and a LightConv2D layer. In the LightConv2D layers, we decompose
the weight matrix W into W1 and W2 on the basis of hyperparameter k, which
leads to a reduction of the total number of trainable parameters in the network.
We follow the same strategy for the LightDense layer. The block diagram of the
LightDense layer is shown in Figure 2.

The main objective of building the model is to compare our LightLayers (i.e.,
the combination of LightConv2D and LightDense layers) with the conventional
Conv2D and SeparableConv2D layers. For comparing the performance of the
various layers, we have built a simple model from scratch. The block diagram of
the proposed model is shown in Figure 3. We used the same hyperparameters
and setting for all the experiments. For the LightLayers experiments, we used
LightConv2D and LightDense layers (see Figure 3). For the other experiments,
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Fig. 2: Comparative diagram of Dense layer and LightDense layer

Fig. 3: Block diagram of the architecture used for comparison of the proposed
Lightlayers with regular convolution and dense layers. In the case of regular
layers, we use regular convolution and dense layers instead of Lightlayers.

we replaced LightConv2D with Conv2D or SeparableConv2D and LightDense
with a regular Dense layer.

The model architecture used for experimentation (see Figure 3) comprises
two 3 × 3 convolution layers, each followed by a batch-normalization and ReLU
non-linearity as the activation function. We have introduced 2× 2 max-pooling,
which reduces the spatial dimension of the feature map. We have used three
similar blocks of layers in the model followed by the GlobalAveragePooling,
LightDense layers with k = 8, and a softmax activation function for classifying
the input image.

3.1 Description of convolution layers

Conv2D A convolution layer is the most common layer used in any computer
vision task and is applied extensively. This layer uses a multidimensional kernel
as the weight, which is used to perform convolution operation on the input to
produce an output. If the bias is used, then a 1D vector is added to the output.
Finally, the activation is applied to introduce the non-linearity into the neural
network. In this paper, we worked on a 2D convolution layer, which uses a 4D
tensor as the weight.

Output = Activation((Input⊗Weight) + Bias) (1)

In the above equation, ⊗ represents the convolution operation, and weight rep-
resents the kernel.
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Dense layer A dense layer is the regular, deeply connected neural-network
layer. It is the most common and frequently used layer. It is also known as a
fully-connected layer as each neuron receives input from the previous layer.

Output = Activation((Input⊕Weight) + Bias) (2)

In the above equation, ⊕ represents the matrix multiplication instead of convo-
lution operation as above.

Separable Conv2D Separable convolution, also known as depth-wise convo-
lution, is used in our experiment. We use depth-wise separable 2D convolution
to compare the performance of our model. It first applies a depth-wise spatial
convolution, i.e., performing convolution operation on each input channel inde-
pendently. After that, it is followed by a point-wise convolution, i.e., a 1 × 1
convolution. Point-wise, convolution controls the number of filters in the output
feature maps.

4 Experimental Setup

For the experiments, we use the same number of layers, filters, filter sizes, and
activation functions in every model for the individual dataset. We have modified
the existing Dense and Conv2D layer in such a way that the number of train-
able parameters decreases with some decrease in the accuracy of the model. In
particular, we use three types of layers for this experiment, i.e., Conv2D, Sep-
arableConv2D, and LightLayers. First, we run the model using Conv2D layers.
The Conv2D layer is replaced by SeperableConv2D and run again. Again, we
replace SeperableConv2D with the LightLayers and run the model.

In the modified layers, we introduced the hyperparameter k to control the
number of trainable parameters in the LightDense and LightConv2D layer. In the
LightDense layer, we set k to 8. In the LightConv2D layer, k varies between 1 to
6, and more could be set depending on the requirement. The values of the k are
chosen empirically. We only replace the Conv2D layer with the LightConv2D
layer and Dense layer with the LightDense layer of the proposed lightweight
model. The rest of the network architecture remains the same.

4.1 Implementation Details

We have implemented proposed layers using the Keras framework [5] and Ten-
sorFlow 2.2 [1] as backend. The implementation can be found at GitHub1. We
performed all the experiments on an NVIDIA GEFORCE GTX 1080 system,
which has 2560 NVIDIA CUDA Cores with 8 GB GDDR5X memory. The sys-
tem was running on Ubuntu 18.04.3 LTS. We used a batch size of 64. All the
experiments were run, keeping all the hyperparameters (i.e., learning rate, op-
timizer, batch size, number of filters, and filter size) the same. We have trained
all the models for 20 epochs. After each convolution layer, batch normalization
is used, which is activated by the Rectified linear unit (ReLU).

1https://github.com/DebeshJha/LightLayers
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4.2 Datasets

To evaluate LightConv2D layer and LightDense layer, we have performed exper-
iments using various datasets.

MNIST Database Modified National Institute of Standards and Technology
(MNIST) [16] is the primary dataset for computer vision tasks introduced by
LeCun et al. in 1998. MNIST comprises 10 classes of handwritten digits with
60, 000 training and 10, 000 testing images. The resolution of the images in the
MNIST dataset is 28× 28. There is a huge recent advancement in ML and Deep
Learning (DL) algorithms. However, the MNIST remains a common choice for
learners and beginners. The reason is that it is easy to deploy, test, and compare
an algorithm on a publicly available dataset. The dataset can be downloaded
from http://yann.lecun.com/exdb/mnist/.

Fashion MNIST Database Fashion MNIST [26] is a 10 class of 70, 000
grayscale images of size 28 × 28. Han et al. released a novel image dataset
that could be used for benchmarking ML algorithms. Their goal was to re-
place the MNIST database with a new database. The images of the Fashion
MNIST database are more challenging as compared to the MNIST database. It
contains natural images such as t-shirt/top, trouser, pullover, dress, coat, san-
dal, shirt, sneaker, bag, and ankle boot. The database can be downloaded from
https://github.com/zalandoresearch/fashion-mnist.

CIFAR-10 Database CIFAR-10 [13] is a commonly established dataset for
computer-vision tasks. It is especially used for object recognition tasks. CIFAR-
10 contains 60, 000 color images of size 32 × 32. It also has 10 classes of images.
Each class contains 6000 images per class. The classes contain datasets of cars,
birds, cats, deer, dogs, horses, and trucks. The dataset can be downloaded from
https://www.cs.toronto.edu/~kriz/cifar.html.

CIFAR-100 Database CIFAR-100 [13] is also collected by the team of Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton. This database is similar to the
previous CIFAR-10 database. The 100 classes of the database consist of images
such as beaver, dolphin, flatfish, roses, clock, computer keyboard, bee, forest,
baby, pine, tank, etc. Each class of the database contains 600 images each. This
dataset contains 500 training examples and 100 testing examples per class. The
dataset can be found on the same webpage as CIFAR-10.

5 Results

In this section, we present and compare the experimental results of the Conv2D,
SeperableConv2D, and LightLayers models on the MNIST, Fashion MNIST,
CIFAR-10, and CIFAR 100 datasets. Table 1 shows the summary of result
comparison of Conv2D, SeperableConv2D, and LightLayers on MNIST dataset.
Based on Conv2D and SeperableConv2D, we propose Layers and show improve-
ment over both layers. The concept of LightLayers are based on weight matrix
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Table 1: Results on MNIST test dataset (Number of epochs = 10, Batch size
= 64, Learning rate = 1e− 3, Number of filters = [8, 16, 32]).

Method Parameters Test Accuracy Test Loss

Conv2D 18,818 0.9887 0.018

SeparableConv2D 3,611 0.9338 0.2433

LightLayers (K = 1) 2,649 0.9418 0.1327

LightLayers (K = 2) 4,392 0.9749 0.0554

LightLayers (K = 3) 6,135 0.9775 0.0513

LightLayers (K = 4) 7,878 0.9720 0.0704

Table 2: Results on Fashion MNIST test dataset (Number of epochs = 10,
Batch size = 64, Learning rate = 1e− 3, Number of filters = [8, 16, 32]).

Method Parameters Test Accuracy Test Loss

Conv2D 18,818 0.9147 0.1468

SeparableConv2D 3,611 0.8725 0.3175

LightLayers (K = 1) 2,649 0.789 0.6752

LightLayers (K = 2) 4,392 0.8452 0.4247

LightLayers (K = 3) 6,135 0.8695 0.3708

LightLayers (K = 4) 7,878 0.8623 0.6184

LightLayers (K = 5) 9,621 0.8820 0.2810

LightLayers (K = 6) 11,364 0.8733 0.3986

decomposition. This is the main motivation behind comparison of the proposed
layers with Conv2D and SeperableConv2D.

The hyperparameters used are described in the caption of the Table 1. We
can see that the result of the proposed LightLayers is comparable to that of
Conv2D and SeperableConv2D in terms of test accuracy. When we compare the
LightLayers with Conv2D, in terms of the number of parameters used, it uses
only 1

3 of parameters of Conv2D, which is more efficient with only 1% drop in
terms of test accuracy. LightLayers with hyperparameter k = 3 achieves the
highest test accuracy. However, for the other values of k as well there is only
minimal variation in test accuracy.

Table 2 shows the results for different layers for the model trained on the
Fashion MNIST dataset. From the table, we can see that the proposed model
(LightLayers) with hyperparameter k = 5 uses only half of the parameters with
around drop 3% drop in terms of test accuracy with the Fashion MNIST dataset.
However, when we compare the quantitative results with SeperableConv2D, our
proposed LightLayers achieves better test accuracy with the trade-off in number
of trainable parameters.
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Table 3: Evaluation results on test set of CIFAR10 dataset (Number of epochs
= 20, Batch size = 64, Learning rate = 1e−4, Number of filters = [8, 16, 32, 64]).
The ’Params’ in the bold represents total number of parameters.

Method Parameters Test Accuracy Test Loss

Conv2D 76,794 0.6882 0.9701

SeparableConv2D 14,440 0.5953 1.3263

LightLayers (K = 1) 5,937 0.3686 1.6723

LightLayers (K = 2) 9,592 0.4596 1.5372

LightLayers (K = 3) 13,247 0.4937 1.5287

LightLayers (K = 4) 16,902 0.5319 1.3214

LightLayers (K = 5) 20,557 0.5576 1.2122

Table 4: Evaluation on CIFAR100 test set (Number of epochs = 20, Batch
size = 64, Learning rate = 1e− 4, Number of filters = [8, 16, 32, 64]).

Method Parameters Test Accuracy Test Loss

Conv2D 82,644 0.3262 2.6576

SeparableConv2D 20,290 0.2207 3.2108

LightLayers (K = 1) 6,747 0.0275 4.2391

LightLayers (K = 2) 10,402 0.0398 4.1836

LightLayers (K = 3) 14,057 0.0559 4.0304

LightLayers (K = 4) 17,712 0.0551 3.9978

LightLayers (K = 5) 21,367 0.0589 4.0009

Table 3 shows the results on CIFAR 10 dataset. On this dataset as well, the
proposed method is 3.75 times computationally efficient in terms of parameters
it uses. However, there is a drop in accuracy of around 13%. Nevertheless, for
some tasks the efficiency can be more important than the reduced accuracy.

Similarly, we have trained and tested the proposed model on the CIFAR 100
dataset, where the test accuracy of the proposed layers is much lower as com-
pared to the Conv2D. This is obvious because CIFAR 100 consists of 100 classes
of images that are difficult to generalize with such a small number of trainable
parameters. However, the total number of parameters used is still around 4 times
less than that of Conv2D. The total number of trainable parameter for Conv2D
is 82,644, and for LightLayers, it is only 21,367. More details on the test accuracy
and test loss can be found from Table 4.

From the experimental results, we can say that LightLayers has the following
advantages:
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– It requires less trainable parameters than Conv2D which is an important
factor to implement it in different applications where heavy trainable pa-
rameters could not be beneficial.

– Due to less parameters, the space taken by the weight file is smaller which
makes it more suitable to devices where storage space is limited.

6 Ablation Study

Let us consider that the input size is 784, and the number of output features is
10. Therefore, the weight matrix W is 784 × 10 resulting in 7840 trainable pa-
rameters. Now, in the LightDense layer, we decompose the weight matrix W into
two smaller matrix W1 and W2 of lower dimension using the hyperparameter k.

Here, W1 = [784, k] and W2 = [k, 10] values from the above example, the
total number of trainable parameters in the LightDense layer becomes 786 × k
+ k × 10. Now, if k = 1, then trainable parameters are 796, and if k = 2 the
number of trainable parameters becomes 1, 588, and so on.

Next, consider the weight decomposition in the LightConv2D layer. If the
input is 32 × 32 × 3, the number of filters is 32, and the kernel size is 3 × 3,
then the filters size becomes 3× 3× 3× 32. This means that the total number of
trainable parameters is 864. Now, we will decompose the kernel W into W1 and
W2 using hyperparameter k. Here, W1 is 3× 3× 3×k and W2 is 3× 3×k× 32.
If k is 1, then the total number of trainable parameters becomes 27 + 288, which
is equals to 315.

From the ablation study, we see that the number of trainable parameters
used is less in LightLayers compared to the Conv2D and Dense layers. Overall,
we can argue that the proposed LightLayers approach has the potential to be
a powerful solution to solve the problem of excessive parameter used by tradi-
tional deep-learning approaches. However, our LightLayers model needs further
improvement for successfully implementing it on a larger datasets with high
resolution images. We can conclude that further investigating matrix weight de-
composition is important and other similar studies are necessary to reach the
goal of lightweight models in the near future.

7 Conclusion

In this paper, we propose the LightLayers model, which uses matrix decompo-
sition to help to reduce the complexity of the deep learning network. With the
extensive experiments, we observed that changing the value of hyperparameter k
yields a trade-off between model complexity in terms of the number of trainable
parameters and performance. We compare the accuracy of the LightLayers model
with Conv2D. An extensive evaluation shows the tradeoffs in terms of parameter
uses, accuracy and computation. In the future, we want to train LightLayers on
different publicly available datasets. We also aim to develop efficient techniques
for finding the optimal value of k automatically. Further research will be required
to find suitable algorithms and implementations that will scale this approach to
a biomedical datasets.
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