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Nationwide rollout reveals efficacy of epidemic
control through digital contact tracing
Ahmed Elmokashfi 1✉, Joakim Sundnes2, Amund Kvalbein1, Valeriya Naumova1, Sven-Arne Reinemo1,
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Fuelled by epidemiological studies of SARS-CoV-2, contact tracing by mobile phones has

been put to use in many countries. Over a year into the pandemic, we lack conclusive

evidence on its effectiveness. To address this gap, we used a unique real world contact data

set, collected during the rollout of the first Norwegian contact tracing app in the Spring of

2020. Our dataset involves millions of contacts between 12.5% of the adult population, which

enabled us to measure the real-world app performance. The technological tracing efficacy

was measured at 80%, and we estimated that at least 11.0% of the discovered close contacts

could not have been identified by manual contact tracing. Our results also indicated that

digital contact tracing can flag individuals with excessive contacts, which can help contain

superspreading related outbreaks. The overall effectiveness of digital tracing depends

strongly on app uptake, but significant impact can be achieved for moderate uptake numbers.

Used as a supplement to manual tracing and other measures, digital tracing can be instru-

mental in controlling the pandemic. Our findings can thus help informing public health

policies in the coming months.
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When the SARS-CoV-2 virus started spreading globally,
many initiatives for the development of digital contact
tracing based on mobile phones were launched1,2. The

efforts were motivated by a study by Ferretti et al., which sug-
gested that an effective widely adopted digital contact tracing
system may be enough to keep the reproduction number below
13. Over a year into the pandemic, we have still not seen con-
clusive evidence that digital contact tracing can play a significant
role in containing the pandemic. As a result, several studies have
questioned the efficacy and need for digital contact tracing,
especially when considering its encroachment on privacy4–10.
Measuring the effect of digital contact tracing has been notor-
iously hard, as there is no contacts dataset available from a full
scale production system. Further, most of the deployed systems
are based on the Exposure Notification System (ENS)11, which is
designed to greatly limit visibility into contact events in order to
preserve privacy. Hence, current assessments of ENS-based apps
have resorted to using a combination of incomplete data that ENS
provides and population surveys12–14. To tackle these limitations,
we used a unique real world contact data set, that was collected
and anonymized during the rollout of the first Norwegian contact
tracing app (Smittestopp) in the Spring of 202015. Our dataset
involves millions of contacts and enabled us to measure the real-
world technological tracing efficacy of the app, apply a machine
learning classifier to estimate the number of contacts not iden-
tifiable by manual contact tracing (see Fig. 1a) and to para-
meterize a model that relates tracing efficacy to the app uptake in
the population. Finally, in order to assess the potential impact as a
control measure, we used our efficacy estimates as an input to an
established model of pandemic spreading.

We measured a high success rate in accurately detecting nearby
devices (80%). Further, we estimated that a non-trivial percentage
of the traced close contacts were not visible to manual contact
tracing (at least 11%). We also found that the overall effectiveness
of digital tracing is strongly dependent on app uptake. While an
overall tracing efficacy comparable to manual contact tracing

requires app uptake in the range from 80% to 90%, we found that
a significant impact can be achieved for much lower uptake
numbers. For example, an uptake of 40% would be enough,
assuming a fast and effective case isolation, for controlling a
pandemic with reproduction number of 1.5. While this study
does not link digital contact tracing results with infection data,
the estimated detection accuracy can serve as a reasonable proxy
for the utility of digital contact tracing. Our results strengthen
and add to the emerging evidence that apps are already a valuable
public health tool12–14.

Results
Smittestopp was rolled out in the Spring of 2020 and was quickly
installed by 28% of the adult population (see Fig. 1b). The app
was eventually suspended in June, because of a combination of
low infection rates and privacy concerns16. An ENS-based app
was subsequently launched in December 202017. Smittestopp
used Bluetooth low energy (BLE) to discover phones in a range of
10 metres. Upon a discovery event, the app measured the power
of the received BLE signal, which was used to approximate the
distance to the discovered device. The devices would upload their
measurements to a central server, which fused the received data
for identifying contacts. This centralization ensured a symmetric
contact identification, since Smittestopp was asymmetric by
design, that is a detection event in one direction does not imply
the opposite is true.

To track the effectiveness of Smittestopp, we used anonymized
daily aggregates of BLE discovery events, contacts, spanning
18 days (see Supplementary Note 2). We recorded over 26 mil-
lions contacts between 545354 phones (i.e., 12.5% of the adult
population in Norway). The percentage of daily active users
fluctuated between 50% and 70%. Two-thirds of the daily active
users were involved in a single risky contact (see Fig. 1c), which
corresponds to being within 2 metres from another person for
15 min or longer18. We also found that 80% of the active users
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Fig. 1 Tracking the rollout of Smittestopp and the potential for identifying risky contacts. a Typical settings of social contacts, the colours of the arrows
capture whether manual contact tracing can succeed in identifying the contacts in the respective setting (green means complete identification, yellow
partial identification, while red means zero or minor identification), b The percentage of population over 16 year old that were using Smittestopp in each
municipality, c the percentage of active users per day as well as the percentage of active users that were involved in risky close contacts (within 2 metres)
that lasted 15 min or more, d The average number of contacts per day over time, all contacts (blue) and risky close contacts (red).
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had contacts on at least five different days. When considering the
entire data set, we found that 89.6% of users had at least a single
risky contact that lasted 15 min or longer. The observed retain-
ability of the app and the pervasiveness of close contacts suggest a
reasonable case coverage, that is the fraction of positive cases
using the app. Assuming a homogeneous uniform mixing
between app users and the rest of the population, we expect a case
coverage close to the app adoption level.

To investigate whether Smittestopp captured movement pat-
terns in the society, we examined the number of contacts and
risky contacts over time (see Fig. 1d). The trend of risky contacts
closely followed that of all contacts, and both numbers exhibited a
slightly increasing trend, which is consistent with the fact that
society was slowly opening up during this period. The average
number of contacts dropped in weekends and national holidays,
which matches the previous studies19.

Estimating the technological efficacy. We used the collected
contact events to estimate the tracing efficacy of Smittestopp, the
probability that a physical proximity event between two phones is
detected by the app, and how it is impacted by app uptake. The
key assumption to computing the efficacy of Smittestopp is that
all phones detect each other independently. The global mobile
phone market is dominated by two operating systems; iOS and
Android, which we have found to differ significantly in their
ability to detect contacts. We let T be the set of all unique ordered
pairs of phone architectures, and instantiate our model by letting
T= {ii, ai, ia, aa} where i means iOS, and a means Android.
Using the collected contact events, we estimated the following
probabilities: pii= 0.54 (iPhone detects iPhone), pai= 0.53
(Android detects iPhone), pia= 0.53 (iOS detects Android), and
paa= 0.74 (Android detects Android). These probabilities

remained stable throughout the measurement period (see Fig. 2a).
The details of the underlying assumptions and calculations are
provided in the Methods section.

Assuming a full app uptake in the population, the tracing
efficacy of a centralized architecture, E, can be formulated as

E ¼ ciið2pii � p2iiÞ þ ðcia þ caiÞðpia þ pai � piapaiÞ þ caað2paa � p2aaÞ:
ð1Þ

Here, cz denotes the probability that a physical contact between
two phones is of type z∈ {aa, ii, ai, ia}. The four values for cz can
be calculated directly from the fraction of the different operating
systems of the phones using the app. If we define Mi= ϕ as the
proportion of apps running on iOS phones, and Ma= 1− ϕ as
the proportion running on Android, we have

cii ¼ ϕ2; cia ¼ cai ¼ ϕð1� ϕÞ; caa ¼ ð1� ϕÞ2: ð2Þ
These calculations show that the efficacy of the system depends

on the distribution of iOS and Android phones in the population.
The theoretical efficacy of the system in terms of detection of
contacts varies between 93% with only Android phones in the
population to 79% with only iOS phones in the population, as
illustrated in Fig. 2b. We also found that the efficacy is dependent
on the minimum duration of contacts. This is clearly evident
when considering ephemeral contacts. However, we did not
measure a tangible difference in efficacy when setting the
minimum contact duration to 5 min as oppose to setting it to
15 min (See Supplementary Fig. 3). This is promising since it
indicates a high efficacy in detecting contacts that last five
minutes or longer.

In reality the uptake of contact tracing apps is well below 100%,
and for Smittestopp we also observed that the uptake differed
significantly between iOS and Android users. To give a realistic
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Fig. 2 The technological efficacy of Smittestopp. a The probabilities of detection between different pairs of architectures as it developed over a period of
18 days, b The detection of contacts varies between 93% with only Android phones in the population to 79% with only iOS phones in the population. The
detection rate is 80% when we have an equal split, c The efficacy of tracing as a function of app uptake in the two user groups. The lines mark efficacies of
25%, 50%, and 75%, respectively, d Tracing efficacy as a function of app uptake, assuming the same uptake in the two groups as well as an equal market
share ϕ ¼ 0:5.
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estimate of the app tracing efficacy, we needed to modify (1) to
incorporate these factors. We define αi, αa as the app uptake
among iOS and Android users, respectively. Then (1) still holds,
but with modified values for the probabilities cx, x∈ {aa, ii, ai, ia}:

cii ¼ α2i ϕ
2; cia ¼ cai ¼ αiϕαað1� ϕÞ; caa ¼ α2að1� ϕÞ2: ð3Þ

Figure 2c shows the tracing efficacy as a function of app uptake
among the iOS and Android users, calculated using these
modified cx values with (1) and the detection probabilities px,
while Fig. 2d shows the tracing efficacy assuming an equal uptake
by the two groups. The overall effectiveness of digital tracing is
strongly dependent on app uptake, and follows the expected
quadratic curve. The provided expressions for technological
efficacy can be applied to systems other than Smittestopp given
that the terms in Eq. (1) can be estimated. Our formulation of the
technological efficacy gives an estimate of false negatives
produced by the system, but it does not capture false positives.
Given the modest secondary attack rate of the virus20,21, we
expect technological false positives to have a minimal impact on
the number of wrongly isolated cases (see Supplementary Note 3).

One weakness of our dataset is that it was collected from an
app that was developed before the ENS, the current de-facto
standard for digital contact tracing, became available. It must be
noted that although ENS is expected to perform better than
Smittestopp, this has not been possible to verify in any deployed
system. The technical reasons for this are presented in
Supplementary Information (see Supplementary Note 7). Limited
experiments in controlled environments do, however, support the
assumption that ENS will have an efficacy comparably to or better
than we have observed in the deployment of Smittestopp22–24,
and thereby support our conclusions on the potential of digital
contact tracing. The available follow-up data on deployed ENS-
based apps is limited. We used publicly available statistics about
the German and Swiss official apps to gauge their efficacy25,26.
These two apps were rolled out in June 2020. Inline with our
results from Smittestopp, the app uptake seems to be a good
proxy for gauging the case coverage (see Supplementary Note 7).
We also note that apps like Smittestopp can potentially run on
any phone with BLE support. Prior to December 2020, ENS was
supported on iPhone devices that were released after 2015. A
recent update extended the support to older phones making ENS
available on most phones that were released after 2012 (more
details are available at https://covid19.apple.com/contacttracing).

Detecting unknown close contacts. To check whether Smittes-
topp was successful in detecting untraceable close contacts, we
built a machine learning classifier to separate unknown (random)
contacts from known close contacts (see the Methods). The
model learned association patterns from the contacts graph and
achieved an accuracy of 89% when classifying risky close contacts.
Overall, at least 11% of the risky close contacts were random.

The fraction of daily random contacts varied slightly over time,
but remained around 6% (see Fig. 3a). It dropped during
holidays, notably the long Ascension day weekend at the end of
May, and it peaked in the days leading to the holidays. We
performed the same analysis as we varied the threshold for
considering a contact as risky. The fraction of risky random
contacts increased to 33.3% when abolishing the duration
threshold. We, however, note that our estimates of random
contacts are conservative (see the Methods and Supplementary
Note 5). Random contacts were shorter, mostly lasting between
20 and 40 min (see Fig. 3b). This is, however, a duration long
enough to spread infection. Close contacts were longer and can
last a whole day (i.e., household contacts) or several hours with a
peak around 7 hours (i.e., work contacts). The number of random

contacts per user, in the entire study period, was far less than
close contacts. Over half of the users did not have random
contacts (i.e., only known contacts), but over 30% of the users had
10% or more random contacts (see Fig. 3c, d). The lack of
random contacts, for over 50% of the users, can be related to the
imposed lockdown and adherence to social distancing as well as
our conservative estimates.

Considering only users with a relatively high number of
contacts, the percentage of users with 10% random contacts
increased to between 50% and 60%. Overall, the top 20% of users,
in terms of contacts, had 20% or more random contacts. To gain
insight into the nature of these active users, we took a closer look
at the users with 50 contacts or more, which we refer to in the
following as highly connected users. We first examined the
number of highly connected neighbour per such user (see Fig. 3e).
The majority of highly connected users have a non-trivial number
of highly connected neighbours. In fact, only 7% of them do not
connect to any other highly connected users. The distribution
exhibits a pronounced mode at 14 highly connected neighbours,
this mode describes 27% of the users. There is, however, a small
fraction of users, about 4%, that are connected to more than 59
other highly connected users. This high linkage likelihood,
amongst highly connected users, suggest that such users may
belong to a work environment that exposes them to excessive
close contacts, e.g., health personnel, shop keepers, rail
conductors27. They can also be individuals that were involved
in superspreading events. Tracking the distribution of the number
of daily contacts that a highly connected user has can shed light
on the mechanism underlying the high connectedness. For
instance, users with a high number of contacts over several days
are probably part of a work environment with frequent social
encounters. To this end, we divided the highly connected users
into buckets based on the maximum number of daily contacts
they had, then examined the distribution of the 90th percentile
day within each bucket. For most users, there is a reasonable
agreement, in the number of contacts, between the 90th percentile
and maximum days (see Fig. 3d). In other words, these users were
highly connected on more than a single day. We also observed a
small fraction of users with close to zero contacts in most days.
Our observations suggest that a non-trivial fraction of highly
connected users have an occupation that exposes them to
excessive close contacts, e.g., health personnel, shop keepers, rail
conductors27. Further, we also observed users that were highly
connected on only a single day. These findings were further
confirmed when breaking down encounters involving highly
connected users by day of the week as well as when examining the
tendency of highly connected users to run into other highly
connected users (see Supplementary Fig. 7 and Supplementary
Fig. 8). This analysis indicates that digital contact tracing can
potentially help containing outbreaks that are related to highly
connected individuals and superspreading events.

The detected fraction of random contacts suggest that the app
can significantly supplement manual contact tracing. If we
assume, for instance, 60% app uptake in the population, we
observe from Fig. 2d that the efficacy of the app tracing is
approximately 30%. This app will improve the overall tracing
accuracy by 7.5–10.5% in a society where the fraction of random
contacts is between 25% and 35%, respectively. Here, we assume
that manual contact tracing identifies all non-random contacts. A
supplement of this magnitude can mean the difference between a
controlled pandemic and an exponential growth of cases3.

Effect on spread of SARS-CoV-2. After investigating the tech-
nological efficacy and its viability in detecting contacts, we turned
to assess its potential impact on the pandemic spread. The tracing
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efficacy as a function of app uptake was computed from (1), as
illustrated in Fig. 2c, and then these numbers were input to the
model of Ferretti et al3, which describes the effect of contact
tracing on pandemic spread. Figure 4a, b shows the estimated
growth rate r (in days−1), as a function of app uptake in the two

user groups. In Fig. 4a, we chose the initial reproduction number
as R0= 2.7, which is in line with reported numbers from the early
phase of epidemic spread in various countries28,29. Figure 4b
shows the growth rate for R0= 1.5, chosen to represent a more
slowly growing epidemic resulting from control measures such as

Fig. 3 Quantifying the success in detecting unknown close contacts. a The contacts split over time. The fraction of risky random contacts is stable over
time and decreases in weekends and holidays, b The density of encounter duration. Frequent contacts tend to be markedly longer, c The density of the
number of contacts per user, which are split based on the inferred contact type, d The Complementary Cumulative Distribution Function (CCDF) of the
percentage of random contacts per user for all users, users with 10 contacts or more (49% of all users), users with 30 contacts or more (12% of all users)
and users with 50 contacts or more (4% of all users), e The histogram of the number of highly connected neighbours per a highly connected user. A user is
highly connected if he/she has 50 or more contacts, f The distribution of the 90th percentile day in terms of number of daily contacts for highly connected
users. Here we grouped highly connected users based on the maximum number of daily contacts per user. In the box-whisker plot, the central line indicates
median, box limits indicate upper and lower quartiles, and whiskers specify 1.5 times the interquartile range above the upper quartile and below the lower
quartile. The circles above and below the whiskers indicate the samples that are either larger or smaller than the whiskers. These are the outliers in each
range. The number of samples N is 794 for M≤ 10, 9715 for 10 <M≤ 20, 8035 for 20 <M≤ 40 and 876 40≤M.

a b c

Fig. 4 The impact of app uptake on the spread of SARS-CoV-2. The plots show the estimated growth rate r as a function of app uptake among Android
and iOS users. We have assumed 90% efficacy of case isolation and a 4 h delay of both case isolation and contact quarantining. a Shows the situation for
R0= 2.7 and b shows R0= 1.5. c Shows the same data, but assuming identical app uptake among iOS and Android users. Note that R0 denotes the initial
reproduction number of the pandemic, which is the expected number of new cases that are caused by an infected individual.
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social distancing. In both plots, the efficacy of isolating sympto-
matic cases was set to 70%, we assumed a four hour delay in both
case isolation and quarantining of contacts, and the proportion of
environmentally transmitted (i.e., non-traceable) infections was
set to 10% inline with our estimates. Results for other parameter
choices are included in Supplementary Note 9. The black lines
show r= 0, i.e., the threshold between increasing and declining
numbers of infected cases. Figure 4c shows the same results as
curve plots, assuming identical app uptake in the two user groups.

Figure 4a indicates that controlling the pandemic using app-
based contact tracing alone is probably unrealistic, since 95% of
the population would need to install the app to control a
pandemic with an initial reproduction number R0= 2.7. How-
ever, the situation is completely different for the case of R0= 1.5,
which may be more representative of a situation with other
controlling measures in place. In this case, the required uptake
was about 40% to control the epidemic and achieve a decline in
the number of cases. Unfortunately, the majority of countries
struggle with pushing app uptake beyond 20–25%. However, a
few countries including the UK and Denmark, provide a cause for
optimism, by reaching a 30% or more uptake rate. For example,
49% of the eligible population with compatible phones have
installed the NHS app in England and Wales14.

Discussion
Our analysis of the data from the first rollout of Smittestopp
reveals some central findings. The first is that it is possible to
reach a significant efficacy of digital contact tracing on mobile
phones. With an equal split between Android and iOS-phones in
the population, we measured an efficacy above 80%. Although
many discussions on the topic have taken this for granted, it
should be noted that this was far from obvious. The phone-
models used in a given society varies enormously, and none of the
models were designed with contact tracing in mind. Doc-
umentation of an efficacy of above 80% in a rolled out solution is
therefore a decisive finding. We expect ENS-based apps to achieve
a comparable or better accuracy, given their superiority to
Smittestopp. The second finding is that when used in a real
population, a digital contact tracing system does detect a non-
trivial number of close contacts that is out of reach for manual
contact tracing. Our machine learning model concluded that at
least 11% of the contacts with high risk of infection spread were
random, and would likely not have been identified with manual
contact tracing. The third finding is that measurements from a
full scale rollout combined with epidemiological models show
significant potential contributions from digital contact tracing to
stopping the pandemic. Although there is significant room for
improvement of technical accuracy, it appears that the app uptake
rate in the population is the only real impediment for realizing
the potential of digital contact tracing. Yet, tangible benefits are
possible at modest uptake rates. An uptake rate of 40%, for
example, can help reducing the reproduction number in the
current phase of the pandemic, where the reproduction number is
between 1 and 1.5 in most countries30,31. This study does not link
the traced contacts with infection data, which limits our ability to
gauge the actual impact of digital contact tracing on slowing
down the pandemic. We, however, believe that the technological
efficacy can serve as a relevant proxy in this context.

With Covid-19 expected to be endemic32, new virus variants33

and a promising but lengthy vaccination campaign34, our findings
suggest that digital contact tracing can greatly boost efforts to
control the pandemic in the coming months. Health authorities
should have an immediate focus on increasing the uptake of
contact tracing apps. This should be supplemented with efforts to

establish digital contact tracing as an essential tool for public
health.

Methods
Modelling the technological efficacy. A central assumption in the model is that
the phones detect each other completely independently. This means that whenever
phone A detects phone B, this detection event does not change the behaviour of
phone B in a way that will affect its probability of detecting phone A. There is
nothing in the implementation of Smittestopp that should imply that this
assumption does not hold. The code was written such that the act of detecting
another phone, and the act of being detected by another phone are not dependent
on each other.

Assume two types of phones, x and y. When two such phones are in proximity
of each other, let pxy be the probability that x detects y, and pyx be the probability
that y detects x. Let Cxy be the number of factual proximity events, i.e., contacts,
over a given period, between two app users carrying phone of type x and y,
respectively. Furthermore, let Dxy and Dyx be the number of these events that are
detected by the phone of type x and y, respectively, and let Dxy+yx be the number of
proximity events detected by both phones.

Then the following equations hold:

Cxypxy ¼ Dxy ;

Cxypyx ¼ Dyx ;

Cxypxypyx ¼ Dxyþyx:

Solving these equations for pxy and pyx gives

pxy ¼
Dxyþyx

Dyx
; ð4Þ

pyx ¼
Dxyþyx

Dxy
: ð5Þ

Note that these equations are valid regardless of the number of types of phones
there exist, and they also hold if x and y are identical.

If we now let T be the set of all unique ordered pairs of phone architectures, we
can formulate the tracing efficacy E of a centralized architecture as

E ¼ ∑
xy2T

Exy

where

Exy ¼ cxyðpxy þ pyx � pxypyxÞ:
Here cz denotes the probability that any given contact between two phones is of
type z∈ {xx, yy, xy, yx}. Note that in this formulation, cxy= cyx, whereas pxy and pyx
are in general different, due to technological differences between the phones. The
values for cz can be calculated directly from the fraction of the different types of
phones using the app.

The mobile phone market in the world is dominated by two operating systems;
iOS and Android, with significantly different properties. There is a rich set of
different phone models as well, but the differences between the operating systems
dominate the picture. We therefore instantiate our model by letting
T= {ii, ia, ai, aa} where i means iOS, and a means Android, which yields the total
tracing efficacy defined in Eqs. (1)-(2) above.

Note that the formulation in (1) mandates that data is collected centrally. If two
phones are in proximity of each other, it suffices that the contact is detected by at
least one of them. Our results show that this property of Smittestopp dramatically
improved the efficacy of the system, although at the cost of higher risks to privacy.
The technology developed by Apple and Google, which was made available after
the launch of Smittestopp, eventually made this trade-off between efficacy and
privacy less critical. Note also that (1)-(2) define E as the ratio of detected contacts
to the total number of actual contacts among app users. We have∑xcx= 1, and in a
situation with 100% app uptake in the population, E would be the total efficacy of
the system in detecting contacts. In reality the app uptake is well below 100%, and
contacts will also occur between phones without the app installed. To describe the
total tracing efficacy in this situation we introduce the modified contact
probabilities in (3), where we have defined αi, αa as the app uptake among iPhone
and Android users, respectively. Here we have ∑xcx < 1, since we only capture
contacts where both phones have the app installed. Eq. (1) still holds for the total
efficacy, but with the contact probabilities given by (3).

We used the contact dataset (see Supplementary Note 2 for details on the
dataset) to calculate the number of detected contacts Dia,Dai, and Dia+ai, and from
(4)-(5) we got the following probabilities:

● Probability that iOS detects iOS; pii= 0.54
● Probability that Android detects iOS; pai= 0.53
● Probability that iOS detects Android; pia= 0.53
● Probability that Android detects Android; paa= 0.74
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More specifically, we focused on the most relevant contacts from an
epidemiological point of view (i.e., within 2 metres and lasting at least 15 min)18,35.
The numbers of detected contacts Dia,Dai, and Dia+ai were computed directly since
each contact is associated with a direction and labelled with phone types (i.e.,
phone A of type x detected phone B of type y).

Identifying random contacts. We used a random forest binary classifier36,37 to
separate close contacts into known and random. To train a binary classifier, we
needed a training set that includes both true positives (i.e., known contacts) and
true negatives (i.e., random contacts). In absence of a verified ground truth, we
needed to carefully pick these two sets from the underlying data. As true positives,
we picked device pairs that met on at least seven different days. We examined
contact patterns to discern potential true negatives. More specifically, we picked
device pairs that were never in contact, despite both being in a repeated close
contact with a common third device, as true negatives (see Supplementary Note 5
for more details).

We trained a random forest classifier with 20 trees, gini criterion, a maximum
tree depth of 8, a minimum number of samples required to split an internal node of
2 and a minimum number of samples required to be at a leaf node of one. The
values of these hyperparameters were selected after conducting an exhaustive grid
search. Overall, we used nine features that were meant to capture the quality of
information we have on a pair of devices, their connectivity as well as the
topological commonalities between them (i.e., how many neighbours they share).
We fitted three models for close contacts of any duration, at least five-minute long
and at least fifteen-minute long. The three models exhibited an accuracy of 84%,
88% and 89%, respectively. We classified between 11% and 33.3% of contacts as
random depending on the definition of close contact. Our model can classify
contacts between devices with at least a single common neighbour. One-off
contacts between devices without common neighbours could not be classified and
were assumed to be known close contacts in order not to inflate the added value of
digital contact tracing. Hence, our estimates of the fraction random contacts are
conservative. A detailed analysis of these aspects is provided in Supplementary
Note 5.

Ethical considerations. The privacy considerations of Smittestopp was subject to a
fierce public debate, thus any use of data from this app has to be done with great
care. Both the legality of data usage for this particular study, and the potential
damage that the existence of the dataset could lead to was considered by the
management of Simula Research Laboratory before they authorised the study.

Simula received the necessary consent from the Norwegian Institute of Public
Health to use the data-set for research purposes, which is in accordance with the
privacy policy of Smittestopp. Adding to this, Simula collected separate legal
assessments from the Norwegian Centre for Research Data (NSD) on the risk of re-
identification based on our data-set, and from the Norwegian Law-firm Wiersholm
on the legality of the data-set. Based on the received advice, Simula concluded that
the use of the data-set for research purposes is legal.

Regarding the potential for damage done through the existence of the dataset,
Simula leans on the received assessment from NSD that re-identification of
individuals from the dataset is hard to imagine. Still, as an extra level of caution,
Wiersholm suggests that Simula should not make the dataset public, but rather share
it with other research institutions under agreements of non-disclosure and usage
limitation. Simula’s treatment of the dataset is in line with this suggestion. More
information on the legal status of the data set is given in Supplementary Note 10.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used for calculating the detection probabilities between different pairs of
architectures in this study have been deposited in a public Github repository38. The
contact data set is available to research institutions and for research purposes upon
request to Simula Research Laboratory as an extra level of caution due to privacy
concerns (please refer to Ethical consideration and Supplementary Note 10 for extra
details). Requests will be authorized by Simula’s management. Correspondence and
requests for materials should be addressed to Ahmed Elmokashfi or post@simula.no. The
data for assessing the impact of uptake on pandemic progression (i.e., Fig. 4) and analysis
of the ENS are available in the same public repository38.

Code availability
The scripts for the efficacy model, the impact of uptake on pandemic progression (i.e.,
Figs. 2 and 4), analysis of the ENS and the analysis of random contacts and highly
connected users (i.e., Fig. 3) are available at ref. 38. These script are developed using
Python version 3.8.10, R version 4.0.3 and Perl version 5.30.0. This work is licensed
under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which
permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited. To view a copy of this license, visit https://
creativecommons.org/licenses/by/4.0/. This license does not apply to figures/ photos/

artwork or other content included in the article that is credited to a third party; obtain
authorization from the rights holder before using such material.
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