
Predicting Remaining Fatigue Life of Topside Piping Using Deep Learning

Supratik Chatterjee

Engineering, Research & Development

Wipro Limited

India

supratik.chatterjee@outlook.in

Arvind Keprate

Department of Mechanical, Electronics and Chemical Engineering

Oslo Metropolitan University

Norway

arvind.keprate@oslomet.no

Abstract – Topside piping is the most commonly failed
equipment in the Petroleum and Maritime industry. The
prominent degradation mechanism causing piping failure is
fatigue which results in unnecessary hydrocarbon release from
these assets. In order to avoid the unexpected fatigue failure of
piping, it is essential to estimate the remaining fatigue life (RFL)
of the aforementioned assets. Generally, engineering companies
either rely on experimentally derived SN curves or on a
probabilistic fracture mechanics approach to predict RFL. More
recently, researchers have utilized surrogate models (classical ML
models) to predict the same, and the results seem to be promising.
In this manuscript, authors have tried to employ Deep Learning in
order to predict the RFL of a topside piping in which crack has
been detected. Firstly, different sources of uncertainty in the crack
growth process are identified and quantified, with suitable
distributions and parameters obtained from the literature.
Thereafter, Monte Carlo Simulation is used to generate 5000
samples of the data consisting of 3 input parameters and 1 target
feature (RFL class). Afterwards, the data is preprocessed, and
feature importance criteria is applied. Finally, a custom Deep
Learning model is developed to estimate the RFL class. An
accuracy of 0.96 is achieved.

Keywords - Deep Learning, Feature engineering, Data

preprocessing, Remaining fatigue life, Topside piping

I. INTRODUCTION

Topside piping contributes significantly towards the
hydrocarbon release on offshore platforms in the North Sea [1].
Thus, it is essential to maintain the integrity of vibrating piping
by following efficient design practice, high-quality fabrication,
good operating practices and risk-based in-service inspection.
Despite that, several cases of HCR from offshore piping have
been reported. Consequently, operators rely on risk-based
inspection (RBI) of topside piping to maintain its technical
integrity according to the design. In his previous works second,
author have formulated an alternate approach that finds its
usage in selecting fatigue critical piping locations on the
offshore and onshore oil and gas platforms [2,3, 4].

One of the vital steps in the proposed approach is the

estimation of the remaining fatigue life (RFL) of the vibrating

piping, using probabilistic crack growth (PCG) analysis and

Monte Carlo simulation (MCS), the details of which can be

found in [5, 6]. However, MCS is computationally expensive as

RFL is generally of orders 105 cycles. Previously, authors have

employed various classical machine learning models such as

linear regression, gradient boosting, gaussian process

regression to estimate RFL [1]. However, in this paper, an

alternate approach using Deep Neural Networks is postulated

for the prediction of RFL. The difference between the

predictions done in [1] and this paper is that in the former paper,

RFL prediction was a regression problem; however, in this

manuscript, it is a classification problem as the target variable

(RFL) has been divided into four classes.

A feedforward wide artificial deep neural network model

has been designed to solve this particular supervised

classification problem. This model is curated based on the

usability of the dataset. As the target variable is categorical in

nature and has a cardinality of more than two, sparse categorical

cross-entropy has been chosen as a loss function. This, in turn,

provides us with the benefit of preserving the non-ordinality of

the target variable (as we assumed earlier) while training the

model, without creating dummy variables.

The remaining of the manuscript is structured as follows.

In Section II, a brief summary to the Deep Learning is

presented, followed by an illustrative study in Section III, and a

conclusion in Section IV.

II. DEEP LEARNING

In general, deep learning or deep structured learning is a

wide group of artificial neural network that imitates human

brain’s neuron system to find a solution of a complex problem

by finding a pattern and relationship among different

components. Different authors have defined deep learning in

different ways. Deep learning allows computational models

composed of multiple processing layers to learn representations

of data with multiple abstraction levels [7]. Deep learning

algorithms seek to exploit the unknown structure in the input

distribution to discover good representations, often at multiple

levels, with higher-level learned features defined in terms of

lower-level features [8]. A deep neural network (DNN) is an

artificial neural network (ANN) with multiple layers between

the input and output layers [9, 10]. These techniques are

especially useful when the understanding relationship among

available information is difficult to achieve. With the advent of

DNN, non-linear solutions often outperform conventional

methods. Authors are interested in a deep neural network in the

exploration of creating a state-of-the-art customized solution

for the defined problem, which is comprised of linearly

inseparable data. A typical artificial neural network comprised

of the following conceptual artificial components, neurons,

synapses, weights, biases, and functions is shown in Fig. 1.

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.
DOI: http://dx.doi.org/10.1109/ICAPAI49758.2021.9462055.

http://dx.doi.org/10.1109/ICAPAI49758.2021.9462055

III. ILLUSTRATIVE CASE STUDY

A. Data Generation.

 The data used in the case study is generated using

probabilistic crack growth analysis, the details of which can be

found in [6]. The uncertainty quantification of the parameters

of interest for this case study is shown in Table I. The uncertain

parameters, i.e., initial crack size, remote stress range, and

material parameter C, have lognormal distribution with

respective mean and standard deviation shown in Table I.

Monte Carlo Simulation coupled with Paris law is used to

generate 5000 samples of the RFL. The details of this process

are already discussed by authors previously in [5]. The snapshot

of the generated data set is shown in Fig. 2. The target variable

in the dataset (RFL) is then classified into four categories,

namely “High”, “Medium”, “Low”, and “Very Low”. This is

achieved by considering the first quartile RFL values as “Very

Low”, the second quartile as “Low”, the third quartile as

“Medium” and the fourth quartile as “High”. This classification

is performed in order to convert the regression problem into a

classification problem, wherein the target variable (RFL) is not

a continuous number rather a class.

Fig. 1. Basic architecture of DNN [11].

TABLE I

UNCERTAINTY QUANTIFICATION FOR RFL ESTIMATION

Uncertainty Source Random

Variable

Parameters Value

Initial crack size

Material parameter

Material parameter
Remote stress range

Critical crack size

Geometric function

�� (mm)

C
m

∆� (MPa)

 ��� (mm)
Y

LN (0.94, 0.05)

LN (5.22e-13, 2.07e-13)

3
LN (100, 10)

4.5

0.952

Fig. 2. First five rows of generated dataset.

B. Exploratory Data Analysis.

To summarize the characteristics of the data, specific
explorations have been performed. Four classes, namely
“High”, “Medium”, “Low”, and “Very Low” are distributed
uniformly. Therefore, weights or importance of each class can
be equal as well. Feature "Parameter_C” has extreme low range
of values, minimum and maximum values are 1.160000e-13
and 1.940000e-12, while, "Stress" feature has a significantly
higher range than others. Highest being 150.87 and 72.12. This
extreme disparity between value ranges of features and extreme
may lead to prefer one feature over the other while training, as
features, are cardinal in nature. Misinterpretation of further
calculations on "Parameter_C" is very much possible due to its
proximity to zero. To suppress the effect of miscalculation,
before making any further observations, scaling of data to an
understandable fixed range was necessary. A range of [0, 1] has
been chosen.

It can be perceived upon plotting kernel density estimation
(KDE) of the scaled features that all distributions are skewed
towards the right, as shown in Fig. 3A. Skewness of the features
"Crack_Size", "Stress" and "Parameter_C" are 0.134745,
0.323129 and 1.197923 respectively. Kurtosis has been
measured as 0.165000, 0.219906 and 2.658968 is the same
order of skewness. This implies that transformation of
distribution to gaussian alike distribution might help in faster
convergence of the neural network, as any natural phenomena
follow the gaussian distribution. Furthermore, the Box plot of
Fig. 3B. implies that features are highly spread and consists a
large number of outliers. Therefore, a robust transformation
scheme should be used.

Likewise, authors checked the non-linear correlation
among features to discard highly correlated features. For this
purpose, authors have used pairwise scatter plot with hue as
defined classes. It is observed that features are not correlated
with each other. Graphical representation of the same can be
found in Fig.4. Even though target is ordinal in nature, treating
individual types of data as separate entity, i.e., non-ordinal may
increase chance of better segregation of individual instances.
With this assumption, a fixed random categorical integer
number y, for each target class type has been mapped based on
number of available class labels, l. from the set L = {y | y ∈ ℕ0

∧ x < l}. |L| is 4 in this case.

 As there are more than two possible categories of target
class labels, correlation ratio has been considered while trying
to understand association among categorical target variable and
nominal features. As shown in Fig 5. all features are poorly
correlated with target, especially effect of "Crack_Size" is
insignificant in contrast with other two. Therefore, authors
decided to generate more features from existing feature
columns to make more accurate model.

Fig. 5. Correlation of input features to target feature.

C. Preprocessing: Feature generation, scaling,
transformation and feature selection.

Scaling by removing the mean and scaling to unit variance,
i.e., using standard scaler, will not produce the desired result
because the value of parameter C is of order 10^-13. Therefore,
the authors have employed a different methodology for scaling,
with a fixed range of [0, 1].

As for feature generation, authors targeted single instance
prediction rather than holding unseen instances for computing
additional features, such as rolling statistics. Therefore,
polynomial features of up to degree three with product
interaction features have been considered. Generated features
were 19 in number, which includes the original three features
as well. Using all generated features may lead to the curse of
dimensionality. Consequently, the authors decided to further
reduce the number of features by eliminating any feature less
than the median of correlations among target classes and
generated features. Here, the authors used correlation ratio for
calculating correlation, same as before. Correlations have been
computed after applying transformation as well, as the selected
transformation process changes the correlations. The process of
comparison on selected transformation has been discussed in
subsequent sections.

At this point, the available population have been split into
two parts – 60% training data and 40% holdout data for testing.
The authors made sure to shuffle the data before doing the split.
A stride split has been stratified on the target variable to make
sure each part of the split has proportionated number of class
instances. Any computation other than evaluation of the model
did not use the test data. This is being done to avoid data leakage
while training the scaler and transformer.

To transform the generated features into a Gaussian
distribution, a robust transformation scheme, quantile
transformation, with a number of quantiles as the number of
available instances have been used on the scaled data. It has
been observed that if we apply the transformation before
applying a scaling scheme, all values of “Parameter_C”
becomes a constant value. Therefore, scaling before applying
transformation was necessary, as mentioned previously. The
first two diagrams from the left of Fig. 6 represent the
comparative distribution of feature “Parameter_C”, if scaling is
applied before transformation and if not. It is to be observed
that transformed data now ranges between -5.12 to +5.2. The
second scaling of fixed range [-1, 1] has been applied on top of
the quantile transformation to further reduce the spread of data.
The last diagram in the rightmost of the three diagrams in Fig.
6 shows the final distribution of preprocessed data.

A comparison on central tendency, arithmetic means of
correlation of generated features and target, between before and
after applying transformation and scaling, reveals this process
certainly increases correlation among numerical features and
categorical target. Values were measured as 0.468 and 0.567,
respectively. Now, the number of features has been trimmed
based on the median of target correlation, as described before.
Generated features, inversely sorted correlation among features
and selected features after trimming operation can be seen in
Fig. 7. The remaining features are now a mix of low, medium
and high correlation and 10 in total, which is fairly acceptable
number of features to be used in the context of deep learning.

D. Model development, Training and Evaluation

 A feedforward wide artificial deep neural network model has

been designed to solve this particular supervised classification

problem. This model is curated based on the usability of the

dataset. As the target variable is categorical in nature and has a

cardinality of more than two, sparse categorical cross-entropy

has been chosen as the loss function. This, in turn, provides us

with the benefit of preserving the non-ordinality of the target

variable (as we assumed earlier) while training the model

without creating dummy variables. The metric of performance

was set as sparse categorical accuracy. Each layer used bias and

initialized to 0. As for optimizer, Adabound with AMSGrad - a

stochastic optimization method, variable learning rate - initial

learning rate as 0.001 and final learning rate of 0.01 was used.

Table II describes various other parameter aspects of each layer.

TABLE II

Parameters for layers in DNN

Layer

type

Input/Output

dimension

Activation Kernel

initializer

Number

of output

neuron

units

Input 10 Leaky ReLU
(alpha = 0.1)

He Normal 20

Hidden NA Leaky ReLU

(alpha = 0.1)

He Normal 10

Hidden NA Leaky ReLU
(alpha = 0.1)

He Normal 10

Hidden NA Leaky ReLU

(alpha = 0.1)

He

Uniform

10

Output 4 Softmax NA 4

Model description.

Model: “sequential”

__

Layer (type) Output Shape Param #

==

dense (Dense) (None, 20) 220

__

dense_1 (Dense) (None, 10) 210

__

dense_2 (Dense) (None, 10) 110

__

dense_3 (Dense) (None, 10) 110

__

dense_4 (Dense) (None, 4) 44

==

Total params: 694

Trainable params: 694

Non-trainable params: 0

Fig. 8. Summary of neural network design.

It is to be noted that the number of output neuron units and

input dimension directly depend on number of used features,

rather than using a predefined value. For input layer, output

neuron unit is double of input dimension. Next three hidden

layers uses same number of output layers of input dimension.

Fig. 8 describes summary of the created model.

In the training process, authors used following settings to

train the model - Number of epochs: 500, batch size: 2, shuffled

the training data before each epoch, another 20% of training

data has been used as validation data during training. To avoid

overfitting, a monitoring function which will check change in

validation loss after end of each epoch has been used. Minimum

change in the validation loss as an improvement has been set as

0.1, with minimum patience 20, i.e., if validation loss is not

decreasing by 0.1 after 20 epochs then the training will stop

automatically and will restore weights automatically to the last

known minimal validation loss. Line graphs of Fig. 9A and Fig.

9B shows smoothed values of loss function and performance

metrics after each passed epochs, for both training and

validation data. Training was early stopped by callback

monitoring function after around 53 epochs. Training &

validation loss function smoothed values has been observed as

0.1219 and 0.1291 respectively. Similarly, performance metrics

smoothed values of training and validation has been measured

as 0.9488 and 0.9481 respectively. Training has been executed

only once.

To mimic real life performance of the model, accuracy of

each class has been measured on the 40% holdout dataset. A

detailed report can be seen in Fig. 10. Overall accuracy was

0.96, which is acceptable. Therefore, authors did not change

any other parameter.

Fig. 10. Recreated classification report on test (holdout) data set.

IV. CONCLUSION

 Since fatigue failure of the topside piping is a common

source of hydrocarbon release and leakages in the Oil & Gas

and maritime sector, therefore it is vital to estimate the

remaining fatigue life (RFL) of the aforesaid component. The

manuscript posited the use of a specialized deep neural network

to classify RFL of topside piping. Even though available

parameters had little correlation with the target, with the help of

feature engineering, the authors achieved a result with an

accuracy of 0.96. Besides that, special treatment of scaling on

the parameter “C”, which was in the vicinity of absolute zero,

making it possible to increase the importance of this feature,

rather than discarding it all together, thus resonating with the

physics of crack growth analysis.

DECLARATION

 The views expressed in this article/presentation are the

author’s own and Wipro does not subscribe to the substance,

veracity, or truthfulness of the author's views. Conflict of

interest declaration number 13153 has been acknowledged and

accepted by Wipro on 12/04/2021.

 REFERENCES

[1] A. Keprate and R. M. C. Ratnayake, “Remaining Fatigue

life prediction of topside piping using response surface

models,” IEEE International Conference on Industrial

Engineering and Engineering Management, Bangkok,

Thailand, 2018.

 [2] A. Keprate, and R. M. C. Ratnayake, “Enhancing offshore

process safety by selecting fatigue critical piping locations for

inspection using Fuzzy-AHP based approach,” Process Saf.

Environ., vol. 102, pp. 71-84, 2016.

 [3] A. Keprate and R. M. C. Ratnayake, “Selecting fatigue

critical inspection location of offshore topside piping using

fuzzy AHP framework,” IEEE International Symposium on

Applied Machine Intelligence and Informatics, Herlany,

Slovakia, 2016.

[4] A. Keprate and R. M. C. Ratnayake, “Generic approach for

risk assessment of offshore piping undergoing fatigue

degradation,” ASME J. Risk and Uncertainty in Engineering

Systems, Part B: Mechanical Engineering, vol. 4, 2018.

[5] A. Keprate, R. M. C. Ratnayake, and S. Sankararaman,

“Minimizing hydrocarbon release from offshore piping by

performing probabilistic fatigue life assessment,” Process Saf.

Environ., vol. 106, pp. 34–51, 2017.

[6] A. Keprate and R. M. C. Ratnayake, “Handling uncertainty

in the remnant fatigue life assessment of offshore process

pipework”, International Mechanical Engineering Congress

and Exposition, Phoenix, Arizona, USA, 2016.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep

Learning”, Nature 521, 436–444, 2015.

[8] Bengio, Y.. (2012). Deep Learning of Representations for

Unsupervised and Transfer Learning. Proceedings of ICML

Workshop on Unsupervised and Transfer Learning, in PMLR

27:17-36

[9] Schmidhuber, J. (2015). "Deep Learning in Neural

Networks: An Overview". Neural Networks. 61: 85–117.

[10] Bengio, Yoshua (2009). "Learning Deep Architectures for

AI" Foundations and Trends in Machine Learning. 2 (1): 1–127.

[11] A. Zhang, Z. C. Lipton, M. Li, and A. J. Simola. “Dive

into Deep Learning”, Release 0.16.1., 2019.

 Precision Recall Support

High 0.95 1.00 503

Low 0.91 0.99 510

Medium 0.99 0.89 493

Very Low 1.00 0.96 494

Accuracy 2000

Macro Average 0.96 0.96 2000

Weighted Average 0.96 0.96 2000

APPENDIX

 Fig. 3A. Distribution of scaled features. Fig. 3B. Spread of scaled features.

Fig. 4. Feature pairwise scatter plot.

Fig. 6. Quantile Transformation, Before and After fixed boundary (Min-Max) scaling.

Fig. 7. Feature Selection: Correlation of generated features and target.

Fig. 9A. Epoch vs. sparse categorical cross-entropy loss function.

Fig. 9B. Epoch vs sparse categorical accuracy.

