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Abstract – Topside piping is the most commonly failed 
equipment in the Petroleum and Maritime industry. The 
prominent degradation mechanism causing piping failure is 
fatigue which results in unnecessary hydrocarbon release from 
these assets. In order to avoid the unexpected fatigue failure of 
piping, it is essential to estimate the remaining fatigue life (RFL) 
of the aforementioned assets. Generally, engineering companies 
either rely on experimentally derived SN curves or on a 
probabilistic fracture mechanics approach to predict RFL. More 
recently, researchers have utilized surrogate models (classical ML 
models) to predict the same, and the results seem to be promising. 
In this manuscript, authors have tried to employ Deep Learning in 
order to predict the RFL of a topside piping in which crack has 
been detected. Firstly, different sources of uncertainty in the crack 
growth process are identified and quantified, with suitable 
distributions and parameters obtained from the literature. 
Thereafter, Monte Carlo Simulation is used to generate 5000 
samples of the data consisting of 3 input parameters and 1 target 
feature (RFL class). Afterwards, the data is preprocessed, and 
feature importance criteria is applied. Finally, a custom Deep 
Learning model is developed to estimate the RFL class. An 
accuracy of 0.96 is achieved. 
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I. INTRODUCTION

Topside piping contributes significantly towards the 
hydrocarbon release on offshore platforms in the North Sea [1]. 
Thus, it is essential to maintain the integrity of vibrating piping 
by following efficient design practice, high-quality fabrication, 
good operating practices and risk-based in-service inspection.
Despite that, several cases of HCR from offshore piping have 
been reported. Consequently, operators rely on risk-based 
inspection (RBI) of topside piping to maintain its technical 
integrity according to the design. In his previous works second, 
author have formulated an alternate approach that finds its 
usage in selecting fatigue critical piping locations on the 
offshore and onshore oil and gas platforms [2,3, 4]. 

One of the vital steps in the proposed approach is the 

estimation of the remaining fatigue life (RFL) of the vibrating 

piping, using probabilistic crack growth (PCG) analysis and 

Monte Carlo simulation (MCS), the details of which can be 

found in [5, 6]. However, MCS is computationally expensive as 

RFL is generally of orders 105 cycles. Previously, authors have 

employed various classical machine learning models such as 

linear regression, gradient boosting, gaussian process 

regression to estimate RFL [1]. However, in this paper, an 

alternate approach using Deep Neural Networks is postulated 

for the prediction of RFL. The difference between the 

predictions done in [1] and this paper is that in the former paper, 

RFL prediction was a regression problem; however, in this 

manuscript, it is a classification problem as the target variable 

(RFL) has been divided into four classes.  

A feedforward wide artificial deep neural network model 

has been designed to solve this particular supervised 

classification problem. This model is curated based on the 

usability of the dataset. As the target variable is categorical in 

nature and has a cardinality of more than two, sparse categorical 

cross-entropy has been chosen as a loss function. This, in turn, 

provides us with the benefit of preserving the non-ordinality of 

the target variable (as we assumed earlier) while training the 

model, without creating dummy variables.  

The remaining of the manuscript is structured as follows. 

In Section II, a brief summary to the Deep Learning is 

presented, followed by an illustrative study in Section III, and a 

conclusion in Section IV. 

II. DEEP LEARNING

In general, deep learning or deep structured learning is a 

wide group of artificial neural network that imitates human 

brain’s neuron system to find a solution of a complex problem 

by finding a pattern and relationship among different 

components. Different authors have defined deep learning in 

different ways. Deep learning allows computational models 

composed of multiple processing layers to learn representations 

of data with multiple abstraction levels [7]. Deep learning 

algorithms seek to exploit the unknown structure in the input 

distribution to discover good representations, often at multiple 

levels, with higher-level learned features defined in terms of 

lower-level features [8]. A deep neural network (DNN) is an 

artificial neural network (ANN) with multiple layers between 

the input and output layers [9, 10]. These techniques are 

especially useful when the understanding relationship among 

available information is difficult to achieve. With the advent of 

DNN, non-linear solutions often outperform conventional 

methods. Authors are interested in a deep neural network in the 

exploration of creating a state-of-the-art customized solution 

for the defined problem, which is comprised of linearly 

inseparable data. A typical artificial neural network comprised 

of the following conceptual artificial components, neurons, 

synapses, weights, biases, and functions is shown in Fig. 1. 
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III.       ILLUSTRATIVE CASE STUDY 

A. Data Generation. 

    The data used in the case study is generated using 

probabilistic crack growth analysis, the details of which can be 

found in [6]. The uncertainty quantification of the parameters 

of interest for this case study is shown in Table I. The uncertain 

parameters, i.e., initial crack size, remote stress range, and 

material parameter C, have lognormal distribution with 

respective mean and standard deviation shown in Table I. 

Monte Carlo Simulation coupled with Paris law is used to 

generate 5000 samples of the RFL. The details of this process 

are already discussed by authors previously in [5]. The snapshot 

of the generated data set is shown in Fig. 2. The target variable 

in the dataset (RFL) is then classified into four categories, 

namely “High”, “Medium”, “Low”, and “Very Low”. This is 

achieved by considering the first quartile RFL values as “Very 

Low”, the second quartile as “Low”, the third quartile as 

“Medium” and the fourth quartile as “High”. This classification 

is performed in order to convert the regression problem into a 

classification problem, wherein the target variable (RFL) is not 

a continuous number rather a class.  

  
Fig. 1. Basic architecture of DNN [11]. 

 

TABLE I 

UNCERTAINTY QUANTIFICATION FOR RFL ESTIMATION 

Uncertainty Source Random 

Variable 

Parameters Value 

Initial crack size 

Material parameter 

Material parameter 
Remote stress range 

Critical crack size 

Geometric function 

�� (mm) 

C 
m 

∆� (MPa) 

 ��� (mm) 
Y 

LN (0.94, 0.05) 

LN (5.22e-13, 2.07e-13) 

3 
LN (100, 10) 

4.5 

0.952 

 

 
Fig. 2. First five rows of generated dataset. 

 

B. Exploratory Data Analysis. 

To summarize the characteristics of the data, specific 
explorations have been performed. Four classes, namely 
“High”, “Medium”, “Low”, and “Very Low” are distributed 
uniformly. Therefore, weights or importance of each class can 
be equal as well. Feature "Parameter_C” has extreme low range 
of values, minimum and maximum values are 1.160000e-13 
and 1.940000e-12, while, "Stress" feature has a significantly 
higher range than others. Highest being 150.87 and 72.12. This 
extreme disparity between value ranges of features and extreme 
may lead to prefer one feature over the other while training, as 
features, are cardinal in nature. Misinterpretation of further 
calculations on "Parameter_C" is very much possible due to its 
proximity to zero. To suppress the effect of miscalculation, 
before making any further observations, scaling of data to an 
understandable fixed range was necessary. A range of [0, 1] has 
been chosen. 

It can be perceived upon plotting kernel density estimation 
(KDE) of the scaled features that all distributions are skewed 
towards the right, as shown in Fig. 3A. Skewness of the features 
"Crack_Size", "Stress" and "Parameter_C" are 0.134745, 
0.323129 and 1.197923 respectively. Kurtosis has been 
measured as 0.165000, 0.219906 and 2.658968 is the same 
order of skewness. This implies that transformation of 
distribution to gaussian alike distribution might help in faster 
convergence of the neural network, as any natural phenomena 
follow the gaussian distribution. Furthermore, the Box plot of 
Fig. 3B. implies that features are highly spread and consists a 
large number of outliers. Therefore, a robust transformation 
scheme should be used. 

Likewise, authors checked the non-linear correlation 
among features to discard highly correlated features. For this 
purpose, authors have used pairwise scatter plot with hue as 
defined classes. It is observed that features are not correlated 
with each other. Graphical representation of the same can be 
found in Fig.4. Even though target is ordinal in nature, treating 
individual types of data as separate entity, i.e., non-ordinal may 
increase chance of better segregation of individual instances. 
With this assumption, a fixed random categorical integer 
number y, for each target class type has been mapped based on 
number of available class labels, l. from the set L = {y | y ∈ ℕ0 

∧ x < l}. |L| is 4 in this case.  

 As there are more than two possible categories of target 
class labels, correlation ratio has been considered while trying 
to understand association among categorical target variable and 
nominal features. As shown in Fig 5. all features are poorly 
correlated with target, especially effect of "Crack_Size" is 
insignificant in contrast with other two. Therefore, authors 
decided to generate more features from existing feature 
columns to make more accurate model. 

 

Fig. 5. Correlation of input features to target feature. 

 



 

 

C. Preprocessing: Feature generation, scaling, 
transformation and feature selection. 

Scaling by removing the mean and scaling to unit variance, 
i.e., using standard scaler, will not produce the desired result 
because the value of parameter C is of order 10^-13. Therefore, 
the authors have employed a different methodology for scaling, 
with a fixed range of [0, 1]. 

As for feature generation, authors targeted single instance 
prediction rather than holding unseen instances for computing 
additional features, such as rolling statistics. Therefore, 
polynomial features of up to degree three with product 
interaction features have been considered. Generated features 
were 19 in number, which includes the original three features 
as well. Using all generated features may lead to the curse of 
dimensionality. Consequently, the authors decided to further 
reduce the number of features by eliminating any feature less 
than the median of correlations among target classes and 
generated features.  Here, the authors used correlation ratio for 
calculating correlation, same as before. Correlations have been 
computed after applying transformation as well, as the selected 
transformation process changes the correlations. The process of 
comparison on selected transformation has been discussed in 
subsequent sections.  

At this point, the available population have been split into 
two parts – 60% training data and 40% holdout data for testing. 
The authors made sure to shuffle the data before doing the split. 
A stride split has been stratified on the target variable to make 
sure each part of the split has proportionated number of class 
instances. Any computation other than evaluation of the model 
did not use the test data. This is being done to avoid data leakage 
while training the scaler and transformer.  

To transform the generated features into a Gaussian 
distribution, a robust transformation scheme, quantile 
transformation, with a number of quantiles as the number of 
available instances have been used on the scaled data. It has 
been observed that if we apply the transformation before 
applying a scaling scheme, all values of “Parameter_C” 
becomes a constant value. Therefore, scaling before applying 
transformation was necessary, as mentioned previously. The 
first two diagrams from the left of Fig. 6 represent the 
comparative distribution of feature “Parameter_C”, if scaling is 
applied before transformation and if not. It is to be observed 
that transformed data now ranges between -5.12 to +5.2. The 
second scaling of fixed range [-1, 1] has been applied on top of 
the quantile transformation to further reduce the spread of data. 
The last diagram in the rightmost of the three diagrams in Fig. 
6 shows the final distribution of preprocessed data.  

A comparison on central tendency, arithmetic means of 
correlation of generated features and target, between before and 
after applying transformation and scaling, reveals this process 
certainly increases correlation among numerical features and 
categorical target. Values were measured as 0.468 and 0.567, 
respectively.  Now, the number of features has been trimmed 
based on the median of target correlation, as described before. 
Generated features, inversely sorted correlation among features 
and selected features after trimming operation can be seen in 
Fig. 7. The remaining features are now a mix of low, medium 
and high correlation and 10 in total, which is fairly acceptable 
number of features to be used in the context of deep learning. 

 

D. Model development, Training and Evaluation 

    A feedforward wide artificial deep neural network model has 

been designed to solve this particular supervised classification 

problem. This model is curated based on the usability of the 

dataset. As the target variable is categorical in nature and has a 

cardinality of more than two, sparse categorical cross-entropy 

has been chosen as the loss function. This, in turn, provides us 

with the benefit of preserving the non-ordinality of the target 

variable (as we assumed earlier) while training the model 

without creating dummy variables. The metric of performance 

was set as sparse categorical accuracy. Each layer used bias and 

initialized to 0. As for optimizer, Adabound with AMSGrad - a 

stochastic optimization method, variable learning rate - initial 

learning rate as 0.001 and final learning rate of 0.01 was used. 

Table II describes various other parameter aspects of each layer. 

TABLE II 

Parameters for layers in DNN 

Layer 

type 

Input/Output 

dimension 

Activation Kernel 

initializer 

Number 

of output 

neuron 

units 

Input 10 Leaky ReLU 
(alpha = 0.1) 

He Normal 20 

Hidden NA Leaky ReLU 

(alpha = 0.1) 

He Normal 10 

Hidden NA Leaky ReLU 
(alpha = 0.1) 

He Normal 10 

Hidden NA Leaky ReLU 

(alpha = 0.1) 

He 

Uniform 

10 

Output 4 Softmax NA 4 

 

Model description. 

Model: “sequential” 

____________________________________________________________________ 

Layer (type)   Output Shape  Param # 

============================================================ 

dense (Dense)  (None, 20)   220 

____________________________________________________________________ 

dense_1 (Dense)  (None, 10)   210 

____________________________________________________________________ 

dense_2 (Dense)  (None, 10)   110 

____________________________________________________________________ 

dense_3 (Dense)  (None, 10)   110 

____________________________________________________________________ 

dense_4 (Dense)  (None, 4)   44 

============================================================ 

Total params: 694 

Trainable params: 694 

Non-trainable params: 0 

_____________________________________________________________________ 

 

Fig. 8. Summary of neural network design. 

 

It is to be noted that the number of output neuron units and 

input dimension directly depend on number of used features, 

rather than using a predefined value. For input layer, output 

neuron unit is double of input dimension. Next three hidden 

layers uses same number of output layers of input dimension. 

Fig. 8 describes summary of the created model. 

In the training process, authors used following settings to 

train the model - Number of epochs: 500, batch size: 2, shuffled 

the training data before each epoch, another 20% of training 

data has been used as validation data during training. To avoid 

overfitting, a monitoring function which will check change in 

validation loss after end of each epoch has been used. Minimum 

change in the validation loss as an improvement has been set as 

0.1, with minimum patience 20, i.e., if validation loss is not 

decreasing by 0.1 after 20 epochs then the training will stop 

automatically and will restore weights automatically to the last 

known minimal validation loss. Line graphs of Fig. 9A and Fig. 

9B shows smoothed values of loss function and performance 

metrics after each passed epochs, for both training and 

validation data. Training was early stopped by callback 

monitoring function after around 53 epochs. Training & 

validation loss function smoothed values has been observed as 



 

 

0.1219 and 0.1291 respectively. Similarly, performance metrics 

smoothed values of training and validation has been measured 

as 0.9488 and 0.9481 respectively. Training has been executed 

only once. 

To mimic real life performance of the model, accuracy of 

each class has been measured on the 40% holdout dataset. A 

detailed report can be seen in Fig. 10. Overall accuracy was 

0.96, which is acceptable. Therefore, authors did not change 

any other parameter. 

 

Fig. 10. Recreated classification report on test (holdout) data set. 

 

IV.  CONCLUSION 

 

    Since fatigue failure of the topside piping is a common 

source of hydrocarbon release and leakages in the Oil & Gas 

and maritime sector, therefore it is vital to estimate the 

remaining fatigue life (RFL) of the aforesaid component. The 

manuscript posited the use of a specialized deep neural network 

to classify RFL of topside piping. Even though available 

parameters had little correlation with the target, with the help of 

feature engineering, the authors achieved a result with an 

accuracy of 0.96. Besides that, special treatment of scaling on 

the parameter “C”, which was in the vicinity of absolute zero, 

making it possible to increase the importance of this feature, 

rather than discarding it all together, thus resonating with the 

physics of crack growth analysis. 
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 Precision Recall Support 

    

High 0.95 1.00 503 

Low 0.91 0.99 510 

Medium 0.99 0.89 493 

Very Low 1.00 0.96 494 
    

Accuracy   2000 

Macro Average 0.96 0.96 2000 

Weighted Average 0.96 0.96 2000 
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                Fig. 3A. Distribution of scaled features.                            Fig. 3B. Spread of scaled features. 

 

 

Fig. 4. Feature pairwise scatter plot. 



 

 

 
Fig. 6. Quantile Transformation, Before and After fixed boundary (Min-Max) scaling. 

 

 

 
Fig. 7. Feature Selection: Correlation of generated features and target. 

 

 

Fig. 9A. Epoch vs. sparse categorical cross-entropy loss function. 

 

 
Fig. 9B. Epoch vs sparse categorical accuracy. 




