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mators. The most well-known type of adaptive quantile estimators is the incremental one
which documents the state-of-the art performance in tracking quantiles. However, the
absolute vast majority of incremental quantile estimators fail to jointly estimate multiple
quantiles in a consistent manner without violating the monotone property of quantiles. In

I[ﬁi{:v?rrl‘ii;;ng this paper, first we introduce the concept of conditional quantiles that can be used to extend
Data Stream incremental estimators to jointly track multiple quantiles. Second, we resort to the concept
Joint estimates of conditional quantiles to propose two new estimators. Extensive experimental results,
Quantile tracking based on both synthetic and real-life data, show that the proposed estimators clearly out-
Real time analytics perform legacy state-of-the-art joint quantile tracking algorithms in terms of accuracy

while achieving faster adaptivity in the face of dynamically varying data streams.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

As a result of the steadily increase in the volume of data produced daily [35], the need for efficient algorithms for real-
time analysis of such large amounts of data is becoming stringent [24]. Since conventional statistical and data mining tech-
niques are mainly designed for offline situations, they are usually not adequate for real-time analysis [25]. Thus, a wide range
of streaming algorithms were proposed in the literature for dealing with different data mining tasks such as clustering, fil-
tering, cardinality estimation, estimation of moments or quantiles, predictions and anomaly detection [24] in online settings.

Given a stream of data, probably the first and most arguably foundational problem is to describe its data distribution.
Quantiles are useful to describe the distribution in a flexible and nonparametric way [30]. The estimation of quantiles of data
streams encompasses a wide range of applications such as portfolio risk measurement in the stock market [10,1], fraud
detection [47], signal processing and filtering [41], climate change monitoring [48], SLA violation monitoring [39,40], net-
work monitoring [7], Monte Carlo simulation [44], structural health monitoring [12], non-parametric statistical testing
[28] and Tukey depth estimation [19]. Motivated by this wide range of applications of streaming quantile estimation, in this
paper, we will investigate advancing the state-of-the-art when it comes to joint quantile estimation.
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Suppose that we are interested in estimating the quantile related to some probability q. The straightforward approach is
to store all the samples and use the q quantile of the sample distribution. Unfortunately, this straightforward approach suf-
fers from clear shortcomings since the computation time and memory requirement are linear to the number of samples
received so far. Thus, this family of methods is impractical for the case of large data streams.

Several algorithms have been proposed to deal with those computational and memory challenges. Most of the proposed
methods fall under the so-called category of histogram based methods. Those methods are based on efficiently maintaining a
histogram estimate of the data stream distribution such that only a small storage footprint is required. Another ally of meth-
ods are the so-called incremental update methods. The methods are based on performing small updates of the quantile esti-
mate every time a new sample is received from the data stream. Generally, the current estimate is a convex combination of
the estimate at the previous time step and a quantity depending on the current observation. A thorough review of state-of-
the-art streaming quantile estimation methods is given in the related work section (Section 2).

In data stream mining applications, it is common that the distribution of the data stream varies with time. In such set-
tings, the system is commonly referred to as dynamical system in the literature. In the context of a dynamical system, the
problem most commonly addressed is to dynamically update estimates of quantiles based on all data received from the data
stream so far. Histogram based methods are well suited to address this problem. However, an under-investigated and yet
crucial problem is to estimate quantiles of the current distribution of the data stream typically referred to as quantile track-
ing. Incremental methods can document state-of-the-performance for the quantile tracking problem [46,18], while his-
togram methods are not well suited for efficient quantile tracking [5].

To address the tracking problem, several incremental quantile estimators have been suggested, for some representative
examples see e.g. [5,4,46,31,43]. The intuition behind this family of estimators is rather simple. If the received sample has a
value below some threshold, e.g. the current quantile estimate, the estimate is decreased. Alternatively, whenever the
received sample has a value above the same threshold, the estimate is increased. Even though the estimators document
state-of-the-art tracking performance [46], none of them to the best of our knowledge uses the values of the received sam-
ples directly to update the estimate, but only whether the values of the samples are above or below some varying threshold.
Intuitively, this seems like a loss of information received from the data stream as the magnitude of the observations are not
directly used. Recently, Hammer et al. [18,16] presented an incremental estimator that uses the values of the received sam-
ples directly which makes it distinct from all incremental estimators previously presented in the literature. The estimator is
in fact a generalized exponentially weighted average of previous observations received from the data stream and documents
state-of-the-art performance [18,16].

The incremental estimators above are constructed to track a single quantile. However, from a practical point of view, it is
often more useful to jointly track multiple quantiles in order for example to be able to approximate the current data stream
distribution. A naive approach is to run multiple incremental estimators in parallel, but this would result in a loss of control
over the joint properties of the estimates. Even the monotone property of quantiles’ will be most likely violated. Surprisingly,
little research has been devoted to developing incremental quantile estimators that jointly can track multiple quantiles for
dynamically varying data streams. To the best of our knowledge, a handful of methods found in the literature is due to Cao
et al. [5] and Hammer et al. [15,20]. The method by Cao et al. is based on first running an incremental update of each quantile
estimate and then computing a monotonically increasing approximation of the cumulative distribution of the data stream dis-
tribution using a form of a linear interpolation. Finally, the quantile estimates are computed from the approximate cumulative
distribution. A disadvantage of the latter method is that the “monotonization” step is quite ad hoc and does not provide guar-
antee that the resulting quantile estimates converge to the true ones. The methods by Hammer et al. [15,20] are based on
adjusting the update step size in each iteration to ensure that the monotone property of quantiles is always satisfied. A disad-
vantage with these methods is that the required step size for maintaining the monotone property of the quantiles might become
too small, which might hinder tracking the changes of the data stream distribution in an efficient manner. We will shed further
the light on this aspect in the experiments reported in the paper.

In this paper, we devise two algorithms to address the shortcomings of the current state-of-the-art multiple quantiles
tracking estimators described above. We show that the proposed estimators converge to the true quantiles and that they
can efficiently track multiple quantiles even under rapidly changing environment. Compared to most of the streaming quan-
tile estimators reported in the literature, the propounded algorithms are extremely computational and memory efficient. In
fact, our suggested algorithms require only storing a single value per quantile estimate.

The two algorithms can be seen as a crucial extension of [46,18] by virtue of invoking the subtle concept of conditional
quantiles. The concept of conditional quantiles is general and can also be used to derive joint estimates based on other fam-
ilies of incremental estimators.

The remainder of this paper is organized as follows. Section 2 is dedicated to a comprehensive review of the related
works. In Section 3, we motivate the quantile estimators developed in this paper by first shedding the light on how the
state-of-the-art incremental estimators fall short in maintaining the monotone property when jointly estimating multiple
quantiles. In Section 4, we present the concept of conditional quantiles and show how it can be applied to obtain joint esti-
mates. In Sections 5 and 6, we put forward two new algorithms for joint quantile estimation. In Section 7, we present com-
prehensive experimental results that catalogue the properties of our estimators. Section 8 concludes the article.

! E.g. that the 70% quantile estimate must have a value above the 60% quantile estimate.
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2. Related work

The most representative example of an incremental quantile estimator is due to the seminal work of Munro and Paterson
[32]. In [32], Munro and Paterson described a p-pass algorithm for selection using O(n'/P)) space for any p > 2. Cormode
and Muthukrishnan [8] proposed a more space-efficient data structure, called the Count-Min sketch, which is inspired by
Bloom filters, where one estimates the quantiles of a stream as the quantiles of a random sample of the input. The key idea
is to maintain a random sample of an appropriate size to estimate the quantile, where the premise is to select a subset of
elements whose quantile approximates the true quantile. From this perspective, the latter body of research requires a certain
amount of memory that increases as the required accuracy of the estimator increases [45]. Examples of these works include
[45,32,11,29].

In [34], the authors propose a memory efficient method for simultaneous estimation of several quantiles using interpo-
lation methods and a grid structure where each internal grid point is updated upon receiving an observation. The application
of this approach is limited to stationary data. The approximation of the quantiles relies on using linear and parabolic inter-
polations, while the tails of the distribution are approximated using exponential curves. It is worth mentioning that the latter

algorithm is based on the P? algorithm [22]. In [22], Jain et al. resort to five markers so that to track the quantile, where the
markers correspond to different quantiles and the min and max of the observations. Their concept is similar to the notion of
histograms, where each marker has two measurements, its height and its position. By definition, each marker has some ideal
position, where some adjustments are made to keep it in its ideal position by counting the number of samples exceeding the
marker. In simple terms, for example, if the marker corresponds to the 80% quantile, its ideal position will be around the
point corresponding to 80% of the data points below the marker. However, such approach does not handle the case of
non-stationary quantile estimation as the position of the markers will be affected by stale data points. Then based on the
position of the markers, quantiles are computed by supposing that the curve passing through three adjacent markers is para-
bolic and by using a piecewise parabolic prediction function.

In many network monitoring applications, quantiles are key indicators for monitoring the performance of the system. For
instance, system administrators are interested in monitoring the 95% quantile of the response time of a web-server so that to
hold it under a certain threshold. Quantile tracking is also useful for detecting abnormal events and in intrusion detection
systems in general. However, the immense traffic volume of high speed networks impose some computational challenges:
little storage and the fact that the computation needs to be “one pass” on the data. It is worth mentioning that the seminal
paper of Robbins and Monro [36] which established the field of research called “stochastic approximation” [26] has included
an incremental quantile estimator as a proof of concept of the vast applications of the theory of stochastic approximation. An
extension of the latter quantile estimator which first appeared as example in [36] was further developed in [23] in order to
handle the case of “extreme quantiles”. Moreover, the estimator provided by Tierney [42] falls under the same umbrella of
the example given in [36], and thus can be seen as an extension of it.

As Arandjelovic remarks [2], most quantile estimation algorithms are not single-pass algorithms and thus are not appli-
cable for streaming data. On the other hand, the single pass algorithms are concerned with the exact computation of the
quantile and thus require a storage space of the order of the size of the data which is clearly an unfeasible condition in
the context of big data stream. Thus, we submit that all work on quantile estimation using more than one pass, or storage
of the same order of the size of the observations seen so far, is not relevant in the context of this paper.

Given dynamically varying data stream, two main problems are considered namely to i) dynamically update estimates of
quantiles of all data received from the stream so far or ii) estimate quantiles of the current distribution of the data stream
(tracking). To address problem i), histogram based methods form an important class of memory efficient methods. A repre-
sentative work in this perspective is due to Schmeiser and Deutsch [37]. In fact, Schmeiser and Deutsch proposed to use
equidistant bins where the boundaries are adjusted online. Arandjelovic et al. [2] use a different idea than equidistant bins
by attempting to maintain bins in a manner that maximizes the entropy of the corresponding estimate of the historical data
distribution. Thus, the bin boundaries are adjusted in an online manner. Nevertheless, histogram based methods have prob-
lems addressing problem ii) of tracking quantiles of the current data stream distribution [5].

To address the dynamic tracking problem ii) incremental algorithms represent an important class of methods. However,
the research on incremental methods is quite sparse. As described in the introduction the methods are based on making
small updates of the quantile estimates every time a new sample is received. Tierney [42] uses a sample mean update from
previous quantile estimates, while [6,5,4] introduce modifications based on exponential decay when taking into account the
old estimates and thus these works are useful to track quantiles of non-stationary data stream distributions. More recent
incremental quantile estimation approaches are the Frugal algorithm by Ma et al. [31], the DUMIQE algorithm by Yazidi
and Hammer [46], and the DQTRE and DQTRSE algorithms by Tiwari and Pandey [43]. An appealing property of the DUMIQE,
DQTRE and DQTRSE and the estimators suggested in this paper is that the update size is automatically adjusted in accor-
dance to the scale/range of the data. This makes the estimators robust to substantial changes in the data stream.
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3. Monotone property violations for incremental quantile estimators

Let X, denote a stochastic variable representing possible outcomes from a data stream at time t and let x, denote a random
sample (realization). Further, let f,(x) represent the distribution of X; and Q,(q) the quantile associated with probability g, i.e
P(X: < Q:(q)) =q.

This paper will focus on joint tracking of quantiles for K different probabilities q;,q,, . .., g A straight-forward approach
would be to run K quantile tracking algorithms independently of each other, but in this case, the joint properties of the quan-
tiles will not be be enforced and even the monotone property of quantiles may get violated in this case. We illustrate this for
the deterministic based multiplicative incremental quantile estimator (DUMIQE) approach found in [46].? Assume that the

monotone property is satisfied and that a sample x; admits a value between Qt(qk) and Qt(qm), ie

Qr(‘h) SRR @t(Qk) <X < a[(qkﬂ) SRR @t(%) 1)

The estimates are then updated as follows

Qe (q) — (1+44;)Qe(q) for j=1,2,....k @

which means that the estimates are increased for the quantiles with an estimate below x; and decreased for the estimates
above x;. Consequently, the monotone property might get violated.

Please note that the DUMIQE algorithm assumes that Q((qk) > 0Vk, t which is not useful if the true quantiles are negative
for some t. To be able to efficiently track any quantile, [46] suggested two simple solutions. The first is based on tracking a
phantom variable D, = X; + A, where A, is iteratively updated such that D; > Q;, > 0. The second approach is based on
combining the DUMIQE above for positive quantiles and a modified version for negative quantiles.

4. Joint tracking of multiple quantiles

In Sections 5 and 6 we present a general framework to extend incremental quantile algorithms to perform joint tracking
of multiple quantiles. The extensions are based on first tracking a central quantile of the distribution, say the median, before
tracking the other quantiles in relative manner to the central quantile by taking advantage of conditional quantiles. E.g. track-
ing the 25% quantile reduces to tracking the median of observations below the estimates of the median.

We adopt this concept in order to extend the DUMIQE and QEWA algorithms [18], respectively. We will take advantage of
the following general properties.

Property 1. Define Y as a shifted variable of X,X =Y + ¢ and let Qy(q) denote the g quantile of Y, then Qx(q) = Qy(q) + 6.
This means that if Y is a shifted variable of X, a similar shift is observed in the quantiles. This follows from

q=P(X <Qx(q)) =P(Y <Qy(q)) = P(Y +0 < Qy(q) + ) = P(X <Qy(q) +9)

Property 2. Let q; < q,. From the conditional probability
PX <Qx(q1) _ ¢
P(X <Qx(q)) @

We see that the g, quantile of X, Qx(q,), is equal to the q, /g, quantile of the conditional variable X |X < Qx(q,) with trun-
cated distribution f(x|x < Qx(q,)). Applying Eq. 3 on a shifted variable Y = X — Qx(q,) gives

P(X < Qx(g1)1X < Qx(q2)) = 3)

P(Y<Qy(q1)|Y<0):g—; (4)

using that Qy(q,) = 0 (Property 1). This means that the q, quantile of Y is equal to the q, /g, quantile of the conditional vari-
able Y|Y < 0. Conditioning in the opposite direction

(X < Qx(q2) NX > Qx(q4)) _—
P(X > Qx(q1)) 1-¢q

Similarly, we also observe that the g, quantile of X is equal to the (q, — q,)/(1 — q;) quantile of the conditional variable
X|X > Q(q,) with truncated distribution f(x|x > Q(q,)). Finally, applying Eq. 5 on a shifted variable Y = X — Qx(q,) gives

P(X < Qx(a:)|X > Qx(a)) =

5)
PIY < Q@)Y >0)= =1t ©®)

2 Cao et al. [5] illustrate this issue.
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Property 3. For the DUMIQE algorithm, we observe from Eq. 2 that the update rule is multiplicative, and consequently
whenever Qo(q) > 0 all following estimates will be strictly positive.

5. Extension of the DUMIQE algorithm
We start by introducing the algorithm for K = 2 before extending it to the general case where K > 2.
5.1. Tracking of two quantiles

Assume that q; < q,. The idea behind the extension is to first estimate Q.(q;) and then estimate Q,(q,) relative Q.(q;) in
such a way that the monotone property will be satisfied. Define a shifted variable Y,;; = X, — QM (q,) and let Qy,t(qz) denote

an estimate of the g, quantile of Y, ;. The algorithm is initiated with Qo(ql) > 0% and Qy_g(qz) > 0 and consists of the following
steps:

1.1 Update Q[(ql) using the DUMIQE update rule
Qear(@) — (1+441)Q:(qy) if Qu(q) <
Qer1(qy) = (1 =21 -q1))Qe(q1) If Qe(qy) =

1.2 Compute the shifted observation y,; «— x; — Qs (q1)-
1.3 Update the g, quantile of the shifted variable

Qe (@) = (1+790,)Qve(ds) i Qvi(qy) <Y
Qve1(q2) — (1 =7(1 = q2))Qve(qz) If Qve(q2) = Yea
1.4 Finally get an estimate for Q,,;(q,) by shifting back
Qea1(2) — Qv (d2) + Qe (qy) (7)

From Property 1 it follows that Q..+ (q,) will be an estimate of Q,,;(q,). Further, due to the multiplicative update form of

DUMIQE, it follows that Qy,t(qz) is positive for every t and therefore from Eq. 7 it follows that Q[(ql) < @t(‘b) which means
that the monotone property will be satisfied in every iteration.
The quantiles can also be estimated in the opposite order, i.e. by first estimating Q,(q,) and then Q,(q,) relative to Q.(q,).

Define the shifted variable Y;, = QM (q,) — X: and let Qy‘t(ql) denote an estimate of the g, quantile of Y.,. The algorithm is
initiated with Qo(q,) > 0 and Qy,(q;) > 0 and consists of the following updates:

2.1 Update Q[(qz) using the DUMIQE update rule

Quir(@) = (1+70)Q:(a) i Q@) <x
Qei1(qz) = (1 =21 =q,))Q:(qy) if Qi(qy) = X

2.2 Compute the shifted observation y,, < Qe (qy) — Xt
2.3 Update the g, quantile of the shifted variable

Qre(dr) — (1+7a)Qve(q) if Que(dr) < Yea
Qvea(qy) = (1 =7(1=01)Qve(qr) if Qve(q) = ¥e2
2.4 Finally get an estimate for Q,,(q;) by shifting back

Qe (q1) = Quir(@2) ~ Qrana (@) t)
Again since Qy.(q,) is positive it follows from Eq. 8 that Q.(q;) < Q.(q,) for every t.

3 We refer to [46] for modifications of DUMIQE to estimate quantiles with negative values.
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5.2. Tracking of multiple quantiles

The algorithm for a general K is given in Algorithm 1. In step 2, g, refers to a central probability of the data stream dis-
tribution and typically q. = 0.5 which means that Q[(qc) is an estimate of the median. The function DUMIQE(Q[(qC), Xt, G, A)
refers to one update with the DUMIQE algorithm.

In steps 3 to 7, the procedure 2.1 to 2.4 in the previous section is repeatedly performed. First Qi1 (1) is updated such
that QM(qH) < Qun (q.), then Qs (q._,) such that Qm(qc,z) < Qin (q._1) and so on. In steps 8 to 12, the procedure 1.1 to
1.4 is repeatedly performed. In this way, the monotone property Qt(ql) <o < Qt(q,{) will be maintained.

Algorithm 1. Joint quantiles tracking algorithm based on an extension of DUMIQE.

Input:
X1,X2,X3,.../[ Data stream
WK, ¢

0 < Qo(q1) <+~ < Qolgx)

0 < Qyo(ay) < - < Qyolgy)
Method:
1: fornel,2,...do

20 Qu1(gc) — DUMIQE(Qu(dc) e, e, 2)

3: forkcc—-1,...,1do

4: Yeirt — Qeit (Grsr) — X

5: Quer(@) — DUMIQE(Qre(qi). Yeko1: 0. )
6: Qr+1(Qk) — Qtﬂ (Qk+l) - QY,Hl(Qk)

7: end for

8: forkec+1,....,Kdo

9: Yederr < Xe — Qe1(Gr-1)

10: Qyear(q)) < DUMIQE( Qo) Yero1:G:?)
11: Qer1(@) — Qves1 () + Qeat (Gu 1)

12: end for

13: end for

6. Extension of the QEWA algorithm

The QEWA algorithm consists of the following updates [18]:

« Qun(@) — (1-b:)Qi(@) + bix (9)
o Ifx > Q,(q)

N ~ ~ (10)
_/,l:l;:,] — Qm (q) - gt(Q) +£ — P U + pXe
—Hgy = Qen(q) — Qelq) + iy (11)
o Else R (12)
_lut+1 — QIH (Q) 9[ (q) +

:utﬂ — Qt+1 - Q@)+ (1-p) :ur + PXe (13)
oa[+]<—/\ / += 17(]/\ > (14)

R I Qm T Qm Q) Qen(q) — Uiy
o b H)(am +1 Xt < Qm( )(1 - zam)) (15)

where /Alﬂ] and ﬁgﬂ represent estimates of the conditional expectations u* = E(X[\X[ > @[(q)> and u- = E(X[ X < Q[(q)).

respectively. From Eq. 9, we see that the estimator is in fact a generalized exponentially weighted average with weights
0 < by < 1. The weights, b;, are computed such that the estimator tracks the quantile Q,(q) and not the expectation E(X;)
of the data stream distribution [3]*. We refer to [18] for further details.
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We start by presenting the algorithm for K = 2 quantiles before extending to the general case of K > 2.

6.1. Tracking of two quantiles

The procedures will consist of the same steps as in Section 5.1, except that steps 1.3 and 2.3 invoke the conditional quan-
tiles property (Property 2) and thus are slightly more involved. The two procedures will be presented in the opposite order.

Let Qy.r(th) denote an estimate of the g, quantile of the shifted variable Y, = X, — Qe (q,) (opposite sign from above). The
algorithm consists of the following updates®:

1.1 Update Qt(qz) using the QEWA update rules in Eqgs. (9)-(13), (15) to obtain an estimate QM (q5)-

1.2 Compute the shifted observation y,, «— x; — Qs (qy)-
1.3 Update Qy,(q,) by updating the q,/q, quantile of the conditional variable Y, |Y.> < O (recall Eq. 4). Thus if y,, <0,

apply the update rules in Eqgs. (9)-(13), (15) with g = q,/q, to obtain a quantile estimate @y,m (q;). Further, if y,, > 0,
then we are outside of the support of the conditional variable and therefore skip updating the quantile estimate, i.e.

Qre1(ar) — Qrela).
1.4 Finally shift back

QH](%) — QY.tH (q;) + étﬂ (92)

We shall now prove that the above described algorithm ensures the monotone property, Q[(ql) < Qz(CIz). We start prov-
ing, by induction, that if we initialise the algorithm with Qyto(ql) < 0, then every Qy‘[(ql) will also be negative. Assume that
Qy,r(qﬁ <0.Ify,, <0, Qvy..1(qy) is computed using Eq. 9. Since both Qy.(g;) < 0 and y,, < 0, consequently, Qy..1(q;) <0
(convex combination of two negative values). If y,, > 0, then Qym(ql) — Qy_[(ql), which again implies Qy‘m(q]) < 0. From
Step 1.4, this again implies that the monotone property Q[(ql) < Qt(qz) is satisfied.

The same quantiles can also be updated in the opposite order. Let Qy7[(q2) denote an estimate of the g, quantile of the
shifted variable Y,;; = X; — Qm (q,)- The algorithm consists of the following updates:

2.1 Update Q[(ql) using the QEWA update rules in Eqgs. (9)-(13), (15) to obtain an estimate Qm(q]).
2.2 Compute the shifted observation y,; — x; — Q;.1(q).
2.3 Update Qy,(q,) by updating the (g, — q,)/(1 — q;) quantile of the conditional variable Y, |Y;; > 0 (recall Eq. 6). Thus

if y.; > 0, we update using Egs. (9)-(13), (15) with g = (q, — q,)/(1 — q,) to obtain a quantile estimate (Alym (qy). 1If

Y1 <0, no update: Qyy1(q;) — Qve(qy)-
2.4 Shift back (Property 1).

le(fb) — QY‘tH (g2) + @H] (q1)

Following the same lines of reasoning as the first algorithm, this algorithm can be easily shown to ensure the monotone
property.

6.2. Tracking of multiple quantiles

The algorithm for a general K is described in Algorithm 2 where fi;, and fi/, refer to estimates of the conditional expec-
tations E(Xt|Xt < Qt(qc)> and E(Xt|Xt > Qt(qc)). respectively. Further fiy, . and iy, refer to estimates of the conditional

expectations E(Y[_k\YLk < @y,t(qk)> and E(Y[_,,<|Y“< > Qy,t(q,()>, respectively. The function QEWA(Qt(qC), ﬁ;[, Wl Xes Gey 2, p)

refers to one update with the QEWA algorithm (Egs. 9-15). During steps 3 to 11 and steps 12 to 21, the procedures in 1.1
to 14 and 2.1 to 2.4 in the previous section, are repeatedly performed and thus the monotone property

Qi(qy) < - < Qu(gy) will be ensured.

4 If constants weights were used, i.e. b, = b, Eq. 9 would track the expectation E(X;) and not Q;(q)
5 Please note that to be able to track a quantile using the QEWA algorithm, the conditional expectations must also be tracked to obtain the weights b;. For
easing the explanation, we only focus on the quantile tracking problem for now.
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Algorithm 2. Joint quantiles tracking algorithm based on an extension of QEWA.

Input:

X1,X2,X3,.../]/ Data stream

Avp K, ¢

ﬁ;o < QO(QC) < //1:0

Ry ko < Qvo(@) < Hyo <0, k<c
0< ﬁ?,k,o < Qyolqy) < ﬁ;k,m k>c
Method:

1: fornel,2,...do

20 (Qua@) Bepns Bl ) — QBWA(Qu(ae)s Rieys Bl Xt Ges o )

3 forkec-1,...,1do

4 if % < Q1 (Grir)

5: Yerr1 — Xt — Qe (Qk+1)

6 (QYI‘F] (qk)a ,a]k_Hp ﬂ;k=t+1) - QEWA<QY.t(qk)= ﬁ;_k_ﬁ ﬁ\?k,pyt,lﬁ] Gkt /ka Vs p)
7 else

8 (QY.Pr] (qk)v ﬁ;_k_'pr]v la;k,pr]) - (le(qk)v ﬁ;_’k‘[: ﬁ;k‘[)

9: end if

10: Qe+1(qk) — Qve1(qr) + Qes1 (qir1)

11: end for
12: forkec+1,...,Kdo

13: if X > Qe (G 1)

14: Veko1 — Xt — Qee1(dy_q)

15: (Qy,m (i) By geins ﬁxﬁ,rﬂ) -

16: QEWA(QY,I(Qk)v By ke By g Yerets (= Grer) /(1= ), P)
17: else

18: (QY,H] (i), /Alik,tﬂs ,a;k‘tﬂ) — (QY,t(Qk)v ﬁ{/,k,p ﬁ;k,[)

19: end if

20: Qe1(qr) — Qyies1(qr) + Qrr1(Gr—1)

21: end for

22: end for

We end this section with few pertinent remarks.

Remark 1. The estimate Qt(qc). in Algorithms 1 and 2, tracks the overall trend of the data stream, while the other quantiles

are updated relative to Qt(qc) and only need to track changes in shape of the data stream distribution. Thus, for most
dynamic data streams it is natural to use a step size A that is on a larger scale than y. As we will see later, our experiments
shows that the performance of the algorithm is not sensitive to the value of the y parameter. Any value of y somewhere
between 1/10 and 1/10,000 performed well in all our experiments. Furthermore, the performance of Algorithm 2 is not
sensitive to the value of p. Following the recommendation in [18] of using p = 0.014, Algorithm 2 performed well in all our
experiments.

Remark 2. The theoretical results reported in [46,18] prove that the DUMIQE and QEWA estimators converge to the true
quantiles for static data streams. Although the latter two algorithms are designed to cope with dynamic environments, it
is a fundamental requirement that the they converge to the true quantile for static data streams. These theoretical results
again imply that Algorithms 1 and 2 will converge to the true quantiles for static data streams.

7. Experiments

In this section, we evaluate the performance of Algorithms 1 and 2 for both synthetic and real life data sets. We will
denote Algorithms 1 and 2 by ShiftQ and CondQ, respectively (since computation of quantiles are based on SHIFTed and
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CONDitional stochastic variables). We compare against the legacy multiple quantiles tracking algorithm that we are aware of
in the literature, namely the method of Cao et al. in [5] and the MDUMIQE by Hammer et al. in [20].

7.1. Synthetic experiments

Fig. 1 shows a small section of the tracking processes for the algorithm DUMIQE, MDUMIQE, CondQ and ShiftQ. The gray
dots show the data stream, that is the same in all the four panels. The black, gray and green curves illustrate tracking of the
0.4, 0.5 and the 0.6 quantiles of the data, respectively. We observe that when using DUMIQE, the monotone property is vio-
lated while the three other algorithms are able to satisfy the monotone property. The idea behind the MDUMIQE is to reduce
the step size to avoid monotone property violations. Consequently, as shown on the upper right panel, if the data stream
changes rapidly, the MDUMIQE is not able to track efficiently since the adjusted step sizes become too small. We see that
both CondQ and ShiftQ are able to efficiently track the dynamics of the data stream. However, CondQ is able to track the
dynamics with less noise and thus in conclusion seems the most efficient algorithm.

We now proceed to a more thorough evaluation of the suggested algorithms. The algorithms are designed to perform well
for dynamically changing data streams and the experiments will focus on testing this hypothesis. We considered four differ-
ent data cases. For the first case, the data stream distributions were normally distributed and the expectations, u,, varied
smoothly as follows

U, = asin <2Tnn>7 n=1,2,3,...

which is a sinus function with period T. For the second case, the data stream distributions were also normally distributed, but
the expectation switched between values a and —a

7{a if n mod T<T/2
He=1\_a else

The standard deviation was set to one. For the two remaining cases, the data stream distributions were y? distributed, one
with smooth changes and one with rapid switches. For the smooth case the number of degrees of freedom, v, varied with
time as follows

Ve = asin (?n) +b, n=1,2,3,...

where b > a such that v, > 0 for all t. For the switch case, the number of degrees of freedom switched between values a + b
and —a+b

7{a+b if nmodT < T/2
" l-a+b else

In the experiments we used a = 2 and b = 6. The 2 distribution is quite heavy tailed and both the scale and the shape of
the distribution change with time rendering this a challenging quantile tracking problem.

We considered the two periods T = 100 (rapid variation) and T = 1000 (slow variation). For each data stream, either
K =3 or K =19 quantiles were tracked. For the K = 3 case, quantiles associated with the probabilities g, =0.2,q, = 0.5
and ¢; =0.8 quantiles were tracked. For the K =19 case, quantiles associated with the probabilities
q, = 0.05k,k =1,...,19 were tracked.

Tracking error was measured using the average root mean squared error for the different quantiles

1K 1 N 2
RMSE = K;\j N;(Qt(qk) - Qt(‘]k))

where N is the total number of samples received from the data stream. In the experiments, we used N = 10° to remove any
Monte Carlo errors. Following the recommendations in [ 18], for the QEWA estimator in the CondQ algorithm we used a p/4
ratio equal to 1/100.

In a practical situation, the history of the data stream can be used to find fairly optimal values of the tuning parameters in
algorithms as performed in [14]. Thus, the main focus will be on the performance of the algorithms under optimal values of
the tuning parameters. Complete results, showing estimation errors for a wide range of values of the tuning parameters, are
given in Figs. 3-6 in Appendix A.

Tables 1-4 show estimation error for the different algorithms using an optimal step length. We see that the CondQ con-
sistently outperforms all the other algorithms in each of the 16 cases (data streams) and mostly with a clear margin. For most
of the cases, both CondQ and ShiftQ outperform the algorithm by Cao et al. and the MDUMIQE. Further, we see that the per-
formance of CondQ and ShiftQ are not sensitive to the choice of the tuning parameter ). Any of the value of y between 0.0001
and 0.1, performed well in all the experiments. This makes it easy to tune the CondQ and ShiftQ algorithms.
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Fig. 1. Estimation processes for DUMIQE, MDUMIQE, CondQ and ShiftQ. The gray dots show samples from the data stream distribution while the black, gray
and green curves show estimates of the 0.4, 0.5 and the 0.6 quantiles of the data stream, respectively.
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Fig. 2. The gray dots show accelerometer observations for an arbitrary user. The red lines mark the time instants when the user changes activity.

7.2. Real-life data streams - activity change detection

Activity recognition is a popular machine learning task where the goal is to use sensors to automatically detect and iden-
tify the activity of a user. For instance, one could use activity recognition to assess whether a person is performing a healthy
amount of exercise, and to detect falls. In this experiment, we will focus on identifying changes in activities using accelerom-
eter data which is available on almost any smart cell phone today.

We consider an accelerometer dataset from the Wireless Sensor Data Mining (WISDM) project [27]. Accelerations in x,y
and z directions were observed, with a frequency of 20 observations per second, while users where performing the activities
walking, jogging, walking up a stairway and walking down a stairway. The dataset corresponds to activities from 36 users
and contains a total of 989875 observations.

Current research focuses on supervised approaches where historic and annotated activity observations are used to train
an activity classification model [3]. For instance, the work reported in [27] trained models like decision trees and neural net-
works. In this example, we rather adopt an unsupervised approach where the goal is to detect whenever a user changes
activity. Since we receive 20 accelerometer observations per second, it is important that the streaming approach is compu-
tationally efficient.

Change detection is useful as part of a sequential supervised scheme. Whenever a change is detected, the observations
from the last activity can be classified and the supervised classifier should be retrained. If the supervised learner is suffi-
ciently uncertain about the activity type of the last activity, the system may ask the user for feedback in an online manner
to gradually improve performance.

Fig. 2 shows in gray x,y and z acceleration for an arbitrary user. The red lines mark the time instants when the user chan-
ged activity. Mostly, the acceleration distributions are fairly stationary within an activity, but with some gradual and abrupt
changes. The users often changed activities as often as every 30 s making the problem in hand a challenging tracking and
change detection problem.

50



Hugo Lewi Hammer, A. Yazidi and Hdavard Rue Information Sciences 563 (2021) 40-58

Update size Cao et al. Update size Cao et al.
0.00 0.02 0.04 0.06 0.08 0.10 0.0 0.2 04 0.6 0.8 1.0
L 1 1 L 1 1 1 1 1 1 L
@ 4 ShiftQ, gamma = 9/10 --=-- CondQ, gamma = 1/100 \ z,
o ShiftQ, gamma =110 | - - CondQ, gamma = 1/1000 / \ ,//
- ShiftQ, gamma=1/100 | — == CondQ, gamma = 1/10000 i /7
- ShiftQ, gamma = 1/1000 MDUMIQE w | ] ;
~ ShiftQ, gamma = 1/10000 Caoetal. c=10 - \
o | CondQ, gamma = 9/10 Caoetal, c=1 \
& 7| === CondQ, gamma = 1/10 Caoetal, c=01 \ 1
A
w w
2] 7]
= =
4 4
< J
0
v
v |
o
o | e
= 5
T T T T T T T T T T T T
0.0 0.2 04 06 0.8 1.0 0.0 DT 04 0.6 0.8 1.0
Update size Update size
Update size Cao et al. Update size Cao et al.
0.00 0.02 0.04 0.06 0.08 0.10 04 0.6 0.8 1.0
I I I I
Qo a o
o o
S 7 s 7
< ©
o 7 2 4
w w
] 1]
= 3
x 4
<« <
c 7| c 7
o o
s 7 s 7
o o
S 7 s 7
T T T T T T T T T T T T
0.0 0.1 02 0.3 04 0.5 0.0 0.2 0.4 06 0.8 1.0
Update size Update size

Fig. 3. Normal distribution periodic case: The left and right columns show results for K = 3 and K = 19, respectively. The top and bottom rows show results
for periods T = 100 and 1000, respectively.

We suggest the following change detection procedure. Let Qt_w(q) represent the g quantile of the data stream accelerom-
eter distribution at time t and in dimension w € {x,y,z}.

1. Use a multiple quantiles tracking algorithm to obtain estimates Qt,w(qk), k=1,.... K,w=x,y,z.
2. In each dimension, compute the Euclidean distance between the current quantile estimates and the estimates h seconds
back in time

K

ED;y = Z(@r,w(%) - @ph.w(%))z

k=1
3. In each dimension, characterize the main distributional properties of ED;,, by tracking the first two moments using expo-
nentially weighted moving averages

,a(EDt,W) = (] - é)la(EDt—l.w) + éEDt,w
ﬂ(ED?W) = (1 - 5)/1(ED?—1W) + éED?w

G(ED.w) [ (ED.," — i (ED?, )

4. When the user changes activity, we expect EDj; «,y to rapidly increase in at least one dimension w. Thus, a new activity is
detected when ED;,, is more than # standard deviations higher then ji(ED;, ) in at least one dimension, i.e. if

ED. — j((EDyy)
mﬁx{ &(ED¢) } >

5. When a new activity is detected, restart the tracking of the quantile estimates and go back to step 1.
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Fig. 4. Normal distribution switch case: The left and right columns show results for K = 3 and K = 19, respectively. The top and bottom rows show results
for periods T = 100 and 1000, respectively.

We compare the quantile tracking approach above with tracking the first two moments of the acceleration distribution in
each dimension w € {x,y,z} leading to the following approach:

1. Let x;,, denote the observed accelerations at time t in dimension w € {x,y, z}. Track the mean and standard deviation in
each dimension using exponentially weighted moving average

AXew) = (1 = V) Xew) + VXt (16)
B(X2) = A =ni(x2,) + e, (17)
#Xuw) = \HCED,)? ~ u(EDZ, (18)

2. In each dimension, compute the Mahalanobis distance (MD) between the current estimate of the mean and the estimate h
seconds back in time, MDy,, = |t(Xcw) — {(Xe—hw) |/ Xew)-

3. In each dimension, characterize the main distributional properties of MD;,, by tracking the first two moments using expo-
nentially weighted moving averages

ﬂ(MD[,W) = (] - é),a(MDt—l.w) + éMDt,w
la(MD?w) = (1 - i)la(MD?—lw) + éMD?w

6(MD.y) = | [fMDy,, ) — u(MD?, )
4. When the user changes activity, we expect MDy,, to rapidly increase in at least one dimension w. Thus a new activity is
detected when MDy,, is more than # standard deviations higher then fi((MD,,) in at least one dimension, i.e. if

MD;,, — {{(MDy,,)
"D | >
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Fig. 5. y? distribution periodic case: The left and right columns show results for K = 3 and K = 19, respectively. The top and bottom rows show results for
periods T = 100 and 1000, respectively.

5. When a new activity is detected, restart the tracking of the quantile estimates and go back to step 1.

A disadvantage with the MD approach above is that it only can detect changes in the first two moments of the acceler-
ation distributions, while the quantile tracking approach can detect any changes in the distributions.

We measured the performance of the approaches for a wide range of values of the tuning parameters. To properly char-
acterize the acceleration distributions, we tracked a total of K = 9 quantiles, namely quantiles associated with the probabil-
ities 0.1,0.2,...,0.9. Given the scale of the observations, choosing small values of Z, 8 and v equal to 0.001, 0.005 and 0.01
respectively is a reasonable choice. Further, we used 0.005, 0.01 and 0.05 for &, 5, 10 and 15 s for h we used and 10, 15 and 25
for #. Finally, following the recommendation in [18], we used p/Z = 0.01. We ran the change detection approaches for the
whole dataset for all the combinations of the tuning parameters resulting in a total of 162 and 81 experiments for the quan-
tile and MD approaches, respectively.

To measure detection performance, we used the well-known measures precision, recall and the F1 score [38]which are
commonly been used for event detection tasks, see e.g. [13,9] (biological signals) and [21] (computer vision). If the approach
detects more than one change between two true changes, we characterize the first change as a correct detection and the rest
as false detections. Then define precision, recall and F1 score

i<l _ No. of correct detections
Precision = No. of detections

__ No. of correct detections
Recall = No. true changes

__ 2 -Precision - Recall
F1 score = Precision-+Recall

where the F1 score is the harmonic mean of precision and recall.

Tables 5-7 show the top ten results with respect to the F1 score for the different approaches. We see that the CondQ and
ShiftQ outperform MD. Further, we see that CondQ detects true changes more rapidly than ShiftQ (last column). Using CondQ
for change detection seems to be the best alternative.
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Fig. 6. 2 distribution switch case: The left and right columns show results for K = 3 and K = 19, respectively. The top and bottom rows show results for
periods T = 100 and 1000, respectively.

Table 1
Normal distribution periodic case: Estimation error for the different algorithms using an optimal value of the update size .. The values in boldface show for each
case the algorithm that is performing the best.

K=3 K=19
T =100 T = 1000 T =100 T =1000
ShiftQ, y = 0.9 0.644 0.436 0.701 0.502
ShiftQ, y = 0.1 0.598 0.269 0.615 0.290
ShiftQ, y = 0.01 0.592 0.272 0.597 0.281
ShiftQ, y = 0.001 0.592 0.274 0.595 0.276
ShiftQ, y = 0.0001 0.597 0.284 0.597 0.282
CondQ, y=0.9 0.514 0.346 0.500 0.302
CondQ, y =0.1 0.475 0.230 0.482 0.247
CondQ, y = 0.01 0471 0.229 0.479 0.248
CondQ, y = 0.001 0.472 0.229 0.480 0.257
CondQ, y = 0.0001 0.479 0.242 0.478 0.276
MDUMIQE 0.706 0.285 1.504 0.618
Caoetal,c=10 1.438 0.735 0.693 0.354
Caoetal,c=1 1.412 0.608 0.685 0.269
Caoetal,c=0.1 1.435 0.623 0.692 0311

8. Closing remark

Incremental quantile estimators document the state-of-the performance in tracking quantiles of dynamically varying
data streams. However, due to their incremental nature, they fail to jointly estimate multiple quantiles without violating
the monotone property of quantiles. In this paper, we present a new paradigm that enables incremental quantile estimators
to obtain joint estimates of multiple quantiles. The fundamental idea relies on first tracking a central quantile and then track-
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Table 2
Normal distribution switch case: Estimation error for the different algorithms using an optimal value of the update size 4. The values in boldface show the
algorithms resulting in minimum estimation error.

K=3 K=19
T =100 T =1000 T =100 T =1000
ShiftQ, y = 0.9 1.045 0.670 1.090 0.722
ShiftQ, y = 0.1 1.051 0.608 1.054 0.624
ShiftQ, y = 0.01 1.050 0.604 1.047 0.603
ShiftQ, y = 0.001 1.050 0.603 1.046 0.601
ShiftQ, y = 0.0001 1.054 0.609 1.047 0.601
CondQ, y=0.9 0.685 0.472 0.698 0.448
CondQ, y =0.1 0.680 0.412 0.690 0.420
CondQ, y = 0.01 0.680 0.411 0.690 0.420
CondQ, y = 0.001 0.681 0.411 0.689 0.422
CondQ, y = 0.0001 0.686 0.420 0.677 0.430
MDUMIQE 1.255 0.567 2.160 1.200
Caoetal,c=10 2.049 1.487 1.387 0.607
Caoetal,c=1 2.181 1.380 1.377 0.597
Caoetal,c=0.1 2.237 1.395 1.379 0.607

Table 3
y? distribution periodic case: Estimation error for the different algorithms using an optimal value of the update size /. The values in boldface show the
algorithms resulting in minimum estimation error.

K=3 K=19
T =100 T =1000 T =100 T =1000
ShiftQ, y = 0.9 1.573 1.252 1.791 1.506
ShiftQ, y = 0.1 1.265 0.656 1.362 0.751
ShiftQ, y = 0.01 1.220 0.653 1.254 0.702
ShiftQ, y = 0.001 1.222 0.670 1.246 0.693
ShiftQ, y = 0.0001 1.310 0.798 1.293 0.768
CondQ, y =09 1.350 1.026 1.237 0.870
CondQ, y =0.1 1.085 0.572 1.103 0.675
CondQ, y = 0.01 1.052 0.584 1.077 0.683
CondQ, y = 0.001 1.053 0.591 1.069 0.647
CondQ, y = 0.0001 1.128 0.692 1.187 0.680
MDUMIQE 1.291 0.625 1.453 0.745
Caoetal,c=10 1.750 1.669 1.374 0.687
Caoetal,c=1 1.569 1.403 1.465 0.748
Caoetal,c=0.1 1.662 1.487 1.477 0.918

Table 4
2 distribution switch case: Estimation error for the different algorithms using an optimal value of the update size /. The values in boldface show the algorithms
resulting in minimum estimation error.

K=3 K=19
T =100 T = 1000 T =100 T = 1000
ShiftQ, y = 0.9 1.882 1.411 2.081 1.640
ShiftQ, y = 0.1 1.638 0.939 1.725 1.045
ShiftQ, y = 0.01 1.603 0.985 1.647 1.037
ShiftQ, y = 0.001 1.605 0.998 1.642 1.032
ShiftQ, y = 0.0001 1.676 1.093 1.678 1.083
CondQ, y =09 1.578 1.173 1.502 1.028
CondQ, y = 0.1 1.383 0.815 1.407 0.905
CondQ, y = 0.01 1.361 0.857 1.389 0.938
CondQ, y = 0.001 1.362 0.868 1.386 0.917
CondQ, y = 0.0001 1.424 0.944 1.498 0.980
MDUMIQE 1.669 0.922 2.072 1.199
Caoetal,c=10 2.359 2277 1.878 1.048
Caoetal,c=1 2.100 1.937 2.017 1.124
Caoetal,c=0.1 2.196 2.009 1.977 1.293
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Table 5

Change detection example. Results for the MD approach. Detection delay (last column) is given in seconds.
v ¢ h n Precision Recall F1 score Det. delay
0.010 0.010 5 25 0.633 0.639 0.636 15.469
0.005 0.005 10 25 0.707 0.578 0.636 25.072
0.010 0.005 10 25 0.686 0.592 0.636 22.637
0.005 0.010 5 25 0.617 0.642 0.629 16.739
0.010 0.010 15 25 0.668 0.592 0.628 30.128
0.010 0.010 10 25 0.616 0.639 0.627 16.795
0.010 0.005 5 25 0.690 0.566 0.622 19.326
0.005 0.010 15 25 0.630 0.595 0.612 36.359
0.005 0.010 10 25 0.581 0.642 0.610 24.175
0.005 0.005 5 25 0.666 0.558 0.607 15.683

Table 6

Change detection example. Results using ShiftQ to track quantiles. Detection delay (last column) is given in seconds.
A Y & h n Precision Recall F1 score Det. delay
0.001 0.2 0.05 10 15 0.694 0.662 0.678 18.615
0.001 0.1 0.05 10 25 0.781 0.587 0.670 16.229
0.001 0.1 0.05 15 25 0.798 0.572 0.667 13.993
0.001 0.2 0.01 10 10 0.795 0.572 0.666 18.441
0.001 0.1 0.01 5 10 0.727 0.607 0.661 26.102
0.001 0.1 0.05 10 15 0.592 0.746 0.660 16.727
0.001 0.2 0.05 15 15 0.714 0.613 0.659 26.152
0.001 0.1 0.01 10 10 0.690 0.604 0.644 18.833
0.001 0.1 0.05 5 15 0.621 0.662 0.641 21.371
0.001 0.1 0.01 15 10 0.700 0.561 0.623 23.274

Table 7

Change detection example. Results using CondQ to track quantiles. Detection delay (last column) is given in seconds.
A Y ¢ h n Precision Recall F1 score Det. delay
0.010 0.1 0.05 10 25 0.785 0.613 0.688 15.457
0.010 0.2 0.05 10 15 0.705 0.662 0.683 13.400
0.010 0.1 0.01 10 10 0.723 0.633 0.675 19.437
0.010 0.1 0.05 15 25 0.786 0.584 0.670 18.470
0.005 0.1 0.05 10 25 0.792 0.572 0.664 17.855
0.010 0.2 0.05 15 15 0.711 0.618 0.662 19.957
0.005 0.1 0.05 15 25 0.779 0.569 0.658 22.672
0.005 0.1 0.01 10 10 0.720 0.595 0.652 20.829
0.005 0.2 0.05 15 15 0.723 0.590 0.650 22.142
0.005 0.1 0.05 15 15 0.624 0.668 0.645 27.182

ing other quantiles in a relative manner to the central one. The properties of the propounded joint estimators are derived
based on using the properties of the shifted and conditional quantiles.

We invoke the concept of conditional quantiles to devise the ShiftQ and CondQ algorithms which are extensions of the
DUMIQE and QEWA algorithms, respectively. The experiments show that both the ShiftQ and CondQ algorithms outperform
state-of-the-art multiple quantiles tracking algorithms in both synthetic and real-life data streams. Further, CondQ outper-
forms ShiftQ which is expected since the QEWA documents better performance than DUMIQE [18].

Usually, the mean and standard deviation are the most foresought statistical quantities summarizing a data stream, but
these quantities have limited ability to capture distributional properties as well as other properties such as asymmetry or
multimodality. Joint estimates of multiple quantiles yield a more general and flexible representation of the data stream dis-
tribution. The suggested estimators are able to process large quantities of raw data in real time. The resulting quantiles were
shown useful in real time decision making, for instance classification [17,33] or concept drift detection in machine learning
[18]. Streaming quantile estimators have also found applications in engineering features in machine learning [33,49].

As a future work, we aim to generalize the concept of conditional quantiles to also extend other incremental quantile
estimators.
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Appendix A. Synthetic experiments — complete results

Figs. 3-6 show the complete error curves for the synthetic experiments in Section 7.
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