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We study relativistic effects in photo ionization of a hydrogen atom exposed to an intense laser pulse of general
ellipticity. The frequency of the laser pulse resides in the ultra violet region. To this end, the semi-relativistic
approach introduced in T. Kjellsson Lindblom et al., Phys. Rev. Lett. 121, 253202 (2018) is applied. We
present in some detail how this approximation is derived from the Dirac equation for elliptically polarized light
within the so-called long wavelength approximation. The validity of the semi-relativistic approach is confirmed
by direct comparison with the solution of the Dirac equation. It is found that the total ionization yield depends
very weakly on ellipticity in the case of ionization from the isotropic ground state. With the excited initial state
n = 2, ` = m` = 1, however, pronounced ellipticity dependence is seen – in particular at the stabilization
peak. Albeit small, relativistic corrections to the ionization probabilities are found. The correction is found to
be largest for linear polarization. While relativistic effects tend to reduce the total ionization probability for most
intensities considered, we also report a slight relativistic enhancement at comparatively modest field strengths.

I. INTRODUCTION

The theoretical and computational study of the interaction
between matter and light is frequently conducted by solv-
ing the non-relativistic Schrödinger equation in the so-called
dipole approximation, in which magnetic interactions are dis-
regarded. However, in order to properly account for the
physics involved in state of the art experiments with high laser
intensities, this is no longer any fully adequate approach. With
laser pulses available already now or in the near future [1–3],
several interesting possibilities are opening, see, e.g., Ref. [4].
In order to describe these phenomena properly, the ability to
describe the light-matter interaction in a relativistic frame-
work which incorporates the magnetic field as well as the elec-
tric field is vital.

This is, however, hindered by several complications. The
inclusion of magnetic interactions, e.g., preclude the conve-
nient cylindrically symmetric description of the system. And
the relativistic description provided by the Dirac equation in-
troduces several aspects which complicates the numerical im-
plementation. Examples of such are the inherent stiffness due
to the mass energy term and the problem of so-called spurious
states contaminating the spectrum of the numerical Hamilto-
nian.

Fortunately, we have seen several significant contributions
for overcoming all of these obstacles in recent years. For
instance, it has been demonstrated that magnetic interac-
tions are conveniently incorporated within the so-called prop-
agation gauge [5, 6]. When it comes to solving the time-
Dependent Dirac equation, the so-called generalized pseu-
dospectral method [7], and the method of Ref. [8], in which
the matrix iteration method is applied, represent promising
venues. As for spurious solutions, which frequently ap-
pear in the spectrum of the numerical representations of the
Dirac Hamiltonian, several remedies are presented, see, e.g.,
Refs. [7, 9–11].

The present work is based on the semirelativistic formu-
lation of the interaction presented in Ref. [12], which, in
turn, is based on a relativistic formulation of the propaga-
tion gauge [13]. Also here we will explain how relativistic

effects in the softly relativistic region may be accounted for
by substituting the rest mass in the dynamical equation with
an effective field-dressed mass. This allows for a relativis-
tic description of the dynamics within the framework of a
slightly modified Schrödinger equation. Not only does this
evade the complications inherent to the numerical solution of
the time-dependent Dirac equation; it also allows us to anal-
yse the resulting quantum state by more familiar and techni-
cally simpler means than those pertaining to the relativistic
four-component wave function.

In Ref. [12] the derivation of this semirelativistic method
was outlined from three different starting points: from the
classical Hamiltonian function, from the relativistic Klein-
Gordon equation and from the Dirac equation. In this work we
will review the latter derivation in more detail. And we will
do so for external laser fields with general ellipticity. This ex-
ternal field is assumed to be independent of spatial variables.
While this appears to be a rather restrictive approximation, it
does include the leading magnetic interaction for strong fields.
This is owing to the fact that the interaction is formulated in
the propagation gauge in the first place.

The resulting effective semirelativistic Hamiltonian is de-
rived in the next section. In addition to the semi-relativistic
method, we have also solved the fully relativistic and non-
relativistic equations. We have done so in order to validate
the accuracy of the semi-relativistic approach and in order to
identify relativistic corrections. Correspondingly, in Sec. II
we also briefly outline how the numerical solutions of these
dynamical equations are implemented. In Sec. III we present
and analyse our results, while we summarize our findings in
Sec. IV. Atomic units (a.u.), defined by choosing ~, the ele-
mentary charge e, the electron mass m and 4πε0 as the unit of
their respective quantities, are applied where stated explicitly.
This only applies to numerical parameters, not to any general
equations.
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II. THEORY

We take the external, spatially dependent electromagnetic
field to be given by a vector potential of form

A(η) =
E0

ω
f(η)

[
â1 sin δ sin(η + φ) (1)

+ â2 cos δ cos(η + φ)
]
,

where the variable

η = ωt− k · r = ω(t− k̂ · r/c). (2)

The unit vectors k̂, â1 and â2 constitute a right-handed co-
ordinate system. The former is the propagation direction and
the latter two are orthogonal polarization directions. As the
propagation direction k̂ is orthogonal to A at all times, the
field satisfies the Coulomb gauge restriction, ∇ ·A = 0. The
parameter δ determines ellipticity; the field is circularly polar-
ized for δ = ±45◦ and linearly polarized for δ = 0, and the
envelope function f is typically slowly varying during one op-
tical cycle 2π/ω. The phase φ is the so-called carrier envelope
phase.

The time-dependent Dirac equation may be written

i~
d

dt
Ψ = HΨ , (3)

where the Hamiltonian is usually given in terms of minimal
coupling,

Hmc = cα · [p + eA] +mc2β + V, (4)

where V (r) is the Coulomb potential, which may correspond
to a bare point charge or to some other effective potential. We
adopt the usual representation in terms of Pauli matrices for
α,

α =

(
0 σ
σ 0

)
(5)

and

β =

(
12 0
0 −12

)
. (6)

The wave function of the Dirac equation is a four-component
bi-spinor,

ΨR =

(
Φ
X

)
. (7)

For states with positive energy, the upper spinor Φ typically
exceeds the lower one, X , by a factor c in magnitude – and
vice versa for states with negative energy.

Within this formulation, we impose the following gauge
transformation [5, 6, 13]:

A→ A+∇ξ and ϕ→ ϕ− ∂

∂t
ξ with (8a)

ξ(η) = − e2

2mω

∫ η

−∞
[A(η′)]2dη′, (8b)

where ϕ is the scalar potential. The corresponding kinetic
momentum is now

d = p + eA +
e2

2mc
A2 k̂ . (9)

This momentum shift is such that a free, non-quantum me-
chanical electron starting at zero momentum remains at zero
momentum. This applies both to the polarization direction
and the propagation direction of the external field, contrary to
the usual minimal coupling formulation, in which the canoni-
cal momentum acquires a drift velocity along the propagation
direction of the pulse.

The gauge transformation of Eqs. (8) leads to the propaga-
tion gauge formulation of the Dirac Hamiltonian:

H = cα · d +mc2β + V − e2

2m
A2. (10)

The much applied dipole approximation, in which the spa-
tial dependence of the vector potential A is neglected in the
minimal coupling formulation, Eq. (4), is in general not ap-
plicable in regions where relativistic effects are expected [14].
As mentioned, such an approach is simply too crude as it pre-
clude any magnetic interaction. Within the propagation gauge
formulation of Eq. (10), however, the substitution

η → ωt (11)

in Eq. (2), constitutes a far less restrictive approximation as it
preserves the leading magnetic interaction [5, 6, 13, 15]. In or-
der to clarify this point, we consider the fully non-relativistic
Hamiltonian within the propagation gauge formulation [5],

HNR =
p2

2m
+ V +

e

m
A · p +

e2A2

2m2c
k̂ · p, (12)

and compare it with the corresponding minimal coupling for-
mulation:

Hmc
NR =

p2

2m
+ V +

e

m
A · p +

e2

2m
A2 (13)

It is rather well documented that a first order expansion in
the spatial variable of the last term in Eq. (13) constitutes the
leading magnetic contribution to the dynamics in the strong
field regime [15–20];

Hmc
NR ∼

p2

2m
+V +

e

m
A(ωt)·p+

e2

mc
A(ωt)·E(ωt) k̂·r, (14)

where the electric field E = −∂tA. This first order contri-
bution corresponds to the radiation pressure induced by the
combined action of the external electric and magnetic fields.
Now, if we impose the substitution (11) into the Hamiltonian
of Eq. (12), we arrive at an interaction form which is equiva-
lent to that of Eq. (14). In the following, we will refer to this
formulation of the interaction as the long wavelength approx-
imation (LWA). While mathematically equivalent to Eq. (14),
the LWA formulation is numerically favourable [5]. This also
applies to the corresponding relativistic formulation of the
LWA, i.e., Eq. (10) subject to the replacement (11) [13].
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A. The transformed Hamiltonian

In a 1950 paper Foldy and Wouthuysen showed how the
Dirac equation for a free fermion may be cast into a form
which decouples the two spinors of Eq. (7) [21]. By imposing
the time-independent unitary transform

T = eS with S =
1

2p
tan−1

( p

mc

)
βα · p (15)

the field free Hamiltonian

Hfree = cα · p +mc2β (16)

was cast into

eSHfreee
−S = β

√
m2c4 + p2c2. (17)

This is clearly a more intuitive formulation for the relativis-
tic energy than the original formulation, Eq. (16). Moreover,
some physical quantities seem to have a more natural inter-
pretation within the frame introduced by the transformation
of Eq. (15).

In the following, we will apply the analogous transform to
the full Dirac Hamiltonian of Eq. (10), albeit within the LWA.
From now on and throughout we take this to be implicit, i.e.,
“A” will mean “A(ωt)”. We apply the Foldy-Wouthuysen
transformation with the momentum p in Eq. (15) replaced by
the momentum d, Eq. (9):

TPG = eSPG with SPG =
1

2d
tan−1

(
d

mc

)
βα · d .

(18)
Now, by following the same derivation as in Ref. [21], the
transformation of the two first terms in Eq. (10) is analogous:

TPG

(
cα · d +mc2β

)
T †PG = β

√
m2c4 + d2c2 . (19)

The last term of Eq. (10) is unaltered by the transformation,
while the Coulomb potential is affected. Moreover, since
the above transformation is time-dependent, the transformed
Hamiltonian, H ′, acquires an additional term:

H ′ = TPGHT
†
PG − i~TPG

d

dt
T †PG = β

√
m2c4 + d2c2

− e2

2m
A2 + TPGV T

†
PG − i~TPG

d

dt
T †PG. (20)

In order to determine the last two terms above, we will expand
the exponential in the transformation to lowest order in c−1,

SPG =
1

2d

(
d

mc
− 1

3

(
d

mc

)3

+
1

5

(
d

mc

)5

− ...

)

× βα · d =
1

2mc
βα · d +O(c−3), (21)

and make use of the identity

(α · a)(α · b) = a · b + iσ · (a× b). (22)

With this, it is found that the last term of Eq. (20) reads

− i~TPG
d

dt
T †PG =

− i ~e
2mc

βα ·E′ + ~e
4m2c2

σ · (E′ × d) +O(c−3), (23)

where we have introduced

E′ = − d

dt

(
A +

e

2mc
A2 k̂

)
; (24)

it may be seen as the effective electric field corresponding to
the external laser field in the propagation gauge.

When it comes to the transformed Coulomb potential,
TPGV T

†
PG, the emerging interaction terms are well known.

We will, however, briefly outline the transformation for com-
pleteness. Using the Baker-Campbell-Haussdorff formula, we
may write

eSPGV (r)e−SPG = (25)

V + [SPG, V ] +
1

2
[SPG, [SPG, V ]] +O(c−3).

With this, Eq. (22) and Gauss’ law, we arrive at

TPGV T
†
PG = V − i ~e

2mc
βα ·EC +

~2e

8m2c2ε0
ρC (26)

+
~e

4m2c2
σ · (EC × d) +O(c−3).

where

EC(r) =
1

e
∇V (r) (27)

is the static electric field originating from the nucleus and

ρC(r) = ε0∇ ·EC(r) (28)

is its charge distribution. In Eq. (26) it appears in the Darwin
term,

HDarwin =
~2e

8m2c2ε0
ρC(r), (29)

while the spin-orbit interaction is contained in the last term of
Eq. (26).

Gathering all terms from Eqs. (19), (23), (25) and (26), we
may write the transformed Hamiltonian Eq. (20) as

H ′ = β
√
m2c4 + d2c2 + V − e2

2m
A2

− i ~e
2mc

βα ·Etot +HDarwin

+
~e

4m2c2
σ · (Etot × d) +O(c−3). (30)

Here we have introduced the “total” electric field:

Etot = E′ + EC = E +
e

mc
(A ·E) k̂ + EC. (31)
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B. Decoupling and the semi-relativistic approximation

The only term in Eq. (30) which couples the two compo-
nents Φ and X of Eq. (7) is the fourth one – the one that con-
tains α. We will show that this term is negligible in the softly
relativistic region. To this end, we write the Dirac equation
with transformed Hamiltonian, Eq. (20), in terms of Φ and X ,
cf. Eq. (7):

i~
d

dt

(
Φ
X

)
= H ′

(
Φ
X

)
with

H ′ =( √
m2c4 + d2c2 − e2A2

2m −i ~e
2mcσ ·Etot

i ~e
2mcσ ·Etot −

√
m2c4 + d2c2 − e2A2

2m

)

+ V +HDarwin +
~e

4m2c2
σ · (Etot × d) +O(c−3). (32)

Following Ref. [12] we introduce the effective, field dressed
mass

µ = m

(
1 +

e2

2m2c2
A2

)
(33)

and the momentum-like operator q defined by

q2 = p2 + 2eA · p +
e2

mc
A2 k̂ · p. (34)

Note that the field dressed mass µ differs from the rest mass
by a term corresponding to the ratio between the “instanta-
neous” ponderomotive energy Up, i.e., the ponderomotive en-
ergy with cycle-averaging omitted, and the rest mass energy
mc2.

Finally, we shift the energy downwards by the rest mass
energy, which allows us to write the first term of Eq. (32) as µc2

(√
1 + q2

µ2c2 − 1
)

−i ~e
2mcσ ·Etot

i ~e
2mcσ ·Etot −µc2

(√
1 + q2

µ2c2 + 1
)
 .

With this, the lower component X , which is small for states
with positive energy, obeys the following equation:

i~
d

dt
X =

[
i
~e

2mc
σ ·Etot +O(c−3)

]
Φ+[

−µc2
(√

1 +
q2

µ2c2
+ 1

)
+ V +HDarwin (35)

+
~e

4m2c2
σ · (Etot × d) +O(c−3)

]
X .

The dominating term acting on X is

−µc2
(√

1 +
q2

µ2c2
+ 1

)
= −2µc2−q2

2µ
+

q4

8µ3c2
−... (36)

Neglecting all other terms than the leading order contribution
of Eq. (36),[

µc2

(
−

√
1 +

q2

µ2c2
− 1

)
+ V +HDarwin+ (37)

~e
4m2c2

σ · (Etot × d) +O(c−3) −i~ d
dt

]
X ≈ −2µc2X,

Eq. (35) simplifies to

2µc2X =

[
i
~e

2mc
σ ·Etot +O(c−3)

]
Φ , (38)

which, inserted into the equation for the upper component Φ
yields

i~
d

dt
Φ =

[
µc2

(√
1 +

q2

µ2c2
− 1

)
+ V +HDarwin

+
~e

4m2c2
σ · (Etot × d) +O(c−3)

]
Φ (39)

+
1

2µc2
(−i2)

(
~e

2mc
σ ·Etot +O(c−3)

)2

Φ .

We now see that the last term on the right hand side is in fact
of order c−4. The resulting effective, decoupled Hamiltonian
for Φ including terms up to and including second order in 1/c
thus reads

H ′Φ = µc2

(√
1 +

q2

µ2c2
− 1

)
+ V +HDarwin

+
~e

4m2c2
σ · (Etot × d) +O(c−3) =

q2

2µ
− q4

8µ3c2
+ V +HDarwin (40)

+
~e

4m2c2
σ · (Etot × d) +O(c−3) .

Note that we here have expanded the kinetic energy operator
and retained only the leading and the next-to-leading terms.

Following Ref. [21], the elimination of the term which cou-
ples Φ and X , i.e. −i~e/(2mc)βα · Etot in Eq. (30), could
also be performed by introducing additional unitary transfor-
mations.

The first term in the Hamiltonian of Eq. (40),

q2

2µ
=

p2

2µ
+
e

µ
A · p +

e2

2mµc
A2 k̂ · p (41)

contains the non-relativistic kinetic energy, the usual dipole
interaction term and a radiation term induced by the combined
electric and magnetic field [5, 6, 15]. These terms coincide
with the interaction terms discussed in relation to Eq. (12) –
except from the fact that they are modified by the replacement
m → µ(t); the inertia is effectively increased by the external
laser field.
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When the vector potential A of the external field van-
ishes, the next-to-leading order term in the kinetic energy,
−q4/8µ3c2, coincides with the structure correction

Ekin = − p4

8m3c2
. (42)

The attentive reader may have noticed that there is one fa-
miliar term missing in Eq. (40) – the interaction between spin
and the external magnetic field. This absence is a direct con-
sequence of the LWA, in which∇×A = 0. While this obvi-
ously affect the ability to study of spin dynamics, it does not
exclude magnetic interactions all together.

C. Implementation

In our semi-relativistic calculations, we will neglect the
spin-degree of freedom entirely for the semi-relativistic cal-
culations. In addition to precluding any investigation of spin
dynamics, this could also affect other quantities in which the
spin is integrated out. Although we will direct our attention
towards ionization probabilities in this work, it is not a pri-
ori obvious that the neglect of spin is admissible. Moreover,
we will neglect the Darwin term, Eq. (29), and the effect the
kinetic energy correction, Eq. (42), has on eigen states of the
unperturbed Hamiltonian in the semi-relativistic calculations.
The adequacy of these approximations will be checked by di-
rect comparison with solutions of the Dirac equation.

This comparison will also serve as a test of the semi-
relativistic approximation itself. Specifically, it allows us to
gauge wether it is necessary to include the next-to-leading-
order term in kinetic energy, i.e., −q4/8µ3c2 in Eq. (40). For
linearly polarized fields, the leading order term, q2/2µ, has
proven sufficient in calculations pertaining to both the ultra
violet [12] and the optical regions [22]. Another work with
fields in the X-ray regime, however, demonstrated the need
for also including the term proportional to q4 [23].

Finally, we also solve the completely non-relativistic
Schrödinger equation in order to identify relativistic correc-
tions. In summary, these are the dynamical equations we
solve:

i~
d

dt
ΨR =

[
cα · d + V +mc2β′

]
ΨR (43a)

i~
d

dt
ΨSR =

[
q2

2µ
− q4

8µ3c2
+ V

]
ΨSR (43b)

i~
d

dt
ΨNR =

[
q2

2m
+ V

]
ΨNR, (43c)

where the Coulomb potential corresponds to a point charge of
infinite mass,

V (r) = − e2

4πε0

1

r
, (44)

d is defined in Eq. (9), q2 is defined in Eq. (34) and µ(t) is
given in Eq. (33). In the case of the Dirac equation, Eq. (43a),

the energy has been shifted downwards by mc2, which, in
turn, corresponds to replacing β with

β′ =

(
0 0
0 −212

)
. (45)

Using a combination of spherical harmonics for the angular
part and b-splines for the radial part, we constructed spectral
bases by diagonalizing the unperturbed numerical Hamilto-
nian – both for the relativistic and the non-relativistic case.
Eigen states with energies above a certain thresholdEthreshold

were removed from the basis for the non-relativistic and semi-
relativistic calculations. In the case of fully relativistic calcu-
lations, energies below −2mc2 − Ethreshold where also re-
moved.

When solving the semi-relativistic Schrödinger equation,
Eq. (43b), we have used the same spectral basis as the non-
relativistic one, i.e., we expand ΨSR in the eigenstates ψn,`,m`

of the non-relativistic Hamiltonian

HNR
0 =

p2

2m
+ V (r). (46)

The spectral basis in which the Dirac equation is solved con-
sists of the eigen states of the time-independent Hamiltonian

HR
0 = cα · p + V +mc2β′. (47)

Contamination of the spectral basis from spurious states is
avoided by using b-splines of order 7 for the radial part of
the upper component Φ, cf. Eq. (7), and order 8 for the lower
componentX [10]. Within these bases, the coupling elements

〈ψb|Ai|ψa〉, (48)

where i is x, y and z and A is cα in the relativistic case and
p in the semi and nonrelativistic cases, are needed in order
to calculate the action of the Hamiltonian on the state. The
determination of these couplings is facilitated by the Wigner-
Eckart theorem, which also enables a sparse representation of
the Hamiltonian matrix in our implementation. We maintain
the reduced matrix elements, which do not depend on projec-
tion quantum numbers, and Clebsch-Gordan coefficients sep-
arately. With this, the memory cost scales proportionally to
`max as opposed to `2max, where `max is the maximum ` in-
cluded in our truncated angular basis of spherical harmonics.
It also presents an excellent opportunity to utilize heteroge-
nous computers efficiently. See Refs. [13, 24, 25] for more
details.

In addition to the interaction terms analogous to the non-
relativistic ones, the Hamiltonian of Eq. (43b) also feature in-
teraction terms originating from the modified kinetic energy.
The semirelativistic Hamiltonian may be written

HSR = HNR
0 +

(
1

2µ
− 1

2m

)
p2 +

e

µ
A · p (49)

+
e2

2µmc
A2 k̂ · p− q4

8µ3c2
.
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The coupling elements induced by the relativistic mass cor-
rection in kinetic energy, which is proportional to p2, are cal-
culated via the Coulomb potential as

〈ψn′,`′,m′
`
|p2|ψn,`,m`

〉 =

2m〈ψn′,`′,m′
`
|
(
HNR

0 − V
)
|ψn,`,m`

〉, (50)

which is convenient since the HNR
0 operator is diagonal and

V (r) is spherically symmetric;

〈ψn′,`′,m′
`
|H0|ψn,`,m`

〉 = εn,`δn,n′δ`,`′δm`,m′
`

and (51a)

〈ψn′,`′,m′
`
|V |ψn,`,m`

〉 = 〈ψn′,`′,m′
`
|V |ψn,`,m`

〉δ`,`′δm`,m′
`
.

(51b)

Here εn,` are the eigen energies of the numerical represen-
tation of HNR

0 ; they include the energies of both bound
states and box-normalized pseudo continuum states. With
the coupling elements (48) of each momentum component,
the dipole interaction e/µA · p and the radiation pressure
e2/(2µmc)A2 k̂ · p is implemented. This also allows us to
calculate the action of q2 on the wave function, which, in turn,
allows us to determine the action of q4 by applying q2 to the
wave function twice. As mentioned, this approach imposes, in
principle, an error. In our semirelativistic calculations we take
our initial state to be a non-relativistic bound state of HNR

0 .
Since the kinetic energy correction, Eq. (42), is part of the q4

interaction, it will impose a perturbation on the initial state
which prevails even when there is no external field. For the
case of hydrogen, however, it is reasonable to assume that this
error may be neglected. Numerical checks confirm that this is
indeed admissible. The issue would, however, be problematic
for highly charged ions.

The fact that we expand our wave function in eigenstates of
the unperturbed Hamiltonians renders the calculation of ion-
ization probabilities straight forward; it is simply one minus
the sum of the populations of all bound states. The popula-
tions of the box-normalized pseudo-continuum states, in turn,
can be used to interpolate the energy distribution of the ion-
ized electron. In doing so, the proper normalization factor,
i.e., the density of states, is imposed and contributions from
the various `,m` channels are added incoherently.

The time-propagation is achieved using a second order
magnus propagator approximated by means of a Krylov sub-
space technique [26–28]. In our simulations we have applied a
sin2 envelope function, and the carrier envelope phase φ = 0.
The laser field is polarized in the x, y plane, â1 = x̂ and
â2 = ŷ, which corresponds to propagation along the z axis,
k̂ = ẑ, cf. Eq. (1).

III. RESULTS AND DISCUSSION

As mentioned, the semi-relativistic approach has previously
been tested by direct comparison with solutions of the Dirac
equation for cases involving linear polarization [12, 22, 23].
We will here demonstrate its adequacy for elliptic polariza-
tion. The results presented in Fig. 1 display the total ioniza-
tion yields for a hydrogen atom in the ground state exposed to

a short, intense laser pulse in the ultra violet region. Specifi-
cally, the central angular frequency of the field is ω = 3.5 a.u.
and the pulse duration T corresponds to 15 optical cycles;
T = 15 · 2π/ω.

Converged results where obtained using an expansion in
500 b-splines extending up to rmax = 150 a.u. The expansion
in partial waves was truncated at `max = 40, and the energy
truncation was set to Ethreshold = 200 a.u. In the case of fully
relativistic calculations, a numerical time step corresponding
to 2000 steps per optical cycle was applied at the highest field
intensities. A somewhat longer time step was sufficient in the
case of semi-relativistic and non-relativistic calculations.

The upper panel shows the ionization probability as a func-
tion of peak electric field strength E0 for various ellipticities
δ, cf. Eq. (1). It is clearly seen that the ionization probabil-
ity is very weakly dependent on ellipticity, which is hardly
surprising given the isotropic shape of the ground state wave
function. The relativistic correction to the ionization proba-
bility is more interesting in this regard. The difference be-
tween the ionization probability as predicted by relativistic
Dirac equation, Eq. (43a) and the non-relativistic results of the
Schrödinger equation, Eq. (43c), are shown in the lower panel
of Fig. 1. We have also included the corresponding relativis-
tic correction obtained using the semirelativistic Schrödinger
equation (43b) instead of the Dirac equation. We see a small
but noticeable relativistic correction. We also see quantitative
agreement between the relativistic corrections provided by the
fully relativistic calculations and the semirelativistic ones. Al-
beit weaker, the agreement is still reasonable when only the
leading order in kinetic energy is retained. This is particularly
so for higher field strengths. This, in turn, may be understood
from the fact that the relativistic mass µ(t) increases with in-
creasing field strength. As a consequence, the approximation

µc2

√1 +

(
q

µc

)2

− 1

 ≈ q2

2µ
(52)

becomes increasingly justified.
The relativistic correction is seen to be negative for all in-

tensities studied here. This is in agreement with previous
works [12, 22, 24], and it can be understood from the fact
that the increased inertia acquired by the electron renders it
slightly more stable against ionization.

The lower panel of Fig. 1 shows that the overall relativis-
tic correction is larger for linear polarization (δ = 0), it tends
to decrease with increasing ellipticity towards circular polar-
ization (δ = 45◦). This is not surprising considering the fact
that, while the average velocity imposed on the electrons by
the external field is independent of ellipticity, the peak veloc-
ity is higher for linear polarization. Thus, a linearly polarized
field pushes the electron deeper into the relativistic region than
a circularly polarized field of the same intensity would.

Having validated the semi-relativistic approximation we
will resort to this approach in the remainder of this paper, i.e.,
we will consistently solve Eq. (43b) instead of Eq. (43a). As
mentioned, this is convenient since the numerical solution of a
Schrödinger-type equation such as this one is far less involved
than the corresponding Dirac equation.
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FIG. 1: The upper panel shows the total ionization probability for a
hydrogen atom as a function of peak electric field strength E0 and
ellipticity δ. The system is initially prepared in the ground state and
the laser pulse has central frequency of ω = 3.5 a.u. and a dura-
tion corresponding to 15 optical cycles. A very weak dependence
on the ellipticity is seen. The lower panel displays the relativistic
correction to the ionization yield. Here, the full curve shows the dif-
ference in ionization probability as predicted by the Dirac and the
Schrödinger equation. The dashed curves shows the relativistic cor-
rection as predicted by the semi-relativistic approach with truncation
at lowest order in the kinetic energy operator, Eq. (52), while the cir-
cles corresponds to calculations in which the next-to-leading order is
retained, cf. Eq. (43b).

It is to be expected that with a non-isotropic initial state,
the ionization probability will feature a much stronger δ-
dependence than the one seen in ionization from the ground
state. Fig. 2 demonstrates that this is indeed the case when
we take our initial state to be the excited state with n = 2,
` = m` = 1. The figure shows the ionization yield as a
function of E0 and δ. In this case, the central angular fre-
quency of the external field is ω = 1 a.u. while the pulse
duration remains 15 optical cycles. Converged results where
achieved with `max = 25, 2000 b-splines per angular sym-
metry and rmax = 1000. Weaker fields allowed for a slightly
lower value for rmax. We propagated the wave function us-
ing 200 steps per optical cycle, and the energy-truncation was
Ethreshold = 100 a.u.

The ionization probability is seen to feature a pronounced
stabilization peak around E0 ∼ 2.5 a.u. [29]. The δ-
dependence is particularly strong at this peak. As in the case

FIG. 2: The ionization probability as a function of peak electric field
strength E0 and ellipticity δ, cf. Eq. (1). The initial state has (non-
relativistic) quantum numbers n = 2, ` = m` = 1, and the laser
pulse has ω = 1 a.u. and a duration of 15 optical cycles.

of Ref. [30], the ionization yield tends to be lowest for circu-
larly polarized fields rotating opposite to the z-axis (δ = 45◦),
i.e., against the angular momentum of the initial state, and
highest for co-rotating circular fields (δ = −45◦). Beyond the
stabilization peak, the δ dependence weakens, and the ioniza-
tion probability is virtually δ independent as the system ap-
proaches saturation.

Also in the case pertaining to Fig. 2, we do see certain rel-
ativistic corrections. These are demonstrated in Fig. 3. As
in the case showed in the lower panel of Fig. 1, the cor-
rection is highest in magnitude for linear polarization. Be-
yond the stabilization peak, it tends to be slightly higher for
contra-rotating than co-rotating polarization. This may appear
somewhat counter intuitive; one would typically expect to see
higher relativistic corrections in the case of a co-rotating field.

For all ellipticities, the relativistic correction is largest in
magnitude for E0 values in the vicinity of 15 a.u., and also
here it decreases as the system approaches saturation.

It is interesting to note that the relativistic correction shown
in Fig. 3 is not strictly negative. In fact, for comparatively
moderate field strengths, E0 between 2 a.u. and 10 a.u., rela-
tivity tend to provide a slight enhancement of ionization. The
regions in which the relativistic correction is positive does, to
a large extent, coincide with the regions in which the ioniza-
tion probability is decreasing with intensity. This is illustrated
in Fig. 4.

This coincidence suggests that relativity amounts to an ef-
fective reduction in field strength at these intensities. This,
in turn, is concordant with the fact that the dipole interaction
term e/mA ·p is replaced by e/µA ·p in the semirelativistic
approximation. However, for these field strengths, the reduc-
tion in effective field strength, E0 → m/µE0, is too small to
account for the full correction. Instead, we consider the full
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FIG. 3: The relativistic correction to the ionization probability dis-
played in Fig. 2 as a function of peak electric field strength E0 and
ellipticity δ. Specifically, it shows the difference between the ioniza-
tion probability predicted by the semirelativistic approach, Eq. (43b)
and the non-relativistic one, Eq. (43c).
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FIG. 4: As in Fig. 3, this plot shows the relativistic correction to
the total ionization yield. In this case it is only displayed for three
ellipticities, namely co-rotating circular polarization (δ = −45◦),
linear polarization (δ = 0) and contra-rotating circular polarization
(δ = 45◦). As in the lower panel of Fig. 1, the dashed curves corre-
spond to relativistic corrections predicted with only the leading term
in the kinetic energy operator retained, cf. Eq. (52). The dotted ver-
tical lines indicate the respective intervals in which the ionization
probability is a decreasing function of intensity.

Hamiltonian of Eq. (43b) written out explicitly:

HSR =
p2

2m
− p4

8m3c2
+ V +

e2

2m2c
A2 k̂ · p

+
e

m

(
1− e2A2 + p2

2m2c2

)
A · p

− e2

4m3c2

(
A2p2 + 2 (A · p)

2
)

+O(c−3). (53)

This expression is identical to Eq. (13) of Ref. [31] – apart
from the anti-commutators between p and A imposed in the
latter expression, which is not restricted to the LWA. We iden-
tify an additional term which also supports the notion of an ef-

fective reduction in field strength, namely the relativistic cor-
rection term −ep2/(2m3c2)A · p. As this term is linear in
A, it is reasonable to assume that also this term constitutes
a significant correction at these comparatively moderate field
strengths, as supported by a comparison between the dashed
and the full curves in Fig. 4.

In Fig. 5 we display photoelectron spectra obtained with
peak electric field strength E0 = 20 a.u. These calcu-
lations require higher resolution in terms of partial waves
than what is needed for calculating total ionization probabil-
ities. In this particular case, convergence was achieved with
`max = 35. Moreover, we have imposed a complex absorbing
potential near the edge of the numerical grid for these calcu-
lations. Fully relativistic calculations indicated that the semi-
relativistic calculations indeed produced the correct relativis-
tic modifications also in this case. However, convergence is-
sues related to the numerical solution of the Dirac equation,
Eq. (43a), hindered establishing a fully quantitative agree-
ment.

The field strength E0 = 20 a.u. corresponds to an intensity
well beyond the stabilization peak, in which the multi pho-
ton peaks are not expected to be prominent [32–34]. Thus,
it should come as no surprise that the spectra are domi-
nated by low energy photo electrons. Still, we may make
out some multi photon peaks for circular polarization. For
E0 = 20 a.u., the relativistic correction tends to reduce the
total ionization yield. Accordingly, the over all relativistic
correction is negative, as demonstrated in the lower panel of
Fig. 5. However, it is not negative for all energies; as it turns
out, relativistic corrections impose a slight enhancement just
above threshold for circular polarizations. And it does so to
a larger extent in the case of co-rotating polarization than for
a contra-rotating field. In other words, there seems to be two
competing relativistic corrections; one which enhances ion-
ization at low energies and another which diminishes it at
higher photo electron energies. The latter is consistent with
the discussion pertaining to Fig. 4. Supported by the expres-
sion for the modified dipole interaction, i.e., the second last
term in Eq. (53), increased inertia may, to some extent, be
seen as an effective reduction in field strength.

Thus, it would seem reasonable to attribute the relativis-
tic enhancement seen for low-energy photo electrons exposed
to circular polarization to the last term Eq. (53). This in-
teraction term features a modification of the kinetic energy
term, e2A2/(2m3c2)p2. As 〈p2〉 typically is larger for co-
rotating than contra-rotating circular polarization, this may
explain why the enhancement is more pronounced in the for-
mer case. Note that both effects, the enhanced ionization
probability near zero energy and reduced ionization at higher
energies, are more pronounced for co-rotating than contra ro-
tating fields. In light of this, the fact that relativistic correc-
tions to the total ionization probability tends to be smaller in
magnitude in the co-rotating case than the contra-rotating case
appears less counter-intuitive. Although both the relativistic
effects discussed above are stronger for co-rotating polariza-
tion, they add up to a total correction which is more moderate
than what is seen for contra-rotating polarization.
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FIG. 5: The upper panel shows the energy differential ionization
probability for co-rotating (δ = −45◦), linear (δ = 0) and contra-
rotating (δ = 45◦) polarization for the same system as in Fig. 2. The
peak electric field strength is E0 = 20 a.u. The spectra are plot-
ted with a logarithmic y axis. The lower panel shows the relativistic
corrections to the spectra on a linear scale. The dashed curves corre-
sponds to lowest order truncation in kinetic energy, Eq. (52).

IV. CONCLUSIONS

We have validated the semirelativistic approach to photo
ionization for strong electromagnetic fields of general ellip-

ticity in the ultra violet region and applied it to study photo
ionization of a hydrogen atom initially excited to the n = 2,
` = m` = 1 state. A strong dependence on ellipticity near the
stabilization peak was found; co-rotating circular polarization
provided significantly higher ionization than contra-rotating
polarization.

Certain relativistic corrections were also observed. In gen-
eral, the magnitude of the correction was highest for linear po-
larization, for which the peak electric field strength penetrates
deeper into the relativistic region. For most field strengths, rel-
ativity tends to stabilize the system slightly against ionization
– in accordance with the notion of increased inertia induced
by the laser pulse. However, in the regions in which ionization
probability is decreasing with increasing intensity, a relativis-
tic enhancement of ionization was seen. This enhancement
was also interpreted as a consequence of an effective reduc-
tion in the laser intensity.

We also presented photoelectron spectra for an intensity
well beyond stabilization. These spectra demonstrated that
multi photon ionization is suppressed at these intensities and
that photo electrons, for all ellipticities, tend to come out with
very low energy. While relativistic effects over all tend to sta-
bilize the atom against ionization, a certain enhancement was
seen for low-energy photo electrons exposed to circularly po-
larized fields.
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