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Abstract. Network slicing is the crucial prerogative that allows end users and 
industries to thrive from 5G infrastructures, however, such a logical network 
component can deteriorate from security vulnerabilities that prevail within cloud 
environments and datacenters. The Quality of Experience in 5G is a metric that 
takes into consideration sets of factors, which play role in the definition of the 
end-to-end performance, which is indeed latency, packet processing, utilization 
of legacy protocols, old hardware, encryption, non-optimized network topolo-
gies, routing problems and multitude of other aspects. This research sheds light 
on the inherent networking stack performance issues that translate into 5G envi-
ronments, in a use-case where encrypted VPN tunneling is used to secure the 
backhaul transport network between the 4G/5G cores and the frontend networks. 
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1 Introduction 

5G engrosses various sectors of the modern society, including healthcare, transport, 
smart infrastructure, industrial and other spheres. One of the most important environs 
that 5G aims to support is the Massive Internet of Things (MIoT). In healthcare, IoT 
enables providers to assist patients in various ways by providing wearables, sensors and 
implants for various medical conditions and monitoring [1] etc. The devices require 
stringent security measures for preserving the confidentiality and data privacy of patient 
information. Nevertheless, the healthcare sectors are constantly targeted by cyber crim-
inals and additional considerations from that aspect are desirable to prevent private in-
formation leakage and mitigate repercussions [2]. The information retained about 
healthcare services and patients is of substantially sensitive nature and therein the need 
for additional protection and threat mitigation. An example of eccentric cyber-attacks 
during the COVID-19 pandemic from 2020, indicates that the adversaries are utilizing 
APT (Advanced Persistent Threat) attacks and is attributed to the possibility that the 
intention is to compromise and exfiltrate research data regarding COVID-19 vaccines 
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[2]. The increase of cyber threats on healthcare institutions in Central Europe has in-
creased exponentially in November 2020, namely by 145%, which is an astoundingly 
elevated figure [3]. The enhanced quality of service is what 5G delivers to the smart 
healthcare and in parallel security threats that it is accompanied with [4]. Most of the 
research is focused on the stated Quality of Service and performance, but the security 
remains a highly misjudged domain, therein the upsurge of cyber-attacks on healthcare 
institutions in the last two years.  

Adversaries are continuously developing new practices to enhance their attack vec-
tors and exploit various vulnerabilities for fulfilling their malicious goals. One rather 
traditional technique to secure a communication is encrypted tunneling, namely em-
ploying VPNs to support the communication between endpoints. In this paper, we ex-
amine a previous work on a 5G infrastructure for IoT in healthcare and address a per-
formance issue that arises as a result to the encryption in the transport network between 
the 5G network core (5GC) and the Centralized Unit (CU) in a cloud environment. This 
is achieved by combining improvements in the Linux kernel for packet processing and 
introducing an additional FPGA hardware to offload the cryptographic operations from 
the 5G core compute node. The improvements of performance in 5G VPN+ network 
slice encrypted with AES-256 are thereby substantial. 

1.1 Motivation and Problem Statement 

Smart healthcare involves medical devices that are issued to patients and communicate 
through a 5G network. In simple terms, the transport network that connects the Core 
Networks of the service providers with contiguous Centralized Units for baseband pro-
cessing is as secure as the infrastructure itself, which signifies that threats can emerge 
when adversaries are able to access the network through any means (either from the 
internet or on-premises). 5G establishes the concept of network slicing that separates 
the tenants in the network based on their use case. A typical method to resolve the 
communication and restrict access to the corresponding actors is by using policy-based 
networking and selective routing of traffic, VLAN segmentation, compute nodes isola-
tion as well as firewalls and traffic filtering. These techniques are incorporated at the 
orchestration layer of the SDN controller and the same are insufficient to prevent ad-
versaries from commencing various attacks. To strengthen the security of the transport 
network in 5G between the CU and Core Networks, we have established an infrastruc-
ture that allows provisioning of a custom network slice, crafted for healthcare purposes, 
and utilizes an enhanced VPN+ tunneling to secure the communication. Nevertheless, 
the symmetric encryption in the tunnel adversely affects the performance of the com-
munication at scale and requires optimizations to provide satisfactory quality of expe-
rience for the increasing number of MIoT devices and the end users in healthcare.   

This paper begins with an introduction and explaining background work in the re-
lated field. Further, a brief explanation of the methodology and implementation follow 
and correspondingly, the results of the experiments are represented. To finalize, the 
paper discusses certain limitations and advantages of the proposed approach and con-
cludes on the lessons learned. 
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2 Background and related work 

2.1 5G architecture  

The 5G system consists of User Equipment (UE), Access Network (next-generation 
Node-B, or gNB) and Next-Generation Core Network (5GC). By combining Software-
Defined Networking (SDN) and open Application Programming Interfaces (APIs), us-
ers can have virtual Network Functions (vNFs) tailored and customized according to a 
specific scenario. Figure 1 represents an overview of the 5G architecture, which is sep-
arated into two main group functions: Control Plane (CP) core of 5GS and User Plane 
(UP) functions. The control-plane group has different elements defined in terms of Net-
work Functions (NF). It is comprised of a common framework and offers services to 
other authorized NFs or users. This Service-Based Architecture (SBA) allows modu-
larity, scalability, and reusability [5].  

 

 
Figure 1. 5G Core Architecture 

Network Slicing 
The concept behind network slicing is based on logical network components, situated 
on a common physical infrastructure also dissected into virtual networks. The network 
softwareization concept [6] enables network slicing through software-based solutions. 
For that purpose, network slicing in 5G utilizes Software-Defined Networking (SDN), 
Network Function Virtualization (NFV) in clouds and the Edge for the realization of 
slices over the same physical infrastructure of the service providers. Each slice is con-
trolled independently and can scale according to requirements.  

Compared to 4G LTE, 5G replicates the function of physical hardware in form of 
software. SDNs can thus be easily adapted to serve the needs of backends (such as SD-
WAN) as well as local deployments for customizing network slices in 5G. In a previous 
work at the Secure 5G4IoT lab by the Oslo Metropolitan University, we underlined the 
details on network slicing using a slicing controller and an SDN controller to provide 
virtual network functions for connectivity to the corresponding network slice [7,8]. 
VNFs can be implemented in different ways. One common method is to separate a 
physical network interface into manifold virtual functions, assign these virtual 
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networking endpoints to a VNF/CNF (Container Network Function) and implement 
policy and routing via the SDN controller through these terminals for the network slice. 
Figure 2 represents a working example of virtual network function provisioning for 5G 
cloud radio access network (C-RAN) with a single Centralized Unit (CU) in OpenStack 
cloud. Another traditional method for separating vNFs is by using VLAN (Virtual 
LAN) on Layer-2. According to the working example in the Secure 5G4IoT Lab at the 
Oslo Metropolitan University, the virtual functions are delivered using SR-IOV (Single 
Root – Input Output Virtualization) of the network. The 5G core functions are contain-
erized and use the Kuryr plugin to interface the containers with the OpenStack Neutron 
[9]. 

 
Figure 2. VLAN segmentation using SR-IOV and VPN instance in the transport network be-

tween the Centralized Unit containers and the 5G Cloud Core Network  

High-performance vector packet processing stack  
To handle low-level packet processing issues the VPP (Vector Packet Processing) is 
used. By enabling a software routing using the VPP driver, we deliver a VPN underly-
ing network for securing the communication between the C-RAN network and the core 
networks in the cloud. VPP does not process packets on sequential basis as is the case 
with the scalar model, but instead it processes the entire vector of packets through a 
graph node before proceeding to the next graph node. There is a support for hardware 
acceleration through plugins for offloading the packet processing functions to external 
hardware [10]. VPP uses vector processing as opposed to scalar processing, treats more 
than one packet at a time. One of the benefits of the vector approach is that it fixes the 
I-cache thrashing problem. It also mitigates the dependent read latency problem (pre-
fetching eliminates latency). This approach fixes the issues related to stack depth / D-
cache misses on stack addresses by improving the cycle of capturing all available pack-
ets from the device RX ring, forming a vector that consists of packet indices in RX 
order, running the packets through a directed graph of nodes, and returning to the RX 
ring. As processing of packets continues, the circuit time reaches a stable equilibrium 
based on the offered load. As the vector size increases, processing cost per packet de-
creases because the I-cache misses over a larger N are being amortized [10]. VPP is 
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integrated in OpenStack using the Neutron Modular Layer-2 (ML2-VPP) mechanical 
driver, as shown in Figure 3. 

 

  
Figure 3. VPP native integration with the OpenStack Neutron Modular Layer 2 (ML2) driver 

For the production-scale cloud, the VPP ML2 agents are deployed via the 
OpenDaylight SDN controller in OpenStack, which are referred to as “Honeycomb 
data-plane agents” where Kubernetes and Ansible are used for orchestration 
[11,12,13]. VPP is shown to massively improve performance in relatively low-power 
computing environments [14,15,16].   

2.2 Enhanced VPN+ and cryptographic functions offloading to FPGA 
SoC 

One way to enable transport network VPN connection is to bypass application layer 
VPNs and perform tunneling at transport network layers. In the style of VPN as a Ser-
vice (VPNaaS) and On-demand network slice provisioning NSaaS (Network Slice as a 
Service), tenants can request a network slice with VPN tunneling integrated as a custom 
vNF. The ACTN framework (Abstraction and Control of Traffic-Engineered Net-
works) is thereby introduced [17] to define the ability for customers to deploy private 
networks without the understanding of the backend. ACTN defines the Virtual network 
slicing service function chaining (SFC) model. This same model serves for provision-
ing 5G transport networks by utilizing the CNC (Customer Network Controller), 
MDSC (Multi-Domain Service Coordinator) and PNC (Provisioning Network Control-
ler) [18]. CNC is responsible for 5G 3GPP access-network communication with the 
underlying network of the 5G infrastructure and is also known as Traffic Provisioning 
Manager (TPM) [19]. The TPM functions as a CNC from ACTN reference point of 
view and can be deployed in a carrier network as shown in Figure 4, TPM can be de-
ployed in Mobile Network A - Domain 1 and Domain 2, while the CMIs interfaces are 
connected to SDN controllers (in this case we refer to the PNC from the ACTN frame-
work reference) [19]. 
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Figure 4. Enhanced 5G Transport Network Architecture in a multi-region cloud model [19] 

For the current experiments, we employ a hybrid model, in which the SDN controller 
imports the information of the underlay network through BGP-LS (BGP-Link State) 
[20] via RestCONF APIs, and the traffic engineering (TE) information is collected and 
shared to external components of the network. Therefore, a Traffic Engineering Data-
base (TED) is formed [21], which stores information about the TE information for dy-
namic Quality of Service parameters regulation as in the case with MPLS and GMPLS 
networks [20]. This way, the tenants can decide to instantiate an enhanced VPN+ at the 
network underlay, while avoiding overlay application-layer overheads at scale.  

Field Programmable Gate Arrays are used in clouds for various functions. A SoC 
(Silicon on a Chip) architecture allows the FPGA to be programmable remotely and 
without direct access. This combination usually is followed by an ARM architecture 
device tightly integrated with the FPGA, which allows interfacing to the FPGA fabrics. 
The FPGA can then be used for various applications that require specific and custom-
ized computational properties and are task intensive for the general x86 architecture 
CPUs [22,23], which is programmed to perform cryptographic operations for AES-256 
in the VPN tunnel. The FPGA is programmed in Verilog to access the memory directly 
and interact with the VPP kernel module, which opens a potential to scale the FPGA 
fabrics into cluster of multiple FPGA SoC units. The cluster can then be served as a 
service to the specific network slicing virtual functions that request it. 

3 Methodology and implementation  

The Figure 5 represents a 4G and 5G infrastructure deployed at the Oslo Metropolitan 
University with three different slices: a 5G New-Radio, 4G standard LTE access and 
an IoT network slice with IEEE 802.11 Wi-Fi access. The core networks have their own 
SR-IOV endpoints and is considered a separate virtual cluster sharing the same cloud. 
The experimentation methodology is based on network testing performed with the iperf 
tool to measure traffic performance at scale. Before conducting the evaluation of the 
throughput in the network, the Maximum Transmitted Unit (MTU) is adjusted to 9000 
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from the default 1500 value to minimize fragmentation incurred variance in the network 
flows. This is because the traffic between the Centralized Unit and the 5G Core Net-
work is encapsulated to support the transmission of GTP traffic in an extended IP 
header. With a MTU value of 1500, the traffic between the UE (User Equipment) and 
the Internet will experience packet drop, jitter and additive error, therefore it is adjusted 
accordingly on all interfaces, including the SR-IOV physical functions, virtual func-
tions, as well as the container-plane network. 

 

 
Figure 5. 4G and 5G hybrid infrastructure at the Oslo Metropolitan University  

The compute nodes are Dell R620 servers running Linux Ubuntu server 18.04 operating 
with low-latency kernel version 14.18.0-25. The Core Network vNFs require a stable 
environment to operate and thus any fluctuations incurred by the CPU on a hardware 
level in terms of frequency, voltage, heat-related inconsistences and multitenancy can 
cause unpredictable result. To minimize experimental error, CPU hyperthreading is dis-
abled as well as power states (C-states, P-states) and the unit overclocked to fixed 3.0 
GHz. For testing the connectivity between the Centralized Unit and the Core Networks, 
network overlays are avoided to eliminate overhead and perform the control experi-
ments directly on the 10Gbps optical network fabrics between the physical compute 
nodes. This experimental data is stored and used to compare to the performance impact 
virtualization can have on the nodes in terms of bandwidth and CPU resources 
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utilization combined. Further, we proceed with tests on the VPN+ tunneling in between 
the compute nodes, which are followed by tests on the VPN+ endpoints on virtualiza-
tion layer between the Centralized Unit containers and the Core Network containers. 
This will shed light on the difference between the impact of hardware networking com-
pared to virtualization with SR-IOV and direct VPN tunneling compared to virtualiza-
tion-layer VPN+ tunneling.  

As a final realignment, we change the generic Linux networking kernel modules 
with Vector Packet Processing and compare these results to the previously obtained 
data. That will represent the real status of the performance improvements that can be 
expected from utilizing vector processing compared to scalar processing. Last but not 
least, the FPGA SoC is introduced at the VPN+ server. Each test is performed in two 
stages: single-stream network testing and multiple-stream tests in parallel. The latter 
exaggerates the traffic conditions and simulates a realistic scenario where the transport 
network is saturated with traffic.  

3.1 Evaluation 

The obtained data is classified as follows:  

• Scenario A: Hardware-level testing of the compute nodes at the optical network fab-
rics 

• Scenario B: Virtualization-plane tests via the corresponding SR-IOV virtual func-
tions translated in the containers that host the Centralized Unit and the Core Net-
works  

• Scenario A1: VPN+ connectivity between the two compute nodes directly  
• Scenario B1: Virtualization-plane tests of the VPN+ connectivity through the same 

SR-IOV virtual functions  
• Scenario A2: VPN+ connectivity between the two compute nodes directly, with Vec-

tor Packet Processing Linux kernel module  
• Scenario B2: Virtualization-plane tests of the VPN+ connectivity with Vector Packet 

Processing Linux kernel module  
• Scenario A3: VPN+ connectivity between the two compute nodes directly with Vec-

tor Packet Processing Linux kernel module and FPGA SoC cryptographic offloading 
• Scenario B3: Virtualization-plane tests of the VPN+ connectivity with Vector Packet 

Processing Linux kernel module and FPGA SoC cryptographic offloading 

The A and B scenarios are the experimental control group for comparison with the 
further test scenarios. This will shed light on the performance detriment that is inflicted 
on the link. For that purpose, the network flows are measured together with CPU utili-
zation and compared. Correspondingly, the A1 and B2 scenarios test the VPN+ con-
nectivity and the impact it has on the deployment compared to the default state from 
the A and B scenarios. In the A2 and B2 scenarios, the VPP Linux kernel module is 
introduced, which will represent the mean performance gain that is otherwise lost due 
to the packet processing issues from the default scalar approach. Finally, the scenarios 
A3 and B3 implement an FPGA SoC for offloading the encryption from the CPU of the 
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compute node. These tests are performed only in multiple-stream examinations, in or-
der to assess the performance improvement at scale (in worst-case scenarios).   

The traffic of the single-stream and multiple-stream tests is adjusted in such a man-
ner that respects a constant threshold under the total maximum capacity of the node’s 
performance. The experiments do not examine latency-related issues.   

4 Results 

The results from the experiments are obtained using the iPerf3 network testing tool and 
the following arguments are passed. The time of execution is 5 minutes (300 seconds), 
with an interval of transmission each 1 second. The TCP buffer size is set as a constant 
to 32 Megabytes and the test runs as a client-server model with the server being exe-
cuted at the 10.0.0.1 host, which is the Core Network and the 10.0.0.2 is the Centralized 
Unit host. Results are summarized in  Table 1 and Table 2, denoting CPU resource 
utilization and maximum bandwidth, correspondingly. 

Table 1. Summary of the CPU utilization at the 5GC core side and the CU side. The values 
represent total CPU utilization, divided between user resources and system namespace services. 

Each scenario is characterized with single-stream and multi-stream test results. 

Sce-
nario  

CPU utiliza-
tion (%) 
5GC_total 

CPU utiliza-
tion (%) 
5GC_user 

CPU utilization 
(%) 
5GC_system 

CPU utiliza-
tion (%) 
CU_total 

CPU utiliza-
tion (%) 
CU_user 

CPU utilization 
(%) CU_system 

A / S-S 61.9658 8.23386 53.7319 35.983 5.03469 30.9483 

A / M-S 95.9105 18.9873 76.9232 41.7224 8.2758 33.4466 

 CPU utiliza-
tion (%) 5GC-
SRIOV_total 

CPU utiliza-
tion (%) 5GC-
SRIOV_user 

CPU utilization 
(%) 5GC-
SRIOV_system 

CPU utiliza-
tion (%) CU-
SRIOV_total 

CPU utiliza-
tion (%) CU-
SRIOV_user 

CPU utilization 
(%) CU-
SRIOV_system 

B / S-S 63.5708 8.62531 54.9455 21.4606 3.48127 17.9793 

B / M-S 96.2447 20.1134 76.1313 27.36 4.43466 22.9254 

 CPU utiliza-
tion (%) 5GC-
VPN_total 

CPU utiliza-
tion (%) 5GC-
VPN_user 

CPU utilization 
(%) 5GC-
VPN_system 

CPU utiliza-
tion (%) CU-
VPN_total 

CPU utiliza-
tion (%) CU-
VPN_user 

CPU utilization 
(%) CU-
VPN_system 

A1 / S-S 37.1798 10.0446 27.1352 3.54544 0.36947 3.17597 

A1 / M-
S 

44.2623 8.84595 35.4163 4.68069 0.944212 3.73648 

B1 / S-S 36.9928 10.078 26.9148 1.89289 0.22533 1.66756 

B1 / M-S 44.0171 8.80109 35.216 3.11648 0.811096 2.30538 

 CPU utiliza-
tion (%) 5GC-
VPN-TN_only 

CPU utiliza-
tion (%) 5GC-
VPN-TN_user 

CPU utilization 
(%) 5GC-VPN-
TN_system 

CPU utiliza-
tion (%) CU-
VPN-TN_only 

CPU utiliza-
tion (%) CU-
VPN-TN_user 

CPU utilization 
(%) CU-VPN-
TN_system 

A2 / M-
S 

100.0 49.257 50.743 7.121 0.782 2.51 

B2 / M-S 100.0 48.290 51.71 8.234 0.913 2.912 

A3 / M-
S 

59.34 2.173 23.439 7.856 0.828 2.87 

B3 / M-S 63.17 3.012 27.126 9.162 0.711 4.451 
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Table 2. Summary of the bandwidth tests at the sender and receiver side. The results include 
the total retransmissions and duration of the tests in seconds. Each scenario is represented with 

single-stream and multi-stream tests 

Scenario  Send Du-
ration (s) 

Sent Data 
(GB) 

Send Speed 
(Gbps) 

Retran. 
(total) 

Rec. Dura-
tion (s) 

Rec. Data 
(GB) 

Rec. Speed 
(Gbps) 

A / S-S 300.036 371.04267 9.89328 0 300.036 371.04249 9.89327 

A / M-S 300.015 371.16965 9.89736 1 300.015 371.16546 9.89725 

B / S-S 300.039 371.18716 9.89704 0 300.039 371.18684 9.89703 

B / M-S 300.021 371.17811 9.89739 22 300.021 371.17443 9.89729 

A1 / S-S 300.037 19.591886 0.522386 163311 300.037 19.591432 0.522374 

A1 / M-S 300.021 20.563469 0.54832 347139 300.021 20.559070 0.548203 

B1 / S-S 300.038 19.921978 0.531218 170510 300.038 19.922784 0.531207 

B1 / M-S 300.022 21.049824 0.561288 348553 300.022 21.045380 0.56117 

A2 / M-S 300.021 223.00132 5.347821 3 300.021 223.00412 5.347733 

B2 / M-S 300.023 219.34128 5.330129 2 300.023 219.34115 5.331604 

A3 / M-S 300.030 360.21275 8.928763 0 300.030 360.21478 8.972871 

B3 / M-S 300.021 343.33713 8.873988 0 300.021 343.33711 8.873569 

 
To determine the impact of the VPN on the backhaul network, we establish causal re-
lationships between the hardware-level tests, virtualization layer tests and compare the 
results with the improvement from utilizing the VPP module. Finally, the results are 
also compared with the inclusion of the FPGA SoC offloading. For that purpose, the 
multiple linear regression analysis is used.  
The value of the correlation coefficient (“multiple R”) is 0.850086999, indicating a 
good relationship between the CPU utilization, bandwidth, and the number of occurring 
retransmissions. The significance F-test of the null-hypothesis is less than 0.05 (i.e., S-
F=0.003116316). Figure 6 and Figure 7 show the overall distribution of CPU utilization 
compared to the speed per each scenario. During the hardware-level tests, the overall 
utilization of the CPU in the node was 41.7224%, whereas during the SR-IOV parallel 
stream tests, the total usage amounts for 27.36%. Nevertheless, there is an unavoidable 
variation in the system processes at the different times of testing, for which if we 
calculate the offset, we get 33.4466% during hardware-level tests and 22.9254% during 
SR-IOV tests, results in ∆!"#$%&(()	= 10.5212%. This value is subtracted from the 
overall performance in order to isolate the effects of virtualization during the multiple 
stream tests, that is 41.7224% during the hardware-level tests and 27.36% during the 
SR-IOV tests. The difference of 14.3624% subtracts the system resources difference by 
10.5212%, obtaining 3.8412% impact on the virtualization plane during the SR-IOV 
tests with multiple streams. The overhead increases when the traffic scales over the 
same VNF (Figure 8 and Figure 9).  
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Figure 6. Distribution of the multiple linear regression analysis of the correlation between rela-
tive bandwidth (in Gbps) and CPU utilization in percentage (%) by scenario 

 
Figure 7. Multiple linear regression analysis of the relative bandwidth in Gbps and total CPU 

utilization in percentage (logarithmic distribution) 

 
Figure 8. Correlation between the relative bandwidth and the number of retransmissions 

Without provisioning additional VNFs, it is likely that the impact would be more 
than linear over a threshold of difference between the kernel’s scalar packet processing 
capability and the absolute number of scaled VNF functions for the SR-IOV drivers, 
accounting for the traffic generated also in the 5G network on top of the diverse network 
slices. Furthermore, as the number of retransmissions increase, the level of 
computational resources required for retaining maximal bandwidth will increase, 
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adding on the bottleneck of the operating system’s kernel at the physical nodes and is 
represented through the CPU underutilization. This is further amplified through an 
encrypted VPN tunnel, accentuating the I-cache thrashing problem with the scalar 
packet processing. The VPP allows the CPU to have time-series workloads allocated 
for submitting each encrypted packet to the network interface, thereby increasing the 
bandwidth of the tunnel and showing 100% CPU utilization. Additional rectification is 
achieved when the FPGA fabric is introduced, further restoring the traffic performance 
(~8.87 Gbps).   

 
Figure 9. Dependency between the number of retransmissions and total CPU utilization (sys-

tem namespace and user running the 5GC core network and VPN) 

5 Discussion 

One of the main hindrances to performance loss in a software-defined 5G backhaul 
networking is the utilization of legacy hardware in datacenters. The modern workloads 
require improved hardware, especially CPU processing units and in general new archi-
tectures in order to run with higher efficiency. Datacenters are usually equipped with 
specialized processing hardware for particular workloads, such as GPUs or FPGAs, 
which at scale can have detrimental impact on the execution of required tasks. In the 
case with VPN, the technique that combines Vector Packet Processing and FPGA of-
floading can be scaled to accommodate bigger infrastructures and negate the require-
ment of horizontally scaling the same. 

Using FPGA SoC requires tedious implementation methodology and incurs latency 
penalties on the network. Despite that this work is not focused on examining the latency 
related impacts in the network, an external SoC managed FPGA forwards packets from 
the SDN controller that directs the network flows through the FPGA and back to the 
CPU of the compute nodes. A better performing FPGA layer combined with tight inte-
gration with the SDN networking stack of the backhaul, can resolve the said issues. 

6 Conclusion 

Utilizing a vNF passthrough, minimizes the impact of virtualization on the performance 
of 5G backhaul transport networks at scale. A rather simpler approach that attains flat 
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infrastructure, easier to automate and self-organize, the virtualization layer can be sup-
plemented with vector packet processing  to annul some ramifications that arise due to 
inherent networking kernel limitations in Linux. This implication becomes intensified 
when the transport network is tunneled via VPN, which can encrypt the communication 
with various algorithms. The symmetric encryption needs to scramble every packet that 
traverses the transport network endpoints, which is highly taxing for the CPU and the 
available resources at the compute nodes in the cloud. The communication becomes 
severely bottlenecked and the overall potential of the 5G transport network substan-
tially diminished. A prodigious and cost-efficient solution is to integrate FPGA fabrics 
to handle the encryption of the tunneling and use vector packet processing to increase 
the flow rates and minimize packet retransmissions, which can drastically improve the 
performance.  
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