
Optimizing 5G VPN+ Transport Networks with Vector
Packet Processing and FPGA Cryptographic Offloading

Bruno Dzogovic1, Bernardo Santos1, Boning Feng1, Van Thuan Do2,1, Niels Jacot2,
Thanh Van Do3,1

1 Oslo Metropolitan Univeristy, Pilestredet 35, 0167 Oslo, Norway
2 Wolffia AS, Haugerudvn. 40, 0673 Oslo, Norway

3 Telenor ASA. Snarøyveien 30 1331 Fornebu, Norway
{bruno.dzogovic, bersan, boning.feng}@oslomet.no

{vt.do,n.jacot}@wolffia.net
thanh-van.do@telenor.com

Abstract. Network slicing is the crucial prerogative that allows end users and
industries to thrive from 5G infrastructures, however, such a logical network
component can deteriorate from security vulnerabilities that prevail within cloud
environments and datacenters. The Quality of Experience in 5G is a metric that
takes into consideration sets of factors, which play role in the definition of the
end-to-end performance, which is indeed latency, packet processing, utilization
of legacy protocols, old hardware, encryption, non-optimized network topolo-
gies, routing problems and multitude of other aspects. This research sheds light
on the inherent networking stack performance issues that translate into 5G envi-
ronments, in a use-case where encrypted VPN tunneling is used to secure the
backhaul transport network between the 4G/5G cores and the frontend networks.

Keywords: 5G, Enhanced VPN+, Vector Packet Processing, FPGA SoC.

1 Introduction

5G engrosses various sectors of the modern society, including healthcare, transport,
smart infrastructure, industrial and other spheres. One of the most important environs
that 5G aims to support is the Massive Internet of Things (MIoT). In healthcare, IoT
enables providers to assist patients in various ways by providing wearables, sensors and
implants for various medical conditions and monitoring [1] etc. The devices require
stringent security measures for preserving the confidentiality and data privacy of patient
information. Nevertheless, the healthcare sectors are constantly targeted by cyber crim-
inals and additional considerations from that aspect are desirable to prevent private in-
formation leakage and mitigate repercussions [2]. The information retained about
healthcare services and patients is of substantially sensitive nature and therein the need
for additional protection and threat mitigation. An example of eccentric cyber-attacks
during the COVID-19 pandemic from 2020, indicates that the adversaries are utilizing
APT (Advanced Persistent Threat) attacks and is attributed to the possibility that the
intention is to compromise and exfiltrate research data regarding COVID-19 vaccines

This is a post-peer-review, pre-copyedit version of a conference proceeding published in MobiWIS 2021: Mobile Web and Intelligent Information
Systems, 17th International Conference, Proceedings, which is part of the Lecture Notes in Computer Science book series (volume 12814).

The final authenticated version is available online at DOI: https://doi.org/10.1007/978-3-030-83164-6_7

https://doi.org/10.1007/978-3-030-83164-6_7

2

[2]. The increase of cyber threats on healthcare institutions in Central Europe has in-
creased exponentially in November 2020, namely by 145%, which is an astoundingly
elevated figure [3]. The enhanced quality of service is what 5G delivers to the smart
healthcare and in parallel security threats that it is accompanied with [4]. Most of the
research is focused on the stated Quality of Service and performance, but the security
remains a highly misjudged domain, therein the upsurge of cyber-attacks on healthcare
institutions in the last two years.

Adversaries are continuously developing new practices to enhance their attack vec-
tors and exploit various vulnerabilities for fulfilling their malicious goals. One rather
traditional technique to secure a communication is encrypted tunneling, namely em-
ploying VPNs to support the communication between endpoints. In this paper, we ex-
amine a previous work on a 5G infrastructure for IoT in healthcare and address a per-
formance issue that arises as a result to the encryption in the transport network between
the 5G network core (5GC) and the Centralized Unit (CU) in a cloud environment. This
is achieved by combining improvements in the Linux kernel for packet processing and
introducing an additional FPGA hardware to offload the cryptographic operations from
the 5G core compute node. The improvements of performance in 5G VPN+ network
slice encrypted with AES-256 are thereby substantial.

1.1 Motivation and Problem Statement

Smart healthcare involves medical devices that are issued to patients and communicate
through a 5G network. In simple terms, the transport network that connects the Core
Networks of the service providers with contiguous Centralized Units for baseband pro-
cessing is as secure as the infrastructure itself, which signifies that threats can emerge
when adversaries are able to access the network through any means (either from the
internet or on-premises). 5G establishes the concept of network slicing that separates
the tenants in the network based on their use case. A typical method to resolve the
communication and restrict access to the corresponding actors is by using policy-based
networking and selective routing of traffic, VLAN segmentation, compute nodes isola-
tion as well as firewalls and traffic filtering. These techniques are incorporated at the
orchestration layer of the SDN controller and the same are insufficient to prevent ad-
versaries from commencing various attacks. To strengthen the security of the transport
network in 5G between the CU and Core Networks, we have established an infrastruc-
ture that allows provisioning of a custom network slice, crafted for healthcare purposes,
and utilizes an enhanced VPN+ tunneling to secure the communication. Nevertheless,
the symmetric encryption in the tunnel adversely affects the performance of the com-
munication at scale and requires optimizations to provide satisfactory quality of expe-
rience for the increasing number of MIoT devices and the end users in healthcare.

This paper begins with an introduction and explaining background work in the re-
lated field. Further, a brief explanation of the methodology and implementation follow
and correspondingly, the results of the experiments are represented. To finalize, the
paper discusses certain limitations and advantages of the proposed approach and con-
cludes on the lessons learned.

3

2 Background and related work

2.1 5G architecture

The 5G system consists of User Equipment (UE), Access Network (next-generation
Node-B, or gNB) and Next-Generation Core Network (5GC). By combining Software-
Defined Networking (SDN) and open Application Programming Interfaces (APIs), us-
ers can have virtual Network Functions (vNFs) tailored and customized according to a
specific scenario. Figure 1 represents an overview of the 5G architecture, which is sep-
arated into two main group functions: Control Plane (CP) core of 5GS and User Plane
(UP) functions. The control-plane group has different elements defined in terms of Net-
work Functions (NF). It is comprised of a common framework and offers services to
other authorized NFs or users. This Service-Based Architecture (SBA) allows modu-
larity, scalability, and reusability [5].

Figure 1. 5G Core Architecture

Network Slicing
The concept behind network slicing is based on logical network components, situated
on a common physical infrastructure also dissected into virtual networks. The network
softwareization concept [6] enables network slicing through software-based solutions.
For that purpose, network slicing in 5G utilizes Software-Defined Networking (SDN),
Network Function Virtualization (NFV) in clouds and the Edge for the realization of
slices over the same physical infrastructure of the service providers. Each slice is con-
trolled independently and can scale according to requirements.

Compared to 4G LTE, 5G replicates the function of physical hardware in form of
software. SDNs can thus be easily adapted to serve the needs of backends (such as SD-
WAN) as well as local deployments for customizing network slices in 5G. In a previous
work at the Secure 5G4IoT lab by the Oslo Metropolitan University, we underlined the
details on network slicing using a slicing controller and an SDN controller to provide
virtual network functions for connectivity to the corresponding network slice [7,8].
VNFs can be implemented in different ways. One common method is to separate a
physical network interface into manifold virtual functions, assign these virtual

4

networking endpoints to a VNF/CNF (Container Network Function) and implement
policy and routing via the SDN controller through these terminals for the network slice.
Figure 2 represents a working example of virtual network function provisioning for 5G
cloud radio access network (C-RAN) with a single Centralized Unit (CU) in OpenStack
cloud. Another traditional method for separating vNFs is by using VLAN (Virtual
LAN) on Layer-2. According to the working example in the Secure 5G4IoT Lab at the
Oslo Metropolitan University, the virtual functions are delivered using SR-IOV (Single
Root – Input Output Virtualization) of the network. The 5G core functions are contain-
erized and use the Kuryr plugin to interface the containers with the OpenStack Neutron
[9].

Figure 2. VLAN segmentation using SR-IOV and VPN instance in the transport network be-

tween the Centralized Unit containers and the 5G Cloud Core Network

High-performance vector packet processing stack
To handle low-level packet processing issues the VPP (Vector Packet Processing) is
used. By enabling a software routing using the VPP driver, we deliver a VPN underly-
ing network for securing the communication between the C-RAN network and the core
networks in the cloud. VPP does not process packets on sequential basis as is the case
with the scalar model, but instead it processes the entire vector of packets through a
graph node before proceeding to the next graph node. There is a support for hardware
acceleration through plugins for offloading the packet processing functions to external
hardware [10]. VPP uses vector processing as opposed to scalar processing, treats more
than one packet at a time. One of the benefits of the vector approach is that it fixes the
I-cache thrashing problem. It also mitigates the dependent read latency problem (pre-
fetching eliminates latency). This approach fixes the issues related to stack depth / D-
cache misses on stack addresses by improving the cycle of capturing all available pack-
ets from the device RX ring, forming a vector that consists of packet indices in RX
order, running the packets through a directed graph of nodes, and returning to the RX
ring. As processing of packets continues, the circuit time reaches a stable equilibrium
based on the offered load. As the vector size increases, processing cost per packet de-
creases because the I-cache misses over a larger N are being amortized [10]. VPP is

5

integrated in OpenStack using the Neutron Modular Layer-2 (ML2-VPP) mechanical
driver, as shown in Figure 3.

Figure 3. VPP native integration with the OpenStack Neutron Modular Layer 2 (ML2) driver

For the production-scale cloud, the VPP ML2 agents are deployed via the
OpenDaylight SDN controller in OpenStack, which are referred to as “Honeycomb
data-plane agents” where Kubernetes and Ansible are used for orchestration
[11,12,13]. VPP is shown to massively improve performance in relatively low-power
computing environments [14,15,16].

2.2 Enhanced VPN+ and cryptographic functions offloading to FPGA
SoC

One way to enable transport network VPN connection is to bypass application layer
VPNs and perform tunneling at transport network layers. In the style of VPN as a Ser-
vice (VPNaaS) and On-demand network slice provisioning NSaaS (Network Slice as a
Service), tenants can request a network slice with VPN tunneling integrated as a custom
vNF. The ACTN framework (Abstraction and Control of Traffic-Engineered Net-
works) is thereby introduced [17] to define the ability for customers to deploy private
networks without the understanding of the backend. ACTN defines the Virtual network
slicing service function chaining (SFC) model. This same model serves for provision-
ing 5G transport networks by utilizing the CNC (Customer Network Controller),
MDSC (Multi-Domain Service Coordinator) and PNC (Provisioning Network Control-
ler) [18]. CNC is responsible for 5G 3GPP access-network communication with the
underlying network of the 5G infrastructure and is also known as Traffic Provisioning
Manager (TPM) [19]. The TPM functions as a CNC from ACTN reference point of
view and can be deployed in a carrier network as shown in Figure 4, TPM can be de-
ployed in Mobile Network A - Domain 1 and Domain 2, while the CMIs interfaces are
connected to SDN controllers (in this case we refer to the PNC from the ACTN frame-
work reference) [19].

6

Figure 4. Enhanced 5G Transport Network Architecture in a multi-region cloud model [19]

For the current experiments, we employ a hybrid model, in which the SDN controller
imports the information of the underlay network through BGP-LS (BGP-Link State)
[20] via RestCONF APIs, and the traffic engineering (TE) information is collected and
shared to external components of the network. Therefore, a Traffic Engineering Data-
base (TED) is formed [21], which stores information about the TE information for dy-
namic Quality of Service parameters regulation as in the case with MPLS and GMPLS
networks [20]. This way, the tenants can decide to instantiate an enhanced VPN+ at the
network underlay, while avoiding overlay application-layer overheads at scale.

Field Programmable Gate Arrays are used in clouds for various functions. A SoC
(Silicon on a Chip) architecture allows the FPGA to be programmable remotely and
without direct access. This combination usually is followed by an ARM architecture
device tightly integrated with the FPGA, which allows interfacing to the FPGA fabrics.
The FPGA can then be used for various applications that require specific and custom-
ized computational properties and are task intensive for the general x86 architecture
CPUs [22,23], which is programmed to perform cryptographic operations for AES-256
in the VPN tunnel. The FPGA is programmed in Verilog to access the memory directly
and interact with the VPP kernel module, which opens a potential to scale the FPGA
fabrics into cluster of multiple FPGA SoC units. The cluster can then be served as a
service to the specific network slicing virtual functions that request it.

3 Methodology and implementation

The Figure 5 represents a 4G and 5G infrastructure deployed at the Oslo Metropolitan
University with three different slices: a 5G New-Radio, 4G standard LTE access and
an IoT network slice with IEEE 802.11 Wi-Fi access. The core networks have their own
SR-IOV endpoints and is considered a separate virtual cluster sharing the same cloud.
The experimentation methodology is based on network testing performed with the iperf
tool to measure traffic performance at scale. Before conducting the evaluation of the
throughput in the network, the Maximum Transmitted Unit (MTU) is adjusted to 9000

7

from the default 1500 value to minimize fragmentation incurred variance in the network
flows. This is because the traffic between the Centralized Unit and the 5G Core Net-
work is encapsulated to support the transmission of GTP traffic in an extended IP
header. With a MTU value of 1500, the traffic between the UE (User Equipment) and
the Internet will experience packet drop, jitter and additive error, therefore it is adjusted
accordingly on all interfaces, including the SR-IOV physical functions, virtual func-
tions, as well as the container-plane network.

Figure 5. 4G and 5G hybrid infrastructure at the Oslo Metropolitan University

The compute nodes are Dell R620 servers running Linux Ubuntu server 18.04 operating
with low-latency kernel version 14.18.0-25. The Core Network vNFs require a stable
environment to operate and thus any fluctuations incurred by the CPU on a hardware
level in terms of frequency, voltage, heat-related inconsistences and multitenancy can
cause unpredictable result. To minimize experimental error, CPU hyperthreading is dis-
abled as well as power states (C-states, P-states) and the unit overclocked to fixed 3.0
GHz. For testing the connectivity between the Centralized Unit and the Core Networks,
network overlays are avoided to eliminate overhead and perform the control experi-
ments directly on the 10Gbps optical network fabrics between the physical compute
nodes. This experimental data is stored and used to compare to the performance impact
virtualization can have on the nodes in terms of bandwidth and CPU resources

8

utilization combined. Further, we proceed with tests on the VPN+ tunneling in between
the compute nodes, which are followed by tests on the VPN+ endpoints on virtualiza-
tion layer between the Centralized Unit containers and the Core Network containers.
This will shed light on the difference between the impact of hardware networking com-
pared to virtualization with SR-IOV and direct VPN tunneling compared to virtualiza-
tion-layer VPN+ tunneling.

As a final realignment, we change the generic Linux networking kernel modules
with Vector Packet Processing and compare these results to the previously obtained
data. That will represent the real status of the performance improvements that can be
expected from utilizing vector processing compared to scalar processing. Last but not
least, the FPGA SoC is introduced at the VPN+ server. Each test is performed in two
stages: single-stream network testing and multiple-stream tests in parallel. The latter
exaggerates the traffic conditions and simulates a realistic scenario where the transport
network is saturated with traffic.

3.1 Evaluation

The obtained data is classified as follows:

• Scenario A: Hardware-level testing of the compute nodes at the optical network fab-
rics

• Scenario B: Virtualization-plane tests via the corresponding SR-IOV virtual func-
tions translated in the containers that host the Centralized Unit and the Core Net-
works

• Scenario A1: VPN+ connectivity between the two compute nodes directly
• Scenario B1: Virtualization-plane tests of the VPN+ connectivity through the same

SR-IOV virtual functions
• Scenario A2: VPN+ connectivity between the two compute nodes directly, with Vec-

tor Packet Processing Linux kernel module
• Scenario B2: Virtualization-plane tests of the VPN+ connectivity with Vector Packet

Processing Linux kernel module
• Scenario A3: VPN+ connectivity between the two compute nodes directly with Vec-

tor Packet Processing Linux kernel module and FPGA SoC cryptographic offloading
• Scenario B3: Virtualization-plane tests of the VPN+ connectivity with Vector Packet

Processing Linux kernel module and FPGA SoC cryptographic offloading

The A and B scenarios are the experimental control group for comparison with the
further test scenarios. This will shed light on the performance detriment that is inflicted
on the link. For that purpose, the network flows are measured together with CPU utili-
zation and compared. Correspondingly, the A1 and B2 scenarios test the VPN+ con-
nectivity and the impact it has on the deployment compared to the default state from
the A and B scenarios. In the A2 and B2 scenarios, the VPP Linux kernel module is
introduced, which will represent the mean performance gain that is otherwise lost due
to the packet processing issues from the default scalar approach. Finally, the scenarios
A3 and B3 implement an FPGA SoC for offloading the encryption from the CPU of the

9

compute node. These tests are performed only in multiple-stream examinations, in or-
der to assess the performance improvement at scale (in worst-case scenarios).

The traffic of the single-stream and multiple-stream tests is adjusted in such a man-
ner that respects a constant threshold under the total maximum capacity of the node’s
performance. The experiments do not examine latency-related issues.

4 Results

The results from the experiments are obtained using the iPerf3 network testing tool and
the following arguments are passed. The time of execution is 5 minutes (300 seconds),
with an interval of transmission each 1 second. The TCP buffer size is set as a constant
to 32 Megabytes and the test runs as a client-server model with the server being exe-
cuted at the 10.0.0.1 host, which is the Core Network and the 10.0.0.2 is the Centralized
Unit host. Results are summarized in Table 1 and Table 2, denoting CPU resource
utilization and maximum bandwidth, correspondingly.

Table 1. Summary of the CPU utilization at the 5GC core side and the CU side. The values
represent total CPU utilization, divided between user resources and system namespace services.

Each scenario is characterized with single-stream and multi-stream test results.

Sce-
nario

CPU utiliza-
tion (%)
5GC_total

CPU utiliza-
tion (%)
5GC_user

CPU utilization
(%)
5GC_system

CPU utiliza-
tion (%)
CU_total

CPU utiliza-
tion (%)
CU_user

CPU utilization
(%) CU_system

A / S-S 61.9658 8.23386 53.7319 35.983 5.03469 30.9483

A / M-S 95.9105 18.9873 76.9232 41.7224 8.2758 33.4466

 CPU utiliza-
tion (%) 5GC-
SRIOV_total

CPU utiliza-
tion (%) 5GC-
SRIOV_user

CPU utilization
(%) 5GC-
SRIOV_system

CPU utiliza-
tion (%) CU-
SRIOV_total

CPU utiliza-
tion (%) CU-
SRIOV_user

CPU utilization
(%) CU-
SRIOV_system

B / S-S 63.5708 8.62531 54.9455 21.4606 3.48127 17.9793

B / M-S 96.2447 20.1134 76.1313 27.36 4.43466 22.9254

 CPU utiliza-
tion (%) 5GC-
VPN_total

CPU utiliza-
tion (%) 5GC-
VPN_user

CPU utilization
(%) 5GC-
VPN_system

CPU utiliza-
tion (%) CU-
VPN_total

CPU utiliza-
tion (%) CU-
VPN_user

CPU utilization
(%) CU-
VPN_system

A1 / S-S 37.1798 10.0446 27.1352 3.54544 0.36947 3.17597

A1 / M-
S

44.2623 8.84595 35.4163 4.68069 0.944212 3.73648

B1 / S-S 36.9928 10.078 26.9148 1.89289 0.22533 1.66756

B1 / M-S 44.0171 8.80109 35.216 3.11648 0.811096 2.30538

 CPU utiliza-
tion (%) 5GC-
VPN-TN_only

CPU utiliza-
tion (%) 5GC-
VPN-TN_user

CPU utilization
(%) 5GC-VPN-
TN_system

CPU utiliza-
tion (%) CU-
VPN-TN_only

CPU utiliza-
tion (%) CU-
VPN-TN_user

CPU utilization
(%) CU-VPN-
TN_system

A2 / M-
S

100.0 49.257 50.743 7.121 0.782 2.51

B2 / M-S 100.0 48.290 51.71 8.234 0.913 2.912

A3 / M-
S

59.34 2.173 23.439 7.856 0.828 2.87

B3 / M-S 63.17 3.012 27.126 9.162 0.711 4.451

10

Table 2. Summary of the bandwidth tests at the sender and receiver side. The results include
the total retransmissions and duration of the tests in seconds. Each scenario is represented with

single-stream and multi-stream tests

Scenario Send Du-
ration (s)

Sent Data
(GB)

Send Speed
(Gbps)

Retran.
(total)

Rec. Dura-
tion (s)

Rec. Data
(GB)

Rec. Speed
(Gbps)

A / S-S 300.036 371.04267 9.89328 0 300.036 371.04249 9.89327

A / M-S 300.015 371.16965 9.89736 1 300.015 371.16546 9.89725

B / S-S 300.039 371.18716 9.89704 0 300.039 371.18684 9.89703

B / M-S 300.021 371.17811 9.89739 22 300.021 371.17443 9.89729

A1 / S-S 300.037 19.591886 0.522386 163311 300.037 19.591432 0.522374

A1 / M-S 300.021 20.563469 0.54832 347139 300.021 20.559070 0.548203

B1 / S-S 300.038 19.921978 0.531218 170510 300.038 19.922784 0.531207

B1 / M-S 300.022 21.049824 0.561288 348553 300.022 21.045380 0.56117

A2 / M-S 300.021 223.00132 5.347821 3 300.021 223.00412 5.347733

B2 / M-S 300.023 219.34128 5.330129 2 300.023 219.34115 5.331604

A3 / M-S 300.030 360.21275 8.928763 0 300.030 360.21478 8.972871

B3 / M-S 300.021 343.33713 8.873988 0 300.021 343.33711 8.873569

To determine the impact of the VPN on the backhaul network, we establish causal re-
lationships between the hardware-level tests, virtualization layer tests and compare the
results with the improvement from utilizing the VPP module. Finally, the results are
also compared with the inclusion of the FPGA SoC offloading. For that purpose, the
multiple linear regression analysis is used.
The value of the correlation coefficient (“multiple R”) is 0.850086999, indicating a
good relationship between the CPU utilization, bandwidth, and the number of occurring
retransmissions. The significance F-test of the null-hypothesis is less than 0.05 (i.e., S-
F=0.003116316). Figure 6 and Figure 7 show the overall distribution of CPU utilization
compared to the speed per each scenario. During the hardware-level tests, the overall
utilization of the CPU in the node was 41.7224%, whereas during the SR-IOV parallel
stream tests, the total usage amounts for 27.36%. Nevertheless, there is an unavoidable
variation in the system processes at the different times of testing, for which if we
calculate the offset, we get 33.4466% during hardware-level tests and 22.9254% during
SR-IOV tests, results in ∆!"#$%&(()	= 10.5212%. This value is subtracted from the
overall performance in order to isolate the effects of virtualization during the multiple
stream tests, that is 41.7224% during the hardware-level tests and 27.36% during the
SR-IOV tests. The difference of 14.3624% subtracts the system resources difference by
10.5212%, obtaining 3.8412% impact on the virtualization plane during the SR-IOV
tests with multiple streams. The overhead increases when the traffic scales over the
same VNF (Figure 8 and Figure 9).

11

Figure 6. Distribution of the multiple linear regression analysis of the correlation between rela-
tive bandwidth (in Gbps) and CPU utilization in percentage (%) by scenario

Figure 7. Multiple linear regression analysis of the relative bandwidth in Gbps and total CPU

utilization in percentage (logarithmic distribution)

Figure 8. Correlation between the relative bandwidth and the number of retransmissions

Without provisioning additional VNFs, it is likely that the impact would be more
than linear over a threshold of difference between the kernel’s scalar packet processing
capability and the absolute number of scaled VNF functions for the SR-IOV drivers,
accounting for the traffic generated also in the 5G network on top of the diverse network
slices. Furthermore, as the number of retransmissions increase, the level of
computational resources required for retaining maximal bandwidth will increase,

0

50

100

150

A / S-S A / M-S B / S-S B / M-S A1 / S-S A1 / M-S B1 / S-S B1 / M-S A2 / M-S B2 / M-S A3 / M-S B3 / M-S

Scenario

Send speed (Gbps) CPU Utilization (%)

y = -6,886ln(x) + 78,292

-20
0

20
40
60
80

100
120

0 2 4 6 8 10 12 14

Send speed (Gbps) CPU Utilization (%) Log. (CPU Utilization (%))

y = -27678x + 247776

-50
0

50
100
150
200
250
300
350
400

0 2 4 6 8 10 12

Re
tr

an
sm

iss
io

ns

Th
ou

sa
nd

s

Send speed (Gbps)

12

adding on the bottleneck of the operating system’s kernel at the physical nodes and is
represented through the CPU underutilization. This is further amplified through an
encrypted VPN tunnel, accentuating the I-cache thrashing problem with the scalar
packet processing. The VPP allows the CPU to have time-series workloads allocated
for submitting each encrypted packet to the network interface, thereby increasing the
bandwidth of the tunnel and showing 100% CPU utilization. Additional rectification is
achieved when the FPGA fabric is introduced, further restoring the traffic performance
(~8.87 Gbps).

Figure 9. Dependency between the number of retransmissions and total CPU utilization (sys-

tem namespace and user running the 5GC core network and VPN)

5 Discussion

One of the main hindrances to performance loss in a software-defined 5G backhaul
networking is the utilization of legacy hardware in datacenters. The modern workloads
require improved hardware, especially CPU processing units and in general new archi-
tectures in order to run with higher efficiency. Datacenters are usually equipped with
specialized processing hardware for particular workloads, such as GPUs or FPGAs,
which at scale can have detrimental impact on the execution of required tasks. In the
case with VPN, the technique that combines Vector Packet Processing and FPGA of-
floading can be scaled to accommodate bigger infrastructures and negate the require-
ment of horizontally scaling the same.

Using FPGA SoC requires tedious implementation methodology and incurs latency
penalties on the network. Despite that this work is not focused on examining the latency
related impacts in the network, an external SoC managed FPGA forwards packets from
the SDN controller that directs the network flows through the FPGA and back to the
CPU of the compute nodes. A better performing FPGA layer combined with tight inte-
gration with the SDN networking stack of the backhaul, can resolve the said issues.

6 Conclusion

Utilizing a vNF passthrough, minimizes the impact of virtualization on the performance
of 5G backhaul transport networks at scale. A rather simpler approach that attains flat

y = -0,0001x + 77,447

0
20
40
60
80

100
120

0 50 100 150 200 250 300 350 400

CP
U

 U
til

iza
tio

n
(%

)

Retransmissions

Thousands

13

infrastructure, easier to automate and self-organize, the virtualization layer can be sup-
plemented with vector packet processing to annul some ramifications that arise due to
inherent networking kernel limitations in Linux. This implication becomes intensified
when the transport network is tunneled via VPN, which can encrypt the communication
with various algorithms. The symmetric encryption needs to scramble every packet that
traverses the transport network endpoints, which is highly taxing for the CPU and the
available resources at the compute nodes in the cloud. The communication becomes
severely bottlenecked and the overall potential of the 5G transport network substan-
tially diminished. A prodigious and cost-efficient solution is to integrate FPGA fabrics
to handle the encryption of the tunneling and use vector packet processing to increase
the flow rates and minimize packet retransmissions, which can drastically improve the
performance.

References

1. M. Zhong, Y. Yang, H. Yao, X. Fu, O. A. Dobre and O. Postolache, 5G and IoT: Towards
a new era of communications and measurements. IEEE Instrumentation & Measurement
Magazine, vol. 22, no. 6, pp. 18-26, (2019), doi: 10.1109/MIM.2019.8917899.

2. Ravie Lakshmanan: Healthcare Industry Witnessed 45% Spike in Cyber Attacks Since No-
vember 2020. The Hacker News, URL: https://thehackernews.com/2021/01/healthcare-in-
dustry-witnessed-45-spike.html, last accessed 2021/03/26.

3. Muthuppalaniappan, Menaka, and Kerrie Stevenson: Healthcare cyber-attacks and the
COVID-19 pandemic- an urgent threat to global health. International journal for quality in
healthcare: journal of the International Society for Quality in Health Care vol. 33,1 (2021).
Doi:10.1093/intqhc/mzaa117.

4. A. Ahad, M. Tahir and K. A. Yau: 5G-Based Smart Healthcare Network: Architecture,
Taxonomy, Challenges and Future Research Directions. IEEE Access, vol. 7, pp. 100747-
100762. (2019). Doi: 10.1109/ACCESS.2019.2930628.

5. M. Q. Khan: Signaling Storm Problems in 3GPP Mobile Broadband Networks, Causes and
Possible Solutions - A Review. 2018 International Conference on Computing, Electronics
& Communications Engineering (iCCECE), pp. 183-188. Southend, UK. (2018). Doi:
10.1109/iCCECOME.2018.8658708.

6. I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini and H. Flinck: Network Slicing and Soft-
warization - A Survey on Principles, Enabling Technologies, and Solutions. IEEE Com-
munications Surveys & Tutorials, vol. 20, no. 3, pp. 2429-2453. (2018). Doi:
10.1109/COMST.2018.2815638.

7. B. Dzogovic, T. van Do, B. Santos, D. Van Thuan, B. Feng and N. Jacot: Thunderbolt-3
Backbone for Augmented 5G Network Slicing in Cloud-Radio Access Networks. 2019
IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, pp. 415-420. (2019). Doi:
10.1109/5GWF.2019.8911710.

8. F. Z. Yousaf, M. Bredel, S. Schaller and F. Schneider: NFV and SDN—Key Technology
Enablers for 5G Networks. IEEE Journal on Selected Areas in Communications, vol. 35,
no. 11, pp. 2468-2478. (2017). Doi: 10.1109/JSAC.2017.2760418.

9. OpenStack cloud software: Kuryr plugin official documentation, URL: https://docs.open-
stack.org/kuryr/latest/ last accessed 2021/03/29.

10. Fd.io: Vector Packet Processing. URL: https://fd.io/vppproject/vpptech/ last accessed
2021/01/16.

14

11. RedHat OpenShift: About Single Root I/O Virtualization (SR-IOV) hardware networks.
URL: https://docs.openshift.com/container-platform/4.4/networking/hardware_net-
works/about-sriov.html last accessed 2021/01/16.

12. RedHat: Ansible automation tool. URL: https://docs.ansible.com/ansible/latest/index.html
last accessed 2021/01/16.

13. Fd.io: Vector Packet Processing – RDMA ibverb Ethernet driver. Version 19.08-27-
gf4dcae4. URL: https://docs.fd.io/vpp/19.08/rdma_doc.html last accessed 2021/01/16.

14. Nikolai Pitaev, Matthias Falkner, Aris Leivadeas, and Ioannis Lambadaris: Characterizing
the Performance of Concurrent Virtualized Network Functions with OVS-DPDK, FD.IO
VPP and SR-IOV. Proceedings of the 2018 ACM/SPEC International Conference on Per-
formance Engineering (ICPE '18), pp. 285-292. Association for Computing Machinery,
New York, NY, USA, (2018). Doi: 10.1145/3184407.3184437.

15. Liren Miao, Hongchao Hu, and Guozhen Cheng: The Design and Implementation of a Dy-
namic IP defense System Accelerated by Vector Packet Processing. Proceedings of the In-
ternational Conference on Industrial Control Network and System Engineering Research
(ICNSER2019), pp. 64-69. Association for Computing Machinery, New York, NY, USA,
(2019). Doi: 10.1145/3333581.3333588.

16. J. Yan, T. Li, S. Wang, G. Lv and Z. Sun: Demonstration of Path-Based Packet Batcher for
Accelerating Vectorized Packet Processing. 2018 15th Annual IEEE International Confer-
ence on Sensing, Communication, and Networking (SECON), pp. 1-3, Hong Kong, China
(2018). Doi: 10.1109/SAHCN.2018.8397154.

17. IETF: RFC 8453 – Framework for Abstraction and Control of Traffic Engineered Net-
works (ACTN). URL: https://datatracker.ietf.org/doc/rfc8453/?include_text=1 last ac-
cessed 2021/03/27.

18. Metro-haul project: What is ACTN framework? URL: https://metro-
haul.eu/2018/08/30virtu/what-is-actn/ last accessed 2021/27/03.

19. Y. Lee, J. K: Applicability of ACTN to Support 5G Transport, TEAS Working Group
IETF (2019). URL: https://tools.ietf.org/pdf/draft-lee-teas-actn-5g-transport-00.pdf.

20. V. Roux: Path Computation Element (PCE) Communication Protocol (PCEP). IETF,
(2008). URL: https://tools.ietf.org/html/rfc5440 last accessed 2021/27/03.

21. IETF: Traffic Engineering Database Management Informormation Base in Support of
MPLS-TE/GMPLS. URL: https://tools.ietf.org/html/rfc6825 last accessed 2021/27/03.

22. Ke Zhang, Yisong Chang, Mingyu Chen, Yungang Bao, and Zhiwei Xu: Engaging Hetero-
geneous FPGAs in the Cloud. Proceedings of the 2019 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays (FPGA '19). Association for Computing Ma-
chinery, New York, NY, USA, (2019). Doi: 10.1145/3289602.3294001.

23. Xilinx Zynq-7000 SoC: Datasheet – Overview. Version 1.11.1. URL: https://www.xil-
inx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf last accessed
2021/03/27.

Acknowledgement

This paper is a result of the H2020 Concordia project (https://www.concordia-h2020.eu) which
has received funding from the EU H2020 programme under grant agreement No 830927. The
CONCORDIA consortium includes 23 partners from industry and other organizations such as
Telenor, Telefonica, Telecom Italia, Ericsson, Siemens, Airbus, etc. and 23 partners from aca-
demia such as CODE, university of Twente, OsloMet, etc.

