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Abstract. Distance estimation is a key element of a navigation sys-
tem. Various methods and instruments are used in distance estimation
procedures. The methods and instruments used usually depend on the
contexts of the application area. This paper compares the accuracy of
five practical distance estimation methods that can be used on portable
devices. Some of the methods selected for this study have currently not
yet been used in the context of navigation systems. The experimental
results show that Rule 57 and AR based distance estimation methods
hold great potential for the practical application of navigation support
as they provide adequate accuracy and computational efficiency.

Keywords: distance estimation, object detection, computer vision, nav-
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1 Introduction

Navigation involves monitoring or controlling the movement of a vehicle or per-
son, or any machine from one location to another through an environment with
constraints and obstacles. Much research and development have recently been
reported in the domain of navigation systems. The advancements in the field of
computer vision and machine learning have probably contributed to the acceler-
ated developments in this area. Autonomous cars [1,2], robotic navigation [3,4],
navigation of people with or without accessible needs [5,6,7] are some of the areas
receiving research attention. In addition to obstacle (object) detection, distance
estimation is also a key component in navigation systems [8]. Obviously, infor-
mation about how far an object is from the viewer can be used to avoid collisions
during navigation.

Distance estimation methods can be classified as active methods and passive
methods [9]. Active methods send signals to the obstacle, and based on the
time the signal takes to reach the obstacle and bounce back, the distance to
the obstacle is estimated [10,11]. Such methods may use laser beams [12,13],
ultrasound [14,15], or radio signals [16,17]. Passive methods estimate the distance
by receiving information about the object’s position by applying computer vision
techniques on camera images. Passive methods can be based on monovision
(single camera) [18,19] or stereo vision systems (double cameras separated by a
small distance) [20,21].
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The use of distance estimation methods in portable navigation support sys-
tems for assisting people with visual impairment is the primary concern of this
work. According to the World Health Organization (WHO), more than 22 hun-
dred million people worldwide have a vision impairment or can be classified as
technically blind1. People with visual impairments often experience challenges
during navigation. However, tools such as white canes and guide dogs give the
users more freedom to navigate independently. WHO uses assistive technology
as an umbrella term to refer to both systems and services for people with re-
duced functioning. The primary purpose of assistive devices and technologies is
to maintain or improve independence and dignity, to facilitate participation and
enhance overall well-being2.

Portability is one of the vital requirements in navigation systems for people
with visual- impairment [22]. Portability is mainly characterized by small physi-
cal dimensions and low mass. Portable systems provide comfort and convenience
during carriage and usage. When prioritizing portability, smartphones emerge
as a feasible and practical technological platform. Several works have reported
on how smartphones can be used in navigation systems for people with visual
impairments [23,24,25,26]. Moreover, one should use the functionalities available
on smartphones and avoid the use of any peripheral hardware such as bulky
cameras or add-on sensors that increase the overall system dimensions and mass
[25]. Some studies have also reported on the use of various sensors for navigation
distance estimation [27].

The main objective of this work was to evaluate five distance estimation
methods in the context of a portable navigation system for people with visual
impairments. The methods are chosen based on their potential to be used with
smartphones. Eventhough many works are reported on object distance estima-
tion in general, few studies have addressed distance estimation in context of
smartphone assisted navigation for blind users specifically. To the best of our
knowledge this is one of the first attempts at experimenting and analyzing es-
tablished object distance methods in the problem domain of smartphone-based
navigation support.

The paper is organized as follows. Section 2 discusses the distance estima-
tion in general and the major components involved. Section 3 describes the five
distance estimation methods that we considered for our experiments. Section 4
describes the experimental procedures. The results are presented and discussed
in Section 5. The paper ends with the conclusion in Section 6.

2 Distance Estimation

Many methods have been proposed for the estimation of the distance between the
object (or obstacle) to the viewer. The distance estimation process in navigation
usually consists of object detection and computation of distance from the objects.
They are described in the following subsections.

1 https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
2 https://www.who.int/news-room/fact-sheets/detail/assistive-technology
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2.1 Object detection

Object detection is the task of detecting instances of objects of interest in an
image. Different challenges such as partial/full occlusion, varying illumination
conditions, poses, and scale are needed to be handled while performing object
detection [28,29]. As an essential navigation component, object detection is some-
times considered a pre-phase in the distance computation procedure.

Object detection methods, in general, use machine learning and deep learning
algorithms. A typical object detection pipeline consists of a Convolutional Neural
Network (CNN). CNN is a type of feed-forward neural network and works on
the principle of weight sharing. Some benchmarked datasets, such as MS COCO
[30] and ImageNet [31], make object detection using deep learning a preferable
choice among developers [29].

In addition to different object detection models that are computationally
expensive, various lightweight object detection models intended to be used in
mobile devices are available. You Only Look Once (YOLO) [32,33,34], Single
Shot Detector (SSD)-MobileNetV1 [35] are some examples. YOLO divides each
image into grids, and each grid predicts bounding boxes of detected objects with
confidence values. The SSD architecture is a single convolution network that
learns to predict bounding box locations and classify these in a single pass [36].
SSD combined with MobileNet as its base network gives better object detection
results in terms of accuracy compared to similar other deep learning models [37].

This study uses the SSD-MobileNetV2 [36,38] object detection model as a
prephase to the distance estimation methods. The main reasons for this choice
are portability and usability. Moreover, SSD-MobileNet has the highest mean
average precision (mAP) among the models that facilitate real-time processing.
Even though the latest version of the series, MobileNetV3 offers higher accuracy
and speed in general classification tasks than MobileNetV2, while MobileNetV2
provides higher performance for object detection tasks than MobileNetV3 [39].

In the SSD-MobileNetV2 model, input image features are extracted by the
CNN layers in the MobileNetV2, and SSD predicts the obstacles based on the
feature maps. The MobileNetV2 architecture is shown in Figure 1. MobileNetV2
is based on an inverted residual structure with residual connections between
the bottleneck layers. The intermediate expansion layer uses lightweight depth-
wise convolutions to filter features as a source of nonlinearity. The MobileNetV2
architecture contains an initial fully convolution layer with 32 filters, followed
by 19 residual bottleneck layers. ReLU6 is used as the nonlinearity because of
its robustness when used in devices with low computational power [38].

After the extraction of basic features, several layers of depth-wise separa-
ble convolution are operated to generate several feature maps with decreasing
scales. SSD performs on multiscale feature maps to predict multiscale objects
[36]. Each feature map is evenly divided into cells; every cell predicts k bound-
ing boxes and c category confidences. For each category, the top ’n’ bounding
boxes are retained. Then the non-maximum suppression is performed to filter
out the bounding boxes with considerable overlap, and finally it outputs the
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detection results. The model output comprises the detected objects along with
their bounding box coordinates.

Fig. 1. The architecture of MobileNetV2 (adapted from [38]).

2.2 Distance computation

Several distance computation methods have been proposed in the literature.
Some require object detection as a prerequisite to compute distance, while others
compute distance based on information from specific sensors. Examples of such
sensors include stereo cameras [40,41], monocular cameras [42,43], ultrasonic
sensors [44,45], Light Detection and Ranging (LiDaR) [46], and Time of Flight
(ToF) sensors [47].

With the stereo vision method, two cameras separated by certain distance
capture two images of a scene from two slightly different vantage points, which
are used to calculate their disparity. This disparity helps to estimate the depth,
enabling projection of the scene to a 3D world that can be used for navigation
[40,41]. With the monocular vision-based distance estimation, the image cap-
tured by a single camera is used to compute distance. The distance is estimated
either using a traditional distance estimation model, such as the pinhole imaging
model or deep learning-based methods [42,43]. Ultrasonic distance sensors are
also widely used to measure the distance between the source and target using ul-
trasonic waves [44,45]. In robotics applications and autonomous vehicles, LiDaR
is commonly used to measure the distance by illuminating the target with laser
light and measuring the reflection with a sensor. LiDaR uses the Simultaneous
Localization and Mapping (SLAM) technique, which builds a map represent-
ing its spatial environment while keeping track of any robot or vehicle within
the map of the physical world [46]. Time-of-flight (ToF) sensors are also widely
used in range imaging camera systems. A ToF sensor computes the distance be-
tween the camera and the object for each point of the image by measuring the
round-trip time of an artificial light signal from a laser or an LED [47].

Besides sensors, different computational methods can be used to compute the
distance. Optical methods [48] and Rule of 57 [49] are examples of methods that
do not require any hardware besides a smartphone. Therefore, the purpose of
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this work was to compare these methods. These methods are described in detail
in the next section.

3 Distance Estimation Methods

Among the distance estimation methods described in Section 2 we selected five
methods that can be used on a smartphone without any additional hardware
and computational complexity barrier. Some of the distance estimation meth-
ods explored in this work are being used in different scenarios other than in
the context of navigation support. But through this work we explored how to
map those methods to use with a smartphone device. To ensure an unbiased as-
sessment, the SSD-MobileNetV2 was used for object detection with all distance
estimation methods.

3.1 Optical method

The relationship between the object distance and the image distance is defined
by the lens makers equation is defined as [48],

1

f
=

1

do
+

1

di
(1)

where, f is the focal length of a camera lens, do is the distance from the lens
to the target object, and di is the distance between the lens and the projected
image. The following expression is used to compute the distance (do) from the
object’s bounding boxes [48],

distance(in inches) =
(2× π × 180)

(w + h× 360)× 1000 + 3
(2)

where, w and h are the width and height of the bounding box of the ob-
ject detected by the object detection model. We refer to [50] for details on the
derivation of the expression.

3.2 Smartphone position sensors based

Most of today’s smartphones come with two types of position sensors that can
help determine a device’s position: the geomagnetic field sensor and the ac-
celerometer. These position sensors can be used to determine the physical po-
sition in the world’s frame of reference. The combination of the geomagnetic
field sensor with the accelerometer can be used to determine a device’s position
relative to the magnetic north. These sensors can also be used to determine the
device orientation with respect to the frame of reference defined in the app.
Both the Android and the iOS platforms support specific functions to access
these sensor data [51,52,53].



6 Bineeth Kuriakose et al.

If the angle between the camera and the object is a, then by the right-angled
triangle property, the tangent of the angle a gives the expression to find the
distance d from the camera and the object.

d = h× tan a (3)

where h is the height from the base (camera height), and d is the distance
from the object to the camera.
The estimation of the angle can be computed using the sensors present in the
smartphone. In an Android platform, it is possible to access this sensor data using
its sensor framework [54]. Using the different sensors supported in a smartphone,
such as accelerometer and magnetometer, it is possible to find the angle between
the object and the phone camera [51,53,52].

The implementation details for Android are as follows: From the accelerome-
ter and magnetometer sensor values, it is possible to compute a rotation matrix
and an orientation matrix. The rotation matrix involves mapping a point in the
phone coordinate system to the real-world coordinate system. And the orienta-
tion matrix is derived from the rotation matrix. From the orientation matrix, we
can compute the pitch and roll. Using pitch or roll depending on whether the
phone is in portrait or landscape mode, the distance can be estimated using the
following equation.

distance, d = h× tan(pitch | roll × π/180) (4)

where, h, denotes the height of the camera from the base in meters, and in
our case, it was set to 1.4.

3.3 Augmented Reality based methods

Augmented reality (AR) can be described as an enhanced version of the real
physical world that is executed through the use of digital visual elements, sound,
or other sensory stimuli delivered using technology. Several commercial stake-
holders such as Google and Apple are incorporating AR technology into smart-
phones for multiple applications. ARCore is Google’s Augmented Reality (AR)
developer platform, which provides simple but powerful tools to developers for
creating AR experiences [55]. The com.google.ar.core package helps to design ap-
plications that make it possible to determine the distance from a smartphone’s
camera to an object. The anchor class in the same package describes various
methods to find a fixed location and orientation in the real world. Besides, to
stay at a fixed location in physical space, the numerical description of that
position will update as ARCore’s understanding of the space improves. The lim-
itation on the usage of the ARCore is that it only supports to work in ARCore
compatible devices3.

ARCore can create depth maps containing data about the distance between
surfaces from a given point, using the primary RGB camera of a supported

3 https://medium.com/@shibuiyusuke/measuring-distance-with-arcore-6eb15bf38a8f

https://medium.com/@shibuiyusuke/measuring-distance-with-arcore-6eb15bf38a8f
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device. ARCore uses the Simultaneous Localization and Mapping (SLAM) tech-
nique, to understand where the phone is relative to the world around it. It detects
visually distinct features in the captured camera image called feature points and
uses them to compute its location change. The visual information is combined
with inertial estimation from the device’s IMU to estimate the camera’s pose
(position and orientation) relative to the world over time.

Using ARCore, it is possible to place an anchor, a fixed location in the real
world, and find the camera’s distance to the anchor. Both the anchor position
and the camera position can be acquired as x, y, and z values (width, height, and
depth) corresponding to the world position of objects in the ARCore package
[56]. Once the two positions are known, it is straightforward to calculate the
Euclidean distance between them.

3.4 Method based on Rule of 57

The Rule of 57 states that an object with an angular size of 1° is about 57 times
further away than it is big (see Figure 2). Therefore, the ratio of an object’s
angular size (in degrees) to a whole 360-degree circle should equal the ratio of
the object’s actual size to the circumference of a circle at that distance from
the observer. This method has been derived for measuring distance and angles
from telescope images in astronomy [49]. The key to using telescope images to
measure distances is to realize that an object’s apparent angular size is directly
related to its actual size and distance from the observer. It means that if the
object appears to be smaller as it is farther away from the observer. However,
in our experiments, we found it can be applied to find the distance to the object
even if the angular size of the object is more than 1° to the field of view of the
smartphone camera sensor.

Fig. 2. The Rule of 57 (adapted from [49]).
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From Figure 2, we can write that,

angular size

360°
=
actual size

2πD
(5)

Using object distance for angular size and object size for actual size, we get
the following equation to calculate the distance,

object distance = (object size)× 1

(angular size in degrees)
× 57 (6)

In order to use this approach, it is necessary to get an estimate of the size of
objects before finding the distance from them. We measured the size of the object
(height) for our experiment. The geomagnetic field sensor and the accelerometer
sensor measure the angular size [51,53,52]. Both sensors are used in a similar
manner as described in Section 3.2.

3.5 DisNet method

DisNet uses multi-layer neural network to estimate the distance [57]. The method
can be used to learn and predict the distance between the object and the camera
sensor. A six-dimensional feature vector (v) can be obtained from the bounding
box of the object detected by the object detection model is used as input to the
DisNet as,

v = [1/Bh 1/Bw 1/Bd Ch Cw Cb] (7)

where, Bh, Bw and Bd denotes the height, width, and diagonal of the object
bounding box in pixels/image, respectively. And Ch, Cw and Cb represents the
values of average height, width, and breadth of the particular class’s object. For
example, for the class person, Ch, Cw and Cb are, respectively, 175 cm, 55 cm and
30 cm. These values were chosen based on an average case assumption. The fea-
tures Ch, Cw, and Cb are assigned to objects labeled by the SSD+MobileNetV2
detector as belonging to the particular class to complement more information to
distinguish different objects.

Finally, the DisNet model outputs the estimated distance of the object to
the camera sensor. In the original work of DisNet [57], YOLO was used as the
object detector. However, in our work, we used the SSD+ MobileNetv2 object
detection model, typical for all methods already described. An illustration of
how the model works is given in Figure 3.
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Fig. 3. The DisNet based distance estimation (adapted from [57]).

The SSD+MobileNet model was pretrained with the COCO dataset [30]. We
applied transfer learning to train more classes such as person, bag, and chair. The
images were collected using a smartphone camera. For the DisNet model, it is
necessary to collect the distance to the objects (classes) in addition to the images.
For the class person, the dataset was already available from the reference paper
[57]. For the other two (chair and bag), along with the images, its ground truth
distance to the camera was measured and recorded. To train the network, the
input dataset was randomly split into a training set (80% of the data), validation
set (10% of the data), and a test set (10% of the data). After calculating the input
vector, the DisNet model was trained using the custom dataset. The output of
the model gives the distance of the object from the camera sensor.

4 Experiment

An Android app was developed and deployed in Huawei P30 Pro smartphone
to assess the performance of each of the methods. One of the reasons for the
selection of smartphone device is the requirement of AR-enabled device for AR-
based distance estimation.

The independent variables included the ground truth distance and object
size. Observed distance and computational overload were the dependent vari-
ables. Other evaluation parameters include how a moving camera could affect
the distance estimation, and how the object’s size, and distance and accuracy in
each method are related.

Four types of objects were used to estimate the distance from them in our
experiments. The selection of objects was made with varying physical sizes,
namely, a bottle, bag, chair, and person. This particular selection was made to
understand the effect of varying sizes on each distance estimation method. We
use the term distance marker to refer to ground truth values. The selection of
different distance markers was made to analyze the estimation method’s effect
at various distances (near, medium, and far).

The distance markers were placed at four different spots (very near-1m, near-
2m, medium-5m, far-10m) away from the observation point. In the first round of
the experiment, the bag object was placed one meter from the marker. Then we
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measured the distance using the five different methods. However, we were unable
to estimate distance when the object is placed in a 1 meter distance marker using
all methods. Next, the object was kept 2 meters away. Again, five methods were
used to obtain the measurements and these measurements were recorded. The
next step involved measuring the distance at 5 meters. Finally for the 10 meter
case, we were unable to estimate the distance from the object. We repeated the
same procedure using other objects (such as chair and person). However, we
observed the same situation as in the previous case. We were unable to measure
the distance at 1 and 10 meters but were able estimate the distance when the
object was placed at a distance of 2 and 5 meters. A detailed explanation of the
possible causes for this is given in the discussion section.

To identify whether the size was a factor in distance estimation, we placed a
smaller object bottle at the 1m marker. Surprisingly, we were able to measure the
distance this time with four methods. We were unable to estimate the distance
using the DisNet method in the 1m case. However, with other distance markers
(2m, 5m, 10m), we were unable to find the distance to the bottle object.

To identify the maximum range of the distance methods, we moved the ob-
ject from 10m to closer to the camera point. However, we observed that distance
estimation was not possible beyond 5m. We therefore concluded that the max-
imum distance possible with the methods studied is 5m. Furthermore, beyond
the distance marker of 5m, it is impossible to compute the distance using any of
the methods described here. All the experiments were conducted in a controlled
indoor environment (room) during midday.

5 Results and Discussions

5.1 Results

We took five samples using each method and then calculated the mean and
standard deviation of the value corresponding to each object. The results of the
experiments with different objects using different distance computation methods
are given in Table 1. Results are also graphically shown in Figure 4.

Table 1. Mean and standard deviation of the estimated distances of the different
objects for three different distance markers using the five methods.
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Fig. 4. Mean distances (error bars shows the standard errors), estimated with the five
distance estimation methods.

The 1 meter case is only applicable to the smallest object bottle. The 10
meters case is out-of-range since we were unable to obtain any estimates. There
were variations in the 5 meters distance marker estimation for all objects for
each distance estimation method.

5.2 Discussion

From Figure 4, it is clear that the deviation from the ground truth is the smallest
when using the ARCore method when the object is placed 1m away. However,
when the object is placed either 2m or 5m away, the Rule 57 method gives the
most accurate results. The largest variation is observed when the object is placed
at a 1 meter distance marker with the smartphone sensors. We also considered
how various factors can affect distance estimation. They are discussed below.

Effect of distance: When we tried to compare different objects (bag, chair,
person), the distance estimation methods showed fair results up to 4 meters.
However, there were varying results when the object is placed more than 4
meters away. Hence, we decided to consider the values of 5 samples and find the
mean and standard deviation when the object marker is placed at a distance of 5
meters. When the object marker is placed more than 5 meters away, no distance
estimate could be obtained.
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Size of object: The size of the object is also an important parameter that
affects distance estimation. It was understood from the experiment that the
distance could not be estimated through the above-selected methods when the
object size is small or if it is placed far away. However, we did a small experiment
on how well the distance estimation method could perform when the object size
is small and placed in one meter in our experiment. The testing with the bottle
object shows that the distance estimation is possible within 1 meter. When
we tried to place the object far away from that point, none of the distance
estimations showed any results.

Moving camera: We tried to estimate the distance to the moving camera. For
this, we placed the object at a 5 meter distance. And marked path with the
distance markers - 1 meter and 2 meters away from the starting point (initial
position of the camera). We moved with the camera in each of those distance
markers in parallel (left to right direction) to the object. We observed that
there were fluctuations in the distance estimation when the camera were moving.
However, still, it was able to do distance estimation. However, in some methods,
such as (AR-based or smartphone sensor-based), camera focusing is required to
estimate the object’s distance.

We assume there are some reasons for these observations. The camera sensor’s
size is one reason that can affect the estimation of distant objects and objects
with small sizes. Since we tested all methods with a smartphone camera, the
limitation of the same may involve detecting distant objects. This results in the
fact that all methods considered for the study cannot be used for long range
applications. Probably by using a long range camera can elude the limitation.
However, since we are focusing only on portable navigation solutions, the idea
of using long range cameras which can increase the system weight does not
hold well in our case. When the size of the object is small, and the object
is kept far, it is not easy to get detected using the methods described in the
experiment. Another factor we think of is the lighting effect of the environment.
Since the experiment was done in an indoor setting, we should consider the
effect of lighting as well. Furthermore, the smartphone used for the experiment
was held in bare hands without any anti-motion devices. Therefore, when the
camera experiences fluctuations, this could have affected the object detection.
This might be one reason which affects the varying observations at the same
distance marker. However, it also to be noted that the smartphone we used for
the experiment has a good video image stabilization4.

The AR-enabled smartphones available today are already used to estimate
various metrics such as calculating an object’s length. But the smartphone AR
features can be further enhanced and used in the applications such as navigation
to assist people. Moreover, the distance estimation methods explored in this
work are tested in smartphone devices can be used in other portable devices or
miniature computing devices such as Raspberry Pi to develop applications other
than navigation.

4 https://www.dxomark.com/huawei-p30-pro-camera-review/

https://www.dxomark.com/huawei-p30-pro-camera-review/
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6 Conclusion

This study does an analysis of different distance estimation methods and their
performance. We did a controlled and structured experiment on how a smart-
phone can be used in distance estimation tasks without any additional hardware.
Our findings reveal which distance estimation method that is appropriate for
short-range navigation applications. The Rule 57 distance estimation method
holds great potential. The AR-based method could also be considered a viable
alternative, though it requires an AR-compatible device. Moreover, the result
also shows that none of the methods are suitable for long-range applications be-
yond 5 meters. We believe that this study could help developers and researchers
in making informed choices of technologies when designing systems involving
distance estimation. Future work involves in using the results from this research
in the development of a smartphone-based navigation system for people with
visual impairments.
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