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Abstract: Climate change is stated as one of the largest issues of our time, resulting in many
unwanted effects on life on earth. Cloud fractional cover (CFC), the portion of the sky covered by
clouds, might affect global warming and different other aspects of human society such as agriculture
and solar energy production. It is therefore important to improve the projection of future CFC, which
is usually projected using numerical climate methods. In this paper, we explore the potential of
using machine learning as part of a statistical downscaling framework to project future CFC. We are
not aware of any other research that has explored this. We evaluated the potential of two different
methods, a convolutional long short-term memory model (ConvLSTM) and a multiple regression
equation, to predict CFC from other environmental variables. The predictions were associated
with much uncertainty indicating that there might not be much information in the environmental
variables used in the study to predict CFC. Overall the regression equation performed the best, but
the ConvLSTM was the better performing model along some coastal and mountain areas. All aspects
of the research analyses are explained including data preparation, model development, ML training,
performance evaluation and visualization.

Keywords: climate science; cloud fractional cover; deep learning; machine learning; statistical
downscaling

1. Introduction

Climate change is stated as one of the biggest issues of our time, resulting in many
unwanted effects. In 2021 the UN Secretary-General António Guterres called the latest IPCC
Climate Report [1] a “Code Red for Humanity” [2]. Warmer global average temperatures
will result in more frequent and more intense heatwaves. It will also result in a higher
evaporation rate, causing the atmosphere to hold more vapour and increasing the risk of
flooding and other extreme weather phenomena. Glaciers and ice sheets will melt and
ocean water will increase as it warms, raising the sea level [3,4]. In 2021, we have witnessed
a range of extreme weather phenomena, and attribution science states that climate change
is, at least partly, the cause [5].

The most important tools to project future climate are numerical climate models
(NCMs) [6]. NMCs use equations to represent the processes and interactions that drive
the Earth’s climate. These cover the atmosphere, oceans, land and ice-covered regions
of the planet. The models are based on the laws and equations that underpin scientists’
understanding of the physical, chemical and biological mechanisms occurring in the Earth
system, such as the laws of thermodynamics, Stefan-Boltzmann Law and the Navier–Stokes
equations. Unfortunately, the set of equations are so complex that there is no known exact
solution and possible solutions must be estimated numerically which introduces errors.

Clouds interact with radiation, and it is expected that changes in cloud fraction cover
(CFC) (the portion of the sky covered by clouds) might affect global warming, and as
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a result different aspects of our lives such as agriculture and solar energy production.
Unfortunately, cloud feedback, the response of clouds to a warmer climate, is associated
with high levels of uncertainty [7]. It is therefore important to try to improve the projection
of future CFC.

As an alternative to numerical methods, the following two-step procedure, called
statistical downscaling, can be used to potentially improve the projection of future CFC [8].
First, the statistical relation between CFC and other variables X that typically are predicted
well in NCMs are learned using historic meteorological observations. Secondly, the values
of X in the future (predicted from NMCs), are inserted into the learned statistical relation
from the first step to project future CFC.

Machine learning (ML) refers to methods that can learn statistical relations between
some input information and some outputs. The learned model can further be used to
predict the outputs when new input information is provided. Traditionally the input
information is characterized by a set of features, also often referred to as explanatory
variables or covariates. For more unstructured input information, such as text or images,
traditionally features such as word frequencies or visual characteristics of an image are
first extracted. The extracted features can further be used to train ML methods. However, a
disadvantage with this approach is that we are not sure if the extracted features are efficient
to predict the output of interest. Deep learning (DL) is a group of ML methods that tries to
address this issue. DL methods not only learn the statistical relation between input and
output but also the features to use to optimize for prediction performance. The DL methods
can document impressive performance and have over the recent years revolutionized the
performance of ML for unstructured data [9].

Data used to learn the statistical relations between CFCs and other variables can also
be seen as unstructured data similar to images and videos, but the data is distributed on a
geographic grid instead of pixels. However, the application of DL within climate research,
and Earth system science in general, is still limited compared to many other applications
based on unstructured data [10,11].

In this paper we will focus on the first step of the statistical downscaling procedure
described above, i.e., to learn statistical relations to predict CFC from the other environ-
mental variables. The statistical relations will be learned using the open dataset European
Cloud Cover (ECC) consisting of satellite observations of CFC as well as meteorological
observations (reanalysis) of other environmental variables [12,13].

Given the complexities of cloud formation and the large amount of data available to
learn these relations through the ECC dataset (latitude × longitude × time × number of
variables = 81× 161× 129,312 × 5), we will investigate the potential of using ML to predict
CFC from the other variables. We are not aware of any other papers that have used ML to
predict CFC. The closest is Han et al. [14] that used ML (ResNet) for moist modelling. We
will evaluate the convolutional long short-term memory (ConvLSTM) [15,16] as well as a
multiple regression equations. Regression equations have a long tradition in Earth science
and as part of the statistical downscaling procedure. ConvLSTM is probably the most
used and successful DL model within Earth science and has been applied to, for instance,
precipitation forecasting [15], rainfall-runoff modelling [17], hurricane tracking [18] and air
pollution forecasting [19].

In this paper, we outline the entire analysis technique, and it is organized as follows. In
Section 2, we introduce the theory behind the ConvLSTM method. In Section 3, we describe
the ECC dataset, in Section 4 the suggested models and in Section 5, we describe the
computer experiments and present the results. In Section 6, we give some final comments
and suggest directions for future research.

2. Convolutional LSTM

This section describes the theory behind the ConvLSTM model, and more specifically
artificial neural networks (ANN), convolutional neural networks (CNN) and recurrent
neural networks (RNN).



Big Data Cogn. Comput. 2021, 5, 62 3 of 13

2.1. Artificial Neural Networks

Artificial neural networks (ANN) emerged from considerations of perception and
cognition in biology. Many of the ANN network architectures draw inspiration from
the human brain. Figure 1 illustrates a simple ANN, where the circles illustrate nodes
(neurons). Nodes belonging to the same layer are shown in one colour. Arrows illustrate
weights, the connections between the layers. The figure shows that nodes belonging to the
same layer are not connected, but nodes in consecutive layers are connected with weights.
In the context of DL, “deep” refers to the number of layers contributing to a network. DL
expands the ideas from simpler ANNs using deeper networks enabling them to capture
more complex relationships between input and output variables.
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Figure 1. Fully connected feed forward neural network with one hidden layer. The connections between the layers are the weights.
The sketch is based on the example provided by [20].
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Figure 2. Deep fully connected neural network. An extension of the network presented in Figure 1. The sketch is based on the example
by [20].
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where w(l)
i,j represent the weighing of the inputs xi and bj the bias. The inputs xi can either be the input layer or the

previous layer of the network, i.e. xi = a(l−1)
i . The function g represent the activation function, and must be set before the

model training starts. Popular choices are rectified linear unit (ReLU), Sigmoid function (σ) or hyperbolic tangent (tanh),
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(4)

The weights and biases of the network are trained (estimated) numerically by minimizing the loss (error) between
the model outputs and the outputs in the training data using some pre-selected loss function.

Figure 1. Fully connected feed forward neural network with one hidden layer. The connections
between the layers are the weights.

Figure 2 illustrates a deeper version of the network displayed in Figure 1. A layer is
a set of nodes. The connections between the layers are the trained units, also known as
weights. The layers between the input and output layers are denoted hidden layers.
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The values for each node are computed based on weights, biases and an activation
function. For example to compute the node j in a layer l

a(l)j = g

(
n

∑
i=1

w(l)
i,j xi + bj

)
(1)
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where w(l)
i,j represent the weighing of the inputs xi and bj the bias. The inputs xi can either

be the input layer or the previous layer of the network, i.e., xi = a(l−1)
i . The function g

represent the activation function, and must be set before the model training starts. Popular
choices are rectified linear unit (ReLU), Sigmoid function (σ) or hyperbolic tangent (tanh),
and their mathematical expressions are

ReLU(x) =

{
x, if x ≥ 0
0, else

(2)

σ(x) =
1

1 + e−x (3)

tanh(x) =
ex − e−x

ex + e−x =
e2x − 1
e2x + 1

(4)

The weights and biases of the network are trained (estimated) numerically by min-
imizing the loss (error) between the model outputs and the outputs in the training data
using some pre-selected loss function.

2.2. Convolutional Neural Networks

Computer vision is a field of artificial intelligence concerned with interpreting the
visual world. One popular model for visual tasks is the CNN.

A core component of the CNN is the convolution mechanism. Several types of
convolutions are used in CNNs, and Figure 3 shows one such convolutional operation as
the sum over element-wise multiplication of the filter and input (shown with a *). The
filter is blue, which is placed over the filled green section, producing the red output. The
entire red grid is called a feature map (output map). The green grid is the input (typically
an image), overlaid with blue indicating the pixels contributing to the activation, of the
red pixel. In Figure 3 this would be the value 4. Receptive field is known as the pixels
contributing to the activation in a pixel (i.e., the value) [20]. For instance, the receptive field
of the shaded red pixel is the shaded green submatrix. Figure 3 shows the convolution of a
single filter, but in practice the CNN model usually consists of many filters.

Big Data Cogn. Comput. 2021, 1, 0 4 of 12

2.2. Convolutional Neural Networks

Computer vision is a field of artificial intelligence concerned with interpreting the visual world. One popular model
for visual tasks is the CNN. A core component of the CNN is the convolution mechanism. Several types of convolutions

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
0 1 0 0 0 0 0

∗
1 0 1
0 1 0
1 0 1

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

Figure 3. Diagram showing a convolutional operation. Modified sketch based on [21].
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shaded red pixel is the shaded green submatrix. Figure 3 shows the convolution of a single filter, but in practise usually
the CNN model consists of many filters.

Unlike the fully connected neural network layers in the previous section, the nodes in the output layer are not
connected to all the input nodes, but only the nodes within their receptive fields. One filter convolves the entire input,
searching for a single characteristic of the input. When the filter finds this particular feature it activates, propagating
this signal into the feature maps. A core idea of the the CNN is to also train the values that should be used in the filters
to optimize prediction performance, i.e., what kind of characteristics of the input should be emphasized for the given
prediction task.

2.3. Padding

From Figure 3 we see that convolution operations shrinks the dimensions of the feature map. We also see that the
data along the border are less used than the rest of the data, and can reduce the accuracy of the DL predictions. A popular
technique to avoid this is to use padding, which is based on putting zeros along the edges of the input. The degree of
shrinking depends on the filter size f × f , padding p and stride s. Stride determine how the algorithm convolve over the
input. For some applications, including the one in this paper, it is useful to have the same shape of input and output.
This is called “padding same”, and Equation (5) calculates the amount of padding necessary to preserve the dimension of
the input volume.

p =
n(s − 1)− s + f

2
(5)

2.4. Recurrent Neural Networks

RNN is a class of ANNs developed for studying patterns in sequential data such as time series, audio or text. Figure
4 shows the structure of the RNN. The connection between the nodes are a directed graph along a temporal sequence.
The hidden states ht from the previous step is fed into the next. The hidden states contain information of what have been
learned so far. The "memory", ht, stores the useful information from the training sequence x0, x1, · · · , xt that is useful to
make efficient predictions of the output. For example, in weather forecasting we can imagine that ht contains abstract
information about the current state of the weather system that is useful to make precise weather forecasts.

2.5. Long Short-Term Memory Network

Unfortunately, training RNNs for long sequences turns out to be challenging. The optimization gradient can explode
or vanish to zero. In order to address these challenges, Hochreiter and Schmidhuber suggested the LSTM Network [24].
The memory cells now contains input and output gates. A gate is a structure that can be opened or closed. Having values
ranging from 0 to 1, it truncates the noise signal from the input and the output. Gers et al. [25] further suggested to add
an additional gate, the forget gate. The idea was to enable the LSTM to reset parts of its own memory. Resetting releases
internal resources and enables even more learning. In very simplified terms, the forget gate learns which part of the
cell state, the long-term memory, it should forget. The input gate learns the information from the input it should add
to the cell state. The output gate learns which information it should pass to the output. The assembled memory unit is

Figure 3. Diagram showing a convolutional operation.

Unlike the fully connected neural network layers in the previous section, the nodes in
the output layer are not connected to all the input nodes, but only the nodes within their
receptive fields. One filter convolves the entire input, searching for a single characteristic of
the input. When the filter finds this particular feature it activates, propagating this signal
into the feature maps. A core idea of the CNN is to also train the values that should be
used in the filters to optimize prediction performance, i.e., what kind of characteristics of
the input should be emphasized for the given prediction task.

2.3. Padding

From Figure 3 we see that convolution operations shrink the dimensions of the feature
map. We also see that the data along the border are less used than the rest of the data,
and can reduce the accuracy of the DL predictions. A popular technique to avoid this is
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to use padding, which is based on putting zeros along the edges of the input. The degree
of shrinking depends on the filter size f × f , padding p and stride s. Stride determines
how the algorithm convolve over the input. For some applications, including the one
in this paper, it is useful to have the same shape of input and output. This is called
“padding same”, and Equation (5) calculates the amount of padding necessary to preserve
the dimension of the input volume.

p =
n(s − 1)− s + f

2
(5)

2.4. Recurrent Neural Networks

RNN is a class of ANNs developed for studying patterns in sequential data such
as time series, audio or text. Figure 4 shows the structure of the RNN. The connection
between the nodes are a directed graph along a temporal sequence. The hidden states ht
from the previous step is fed into the next. The hidden states contain information about
what has been learned so far. The “memory”, ht, stores the useful information from the
training sequence x0, x1, · · · , xt that is useful to make efficient predictions of the output. For
example, in weather forecasting, we can imagine that ht contains abstract information about
the current state of the weather system that is useful to make precise weather forecasts.
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displayed in Figure 5a. The information flow thought the cell is regulated by three gates; the forget gate (see Figure 5c),
the input gate (see Figure 5d) and the output gate (see Figure 5f). These gates are all ANNs.

The long-term memory is shown in Figure 5b and the short term memory is referred to as the hidden state. The cell
state is affected by some linear interactions, and usually is simple resulting in an unchanged flow. The hidden state is the
output passed to the next cell. Structures like gates regulate the flow of information.

To be able to make predictions the forward propagation of information through the network is required. Figure 5c
shows this based on the new input and the previous hidden state, the forget gate determines which instances from the
memory to remove. Regulating the information that stays in memory frees up space allowing the network to learn new
things.

Figure 5d shows two processes, one determining the candidate information based on the input and another the
computations in the input gate. The candidate information is filtered by the multiplicative input gate. This determines
what information to add to the cell state.

Figure 5e shows how the cell state is updated. Using multiplicative gates, first the forget gate removes information.
Then the output from the input gate adds the useful information from the input to memory. The input gate regulates
what information to store from the input. The aim of the input gate is to clean the input by reducing the noise signal.
These computations are also shown in Figure 5d.

Figure 5f illustrates how the output gate gets updated. Passing the cell state through the function tanh, it is given a
value in the range from -1 to 1. The output gate determines what to remove from the cell state and pass as the hidden
state. This gate aims to remove noise from the output, preventing misrepresentations of the hidden state (short-term
memory).

A variant of the LSTM network is the ConvLSTM, which was originally developed for the application of precipitation
nowcasting [27]. The difference between this and the general LSTM is that the standard ANNs of the LSTM (recall 5a) are
replaced by CNNs. This significantly reduces the number of variables in the model, making it possible to train LSTM
models when the inputs xt and outputs yt are two dimensional, for example images or observations in geographical grids.

3. European Cloud Cover Dataset

The ECC dataset consists of hourly data on a 0.25o uniform grid resolution. The geographical domain is [30, 50]
degrees latitude (north), and [−15, 25] degrees longitude (east), see Figure 6. The resulting dimensions of the grid are
81 × 161 pixels. The domain covers Central Europe and North Africa. 54% of the domain is land, and 46% is ocean or
sea. The dataset was recorded from April 2004 to December 2018 and is comprised of the five variables; temperature (T),
surface pressure (P), relative humidity (RH) and specific humidity (SH), and CFC. The ECC dataset can be downloaded
from https://datasets.simula.no/ecc-dataset/.

The ECC dataset is compiled by two sources of data. T, P, RH and SH were collected from the 5th Generation
Reanalysis data (ERA5) from the European Centre for Medium-Range Weather Forecasts [28]. Reanalysis is as close to
observations as one can get while still obtaining complete and coherent data in both space and time. It is produced using
a forecast model to assimilate observations. Data assimilation takes observations as input and tries to make an accurate
estimate of the state of the system that is as consistent as possible with the available observations at all times. This

Figure 4. The RNN model, where xt and yt denotes input (yellow) and output (red), respectively,
and ht the hidden states (blue).

2.5. Long Short-Term Memory Network

Unfortunately, training RNNs for long sequences turns out to be challenging. The
optimization gradient can explode or vanish to zero. In order to address these challenges,
Hochreiter and Schmidhuber suggested the LSTM Network [16]. The memory cells now
contain input and output gates. A gate is a structure that can be opened or closed. Having
values ranging from 0 to 1, it truncates the noise signal from the input and the output.
Gers et al. [21] further suggested to add an additional gate, the forget gate. The idea was to
enable the LSTM to reset parts of its own memory. Resetting releases internal resources and
enables even more learning. In very simplified terms, the forget gate learns which part of
the cell state, the long-term memory, it should forget. The input gate learns the information
from the input it should add to the cell state. The output gate learns which information
it should pass to the output. The assembled memory unit is displayed in Figure 5a. The
information flow thought the cell is regulated by three gates; the forget gate (see Figure 5c),
the input gate (see Figure 5d) and the output gate (see Figure 5f). These gates are all ANNs.
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Figure 5. Walkthrough of the components of a LSTM and the relevant equations. (a) The as-
sembeled LSTM unit; (b) The cell state, the long term dependencies; (c) The forget gate: ft =

σ
(

W f [̇ht−h, xt] + b f

)
; (d) Candidate information: C̃t = tanh

(
WC [̇ht−1, xt] + bC

)
, The input gate:

it = σ
(

Wi [̇ht−1, xt] + bi

)
; (e) Updating the cell state, Ct = ft ∗ Ct−1 + it ∗ C̃t; (f) The output gate:

ot = σ
(

Wo [̇ht−1, xt] + bo

)
, Updating the hidden state, ht = ot ∗ tanh(Ct).

The long-term memory is shown in Figure 5b and the short term memory is referred
to as the hidden state. The cell state is affected by some linear interactions, and usually
simply results in an unchanged flow. The hidden state is the output passed to the next cell.
Structures like gates regulate the flow of information.

To be able to make predictions the forward propagation of information through the
network is required. Figure 5c shows this based on the new input and the previous
hidden state, the forget gate determines which instances from the memory to remove.
Regulating the information that stays in memory frees up space allowing the network to
learn new things.

Figure 5d shows two processes, one determining the candidate information based on
the input and another the computations in the input gate. The candidate information is
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filtered by the multiplicative input gate. This determines what information to add to the
cell state.

Figure 5e shows how the cell state is updated. Using multiplicative gates, first the
forget gate removes information. Then the output from the input gate adds the useful
information from the input to memory. The input gate regulates what information to store
from the input. The aim of the input gate is to clean the input by reducing the noise signal.
These computations are also shown in Figure 5d.

Figure 5f illustrates how the output gate gets updated. Passing the cell state through
the function tanh, it is given a value in the range from −1 to 1. The output gate determines
what to remove from the cell state and pass as the hidden state. This gate aims to remove
noise from the output, preventing misrepresentations of the hidden state (short-term
memory).

A variant of the LSTM network is the ConvLSTM, which was originally developed
for the application of precipitation nowcasting [22]. The difference between this and the
general LSTM is that the standard ANNs of the LSTM (recall Figure 5a) are replaced by
CNNs. This significantly reduces the number of variables in the model, making it possible
to train LSTM models when the inputs xt and outputs yt are two dimensional, for example,
images or observations in geographical grids.

3. European Cloud Cover Dataset

The ECC dataset consists of hourly data on a 0.25◦ uniform grid resolution. The
geographical domain is [30, 50] degrees latitude (north), and [−15, 25] degrees longitude
(east), see Figure 6. The resulting dimensions of the grid are 81 × 161 pixels. The domain
covers Central Europe and North Africa. A total of 54% of the domain is land, and 46%
is ocean or sea. The dataset was recorded from April 2004 to December 2018 and is
comprised of the five variables; temperature (T), surface pressure (P), relative humidity
(RH) and specific humidity (SH), and CFC. The ECC dataset can be downloaded from
https://datasets.simula.no/ecc-dataset/, accessed on 1 November 2021.

12°W 6°W 0° 6°E 12°E 18°E 24°E

33°N

36°N

39°N

42°N

45°N

48°N

Figure 6. Domain of the ECC dataset.

The ECC dataset is compiled by two sources of data. T, P, RH and SH were collected
from the 5th Generation Reanalysis data (ERA5) from the European Centre for Medium-
Range Weather Forecasts [23]. Reanalysis is as close to observations as one can get while
still obtaining complete and coherent data in both space and time. It is produced using a
forecast model to assimilate observations. Data assimilation takes observations as input
and tries to make an accurate estimate of the state of the system that is as consistent as
possible with the available observations at all times. This includes observations retrieved
from satellites, ships, buoys, airplanes, and ground-based stations. There are multiple
global reanalysis datasets available, and they are all different. It depends on the forecast
assimilation system used and observations assimilated [24]. ERA5 was used because of its
fine resolution and recent release date of January 2020.

The variables were all retrieved from the surface (T, P) or the closest pressure level
(1000 hPa) (RH and SH). We wanted to investigate to what extent surface observations

https://datasets.simula.no/ecc-dataset/
https://datasets.simula.no/ecc-dataset/
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can be used to predict clouds. The reanalysis data also offers information about humidity
at other pressure levels but is more modelled than real observations. Many prevalent
types of clouds form by air parcels close to the surface being heated from below, becoming
buoyant and ascending through the atmospheric columns while simultaneously cooling,
often to the point where water starts to condense and a cloud is formed. For these cloud
types, temperature and humidity near the surface are key variables. Other cloud types,
for example those associated with weather fronts, are less tightly linked to near-surface
variables, but the passage of a weather front brings in air masses of different temperature
and humidity both at the surface and aloft, and thus near-surface variable may still be
good indicators of frontal clouds even though they do not have a direct influence on the
cloud formation.

The second source is METeosat Second Generation (MSG) cloud masks from the
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) [25]
and was selected due to its high spatiotemporal consistency and resolution. The variable
cloud masks are provided by many satellites, bringing valuable information in itself, but
also for the retrieval of other variables restricted to cloud free conditions [26]. The cloud
masks were further regridded to the same grid as the ERA5 data [12]. MSG has used the
four different satellites for the data collections from the start in 2002, namely the METeosat-
8 to METeosat-11, covering different time periods. To create the ECC dataset, data from all
four satellites were used.

4. Cloud Fractional Cover Prediction Models

A potential alternative to use NMCs for projecting future CFC is to use a statistical
downscaling procedure (by future CFC here we mean future from a climate perspective,
i.e., for example the time period 2030–2100). For further descriptions about statistical
downscaling see e.g., [8].

1. Train a model to predict CFC from T, P, RH and SH using the ECC data, CFCH =
f (TH , PH , RHH , SHH). The subscript H is added to emphasize that the relation is
trained based on historic observations.

2. Let TF, PF, RHF and SHF denote projections of future values of these variables from
NCMs, for example for the time period 2030–2100. Project future values of CFC using
the trained model from step 1, i.e., CFCF = f (TF, PF, RHF, SHF)

The environmental variables T, P, RH and SH were selected for two reasons. First,
the variables are predicted well in NCMs which is a requirement for the second step of the
procedure to be reliable. Second, we expect that it should be possible to predict CFC from
these variables. For example, high humidity is usually a requirement for cloud formation.

As pointed out in Section 1, we focus on the first step of the statistical downscaling
procedure above, i.e., we will focus on evaluating the ability of the ConvLSTM model and
the regression equation to predict CFC from the environmental variables on historic data.
We will not do the second step of the procedure but is still added to motivate for why we
do the model training and evaluations we do in this paper.

4.1. Convolutional LSTM Architecture

We suggest a ConvLSTM-based model due to its ability to learn complex spatial and
temporal patterns. The model takes a 24 h sequence of values of T, P, RH and SH as input
to predict CFC for the same 24 h sequence in accordance with the first step of the procedure
above. Each sequence started at 00Z. We used such a long sequence to give the model the
ability to learn the complex spatiotemporal patterns in cloud formation. Figure 7 shows an
example of a model architecture we explored.
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ConvLSTM, then further from ConvLSTM to batch normalization and so on. Batch Normalization refers to standardizing
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the previous layer are zero and one before computing the next layer of the network. The values 32 and 1 refers to the
number of hidden states (recall Figure 1) and the 3 × 3 and 1 × 1 arrows refer to the sizes of the convolutional filters in
the ConvLSTM layers (recall Figure 3). The results showed three benefits, the network was less sensitive to initial values
for the weights in the optimization (training) algorithm, higher learning rate (how fast the algorithm learns from the
training data) and dropout were not needed. Dropout is a technique often used in DL to avoid overfitting, and based on
randomly setting the values of some weights equal to zero. Disabling dropout accelerated the training process. "Padding
same" (Section 2.3) is applied to all ConvLSTM layers to make sure the input and output dimensions were the same. This
is a natural requirement since the dimensions of the input (the environmental variables) and the output (CFC) is on the
same grid. For the experiments in this paper we decided on five different configurations of the ConvLSTM based on
empirical testing of the different possible configurations of hidden states and filter sizes, etc.

4.2. Multiple Regression Equation

As mentioned before, we also evaluate the performance of a multiple linear regression equation. Linear regression
equations are the most common to use in the two-step statistical downscaling procedure [33]. In each geographical
location, we fitted the regression equation

CFC = α0 + α1T + α2P + α3RH + α4SH (6)

to predict CFC at a given time point from the values of T, P, RH and SH at the same time point in accordance with the
first step of the statistical downscaling procedure described above. Here α0 is the regression intercept with the y-axis and
α1 − α4 the regression equation constants for each variable.

Figure 7. The architecture of the cloud cover forecasting model developed in this study.

For the input batch the numbers 10, 24, 81, 161 and 4 refer to the number of batches,
sequence length (hours), geographic dimensions and number of variables (T, P, RH and
SH), respectively. The model is further followed by batch normalization [27] and Con-
vLSTM layers. We see that in total three such architectures were used between input
and output, where the output from the previous batch normalization are inserted to the
next ConvLSTM, then further from ConvLSTM to batch normalization and so on. Batch
normalization refers to standardizing the outputs from the previous layer of the network
such that the mean value and standard deviations of the outputs from the previous layer
are zero and one before computing the next layer of the network. The values 32 and 1 refer
to the number of hidden states (recall Figure 1) and the 3 × 3 and 1 × 1 arrows refer to
the sizes of the convolutional filters in the ConvLSTM layers (recall Figure 3). The results
showed three benefits, the network was less sensitive to initial values for the weights in the
optimization (training) algorithm, higher learning rate (how fast the algorithm learns from
the training data) and dropout was not needed. Dropout is a technique often used in DL
to avoid overfitting, and based on randomly setting the values of some weights equal to
zero. Disabling dropout accelerated the training process. “Padding same” (Section 2.3) is
applied to all ConvLSTM layers to make sure the input and output dimensions were the
same. This is a natural requirement since the dimensions of the input (the environmental
variables) and the output (CFC) is on the same grid. For the experiments in this paper we
decided on five different configurations of the ConvLSTM based on empirical testing of
the different possible configurations of hidden states and filter sizes, etc.

4.2. Multiple Regression Equation

As mentioned before, we also evaluate the performance of a multiple linear regression
equation. Linear regression equations are the most common to use in the two-step statis-
tical downscaling procedure [28]. In each geographical location, we fitted the regression
equation

CFC = α0 + α1T + α2P + α3RH + α4SH (6)

to predict CFC at a given time point from the values of T, P, RH and SH at the same time
point in accordance with the first step of the statistical downscaling procedure described
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above. Here α0 is the regression intercept with the y-axis and α1 − α4 the regression
equation constants for each variable.

5. Computer Experiments

The ECC dataset was divided in training (2004–2012), validation (2012–2013) and test
(2014–2018) sets. The overall aim is to predict CFC from T, P, RH and SH for the test
period. The experiments were run on a DGX-2 system consisting of 16 NVIDIA Tesla V100
GPUs, each of 32Gb local memory and 1.5Tb of shared memory.

The ConvLSTM was implemented using Tensorflow’s Keras API [29]. The weights of
the ConvLSTM were initialized based on the scheme “LeCun uniform” [30], and optimized
with the Adam optimizer using the standard settings, learning rate = 0.001 (tuning param-
eter for step size per iteration), β1 = 0.9, β2 = 0.999 (decay rates used for estimating the
first and second moments of the gradient) and ε = 10−7 (constant for numerical stability)
as defined in [31]. Usually, in Tensorflow the ε is set to 10−8 which we changed to 10−7.
This was done to avoid the optimizer becoming unstable, which can happen with a smaller
ε. The loss function was mean squared error. The training procedure reached convergence
both in terms of training and validation loss. The models predicted almost equally well on
the unseen test data compared to on the training set, indicating the models did not suffer
from overfitting. The prediction error was measured using mean absolute error (MAE).

Figure 8 shows the prediction performance for the different models for different hours
of the day. The error is also averaged over all the geographic locations. Uncertainty bounds
are not added to the plotted curves since given the large number of test examples, the
uncertainties in the plotted curves are minimal.

Figure 8. Prediction performance at different hours of the day. MAE refers to mean absolute error,
The error is also averaged over all the geographic locations.

Intercept refers to a model that predicts without using the features, i.e., the prediction
is based on the average CFC in the training data. This is equivalent to fitting a regression
equation only consisting of the intercept α0. The regression equation outperformed the
ConvLSTM, but also the best ConvLSTM models performed better than the intercept for
most hours of the day documenting that the ConvLSTM was able to learn from the features.
Cloud formations are often more active in the afternoon due to surface heating increasing as
the sun rises, and might explain the increased prediction error for the regression equation
and the ConvLSTM in the afternoon. Further, we see that neither the ConvLSTM nor the
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regression equation improve much on the intercept documenting that predicting CFC is a
difficult problem.

Table 1 shows the MSE when predicting CFC for different regression equations. The
MSE is computed taking the average MSE over all geographic locations and time points in
the test set.

Table 1. Mean absolute error (MSE) for different regression equations taking the average over all
geographic locations and time points. The second column refers to MSE for regression equations
only using T as a feature. The third to the fifth columns are the same, but with only P, RH and
SH as the feature, respectively. The sixth column shows the MSE using all the four environmental
variables as given in Equation (6) and the seventh column is a regression equation without any of the
environmental variables, i.e., only the intercept.

Reg. Equation T P RH SH All Intercept

MSE 0.357 0.363 0.367 0.360 0.344 0.372

We see that all the regression equations consisting of a single feature perform poorer
than the full model and better than the intercept, indicating that each environmental
variable to some extent contributes to the prediction in the full model. Among the features
temperature is the one being most efficient in predicting CFC.

Figure 9 shows prediction error in different geographic locations.

Figure 9. Prediction performance for different geographic locations. MAE refers to mean absolute error. The error in each location is
the average error for each time point in the test period. The left and right panels in the first row show results for the linear regression
equation and the best performing ConvLSTM model, respectively. The panel in the second row shows the difference in MSE, i.e, MSE
for the regression equation minus the MSE for the ConvLSTM.

We see that for most of the geographic area, the regression equation performs the best.
However, especially along the coast of Spain, France and the Northern Mediterranean Sea
and in the Alps, the ConvLSTM performs best. This might indicate that the ConvLSTM
models are better at predicting CFC for areas with land/sea interactions or areas where con-
vergence may initiate convections, e.g., along mountain ridgelines leading to phenomena
such as orographic lifting.
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6. Conclusions

In this paper, we have evaluated the potential of using the ConvLSTM model and
a regression equation to predict CFC from other environmental variables. A potential
application of the models is, as part of the two step statistical downscaling procedure,
described in Section 4. The selected environmental variables were chosen since they (i)
are modelled well in NCMs and (ii) and could potentially contain information to predict
CFC, both being necessary requirements for the statistically downscaling procedure to be
meaningful. To the best of our knowledge this is the first attempt in this direction.

The results showed that the ConvLSTM models were outperformed by the linear
regression equation, showing that the ConvLSTMs were not able to predict CFC on the
level we had expected. Neither the ConvLSTM nor the regression equation performed
much better than the intercept indicating that it might not be much information in the
environmental variables to predict CFC. A potential direction for future research could be
to look for other input information that could potentially improve the predictions of CFC
and in the end the projections of future CFC using statistical downscaling.
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