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Abstract

The history of infectious diseases has always been important to us due to their impact on humanity.

Infectious diseases lead to the emergence of epidemiological models that were essential to

understand and find answers to end an epidemic. Since as early as 1760 human diseases were

analyzed using so-called epidemiological models. The main objectives of this thesis are (i) to examine

and review the history of these epidemiological models and (ii) to discuss the parameters which can

be derived from them such as the reproduction number. In particular, I focus on the SIR model to

understand qualitative features of the spread of the disease in specific cases, namely in Norway and

the UK. I implement the SIR model as proposed in the paper “Estimation of Time-Dependent

Reproduction Number for Global COVID-19 Outbreak” authors Petrova, T.; Soshnikov D.; Grunin A

[18], additionally exploring the effect of the recovery rate. Finally, I compare the results.
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1. Introduction and Background

An epidemic model is known to analyse the nature of the spread of infectious diseases and has been

capturing everyone’s attention including mine since the rise of the Covid- 19 pandemic and is the

motivation behind this thesis. The main objective of this thesis is to examine and review these models

and discuss their evolution and derive some useful information, if possible. In the review of models

for disease spreading, we describe the compartmental models while highlighting the SIR model and

further discuss the extensions of SIR models as well as the state-of-the-art models.

To understand the epidemic model we implement the simplest compartmental model known as the

SIR model derived from the paper “Estimation of Time-Dependent Reproduction Number for Global

COVID-19 Outbreak” by authors Petrova, T.; Soshnikov D.; Grunin A[18] and make comparisons

with some real estimates available for public use and draw conclusions about effectiveness,

limitations and relevance of the basic SIR model in today's pandemic crisis the world has been

dealing with.

For centuries, infectious diseases have had a tremendous impact on us and since recorded human

history it has been witnessed that epidemics caused many deaths, wiping out large numbers of

human populations before vanishing and recurring again in the later years perhaps with less severity

due to developed resistance over a period of time. This paved the way for the emergence of

epidemiological models over time.

The "Spanish" flu epidemic for instance claimed more than 50 million lives all over the world between

1918-19. Another well-known epidemic in the history of infectious diseases known as black deaths

spread from Asia to Europe in the year 1346 recurring several times in the 14th century, took over

one-third of the entire population of Europe between the period 1346 - 1350. The plague reappeared

again for another 300 years in several parts of Europe, notably known as the Great Plague of London

between 1665-1666 before disappearing permanently. Many such infectious diseases appeared in the

next hundreds of years to become epidemic or endemic, causing many deaths before they

disappeared [1].

Endemic diseases have been incredibly common in developing countries, taking many lives every year

due to diseases like measles, malaria, cholera and typhoid etc. In the 1980s, measles caused over

2,600,000 deaths annually but was reduced to 160,000, due to the relavant vaccine development. In

2011, according to the World Health Organization (WHO) annual reports there were about

“1,400,000 deaths due to tuberculosis, 1,200,000 deaths due to HIV/AIDS, and 627,000 deaths due to

malaria (but other sources estimate the number of malaria deaths to have been more than 1,000,000)”

[1]
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One of the most recent infectious diseases in the history of epidemics that killed millions of humans

on a global scale is Covid-19. It was first witnessed to have emerged in Wuhan, China in December

2019 and then, later on, spread rapidly to the rest of the world. Today, it has been more than a year

since the emergence of Coronavirus disease also known as Covid-19. Despite the mass vaccination

rollout, we are still witnessing the virus reappearing again in the form of new variants. Although there

is abundantly collected data available now from all around the world over the internet, with many

experts analyzing the data, nations have been adopting different strategies such as lockdowns, social

distancing, use of masks and development of vaccines. The question however remains about the

effectiveness of the epidemic models used. Are they enough to cover the entire dynamics of the

disease transmission?

The important role of modelling the data is to understand the way the disease spreads and to predict

the course of the disease. Epidemic modelling has been an important tool that has been evolving

throughout history exactly to do this. It all began with the first-ever understanding and discovery of

living microscopic organisms that were responsible for the spread of any disease, dated back as early

as (384 BCE–322 BCE) through Aristotle's writings in ancient Greece. The earliest record of disease

analysis started through quantifying the number of deaths and documenting the causes behind it.

The first mention of such a thing was found in a book called “Natural and Political Observations

made upon the bills of Mortality” written by a scientist called John Graunt in 1662. While Gruant's

work may have been the beginning of the quantification and analysis, the very first mathematician to

demonstrate the nature of epidemiology through mathematical models was Daniel Bernouli through

his work on “inoculating against smallpox” in 1760. The purpose of the creation of such a

mathematical concept was to defend and prove that vaccination could improve life expectancy by

almost 3 years. Bernoulli's work laid a foundation for what we know today about germ theory and

mathematical models of epidemiology [2][1].

In the year 1906, it was W.H Hamer who first suggested ‘mass action law’ for the rate of new

infections, and proposed that the number of individuals who are either susceptible and infected

affects the rate at which the infection spreads. This is the concept that is relevant even to this day and

served as the basis for all the mathematical models that evolved through time [1].

Another noteworthy work done in the field of malaria was by Dr Ross. In 1902 through his work on

“The dynamics of the transmission of malaria between mosquitoes and humans”. He was even

awarded the second Nobel prize in medicine. In the year 1911, Dr Ross came up with a simple

compartmental model that involved mosquitoes and humans. The model proved that it was generally

not necessary to entirely eliminate the mosquitoes to put an end to malaria, which was a notion

believed by everyone at the time. Instead, the model successfully demonstrated that mere reduction of

the mosquito population below a certain level would suffice to keep malaria disease under control. It

was around the same time that the notion of basic reproduction was introduced and has been used in

most epidemiological models even today to understand the spread of disease. Of course, the model

proposed by Dr Ross turned out to be a huge success in controlling the malaria disease [1].

The next coming years compartmental model formulated by Kermack–McKendrick epidemic model

(1927) and the Reed–Frost epidemic model (1928) emerged around the same time, where both the
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models describe the relationship between individuals that are susceptible, infected and immune. The

mathematical model formulated by Kermack and McKendrick in 1927 made predictions that were

very close to the actual nature of epidemics and was quite successful in predicting the behaviour of

the outbreak[1].

The Kermack and McKendrick model is based on assumptions made when it comes to the rate of

transmission between different compartmental classes within the population. Kermack–McKendrick

theory in its earliest form was formulated as a partial differential equation that models the infected

population with respect to age-of-infection while using simple compartments for people who are

susceptible (S), infected (I), and recovered/removed (R) [3].

Both the endemic and epidemic models by Kermack and Mckendrick from the years 1927 and 1933

were built upon the research done by Ronald Ross and Hilda Hudson. Although their theories were

meant to be crude and based on their observations back in the day compared to the compartmental

models. Their model became one of the milestones in epidemiology and is still relevant today for

pandemics like Covid-19. It is an interesting fact to note that in the history of epidemics it was public

health physicians such as Sir R.A. Ross, W.H. Hamer, A.G. McKendrick, and W.O. Kermack who laid

the foundations of the entire approach to epidemiology based on compartmental models not by

mathematicians[3].

More recently, epidemiological agent-based models (ABMs) have emerged as an alternative to

compartmental models. The agent-based model for epidemiology is quite sought after by the

government departments for policymaking as they capture the real world’s complexity quite well and

are known to have great efficiency and performance[4].
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1. Compartmental Epidemic Models

Developing ‘compartmental models’ has been a widely used technique in the history of epidemic

modelling when it comes to studying disease transmission in a population. A compartmental model

in general, analyses a disease pattern in a population by dividing it into several compartments based

on assumptions closest to the disease's nature and the pace at which the infectious diseases spread.

The very first theory to describe and predict the transmission pattern of infectious diseases in a given

population over a period of time was hypothesized by W.O. Kermack and A.G. McKendrick in 1927,

1932, and 1933 in a sequence of three papers [3][5][6].

2.1 The SIR Model

SIR is one of the simplest compartmental epidemic models that was first derived from models by

Kermack and McKendrick. It is a mathematical representation that models the spread of the disease.

The model is based on assumptions that disease is spread through human contacts and classifies the

population into three different classes that may change with time t [7].

Figure 1: The picture depicts the working model of how the SIR model works where S(t) represents the number of

susceptible to disease which means those who have not been infected  I(t): stands for the number of individuals that have

been infected and R(t): is for the number of individuals that have recovered from the disease [7].

Here the entire population is divided into three classes that go by the abbreviation S, I, and R where

S(t) stands for ‘susceptibles’, representing the part of the population who are not yet infected but

susceptible to the disease at a given time t. I(t) represents the number of infected cases, people in this

category are likely to spread the infection to the susceptibles through social interactions or physical

contact. Finally, R(t) stands for recovered individuals who will no longer be infected again as shown

in figure 1.

7



Since the total population is a constant as we are not considering newborns and the population N

given by N = S + I + R.

Assuming the virus infection starts with at least one infected individual, it is inevitable that there will

be a change in each of these variables given the fact that the disease is contagious and also that most

of the healthy population has a certain amount of immunity to fight the disease as well. These

changes in numbers in each category is determined by the contact rate of the disease and recovery

rate[7].

The change in each class S, I, R is given by following three differential equations:

(1)

𝑑𝑆
𝑑𝑡 =  − β𝑆𝐼

= (2)

𝑑𝐼
𝑑𝑡 β𝑆𝐼 − γ𝐼

(3)

𝑑𝑅
𝑑𝑡 = γ𝐼

Parameter : describes the effective contact rate of the disease: an infected individual comes intoβ
contact with other individuals per unit time (of which the fraction that is susceptible to contracting

the disease is S/N). [7]

Parameter is the mean recovery rate: that is, is the mean period during which an infected γ: 1/γ
individual can pass it on. Note that the parameters and are often based on assumptions becauseβ γ
depends on factors in the real world that are often complex and non-stationary[2]

Under no restrictions by the government such as lockdowns, social distancing and masks etc, the

disease spreads exponentially:

Assuming (everyone is still assumed to be susceptible);𝑆 ≈ 𝑁

(4)𝐼(𝑡) ≈ 𝐼(0) exp[(β𝑁 − γ)𝑡] = 𝐼(0) exp[γ(β𝑁/γ − 1)𝑡]

Basic Reproduction number

stands for the basic reproductive number. The basic reproduction number in short, is the𝑅
0

𝑅
0

expected number of secondary cases caused by an infection in a population that is susceptible to

disease. It is the ratio of rates at which the virus reproduces through human contact[21].

Therefore the general formula to calculate is𝑅
0

 𝑅
0

=  𝑅𝑎𝑡𝑒 𝑜𝑓 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = β𝑆𝐼

γ𝐼 = β𝑆
γ
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At the beginning of the pandemic, the number of susceptible S = total population N, so that

 𝑅
0

= β𝑁/γ

A reproductive number is greatly influenced by human to human contact because by nature

pathogens need a new host to survive and multiply. It is important to note that should not be𝑅
0

confused with “basic reproductive rate”, rather it is a dimensionless number that helps with

calculating and predicting disease dynamics[21].

During an endemic, the reproductive number could be very crucial to determine if the epidemic𝑅
0

will die out or spread. Using the equation (4) if < 1 then I(t) decreases approaching𝑅
0

= β𝑁/γ

zero, which means the epidemic will eventually die out. However, when >1, then I(t) 𝑅
0

= β𝑁/γ

will increase exponentially leading to endemicity. Figures 2(a), 2(b), 2(c) and 2(d) demonstrate

how the reproduction numbers affect the outcome of the epidemic or pandemic.

I

Figure 2(a) and 2(b) : SIR model plots for R0 = 1.7 and 0.89 values.
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Figure 2(c) and 2(d) : SIR model plots for R0 = 1.3 and 1.2 values.

Figure 3 : The plot figure below simulates the disease under discretized parameters and population: population N

=12000000, I(0)= 100,   β=0.2, 1/γ=30days (infected period) for 160 days.

Figure 3 simulates a scenario where a few cases of infection are introduced to a given population N in

two possible ways for instance (i) and when either through local members returning from a trip

outside the local population or (ii) a visitor that belongs to a non-local population.

When it is observed that S(t) decreases and I(t) increases over a period of time t and𝑅
0

= β𝑆∕γ  >  1,

then after a certain point S(t) approaches zero that means everyone is infected at this point. As soon

as either the number of susceptibles S(t) or Infectives I(t) reaches zero it is considered to exit the

model's system

Summing the two equations (1) and (2) we obtain
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(5)(  𝑑𝑆
𝑑𝑡 + 𝑑𝐼

𝑑𝑡 )' =  − γ𝐼

From equation (5) one can say that function (S + I) will be a non-negative decreasing function and

therefore tends to a limit as the time t tends to [8].𝑆
∞

∞

2.2 The SIS Model

Figure 4: The working of the SIS model of how the individuals keep moving between two compartments back and forth

The simplest SIS model is essentially, a disease transmission model that involves only two types of

individuals, an infectious and a susceptible where individuals can either be infected or be susceptible

to the disease through contact. While some types of infectious disease may confer some immunity

against the disease after the infected individual has recovered from the illness, however in some cases

of infections such as common cold and influenza, individuals don’t necessarily grow immunity

against it. Even after the recovery from such illnesses hence they are still susceptible to illnesses when

it comes to seasonal flu or influenza. The SIS model is, therefore, more useful to describe in such

cases of diseases that do not offer immunity against illness, therefore the individual's passages

between the infective and susceptible category back and forth under this model. Similar to the SIR

model, during the beginning stages of an epidemic it may seem that there is an exponential growth of

infected cases.

The model equations for SIS model is :
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𝑑𝑆
𝑑𝑡 =  − β𝑆𝐼 + γ𝐼

= (6)

𝑑𝐼
𝑑𝑡 β𝑆𝐼 − γ𝐼

Similar to the SIR model, since the total population is a constant as we are not considering newborns

or deaths, therefore, Population N is given by N = S + I. Further, we reduce SIS model equation (6)

into a single differential equation, by replacing S by N − I [8]

Therefore we get,

𝐼' = β𝐼(𝑁 − 𝐼) − γ𝐼 = (β𝑁 − γ)𝐼 − β𝐼2= (β𝑁 − γ)𝐼(1 − 𝐼
𝑁−γ/β ).

(7)

Using equation (7), which is a logistic differential equation, if βN −  < 0 or , then allγ 𝑅
0

=  β𝑁∕γ < 1

solutions with non-negative initial values approaches zero which is called a disease-free equilibrium

that means when the number of infected cases reaches 0  i.e I= 0 then the number of susceptibles

becomes equal to total population N therefore; S=N. Meanwhile, if , then all𝑅
0

=  β𝑁∕γ > 1

solutions with non-negative initial values approach the limit , with time t then it is𝑁  −  γ∕β  >  0
called an endemic equilibrium[8].

2.3 Extensions of SIR Models

2.3.1 The SEIR model

The SEIR model (Susceptible-Exposed-Infected-Recovered), widely used today by statisticians and

officials to analyze epidemic data in different stages. It is in fact adopted today by the most state of art

models that are used to estimate the Rt values (reproduction number) to describe the epidemic

dynamics and to predict its course. The SEIR model is a system of differential equations that

considers the amount of the population susceptible to infection by being exposed to an infectious

person and the individuals who either recover from infection or unfortunately die[9]
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Figure 5: The picture shows the workflow of SEIR

The model in figure 5 is based on the assumption that there is a buffer period between being exposed

and being infectious and represented by a parameter ’ ’ which is a parameter for the average latency𝑎
period. The second assumption made is based on the birth and death rates so that the total

population remains constant. Therefore we have the model where is the contact rate, is the recoveryβ γ
rate.

S’= − β𝐼𝑆/𝑁

E’ = β𝐼𝑆/𝑁 − 𝑎𝐸

I’ = (8)𝑎𝐸 − γ𝐼

R’ = γ𝐼 − 𝑅

2.3.2 SIR model with Birth and Deaths

The SIR model with birth and deaths considers including births in the susceptible class S and a death

rate to every class in the model. Both the birth rate and death rates are proportional to the class they

are associated with for instance since the births are associated with susceptible class S, therefore, the

birth rate is proportional to the number of members in the susceptible class although in the case of

no infections then it is directly proportional to the size of total population N[8].

The death rate, on the other hand, is associated with all the members of the class and is proportional

to the size or number of members of its respective class it is associated with. However, if the birth and

death rates are unbalanced it might either allow the total population size to grow or die out

exponentially, therefore, the model can be applied to determine whether the disease will control the

size of the population or increase exponentially[8].

To formulate an epidemic model with births and deaths one could consider the approach suggested

by Hethcote [2] where birth and death rates are made to be equal and total population size N is set

to constant[8].

The model is represented as following,
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S’ = − β𝑆𝐼 + µ(𝑁 − 𝑆)

I’  = (9)β𝑆𝐼 − γ𝐼 − µ𝐼

R’= γ𝐼 − µ𝑅

Here parameters are the rates of infection, recovery, and mortality, respectively.β, γ,  µ

2.3.3 The MSEIR model

The MSEIR model is an extended model of the SEIR model where the model considers an additional

compartment ‘M‘ where a certain group of the population, especially a newborn infant, has

something called passive immunity. M stands for maternally derived immunity.

2.3.4 The SIR model with Diffusion

The SIR model combined with a diffusion equation is useful to understand the distribution and

density of individuals from all three categories susceptible/infectious/recovered. Spatial models

combined with compartmental models may not be ideal for modelling the entire population,

however, they are seen to leverage from modelling the distribution of infected persons in space, this is

done by combining the SIR model with a diffusion equation.

2.4  Limitations of epidemic models

By definition, the deterministic epidemic models are the models whose output is fully determined by

the parameter values and the initial conditions whereas the stochastic models may possess some

randomness inherently with different outputs while the parameter values and initial conditions are

the same. The deterministic models have long been used in the study of infectious diseases and one of

the advantages of the deterministic models is that they are simpler to use than stochastic models.

They are also useful because they have well developed numerical methods along with the benefits of

the theory of dynamic systems. Although the deterministic models do sufficiently support disease

analysis of large-sized populations they should be used cautiously. One of the main disadvantages

would be their rigidity; these types of models aren’t flexible enough to allow embedding new types of

infectivity profiles[10].

Diffusion models on the other hand have been proposed to treat disease transmission as waves

travelling among certain homogenous populations. However, these are known to be not very practical

because of the nature of human contact through which diseases are very different from the spatial

transmission. Although the spatial model has been used in a stochastic system rarely[10].
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3. State-of-the-art Covid-19 models used for various

countries

3.1 NIPH Norway

One of the primary models used to estimate the Rt in Norway is the meta-population model. The

model relies on many factors, one of which is the number of patients admitted into hospitals for

medical attention or diagnosis in the entire country. The model also relies on the updated test data to

update the R estimates regularly on their official website [12].
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Figure 6. The meta-population model used by NIPH Norway to evaluate the national reproduction number estimates for

Norway

The meta-population model in figure 6 is the SEIR type model that is stochastic in nature and an

extension of the model by Engebretsen et al. (2019) and Engebretsen et al. (2020) [12][13][14]. The

model used calculates disease transmission locally in each municipality separately based on people's

mobility. To track the mobility of people between various municipalities the model relies on mobile

data from Telenor.

The model is used to simulate the stages of infection spread in a given population within each

municipality separately. Each population within a certain municipality is classified into six infection

categories depending on things like physical contact or symptoms.

According to the model, the Covid -19 virus spreads between people in the following stages through

the six categories “S – Susceptible; E1 – Exposed, not infectious, no symptoms; E2 – Exposed,
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infectious, pre-symptomatic; IA – Infectious, no symptoms; I – Infectious, with symptoms; R –

Healthy/Immune”[12].

Out of six categories three of them are considered more infectious compared to others because they

are symptomatic and have a tendency to spread the disease faster than the ones without the

symptoms. Certainly, all other exposed and infectious categories whether symptomatic or not could

infect more healthy people in the susceptible category[15].

Overall, the model seems to work well for predicting the course of the pandemic in Norway although

there seems to be considerable uncertainty associated with it, the model seems to handle it by

constantly updating its parameters and with more and more new data available about the disease, the

final estimation seems to be more accurate to that of the real-time. Furthermore, the NIPH ‘s

additional model for Covid-19 besides the metapopulation model is derived from the Di Ruscio et al.

(2019) to estimate the effect of measures taken by the governments such as lockdowns by running the

model to simulate the pattern of an outbreak of infection among people according to their respective

age groups [12][16].

3.2 Yoyangs Covid-19 Death Forecasting Model (USA)

Another version of the compartmental model used for the evaluation of the course of pandemic and

Covid-19 prediction that has been popularly used by many countries like Italy, the USA and the

United Kingdom is the SEIR model. Although the epidemic models vary from country to country

depending on the demographics and circumstances, this particular version was used as a simulator

underneath their machine layer based on the SEIR (susceptible-exposed-infectious-recovered) model.

Like the Norwegian model it also has a component called ‘exposed’ which is not infectious yet  [17].

When it comes to implementation, this model also has a stochastic approach. This model has a

probability distribution for each transmission between the compartments S-E-I-R. Although the

model isn’t much elaborated on, the simulator works through the formulation of probability

distributions combined with actual cases to give daily estimates on new infections and deaths

updated every day. For countries like Italy, similar stochastic SEIR models have been used along with

the help of machine algorithms to get more accurate results [17].

3.3 Vaccination Model

As long as there are epidemic or pandemic diseases, having tools such as epidemic

modelling is convenient and useful to describe and understand the extent of the effect of

the outbreak of the disease, however, the most important question remains about how to

prevent it or eradicate after all. Apart from masking, hand hygiene and social distancing

which are not very sustainable or reliable for the long term, mass vaccination programs are

seen to be promoted by all the governments around the world because of the clear effect it

has on reducing infections. Taking the development of vaccines into consideration for any
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communicable diseases, how does the availability of vaccines affect the SIR model?

Especially when there has been enough discussion on the SIR model in the previous

chapters what would happen if we introduce vaccines into the SIR model.

Consider that ‘V’ stands for the number of individuals that are vaccinated. With the SIR

Vaccination model, which is nothing but an extension of the SIR model with an added

element of vaccine, we have three questions that may be crucial to understand the effects

of vaccination on the system.

1. What is the condition for the epidemic or pandemic to stop?

2. How many individuals need to be vaccinated to put a stop to the epidemic?

3. How effective is the vaccine?

Addressing the first question which is the condition to stop the epidemic could be derived

from the SIR model refer to equation (2) in chapter 2 which is .𝐼' = 𝐼(β𝑆 − γ) < 0

That means when value which stands for reproduction number: when < 1, the𝑅
0

β𝑠/γ

epidemic slowly decreases which eventually dies out. By looking at the equation of the

reproduction number there are many ways where the R number can be brought down

through different parameters such as contact rate and recovery rate . However,β 𝑎𝑛𝑑 γ
with the vaccine in the picture, the effective way of reducing the reproduction number is

through targeting the susceptible population which is sustainable in the long term to keep

the diseases at bay. But how do we know what proprotion of total population need to be

vaccinated to reduce the susceptible population efficiently?

Since we have vaccination developed at a much later stage after the pandemic has started,

we do have values which are also known as a basic reproduction number readily𝑅
0

available through the formula . For an epidemic to end we need to ensure the numberβ𝑠
0
/γ

of susceptible individuals to be minimal to ensure remains less than 1.β𝑠/γ

Consider that as a population that is still susceptible after the vaccination and individuals𝑆*

who are vaccinated are denoted as V. To stop the pandemic, the proportion of population

that needs to be vaccinated[22]

(10)𝑉 > 1 − (1/𝑅
0
)

Considering the fact the vaccines are not always 100 % effective, the way to estimate the

efficiency of vaccination is where = eV, and e stands for efficiency𝑉
𝑒𝑓𝑓

> 1 − (1/𝑅
0
) 𝑉

𝑒𝑓𝑓

that ranges between 0 to 1. Therefore the proportion of the population that needs to be

vaccinated taking into account that the efficiency of vaccine is not 100% effective[22]

. (11)𝑉 > 1/𝑒(1 − 1
𝑅

0
)
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3.4  Parameter Estimation model case study using simple SIR Model

For the estimation and analysis of parameters values and the reproduction number , this slidingβ 𝑅
𝑡

window SIR epidemic model in python was originally derived from the research paper “Estimation of

Time-Dependent Reproduction Number for Global COVID-19 Outbreak” by authors Petrova, T.;

Soshnikov D.; Grunin A. The plots presented in the paper cover about 12 countries and the model

runs for the first 90 days of the pandemic. The code used to run the model was retrieved from the

Github link provided in the paper. For the study of the SIR model, the basic approach to estimating

the effective and basic reproduction number R0, Rt, is done through optimization and fitting the SIR

epidemic model to real data in a sliding time window. The model relies on an online open-source of

datasets from John Hopkins University for COVID-19 for daily cases of infections, recovered and

deaths. The paper further ventures into comparing with the mobility data however we chose not to

delve into it due to lack of time and unavailability of relevant data[18].

3.4.3 Data Exploration

In this thesis, I will be using one of the most popular datasets among researchers today for the

Covid-19 analysis published in Github. The dataset under the repository of Covid-19 used is

maintained and published by the Johns Hopkins University Center for Systems Science and

Engineering (JHU CSSE). The dataset contains worldwide records of confirmed, recovered and death

cases and is updated every day.

The data is freely available for public use on the Github link provided below:

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_

series

The time-series datasets for infected recovered and deaths cases are located separately. To import, the

dataset needs to be in the raw format to be called by your python program to read and analyse

further. During the exploratory analysis, I found that all the datasets seem to have the same number

of columns (403), however, the number of rows slightly differ for the recovered dataset i.e 258

although the number of rows of the remaining two datasets i.e confirmed and deaths are the same

(273). All three of the time-series datasets cover data from about 177 countries. While working with

data I also discovered that the number of cases under each date is cumulative of both old and new

cases. Each data set also has its fair share of null values and contains the same number of columns

which keep increasing every day as the data gets updated. A typical dataset from John Hopkins

something like in figure 7.
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Figure 7: The picture displays how a typical structure of a dataset looks like from a John Hopkins university database on

Github.

3.4.4 Data Preparation

To start with, the data is loaded from the GitHub repository. The data has been filtered according to

the countries for further evaluation. The dataset contains records since 21 January 2020. While

exploring the data, it seems like not all countries have enough infections starting from January, so the

start dates have been chosen when the infected cases are greater than 100. The daily data are stored in

a cumulative sum format.

The table contains the cumulative sum for all cases. During the analysis, however, new daily cases of

infection have been derived by using functions that return subtracted values between columns.

3.4.5 Code Workflow

Figure 8: Code workflow for implemented Sliding SIR from the paper “Estimation of Time-Dependent Reproduction

Number for Global COVID-19 Outbreak” by authors Petrova, T.; Soshnikov D.; Grunin A

The code originally begins with importing necessary libraries as shown in Figure 8.

Load Data:

To start with, the data is directly loaded from the John Hopkins University Covid-19 repository in

Github so that we have updated estimates, every time the code runs.
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The datasets for infected, recovered and country populations are available in separate CSV files. In

order to extract the information we need, these datasets are coupled together for further use[18].

SIR Model :

Next, the SIR model function is defined in the code with initial values and parameters to solve

differential equations that contain three variables S(t), I(t), R(t) numerically. The authors derived

their example code from a chapter from the Scipybook[7].

Smoothing Curves and Sliding Window:

The sliding window feature is implemented in the SIR model through a method called

“compute_params` The method basically performs a 7-day fitting of the SIR model using the `fit`

function for all the days[18].

Since we need a smoothing function in order to remove the outliers from the data for all days

beginning from the day when the number of infected people is above 1000, i.e. 𝑡0 = min{𝑡|𝐼(𝑡) > 1000}.

It is done so through a method called ‘make_frame’[18].

Optimization:

In this part of the code, the value of the parameter γ is fixed. However, since we have access to the

actual data, to determine the parameter value the code performs a fitting function where the resultsβ,
from the SIR model are minimized to fit the real data through optimization. In this case, it is done by

solving optimization problems using a Python built-in function called ‘minimize’ using Powell’s

method[18]. The math behind the optimization looks something as follows.

Considering variables V’ and I’ that represent daily new infected cases from actual data and computed

data by the model. The optimization function for calculating minimal discrepancy between V’ and I’

that corresponds to value is:β∗

β∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
β

𝑡=0

𝑡=𝑛

∑ (𝑉'(𝑡) − 𝐼'(𝑡))2

The process of finding argmin is however a quite complex task to perform a numerical solution at

each step of ODE equation (1), (2) and (3) from the SIR model, so the authors chose to go for an

optimization algorithm called Powell's method (Powell's conjugate direction method) because it

works fast and performs efficiently[18].

Now that we have the estimates, everything is put together in a function called ‘analyze’ to performβ*

sliding SIR fitting and Rt calculations.
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4. Results

4.1 SIR model with different valuesγ
Some modifications were made to the original code to experiment for this thesis. The code originally

was designed to cover only a 90 days period, however, it has been modified to cover all days starting

from the date the infected cases are more than 1000 until the most recent date the data is updated.

Second, the sliding interval considered to calculate the R-value has also been modified to 15 days

because it seems to be a more popular time duration used to calculate in most countries. The Figure

9(a),9(b), 9(c) are the Rt estimates run for different i.e. 1/45, 1/60, 1/30 for 12 countries. Theγ 𝑣𝑎𝑙𝑢𝑒𝑠 
values considered are based on assumptions of average time taken for recovery.γ

Figure 9(a) : Estimation plot run for 12 different countries for = 1/45 with in red and normalised number of new𝑅
𝑡

γ 𝑅
𝑡

infected by their respective population in blue bars on the y-axis, whereas x-axis is for the number of days starting from the

day cases of infection is greater than 1000. The infected cases in blue are normalised to fit the scales [18]
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Figure 9(b) Estimation plot run for 12 different countries for = 1/60 with in red and normalised number of new𝑅
𝑡

γ 𝑅
𝑡

infected by their respective population in blue bars on the y-axis, whereas x-axis is for the number of days starting from the

day cases of infection is greater than 1000. The infected cases in blue are normalised to fit the scales [18]
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Figure 9(c) : Estimation plot run for different countries for = 1/30 with in the red and normalised number new𝑅
𝑡

γ 𝑅
𝑡

infected by their respective population in blue bars on the y-axis, whereas on the x-axis for time i.e number of days starting

from the day cases of infection is greater than 1000 cases. The infected cases in blue are normalised to fit the scales [18]

4.1.0 Results Interpretation

One can observe from Figures 9(a), 9(b) and 9(c) that the values influence the reproductionγ
numbers The higher the recovery period is, the higher the reproduction number When𝑅

0
=  β/γ. 𝑅

𝑡
.

making comparisons of the real estimates that are sourced from the official websites to the Rt

estimates produced by the model with values 1/45 referring to fig 9(a), the model seems to give theγ
closest Rt as compared to other values 1/30, 1/60. Although for some countries there are no officialγ
reports for their estimated to be able to make comparisons with the given figures we have been𝑅

𝑡

able to get out hands on official estimates for Norway and UK which is discussed in the next section

4.2 ‘Comparing Estimated from the Model and Official values’.𝑅
𝑡

𝑅
𝑡
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4.2 Comparing Estimated from the Model and Official values𝑅
𝑡

𝑅
𝑡

Norway

Figure  10(a): Model Comparison: Norway estimated in red versus values from the official estimates in green in y-axis𝑅
𝑡

𝑅
𝑡

and x-axis corresponds to the number of days with MSE (mean square error) = 63.79480382778067

According to the official sources, the first confirmed case of coronavirus infection was found in

Norway on 26th February 2020. Since then there has been a quick increase in the number of

confirmed cases of infection in the month of March 2020 which led the government to start

introducing social distancing measures by mid of march 2020. The early wave of the virus seems to

have first been traced back to some Norwegian tourists returning from Austria and Italy. So according

to Table(1) which are the official Rt numbers released by the NIPH Norway, the first estimate for the

R0 reproduction number started at 3.1 average and then numbers went down due to lockdown. The

Rt numbers, however, went back as the lock measures were eased out [19].

The results in figure 10(a) represent the comparisons of Rt values estimated by the model for Norway

in red and Rt estimates released by the official departments in Norway in green. The trends in figure

10(a) do not exactly match up with the estimated values of the model versus an official,  although

they seem to intersect at certain points, the official estimates seem to be overestimating at many

places compared to model Rt value estimates, which is beneficial in a way because it prevents from

being underprepared for essential things like arranging beds and respirators in health care services as

well as the policy-making for a pandemic like Covid-19 disease that has already claimed many lives.
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Table(1) Official Reproduction number dated from 17 February 2020 - 13 th June 2021 released by FHI, Norway

https://www.fhi.no/en/publ/2020/weekly-reports-for-coronavirus-og-covid-19/

Reproduction Figures Average

R0(Starting from Outbreak- 15th march) 3.1 (2.5 - 3.9)

R1(15th March - 20th April) 0.5(0.4- 0.6)

R2 (20th April - 11 may) 0.7(0.3 - 1.0)

R3(11 May - 30 jun) 0.7(0.3 - 1.0)

R4(1st July - 31st July) 0.9(0.2- 1.5)

R5(1st August - 30 th August) 1.1(0.8 - 0.14)

R6(1st Sept - 31st September) 0.9(0.7 - 1.1)

R7(1st Oct - 25 th October) 1.2(1.0 - 1.04)

R8(26th Oct - 4 November) 1.4(1.1 - 1.6)

R9(5 th Nov - 30 th November) 0.8(0.7 - 0.9)

R10(1st Dec - 4th January) 1.06(1.0 - 1.11)

R11(4 th January - 21 st January) 0.6(0.5 - 0.7)

R12(22 nd January - 7 th February) 0.8(0.7 - 1.0)

R13 (8 Feb - 1st March) 1.5(1.3 - 1.6)

R14( 1st March - 24th March ) 1.1(1.0 -1.2)

R15(25 March - 15 th April 2021) 0.79(0.74 - 0.84)

R16(16 th April - 5 May 2021) 0.84(0.77- 0.93)

R17(from 6th May to 19 May 2021) 1.1(0.9- 1.2)

R18 (from May 19 2021) 0.7(0.5 - 0.8)
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United Kingdom

Figure 10(b) Model Comparison: United Kingdom estimated in red versus values from the official estimates in green in y-axis and𝑅
𝑡

𝑅
𝑡

x-axis corresponds to the number of days  with MSE (mean square error) = 43.876002474772825

The first confirmed case in the UK was reported on 31 January 2020, The UK government started

introducing social distancing and other measures to the public in February 2020 and more stringent

regulations such as lockdown for England were introduced sometime in March[20].

Official Rt estimates from the UK are available on their official website. From what you can observe

trends in figure 10(b) the official estimates known as the “Real” estimates in the figure did not seem

to cover the period entirely as compared to the model due to insufficient data. The time series

provided on the official website does not seem to be updated since the end of March 2021. The real

Rt estimates in the 10(b) do not seem to have many highs and lows compared to the Norwegian

figure 10(a), although they are known to have handled the pandemic more poorly compared to the

rest of Europe. In my experience, the official estimates sourced from the time series dataset do not

seem to be reliable for performing comparisons of Rt values. One of the reasons being that the Rt

estimates that the report provided seem to be around 0.8 dated 29 May 2020  which seems not

correct R0 value considering the pandemic started sometime in February and the other being due to

lack of complete data[20].
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4.3 Actual cases of Infection versus fitted data by the model

The results for the daily actual cases versus cases fitted by the model are presented in figures 11(a)

and 11(b) to represent the countries Norway and the United Kingdom. The trend that is apparent in

both the figures shows a similar kind of overlap of actual cases of infection which is denoted by V’ in

green versus daily cases fitted by the model denoted by I’ in red.

Although the red lines seem to be more prominent in both the figures due to the overlap, once

zoomed in, you clearly see separated lines like in figures 12(a) and 12(b) which means there is a

discrepancy between actual cases versus fitted although it seems very minor.

Figure 11(a): The plot corresponds to the difference between V’(actual number of daily infected cases) and I’ (daily infected

cases fitted by the model) for the country Norway. The green line here represents the actual number of cases V’ and the red

line represents the I’ fitted daily cases by the model. In this figure both the red and green seem to overlap each other hence

red looks more prominent it could because of minimal discrepancy. Here, the MSE(Mean Square Error) calculated for

Norway is 8.161696788800855.
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Figure 11(b): The plot corresponds to the difference between V’(actual number of daily infected cases) and I’ (daily infected

cases fitted by the model) for Norway. The green line here represents the actual number of cases V’ and the red line

represents the I’ fitted daily cases by the model. In this figure both the red and green seem to overlap each other hence red

looks more prominent it could because of minimal discrepancy. Here, the MSE(Mean Square Error) calculated for the UK is

1729.156815617208.

Figure 12(a): This is the zoomed-in version of Figure 11(b) where you see the line for the daily actual infection cases V’ in

green and I’ is the daily infection cases fitted by the model in red.
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Figure 12(b): This is a zoomed-in version of Figure 11(a), where you see the line for the daily actual infection cases V’ in

green and I’ is the daily infection cases fitted by the model in red.
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5. Discussions and Conclusions

In this thesis we delved into the history of epidemics to learn about why and how the modelling of

epidemics started, describing the different models from gathering information to building the most

advanced models of today that are being used to analyse the corona pandemic. I follow it up with

briefing the associated limitations of these models as well. I further discussed the concepts that were

first introduced by the various experts that shaped today’s epidemiological models and the detailed

timeline of its evolution. In the next chapter about ‘Compartmental Models,’ I studied the SIR models

and it’s extensions such as SIS, SEIR, MSEIR and SIR-D along with some brief analysis on SIR and

SIS model, and then progressed to discuss the highly relevant state-of-the-art epidemic models in

Chapter 3.

For analysis, I go ahead and apply a specific SIR model proposed in “Estimation of Time-Dependent

Reproduction Number for Global COVID-19 Outbreak” authors Petrova, T.; Soshnikov D.; Grunin A

[18] to derive estimates for the number of infected people and the associated Rt values. In this

implementation, the recovery rate is kept constant. Furthermore, I tried to explore the effect of the

recovery rate, by varying its values and performing a comparative analysis. The main findings when

varying the recovery rate were:

● The higher the recovery period the higher the Rt values.

● A recovery rate of 1/45 seems to yield more accurate results compared to 1/60 and 1/30.

And the findings from the comparative analysis between Rt values that are official versus estimated

by the model were :

● The Rt value trends by model do not exactly match with real official estimates.

● The official Rt values always seem to be overestimating compared to Rt model estimates.

● The calculated MSE(Mean Square Error) for Norway is higher around 63.79 and the UK is

nearly 44.

Finally, important findings from actual cases of infection versus fitted data by the model tell us that:

● The results for daily new cases from actual data and the one fitted by the model seem to be an

overall good fit except for a few places.

● The more accurately both the results fit together the more accurate values are derived fromβ
the model.

Putting these main results into perspective, several remarks should be pointed out.

First, acquiring the right data set Rt values for several countries has been challenging. Due to

compatibility issues and time constraints, I have been able to choose only two countries namely,

Norway and the United Kingdom to do the comparison of Rt values (official versus model) in this

project. Comparisons between estimated Rt values by the model and the official estimates show

different trends at different timelines, however, they do intersect at certain points. Overall, they don’t

31

http://soshnikov.com/


seem to be an exact match which is a given considering the models being used to produce the official

estimates for Norway and UK are advanced and complex stochastic models and data relied upon is

constantly updated and so are the parameters. The model used in the paper [18] requires more

updated model formulation to keep with accuracy and changing disease dynamics such as SEIR. To

get better results, one could adapt the SEIR model approach for accurate results in the future instead

of SIR as it captures epidemic better and is closer to the real-world scenarios. Also, a standard SIR

model still lags in describing external factors that influence pandemic diseases.

Second, there is the effect of heterogeneity of all the parameters such as and and Rt that varies inβ γ
different parts of the geographical location and demographics of a population. If you need to estimate

the R-value at a national level, it is usually done so by taking an average of all R values of the

respective provinces/municipalities just the way mentioned in the meta-population model in

Norway[12]. Although it could be a challenge estimating R in smaller municipalities where the

population and infected cases are scarce. So the national estimate for R-value may not correspond to

disease trends in all of its subregions, especially the ones with very low numbers in population or

infections [20].

Finally, it is also important to consider the fact that the mathematical models used by different

organisations to simulate the spread of the diseases may vary from one another and the data is also

sourced differently. Although the models are built to replicate closest to real-life situations even with

the stochastic models there is always still a bit of uncertainty involved. As far as policymaking is

concerned, some experts say that a single epidemic model is not a very reliable source to answer

questions about whether they exactly fit the real-world scenarios but I believe that they are somewhat

a good start[20].

For a more accurate approach, results from several models should be taken into account to accurately

conclude about the disease. Therefore for future work consideration, I think it would be interesting to

experiment with models such as Marchov chains or spatial distribution to evaluate parameters that

could define the disease model in a new context.
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