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Abstract 
 

This thesis studied whether including the information contained in the first day IPO returns 

can be used to improve forecasts of the performance of financial markets. The S&P 500 index 

was used as a proxy for the financial market. The thesis utilized Hamilton’s (1989) regime 

switching model in identifying the regimes in the training data. All the models contained two 

regimes, representing bull and bear markets. The first model was a regime switching (RS) 

model on the S&P 500 log returns, in the second model the VIX and the TED spread were 

added as regressors, in the third model the first day IPO returns was also added as a regressor. 

A GARCH(1,1) model was also be fitted to the S&P 500 log returns. The RS models and the 

GARCH model’s performance was compared on pseudo out-of-sample performance during 

the first quarter of 2020. In addition, each RS model were back tested using Markowitz (1952) 

portfolio optimization theory, and compared to a portfolio created by an AR(1) model on the 

S&P 500 log returns that did not allow for regime switching. The back testing was done in the 

time period extending from January 1990 until December 2019. The results of the study 

showed that IPO returns had a non-statistically significant positive correlation with the S&P 

500 log returns. In the negative returns regime, the IPO returns showed the highest level of 

significance, with a p-value of 0.1915. The results of the pseudo out-of-sample forecasts 

showed that the model that included the IPO returns performed the worst when forecasting the 

S&P 500 log returns during the first quarter of 2020. The best performing model in 

forecasting was the RS model that included the VIX and the TED spread as regressors, which 

even outperformed the GARCH model. The GARCH model outperformed the other RS 

models in the pseudo out-of-forecast. In back testing, there was a different story. Here, the 

best performing model was the RS model that included the IPO returns, which marginally 

outperformed the S&P 500 RS model. All the RS models outperformed the model that did not 

allow for regime switching. The RS model that included IPO returns had a holding period 

return that was 0.3% higher than the S&P 500 RS model. This comparison was done without 

considering the costs associated with trading. The S&P 500 RS model required rebalancing 9 

times during the period, whereas the RS model that included the IPO returns required 

rebalancing 48 times in the same time period. These results indicate that adding IPO returns to 

the models did not add value to either the pseudo out-of-sample forecasts or in portfolio 

optimization. 
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1. Introduction 

 

The aim of this thesis is to explore if the information contained in the performance of first day 

returns of Initial Public Offerings (IPOs) can be used to improve forecasting of the 

performance of the financial market. The study will explore a regime switching model 

(Hamilton, 1989) on the S&P 500 log returns, and see how including traditional risk 

measures, and first day returns of IPOs, will affect the model. The reasoning behind this is 

that 2019 was a year where high-profile IPOs performed poorly. These include the IPOs of 

Lyft, Uber and Peloton, in addition to the IPO of WeWork which did not go through as 

planned (Bloomberg, 2019). Using the result of the forecast we will make suggestions for 

portfolio management using Markowitz portfolio theory (Markowitz, 1952). 

 

To evaluate IPO returns as a factor, a regime switching model is employed to estimate returns 

and volatility in the U.S. stock market within two regimes: bull and bear markets. The data 

used was collected using the Thomson Reuters Eikon database, Yahoo Finance and The 

Federal Bank of St. Louis. Using the regime switching model, the study will try to predict 

when regime switch will occur with better accuracy by only using established indicators like 

the TED spread and the VIX. Using the results from the regime switching models, portfolio 

strategies that gives the highest risk adjusted return will be created for the different forecasted 

regimes. Each model will be back tested using the holding period return for 1990-2020. The 

models will also be compared using pseudo out-of-sample performance for the first quarter of 

2020. The regime switching models will also be compared to the pseudo out-of-sample 

performance of a GARCH model (Bollerslev, 1986) of the S&P 500 log returns. 

 

In economic theory, it is an established fact that the economy moves through cycles of booms 

and recessions (Diebold & Rudebusch, 1996; Harding & Pagan, 2002). 2019 marks the 10-

year anniversary of one of the longest bull markets in history. The start of the bull market is 

marked by the lowest close of the S&P 500 index, which closed with a value of 676.53 on 

March 9th, 2009 (Macrotrends, 2019). In 2019, stock indices around the world were hovering 

around all time high levels. The S&P 500 hit an all-time closing high of 3025.86 on July 26th, 

2019, after which it fell by a small amount, until it started increasing to new all-time highs in 

the last quarter of 2019. The performance of the S&P 500 during the last 30 years is shown in 

figure 1.1. 
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Figure 1.1. The S&P 500 during the last 30 years. 

 

Despite indices such as the S&P 500 hovering around all time high levels in late 2019, 

indicators that suggest that the market is in the later stages of the business cycle started to 

emerge in 2018 and 2019. This include indicators such as the VIX, the TED spread and the 

slope of the zero curve, which have been showed to be correlated with the performance of the 

market indices such as the S&P 500 (Hull, 2012). During 2018 and 2019 the VIX showed an 

increase in the expected volatility in the markets, and the slope of the zero-curve inverted 

from positive to negative. 

 

The argument for using IPO returns as an indicator for the state of the market is that 

historically IPOs tend to deliver results, that on average, are worse than a small cap index 

(Siegel, 2005). However, the distribution of IPO returns has a positive skew and fat tails, 

meaning that if an investor buys the right issue, he will achieve returns that are far above 

average (Ibbotson, 1975). Investing in IPOs can therefore be regarded as a quite speculative 

investing strategy. The argument for using IPO performance as an indicator of the market 

cycle is that when there is expected turbulence in the markets, investors tend to move from 

risky asset classes toward less risky assets. When investors are no longer willing to participate 
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in new IPOs, the argument is that they are acting more prudent due to negative expectations 

for the future.  

 

Another argument for the use of IPO returns is the information asymmetry associated with 

IPOs (Eckbo, 2007). The investment banks and issuing firm have a much higher degree of 

information about the prospect than potential investors buying the IPO, which hinders 

investors in making the same degree of informed investment decisions as compared to the 

more thoroughly analyzed open market. One of the reasons corporations have for going public 

is the current need for capital (Ibbotson, Sindelar & Ritter, 1994). To raise as much capital as 

possible the underwriting investment bank of the IPO tries to find the highest offer price 

where demand is still met. The valuation of the issuing company can be challenging for the 

investment bank. Often the companies going public are characterized by high growth but does 

not have much of a positive cash flow to show for. The investment bank must often base the 

valuation on growth projections for the issuing company, rather than the value of existing 

cash flows. In booming financial markets, investors tend to assign more value to a company’s 

projected growth possibilities than in the company’s actual earnings, as seen in the dotcom 

bubble of the late 1990’s. If the offer price is set too high by the investment bank in the late 

stages of a booming market, and the investors are not willing to accept this price, this can be 

an indication that the psychology dominating the market is changing, and that the market’s 

sentiment is moving away from projected growth and toward fundamental value. The 

argument is that this is a shift that will occur in the later stages of the boom cycle, and that 

poorer performance of IPOs is a sign of this shift.  

 

The remainder of this paper is organized as follows. Section 2 will consist of a review of 

literature covering business cycles, IPOs and portfolio theory. Section 3 will describe the 

methodology of the thesis, the regime switching model and the GARCH model. This section 

will also present the data used in this thesis. In section 4, the results of the regime switching 

model and the portfolios created by each model will be presented, in addition to the results of 

the GARCH model. This is followed by a discussion of the results. Section 5 consists of the 

conclusion.  
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2. Previous research and theory 

 

2.1 Business cycles 

 

Financial markets can change their behavior quickly, going from boom to bust. Many studies 

have been conducted trying to identify macroeconomic factors that can be used in forecasting 

the variance seen in the return of financial assets. This part will describe the stages of a 

financial crisis and factors that can be used to forecast an increase in financial volatility.  

 

The typical financial crisis consists of two distinct phases (Mishkin, 2019). The first phase 

consists of a boom and bust in the credit market and in asset prices. The credit boom and bust 

stage is characterized by irresponsible lending and introduction of new speculative financial 

products. Restrictions and regulation of the markets tend to become more relaxed. Financial 

institutions tend to go on a lending spree, the credit boom. During this boom, the lenders may 

not have the ability, or incentive, to properly manage the credit risk they take on. Eventually 

the less qualified borrowers start to default on their loans, driving down the capital of the 

financial institutions. With less capital available the financial institutions are forced to cut 

back on lending. The reduced availability of capital increases the risk profile on the financial 

institutions, causing lenders to pull their funds out of the financial institutions. With lesser 

funds available, the financial institutions are not able to make loans and the credit market can 

freeze up, leading to a lending crash.   

 

The boom and bust stage in assets is characterized by pricing of the assets that are more 

driven by the psychology of the market, rather than the fundamental economic value of the 

assets, causing an asset-price bubble. The asset-price bubble is often driven by a credit boom. 

When the bubble bursts, the asset-prices tend to fall until a balance with the assets 

fundamental value is achieved. The fall in asset prices will reduce the net worth of companies, 

and financial institutions will be more restrictive in their lending to companies, and it will be 

harder for the companies to get funding for their projects. Due the fall in asset-prices, the net 

worth of the financial institutions themselves will also decline, and lead to a decline in their 

balance sheet. They will have to lower their lending activity, which will lead to a decline in 

the overall economic activity.  
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The second phase of a financial crisis is characterized by a crisis in the banking sector. When 

the balance sheet of the financial institutions declines, their funds are may dry up, leading to 

insolvency. If some banks are not able to meet their obligations and go out of business, a run 

on other banks may follow, forcing the banks to sell off their assets quickly in order to raise 

the funds necessary. This can leave these banks insolvent, and the panic in the sector will 

increase. This can trigger the authorities to bail out or shut down the insolvent firms and sell 

them off or liquidate them, to reduce the uncertainty in the financial markets. If successful, 

the economy can start recovering. 

 

When signs of a financial downturn start to appear, it is seldom one specific event that 

triggers a financial crisis. Usually, there are several events that happen over a short period of 

time that cause the volatility in the stock market to rise. Since such event tend to happen in 

such close proximity, it has been termed volatility clustering. Volatility, due to its behavior, 

has become an important input in asset pricing, and portfolio- and risk management (Schwert, 

1989 a). The observed volatility has been showed to have an impact in predicting business 

cycles (Schwert, 1989 b; Paye, 2012; Chauvet, Senyuz, Yoldas, 2015). Schwert (1989 b) and 

Paye (2012) found that the stock market volatility then to move countercyclically. When the 

volatility in stock returns increases, the GDP growth rate tend to fall. The relationship implied 

is that the preceding volatility can be used as an indicator for the state of the economy.   

From a portfolio- and risk management perspective, trying to forecast the volatility of stock 

return is of great concern, and a lot of work has gone into to identifying macroeconomic 

factors that can be used in forecasting the performance of stocks. Using a simple linear 

forecasting model, Paye (2012) showed that factors such as commercial paper-to-Treasury 

spread, default return, default spread and investment-to-capital ratio can be used to forecast 

the onset of recessions, which in turn will drive volatility and expected stock returns.  

 

Christiansen, Schmeling & Schrimpf (2012) developed a more extensive model than Paye 

when trying to identify macroeconomic factors that can be used in forecasting the 

performance of the equity market. First, they developed a model that included the volatility in 

the foreign exchange market, the bond market and in commodity markets, in addition to stock 

volatility as the explanatory variables. In addition to this model, they also explored a model 

that contained 38 explanatory variables. They were able to identify the following variables as 

statistically significant predictors for volatility observed in asset markets: valuation ratios, 

interest rate differentials in foreign exchange markets, and proxies for market liquidity and 
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credit risk such as the TED spread. They found that other macroeconomic variables, and their 

proxies, had little or none significance in forecasting volatility of financial assets.  

 

Wang, Wei, Wu & Yin (2018) found that the volatility of crude oil has a positive predictive 

relationship with stock volatility and can be used for forecasting the volatility of stock returns 

in the short term, up to 9 months. Crude oil is an important factor of production in modern 

industry, and earlier studies have shown that shocks in the oil price has impacted both the real 

economy (Hamilton, 1983) and future cash flows of companies (Jones & Kaul, 1996). Wang, 

et al. found that the forecasting power of crude oil was stronger using WTI oil rather than 

using Brent oil. 

 

These studies only skim the water of the many attempts done in trying to identify factors that 

can help forecast the direction of the asset markets. In order to keep the models simple in this 

thesis, only traditional risk measures such as the VIX and the TED spread will be used in this 

study. 

 

2.2 IPOs 

 

Initial public offerings (IPOs), the process where a company offers shares to the public in 

order to raise capital, has been a topic of great interest for researchers within finance. The 

topic started attracting attention in the 1960’s, and gained popularity in the 1970’s with 

publications such as Louge (1973), Ibbotson (1975) and Ibbotson and Jaffe (1975). These 

early studies focused on the performance, both initially and in the aftermarket, of stocks 

issued to the public market during the 1960’s. The results from these early studies showed 

that when a company go through with an IPO, the shares issued tend to be underpriced and 

that the investors who bought shares at the issuing offer price tend to make relatively large 

profits. The investors cannot be sure if any single investment in a new issue will give him 

positive returns, but the distribution of the initial returns shows a positive skew and fat tails. 

Thus, if the issue has a positive return, it is likely that the return will be much larger than the 

loss experienced in a negative return issue (Ibbotson, 1975).  

 

The parties involved in an IPO are the issuing company, the investors and investment bankers 

(Louge, 1973). The role of the investment bankers is to be middlemen between the issuing 

company and the investors. They commonly buy the stocks from the issuing company, then 
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resell them to investors in the public market. In addition, they assist the issuing company with 

procedural and financial advice. Because of the double role the investment bankers play, they 

must try to please both the issuing company and the investor who will buy the issue. If the 

issue is underpriced by too much, the investment bankers will reduce their own risk and gain 

favors with the investors but is likely to lose out on business from future issuers. If the issue is 

priced at equilibrium, or is overpriced, the investment bankers will take on unwanted risk, and 

lose favor with the investors. The investments bankers may also lose potential future issuers if 

they consistently show that they are not able to sell the issuing stocks. Due to these reasons, it 

is expected that new issues will be underpriced.  

 

In the wake of these initial studies, a lot of the research regarding IPOs have tried to identify 

as to why IPOs tend to show this underpricing behavior. The theories regarding IPO 

underpricing have be divided into four main groups: asymmetric information, institutional 

reasons, control considerations and behavioral approaches (Eckbo, 2007). The theory that has 

received the most attention is the theory of asymmetric information, which states that the 

parties involved in the IPO: the issuing firm, the investment bank and the investors, have 

different levels of knowledge about the financial state of the issuing firm (Baron, 1982; Rock, 

1986; Welch, 1989). This asymmetry in information is assumed to be the cause of the 

observed underpricing. 

 

Baron’s (1982) model claims that the investment banker has more information about the 

market demand than the issuing company and is in a superior position to the issuing firm 

when the negotiations with the issuer is initiated. This will allow the investment banker to 

take on less risk and demand a larger compensation from the issuing firm, and the issuer will 

lose out on the contract. The problem of moral hazard arises.  

 

Baron assumed that the issuer is in need to raise capital, and that the contract initially entered 

into with the investment banker will specify the number of shares to be issued. The only 

factor affecting the issuer’s proceeds will be the offering price and the terms of the contract 

with the investment banker. The proceeds, 𝑥 = 𝑥(𝑝, 𝑒, 𝜃), will be a function of the offer price, 

𝑝, the distribution effort of the investment banker, 𝑒, and a parameter vector, 𝜃, that 

represents the factors affecting the demand for the issue. The distribution efforts of the 

investment banker are the extent to which the investment banker is able to persuade investors 
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to buy the issue, assumed to be influenced by the investment banker’s superior information 

about the issue compared to the investors.  

 

The investment banker and the issuer are assumed to have knowledge about the demand 

vector, 𝜃, which is conditional on the parameter 𝛿, giving the conditional density function 

ℎ(𝜃|𝛿). The investment banker is assumed to be more informed about 𝛿 than the issuer.  

The relationship between the proceeds and 𝑝, 𝑒 and 𝛿 is given by the density function 

𝑔(𝑥|𝑝, 𝑒, 𝛿) induced on 𝑥 by the probability distribution ℎ(𝜃|𝛿). The proceeds are assumed to 

be strictly increasing in 𝑒, the more effort the investment banker puts into the distribution the 

larger the proceeds to the issuer, and decreasing in 𝛿, if the issuer has less favorable 

information the lower his proceeds will be. 

 

The issuer’s objective is to specify a compensation function, 𝑆, that incentivize the investment 

banker to exert greater sales efforts than he normally would and to using his knowledge, 𝛿, to 

set an offer price that is optimal for the issuer. The investment banker will set an offering 

price as a function of the value he reports to the issuer, 𝑝 = 𝑝(�̂�), where the reported 

knowledge of the demand, �̂�, may not be equal to the true knowledge parameter, 𝛿. The issuer 

may accept this price, or choose to withdraw the issue. 𝜋(�̂�) will denote the probability of 

going forward with the issue, and 1 − 𝜋(�̂�) will denote the probability that the issue will be 

withdrawn. The compensation function 𝑆̅(𝑝, �̂�, 𝑥) will be a function of the offering price, �̂�, 

and the proceeds, 𝑥. The contract the issuer offer will be constructed on a basis of the 

functions (𝑝(�̂�), 𝑆̅(𝑝(�̂�), �̂�, 𝑥), 𝜋(�̂�)). 

Given (𝑝, 𝑆̅, 𝜋), the investment banker will choose to accept or reject the offer based on his 

true knowledge of 𝛿. If the investment banker proceeds with the process, the offer price will 

be set as 𝑝(�̂�) and the compensation can be expressed as the function: 

 𝑆(�̂�, 𝑥) = 𝑆̅(𝑝(�̂�), �̂�, 𝑥)                                                                                                                     (2.1) 

If the issue is withdrawn, the investment banker will not receive any compensation. This risk 

must be accounted for when calculating the investment banker’s income. The investment 

banker’s income 𝑅∗ can be written as: 
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𝑅∗(�̂�, 𝑒, 𝑥) = [𝑆(�̂�, 𝑥) − 𝐶(𝑒)]𝜋(�̂�)                                                                                               (2.2) 

 

where 𝐶(𝑒) is the cost of the distribution efforts. 

The investment banker is assumed to be risk neutral and seek to maximize his expected net 

income: 

 

 𝑅∗(�̂�, 𝑒, 𝑥) = ∫𝑅∗(�̂�, 𝑒, 𝑥)𝑔(𝑥|𝑝(�̂�), 𝑒 𝛿) 𝑑𝑥                                                                             (2.3) 

 

The investment banker’s distribution efforts are a function of his true information, 𝛿, and his 

report, �̂�. His optimal distribution effort is given by: 

 

𝑒(�̂�, 𝛿) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒(𝑅
∗(�̂�, 𝛿, 𝑒) = 𝜋(�̂�)∫[𝑆(�̂�, 𝑥) − 𝐶(𝑒)]𝑔(𝑥|𝑝(�̂�), 𝑒, 𝛿) 𝑑𝑥)               (2.4)  

 

where argmax is the argument that maximize the investment banker’s income, 𝑅∗. 

If the securities are issued, the issuer’s net proceeds, 𝑁(𝛿), are given by: 

 

𝑁(𝛿) = ∫(𝑥 − 𝑆(𝛿, 𝑥)𝑔(𝑥|𝑝(𝛿), 𝑒, 𝛿) 𝑑𝑥 )                                                                                 (2.5) 

 

The issuer does not know the true 𝛿 when entering into the contract with the investment 

banker. Therefore, he must try to maximize his expected net proceeds by: 

 

𝑁 = ∫𝜋(𝛿)[𝑁(𝛿) − �̅�(𝛿)]𝑓(𝛿) 𝑑𝛿                                                                                               (2.6) 

 

The issuer’s problem can be stated as: 

 

𝑚𝑎𝑥𝑝(𝛿),𝑆(𝛿,𝑥),𝜋(𝛿)∫(∫(𝑥 − 𝑆)𝑔(𝑥|𝑝(𝛿), 𝑒(𝛿, 𝛿)𝛿)𝑑𝑥 − �̅�(𝛿)) 𝜋(𝛿)𝑓(𝛿) 𝑑𝛿                  (2.7) 

𝑠. 𝑡.    𝑅(𝛿, 𝛿, 𝑒(𝛿, 𝛿)) ≥ 𝑅 (�̂�, 𝛿, 𝑒(�̂�, 𝛿))    𝑓𝑜𝑟 𝑎𝑙𝑙 �̂� 𝑎𝑛𝑑 𝛿                                                    (2.8) 

          𝑒(�̂�, 𝛿) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒𝑅(�̂�, 𝛿, 𝑒)     𝑓𝑜𝑟 𝑎𝑙𝑙 �̂� 𝑎𝑛𝑑 𝛿                                                            (2.9) 

          𝑅(𝛿, 𝛿, 𝑒(𝛿, 𝛿) ≥ 0     𝑓𝑜𝑟 𝑎𝑙𝑙 𝛿                                                                                            (2.10) 

          1 ≥ 𝜋(𝛿) ≥ 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝛿                                                                                                      (2.11) 
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The constraints represent the actions of the investment banker. Since the issuer does not know 

the true value of 𝛿, he will not be able to find the optimal solution of this equation set. This 

represents the heart of the problem of the information asymmetry between the issuer and the 

investment banker. Because of this, the issuer must offer a compensation to the investment 

banker that is sufficiently large in order to incentivize him to offer his information truthfully, 

as represented by equation 2.8. This requires the issuer to offer a price that is below the 

optimal offer price, leading to underpricing of the issue. 

 

Rock’s (1986) model is concerned with the information asymmetry that arises between 

investors of a new issue that have superior information about the demand for the issue, and to 

those investors that are less information about the demand for issue. The basic premise of 

Rocks model is that the price of an issue is observable, whereas the demand for the issue is 

not directly observable. Because of this, the price of the issue might not correspond to the 

demand, and uninformed investors can never be sure if a high-priced issue represents 

favorable information, or is caused by some extraneous factor(s). If the observed price in fact 

does not correspond with the level of demand, informed investors who spends a lot of time 

analyzing securities may be able to uncover this fact and can profit from buying mispriced 

securities.   

 

When a new issue is offered, the issuer and the investment bank typically set a price, 𝑝, and a 

quantity, 𝑍, of the equity to be offered. This will not be allowed to change on the day of the 

offering. Based on this price, there might be excessive demand or excessive supply of the 

issue in the market, which will not be observable until after the offering date. If there is excess 

demand, the investment bank typically will ration the shares, if there is excess supply the offer 

will not be able to sell all the shares. The value of the per share, �̃�, is uncertain. 

The issuing firm and the investment banker is assumed to be better informed than any other 

market participant about the future of the company. However, the market as a whole will be 

better informed than the issuer and the investment banker. Individual market participants may 

be better informed in areas such as the issuer’s competitors and the appropriate discount rate 

for cash flows in the capital market. 

 

Rock’s model makes some assumptions, which include the assumptions that the informed 

demand, 𝐼, is no greater than the mean value of the shares offered, �̅�𝑍, the uninformed 

investors have homogenous expectations about the distribution of �̃�, and that all investors 
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have the same wealth, set equal to 1,  and the same utility. The model also assumes that it is 

the issuing firm that dictate the price of the offering and bears the risk of the issue being 

undersubscribed. 

 

Informed investors will submit orders for shares as long as the realized value per share, �̃�, 

exceed the offering price, 𝑃, and they will order to the full extent of their wealth: 

 

𝐼   𝑖𝑓   𝑝 < �̃�, 

0   𝑖𝑓   𝑝 > �̃�                                                                                                                                       (2.12)   

 

The uninformed investors are not to predict the realized value per share, �̃�. Each of the N 

uninformed investor will wants to invest all of his wealth, 𝑇, in a new issue, with no regard to 

the realized wealth per share. This leads to the combined demand for the issue to be: 

 

 𝑁𝑇 + 𝐼   𝑖𝑓   𝑝 < �̃�, 

 𝑁𝑇           𝑖𝑓   𝑝 > �̃�                                                                                                                           (2.13)                                                                                                              

 

If  𝑝 < �̃�, the issuer will experience excess demand and the probability that the order will be 

filled is 𝑏. If 𝑝 > �̃�, there will be excess supply, and the probability of the order being filled is 

𝑏′.  

 

If the issue is oversubscribed, rationing of the orders must occur. The value of the issue will 

be the sum of the orders filled: 

 

𝑏𝑁𝑇 + 𝑏𝐼 = 𝑝𝑍,    𝑖𝑓  𝑏 < 1                                                                                                           (2.14) 

 

Rearranging and taking the expectation: 

 

𝑏 = min (
𝑝𝑍

𝑁𝑇+𝐼
, 1) ,    𝑖𝑓   𝑝 < �̃�                                                                                                     (2.15)   

𝑏′ = min(
𝑝𝑍

𝑁𝑇
, 1) ,     𝑖𝑓   𝑝 > �̃�                                                                                                    (2.16) 
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It follows that 𝑏 < 𝑏′, and that the probability for an uninformed investor of receiving an 

underpriced issue is less than or equal to the probability of receiving an overpriced issue. This 

will introduce a bias against the uninformed investors, where they will only receive some the 

shares if the informed investors find the offer attractive and all of the shares if the informed 

investors find the offer to be unattractive. This has popularly been termed “The Winner’s 

Curse”.  

 

Another popular term in the IPO literature is phenomenon of “Hot Issue Markets” (Ibbotson 

& Jaffe, 1975). They showed that the extent of the underpricing seen in IPOs varies over time. 

The number of companies going public also tend to vary over. Some periods are characterized 

by IPOs being overpriced when they are issued to the market. However, periods where IPOs 

are underpriced are much more common. In periods significant underpricing is observed, that 

coincides with a high number of companies going public are known as “Hot Issue Markets”. 

Ibbotson & Jaffe observed that such market conditions tend to be predictable, and that the 

numbers of new issues in a given months is predictable. They argued that this happens 

because underwriters tend to price IPOs by multiply the issuing firm’s current earnings by an 

industrywide P/E ratio. This P/E ratio tends to be based on observations that are several 

months old. Thus, new issues tend to follow past market performance. 

 

The underpricing observed in IPOs tend to be evident fairly quickly, usually in the first day of 

trading, after which the share price tends to stabilize (Eckbo, 2007). Because of this, most 

studies investigating underpricing tend to focus on data from the first day of trading, and the 

IPO returns are usually estimated as the difference in the offering price and the closing price 

of the first day of trading. 

 

Several studies have been conducted trying to establish a relationship between the volume of 

IPOs and the overall business cycle. Typically, this has been done by comparing the securities 

issuing market (primary market) and the securities trading market (secondary market). It has 

been shown that these markets influence each other (Ibbotson, Sindelar & Ritter, 1994; Ritter, 

2003). Some studies have shown that it is primarily the secondary market that impacts the 

primary market, and that it is the performance of the stock market that will influence the IPO 

activity (Ritter, 2003; Kim & Weisbach, 2008). The hypothesis that it is the performance of 

the stock market that influences IPO performance has been termed the “IPO Cycle 

Hypothesis”.  
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The opposing view, that it is the performance of the primary market that influences the 

secondary market have also gained some support. This has been termed “The “Expansion 

Curse Hypothesis”, which claims that an expansion in the primary market will lead to a 

decline in stock prices (Baker & Wugler, 2000; Ofek & Richardson, 2000; Braun & Larrain, 

2009). 

 

Jin, Gou, Zhou and Li (2016) showed that there is an interaction between the primary and 

secondary market in the China. They found that in generall, it is the secondary market that 

had a one-way impact on the primary market. However, when they partitioned the secondary 

market into bull and bear markets, they fund that during bull markets it was the secondary 

market that has a one-way impact on the primary market, while during bear markets the 

primary market had a one-way impact on the secondary market. During bear markets, this 

impact was negative, meaning that an increase in the IPO financing amount would 

significantly have a negative effect on the performance of the secondary market. However, it 

is worth noting that the Chinese stock market is not a fully developed free market, showing 

some characteristics of being an emerging market and that it has some degree of central 

planning. 

 

Lowery, Officer and Schwert (2010) looked at the volatility of initial IPO returns. They found 

that there is a significant volatility in initial returns following a new stock issue, and that the 

amount of volatility tends to fluctuate over time. They found that the initial returns seen 

during hot IPO markets are characterized by a higher variability then the variability seen in 

calmer markets. When mean returns are high, volatility tends to also be high. From this, they 

argue that when the IPO cycle is in a hot market, it will be more difficult for the underwriters 

to price the issues correctly. They follow Rock’s (1986) argument of information asymmetry, 

that the issuing company and the underwriter know more about the company’s prospects than 

other market participants, but that the aggregate market is better informed about the demand 

for the company’s shares. The aggregate demand for the IPOs will vary with time, and will be 

dependent on the type of firm that is going public. They also found that the characteristics of 

the issuing firm will greatly affect the pricing error seen in underwriting. Volatility tend to 

increase when the issuing firm is difficult to value. The characteristics of difficult to value 

firms are firms that are young, small and in the technology sector.  
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2.3 Portfolio optimization 

 

The future state of the economy is impossible to predict without error and investing in 

securities is inherently a risky endeavor. For a rational investor, the risks involved in an 

investment is as important as the expected return. The risk faced by an investor is composed 

of the systematic risk, which consist of the market wide risk, and the unsystematic risk which 

is associated with each unique security (Bode, Kane & Marcus, 2018). Through 

diversification investors try to reduce the unsystematic risk as much as possible. However, it 

is impossible to reduce the systematic risk through diversification. 

 

In financial theory it is assumed that investors require to get paid to take on risk. More 

formally, the higher the volatility of a security, the higher the expected return for the security 

must be for a rational investor to be willing to invest in the security. This is known as the risk 

premium. Expected returns are used due to the fact that the future is uncertain, and returns 

cannot be observed directly. The expected return is based on the historical performance of the 

security. When examining several securities, the historical performance of the securities is not 

likely to be perfectly correlated. This gives the investor the opportunity to reduce the 

unsystematic risk by building a portfolio of several securities. 

 

An investors willingness to commit to risky portfolios is dependents on his level of risk 

aversion. Most investors are assumed to be risk averse, meaning they will only invest in risk-

free assets, or assets that have a positive risk premium. In financial theory it is assumed that 

an investor will assign certain levels of welfare, or utility, to different portfolios based on the 

portfolios’ expected return and risk. Utility is a central theme in economics, and the 

connection between expected returns and utility works as a bridge between the fields of 

finance and economics. An investor’s utility is given by: 

 

𝑈 = 𝐸(𝑟) −
1

2
𝐴𝜎2                                                                                                                            (2.17) 

 

where U is the utility, E(r) is the expected return, A is the investors degree of risk aversion, 

and 𝜎2 is the variance of the returns. Equation 2.17 shows that the expected return have a 

positive influence on utility, whereas the volatility negatively impact the utility. 
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The idea of diversification has existed for a long time, but Harry Markowitz’s (1952) mean-

variance optimization represents a landmark in modern portfolio theory and in the 

construction of efficient portfolios. Using the expected returns, standard deviations and 

correlations, he showed that several assets can be combined in a diversified portfolio in order 

to maximize the expected returns for one level of risk. Alternatively, the risk can be 

minimized for a level of expected returns.  

 

A portfolio consisting of 𝑛 assets will have an expected return and variance given by: 

 

𝐸(𝑟𝑝) = ∑𝑤𝑖𝐸(𝑟𝑖)

𝑛

𝑖=1

                                                                                                                        (2.18) 

 

𝜎𝑝
2 =∑∑𝑤𝑖𝑤𝑗𝐶𝑜𝑣(𝑟𝑖𝑟𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

                                                                                                           (2.19) 

 

where the weights for each asset, 𝑤𝑖, can be calculated from the covariance matrix. 

From a set of risky assets, a set of different efficient portfolios can be constructed. Together 

these make up the efficient frontier of the risky assets. The efficient frontier represents all the 

risky portfolios that, for any given risk level, will give the highest return. From this set of 

portfolios, there will exist a well-diversified portfolio, the risky optimal portfolio, that will 

out-perform the all the other portfolios constructed by the same set of assets. To identify the 

optimal portfolio, and the weights assigned to each asset in this portfolio, investors typically 

use the Sharpe ratio. The Sharpe is the ratio between the risk premium and the standard 

deviation of any given portfolio. The optimal risky portfolio is the one that maximizes the 

Sharpe ratio: 

 

𝑀𝑎𝑥 𝑆𝑝 =
𝐸(𝑟𝑝) − 𝑟𝑓

𝜎𝑝
 ,         𝑠. 𝑡.∑𝑤𝑖 = 1                                                                                (2.20) 

 

When the optimal risky portfolio has been identified, the optimal complete portfolio can be 

constructed by combining the optimal risky portfolio with a risk-free asset, typically 

government bonds. The allocation between the optimal risky portfolio and the risk-free asset 
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in the optimal complete portfolio is dependent on the investor’s degree of risk aversion, A. 

The optimal amount invested in risky portfolio is given by: 

 

𝑦 =
𝐸(𝑟𝑝) − 𝑟𝑓
𝐴𝜎𝑝2

                                                                                                                                  (2.21) 

 

and the optimal amount invested in the risk-free asset is 𝑥 = 1 − 𝑦. 

 

What a well-diversified portfolio means, and the requirement for achieving optimal 

diversification, has been a topic of great interest in finance. Notable contributions to the 

debate have been Evans and Archer (1968), and Wagner and Lau (1971), who claimed that 

the effect of diversification would diminish when a portfolio contains about 10 different 

stocks. On the other side Statman (1987) claimed that diversification should be increased by 

adding more stocks, as long as the marginal benefits exceed the marginal costs. Statman 

argued that a well-diversified portfolio is one that eliminates the systematic risk. In order to 

achieve this, a portfolio must contain at least 30-40 stocks.  

 

Newer contributions to financial theory have highlighted several drawbacks of the mean-

variance optimization procedure (Chow, Jacquier, Kritzman & Lowry, 1999). One potential 

drawback is that the estimated risk usually is estimated with equal weights given to each 

observation in the respective time period. Financial markets typically go through periods 

where returns and volatility behave unregularly. Some periods are characterized by high 

volatility, while other periods are characterized by relatively low volatility. When the weights 

assigned to each time period are equal, investors run the risk of assigning too much weight to 

low volatility periods, compared to high volatility periods. This can introduce a bias in the 

estimation of the risk parameters, leading to construction of a portfolio that will not perform 

optimally in periods of high volatility. Chow et al. (1999) propose that different risk 

parameters should be estimated for different time periods, both for periods of financial stress 

and for periods experiencing little financial stress. Then different portfolios should be 

constructed for each time period in order to improve performance in times of both high and 

low volatility.  

 

Ang and Bekaert (2002, 2004) noted that as financial markets go through cycles of low and 

high volatility, equity returns tend to be more strongly correlated during times of high 
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volatility than in the less turbulent times. This strong correlation tends to occur 

internationally, and the authors question the benefit of international diversification. Because 

equity returns tend to go through periods of low and high volatility, they tried fitting a regime 

switching model, based on the work of Hamilton (1989), to equity returns. They showed that 

applying different mean-variance optimizations to the different regimes can improve a 

portfolio’s performance, compared to a portfolio based on one simple mean-variance 

optimization. The optimal asset allocation during a low volatility regime is likely to be 

different to the optimal asset allocation during a high volatility regime, and a portfolio 

manager can add value by utilizing a regime switching model. 

 

Kritzman & Li (2010) noted that in turbulent periods the return-to-risk ratio is substantially 

lower than in non-turbulent periods, no matter what the source of the turbulence is. When 

comparing turbulent periods, such as the global financial crisis of 2008, which began in the 

housing market, to the technology bubble collapse in 2000, and the Russian default of 1998 

which contributed to the collapse of Long Term Capital Management, they found that no 

matter where the turbulence originated, it quickly spread throughout the financial sector, and 

would persist for several weeks, or longer. Since it is impossible to predict where the next 

financial crisis will originate, a direct result of the finding that the origin of a crisis does not 

matter is that previous turbulent periods can be used to stress-test portfolios more accurately 

than conventional methods. If traditional risk measurements, such as value at risk, is 

estimated using turbulent periods, rather than at the end of the investment horizon, exposures 

to loss can be more reliably be estimated. Mean-variance optimization can be improved by 

leveraging the information contained the returns and covariances observed during earlier 

times of financial turbulence. By blending the information from earlier turbulent periods with 

the in-sample expected returns and covariances, the calculation of expected returns and 

variance can be improved, and investors will be able to build more turbulence-resistant 

portfolios that also performs well under normal market conditions. 
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3. Method and data 

 

3.1 Method 

 

3.1.1 The regime switching model 

 

Many economic and financial time series go through periods where they show different types 

of behavior in terms of mean and volatility. Typically, a time series will be in a particular 

state characterized by its mean and volatility, until it experiences a structural break, after 

which it will be in a state characterized by a different mean and volatility. This type of 

behavior makes it difficult to model the times series using a linear model. Hamilton’s (1989) 

seminal work represents the first time where the behavior of economic variables could be 

influenced by economic recessions and expansions. Utilizing an unobserved Markov chain, he 

showed that the growth in real output could shift between one of two autoregressions, 

depending on whether the economy is in a recession or in an expansion.  

 

In a regime switching model, the dependent variable is undergoing a regime switch when the 

parameters of the model jump between two or more constant values. These values are 

conditional on a state variable given by the current regime. The state variable produces 

estimates of the conditional probability of being in a particular state at a particular point in 

time. The time varying estimates of the conditional probability gives us estimates for the state 

transition probabilities for each state. This can be represented in a matrix form, commonly 

referred to as the transition matrix. 

In a simple model of two regimes, a time series yt switches between the regimes according a 

variable, zt which can take one of two values. If zt = 1, the process is in regime 1, and if zt = 2, 

the process is in regime 2. The switch between the states follows a first order Markov process: 

 

𝑝𝑟𝑜𝑏[𝑧𝑡 = 1|𝑧𝑡 = 1] = 𝜋11  

𝑝𝑟𝑜𝑏[𝑧𝑡 = 2|𝑧𝑡 = 1] = 1 − 𝜋11  

𝑝𝑟𝑜𝑏[𝑧𝑡 = 2|𝑧𝑡 = 2] = 𝜋22  

𝑝𝑟𝑜𝑏[𝑧𝑡 = 1|𝑧𝑡 = 2] = 1 − 𝜋22  

 

where p11 and p22 denote the probability of being in the same regime as the previous time 

period. This can be represented as the transition matrix: 
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∏= [

         
𝜋11    1 − 𝜋22

1 − 𝜋11            𝜋22
] 

 

Hamilton’s regime switching model has shown to be a popular tool used in analyzing 

univariate timeseries.  In its most simple case, a two-regime model based on an AR(1) process 

can be written as: 

 

𝑌𝑡 = {
𝜇1 +𝜙1𝑌𝑡−1 + 𝜎1휀1𝑡, 휀1𝑡~𝑖𝑖𝑑(0,1),    𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 1

𝜇2 + 𝜙2𝑌𝑡−1 + 𝜎2휀2𝑡 , 휀2𝑡~𝑖𝑖𝑑(0,1),    𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 2
                                                     (3.1) 

 

or simply: 

 

𝑌𝑡 = 𝜇𝑠𝑡 + 𝜙𝑠𝑡𝑌𝑡−1 + 𝜎𝑠𝑡휀1𝑡 , 휀1𝑡~𝑖𝑖𝑑(0,1)                                                                                    (3.2) 

 

where the regimes switch when 𝑠𝑡 changes between 0 and 1. The parameters in the model is 

typically represented by a vector, 𝜃: 

 

𝜃 = (𝜇1, 𝜇2,, 𝜙1, 𝜙2, 𝜎1, 𝜎2, 𝜋11, 𝜋22)                                                                                               (3.3) 

 

The Markov chain is commonly represented by a state indicator vector 𝜉𝑡 whose 𝑖th element 

equals 1 if 𝑠𝑡 = 𝑖 and 0 otherwise. In a two-regime chain the vector is  

 

𝜉𝑡 = (
𝜉𝑡
1

𝜉𝑡
2) = {

(
1
0
) , 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 1 𝑟𝑢𝑙𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡.

(
0
1
) , 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 2 𝑟𝑢𝑙𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡.

                                                                          (3.4)  

 

The states are not directly observable, and we cannot be sure which state rules at time 𝑡.  

However, we can assign conditional probabilities to 𝜉𝑡  by utilizing all information up to time 

𝑡 − 1 and the transition matrix. The conditional expectation on 𝜉𝑡|𝑡−1 is the product of the 

transition matrix and the state indicator at time 𝑡 − 1: 

 

𝜉𝑡|𝑡−1 =∏𝜉𝑡−1                                                                                                                                  (3.5) 
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The model can be estimated using maximum likelihood or the Gibbs sampler. This study will 

utilize the MSwM package in R, which use maximum likelihood to estimate the model.  

Firstly, normality is assumed, starting with normal density function: 

 

𝜑(𝑥; 𝜇, 𝜎2) =
1

√2𝜋𝜎
exp [−

1

2
(
𝑥 − 𝜇

𝜎
)
2

] 

 

To set the initial conditions, a linear regression of the model is estimated to get the 

coefficients and standard deviations. In addition, �̂�11 and �̂�11 is set to 0.5. Then, starting at 

𝑡 = 1,  iterate through: 

 

1. 𝑓(𝑌𝑡|𝑋𝑡; 𝜃) = 𝜉𝑡|𝑡−1
1 𝜑(𝑌𝑡; �̂�1 + �̂�1𝑋𝑡 , �̂�1) + 𝜉𝑡|𝑡−1

2 𝜑(𝑌𝑡; �̂�2 + �̂�2𝑋𝑡, �̂�2). 

2.  𝜉𝑡|𝑡 = (
𝜉𝑡|𝑡
1

𝜉𝑡|𝑡
2
) =

(

 
 

�̂�𝑡|𝑡−1
1 𝜑(𝑌𝑡;�̂�1+�̂�1𝑋𝑡,�̂�1)

𝑓(𝑌𝑡|𝑋𝑡; 𝜃)

�̂�𝑡|𝑡−1
2 𝜑(𝑌𝑡;�̂�2+�̂�2𝑋𝑡,�̂�2)

𝑓(𝑌𝑡|𝑋𝑡; 𝜃) )

 
 

 

3. 𝜉𝑡+1|𝑡 = ∏ 𝜉𝑡|𝑡 

4. Set 𝑡 = 𝑡 + 1 and repeat the process until 𝑡 = 𝑇. 

 

This procedure produces two outputs: 

• a set of conditional densities {𝑓(𝑌𝑡|𝑋𝑡; 𝜃)}𝑡=1
𝑇

 

• a set of conditional state probabilities {𝜉𝑡|𝑡}𝑡=1
𝑇

 

The parameters 𝜃 of the model can now be estimated by maximizing the log likelihood 

function: 

ln 𝐿(𝜃) = ∑ln𝑓𝑡(𝑌𝑡|𝑋𝑡; 𝜃)

𝑇

𝑡=1

                                                                                                             (3.6) 

 

Following Hamilton’s work, it has been demonstrated that the regime switching model readily 

can be expanded to multivariate models, see for example Krolzig (1997) and Ang(2002). 

 

This study will estimate an AR(1) model for the S&P500 log returns: 
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𝑟𝑡 = 𝜇 + 𝜙𝑟𝑡−1 + 휀𝑡                                                                                                                             (3.7) 

 

where 𝐸[𝑟𝑡] = 𝜇 and 휀𝑡~𝑖𝑖𝑑(0, 𝜎
2).  

 

Then a regime switching model will be fitted to the AR(1) process. Two additional regime 

switching modes will be estimated, where in the first model, the VIX and the TED spread will 

be added to the model as regressors. In the second additional model, the first day returns of 

IPOs are added to the model as a regressor. The regime switching models will have 2 regimes. 

 

The performance of the different models will be compared by pseudo out-of-sample 

forecasting. The models will be estimated using data for the time period January 1990 to 

December 2019. The months of the first quarter of 2020 will be used as the testing period, and 

the models will be compared on the root mean squared forecast error produced by these 

observations: 

 

𝑅𝑀𝑆𝐹𝐸 =  √∑
(�̂�𝑖−𝑟𝑖)

2

𝑛

𝑛
𝑖=1                                                                                                                   (3.8)  

 

The performance of the models will also be compared by back testing the optimal risky 

portfolios created by each model. The optimal risky portfolios were created using mean-

variance optimization for each regime. Optimal complete portfolios were not created, as the 

asset allocation between the risky portfolio and the risk-free asset will be dependent on the 

risk aversion of the individual investor. The optimal risky portfolio will be the same risky 

portfolio regardless of any investor’s risk aversion, as the risk aversion only will dictate the 

allocation choices between the optimal risky portfolio and the risk-free asset. Thus, 

calculating optimal complete portfolios for different levels of risk aversion would not be 

relevant in comparing the optimal risky portfolios create by each model. 

 

The portfolios created will be constrained by not allowing for short selling. 

 

∑𝑤𝑖 = 1                                                                                                                                              (3.9) 
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where 𝑤𝑖 is the weight assigned to each asset. 

 

Following the procedure seen in Ang & Bekaert (2004), the trading costs associated with the 

rebalancing needed for each regime shift will be ignored. In the real world, this is likely to 

greatly impact the performance of the models when back testing. However, ignoring the 

trading costs will simplify the analysis.  

 

3.1.2. The GARCH model 

 

In addition to comparing the performance between the regime switching models, the models 

will also be compared to a GARCH(1,1) model using pseudo out-of-sample forecasting. A 

distinctive feature of many financial assets is that the volatility of the asset’s returns varies 

over time. Several discrete models have been proposed to model this behavior, such as the 

autoregressive conditional heteroscedasticity (ARCH), exponentially weighted moving 

average (EWMA) and the generalized autoregressive conditional heteroscedasticity 

(GARCH) models (Hull, 2018). These models differ in the weighing scheme regarding 

previously observed returns and volatility. 

 

The volatility of an asset, σn, over m observations, is commonly set equal to the standard 

deviation of an asset’s return, ui, given by: 

 

𝜎𝑛
2 =

1

𝑚
∑𝑢𝑛−𝑖

2

𝑚

𝑖=1

                                                                                                                               (3.10) 

 

where ui is the log returns given by: 

 

𝑢𝑖 = ln(
𝑆𝑖
𝑆𝑖−1

)                                                                                                                                   (3.11) 

 

Equation 3.10 appliess the same weights to every observation observed. This is generally not 

very useful in financial risk modelling, where an asset’s volatility typically is more dependent 

on the most recent observations. One solution for applying more weight to the most recent 

observations is the ARCH model, given by: 
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𝜎𝑛
2 = 𝛾𝑉𝐿 +∑𝛼𝑖𝑢𝑛−𝑖

2

𝑚

𝑖=1

                                                                                                                    (3.12) 

 

where αi is the weight given to the observation i periods ago, VL is the long run variance and γ 

is the weight assigned to VL. 

 

The ARCH model is useful when behavior of an assets’ volatility varies randomly. However, 

the volatility of financial assets tends to move between periods of low volatility and high 

volatility, often referred to as volatility clustering. The GARCH model was developed to 

better model this phenomenon. In the GARCH model, the volatility is given by: 

 

𝜎𝑛
2 = 𝛾𝑉𝐿 + 𝛼𝑢𝑛−1

2 + 𝛽𝜎𝑛−1
2                                                                                                            (3.13) 

 

where β is the weight given to previously observed volatility. Typically, when estimating a 

GARCH model, it is specified as: 

 

𝜎𝑛
2 = 𝜔 + 𝛼𝑢𝑛−1

2 + 𝛽𝜎𝑛−1
2                                                                                                              (3.14)  

 

where  𝜔 =  𝛾𝑉𝐿 . 

 

A typical GARCH(p,q) model is estimated using the most recent p returns observed and the 

most recent q variances estimated. GARCH(1,1) is the most widely used model. The GARCH 

model is solved using maximum likelihood estimation.  

𝐿(𝜃) =  ∏
1

√2𝜋𝑣𝑡
𝑒
−
𝑢𝑡
2

2𝑣𝑡𝑚
𝑡=1                                                                                                                 (3.15)  

 

where 𝑣𝑡 = 𝜔 + 𝛼𝑢𝑡−1
2 + 𝛽𝜎𝑡−1

2 . 

 

This study will utilize the R package rmgarch in estimating the GARCH model. The package 

will also provide forecasts for future variance and returns. Appendix B contains the empirical 

work done in this thesis using R. 
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3.2 Data 

 

All data were collected for the time period the 1st of January 1990 to the 31st of March 2020. 

The reason for this time window is that data for the shortest time series, the VIX, starts on the 

1st of January 1990. Data from the 1st of January 1990 to the 31st of December 2019 were used 

as the training data, and the data from the first quarter of 2020 were used for testing. The 

collection and processing of the data using R shown in appendix A. 

 

The IPO data were collected from the Tomson Reuters Eikon platform, using the Equity 

Offerings app. The data was limited to initial public offerings in the US. All entries that had 

missing values for the returns on the first day of trading were removed. It is worth noting that 

the data from Eikon did have a lot of entries with missing values. No further investigation was 

done as to why the data was missing, they were simply removed. Entries that had an offering 

price of $5 or less were removed, on the presumption that these IPOs will not receive much 

attention, and thus be under analyzed by the market. This is normal procedure in the IPO 

literature, see for example Lowry (2001) and Ritter & Welch (2002). In order to have a 

dataset without a lot of missing values, the data were converted from daily returns to a 

monthly average return by summing up all the first day returns in a given month and divide it 

by the total number of IPOs in the dataset for that month. Converting the time series into 

monthly averages also solves the problem of dealing with days where there are more than one 

observed IPO. 

 

The S&P 500 is a stock market index constructed by the largest 500 companies listed on 

American stock exchanges. It is assumed to be the index that best represents the US stock 

market. The S&P 500 data was downloaded from Yahoo Finance, using R’s quantmod 

package. 

 

The CBOE volatility index (VIX) is a measure of expected volatility in the markets over the 

next 30 days (Banerjee, Doran & Peterson, 2007). A higher VIX represents an expectation of 

higher volatility. The VIX data was downloaded from Yahoo Finance, using R’s quantmod 

package. 
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The TED spread is the difference between the short-term US government debt and the interest 

rate on interbank loans. It is commonly regarded as a measure of credit risk that large 

international banks lend money to each other. The TED spread is calculated as the difference 

between the 3-Month LIBOR based on US dollars and the 3-Month Treasury Bill. The data 

for the TED spread was collected from the Federal Reserve Bank of St. Louis (FRED, 2020), 

as monthly data.  

 

The risk-free rate of return is based on the 3-month US Treasury bill. The data was 

downloaded from FRED, using R’s quantmod package. As the reported 3-month T-bill is in 

percent per year, it was converted to monthly returns by using the following formula: 

 

𝑟𝑓,𝑚𝑜𝑛𝑡ℎ𝑙𝑦 = (1 +
𝑌𝑡
100

)

1
12⁄

− 1 

 

For portfolio optimization, the average of the entire time period, January 1990 to December 

2019, was used. 

 

The Vanguard Total Bond Market Index Fund Investor Shares is a fund that invests in U.S. 

Treasuries and mortgage backed securities of short-, medium-, and long maturities (Vanguard, 

2020). The aim of the fund is to track the broad, market weighted bond index, the Bloomberg 

Barclays index. The data was downloaded from Yahoo Finance, using R’s quantmod package. 

 

By using the S&P 500 index and the Vanguard Total Bond Market Index Fund as the risky 

assets in portfolio optimization, the diversification already included in these assets are 

leveraged, and the full diversification required to eliminate the unsystematic risk is assumed 

to be achieved. 

 

The evolution of the different data during the training period, January 1990 to December 2019 

is shown in figure 3.1. 
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Figure 3.1. The evolution of the different data in the period January 1990 to December 2020 
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4. Empirical analysis 

 

4.1 Results 

 

4.1.1 Regime switching models 

 

The full outputs from all the regime switching models provided by R is given in appendix C. 

 

The S&P 500 no switching model 

 

The results from the linear AR(1) model where the log returns of the S&P 500 are regressed 

on its first lags are shown in table 4.1. The estimated monthly log returns are 0.006185 with a 

standard error of 0.002199. The lagged S&P 500 log returns have a positive, not statistically 

significant, correlation with S&P 500 log returns. The Akaike information criterion, which is 

given in table 4.2, shows that the optimal number of lags for the model is 1 lag. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2. Akaike information criteria, p = 1 results in the lowest AIC. 

Table 4.1 Estimated parameters of the S&P 500 AR(1) model 
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The S&P 500 regime switching model 

 

The results of fitting a regime switching model to a linear model where the log returns of the 

S&P 500 are regressed on its first lags is given in table 4.3, and the time periods for when the 

model is in each regime is shown in figure 4.1. 

 

 

Table 4.3. Results of the S&P 500 regime switching model. 𝜑 represents the coefficient of the lagged S&P 500 returns. 
Subscript 0 represents regime 1, and subscript 1 represents regime 2. 

 

Figure 4.1. The S&P 500 index from 1990 to 2020. The shaded areas represent when the S&P500 model is in regime 1. 



 

34 
 

In regime 1 the estimated monthly log return of the S&P is 0.0129 with a standard error of 

0.0021. The estimated volatility in regime 1 is 0.0218. In regime 2 the estimated monthly log 

return is 0.0023 with a standard error of 0.0039. The estimated volatility in regime 2 is 

0.0523. The S&P 500 model successfully identified two regimes, where regime 1 is the 

regime with higher returns and lower volatility and regime 2 has lower returns and higher 

volatility. This is consistent with the “bad” / “normal” regime dichotomy reported in Ang & 

Bekaert (2004). 

 

In regime 1 the lagged S&P 500 log returns have a negative, statistically significant, 

correlation with the S&P 500 log returns. In regime 2 the lagged S&P 500 log returns have a 

positive, statistically nonsignificant, correlation with the S&P 500 log returns. 

 

According to the transition matrix, both regimes are very stable. The probability of staying in 

regime 1 is 0.97, and the probability of staying in regime 2 is 0.96. 

 

The R-squared is very low in both regimes, 0.0435 in regime 1 and 0.0035 in regime 2. The 

model has more explanatory power in the high return, low volatility regime 1, than in regime 

2. But overall the model explains very little of the variability of the S&P 500 log returns. This 

is in accordance with the weak form of the efficient market hypothesis, which states that the 

future cannot be predicted by analyzing the past (Fama, 1970). 

 

The VIX-TED-S&P500 regime switching model 

 

The results of fitting a regime switching model to a linear model where the log returns of the 

S&P 500 are regressed on its first lags and the first lags of the VIX and the TED spread is 

given in table 4.4. The time periods for when the model is in each regime is shown in figure 

4.2. 
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Table 4.4. Results of the VIX-TED-S&P regime switching model. 𝜑1𝑗 represents the coefficient of the lagged S&P 500 returns, 

𝜑2𝑗 represents the coefficient of the lagged VIX and 𝜑3𝑗 represents the coefficient of the lagged TED spread. Subscript 𝑖0 

represents regime 1, and subscript 𝑖1 represents regime 2. 

 

 

Figure 4.2. The S&P 500 index from 1990 to 2020. The shaded areas represent when the VIX-TED-SP model is in regime 1. 
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In regime 1 the estimated monthly log return of the S&P 500 is -0.0146 with a standard error 

of 0.0055. The estimated volatility in regime 1 is 0.0212. In regime 2 the estimated monthly 

log return is 0.0099 with a standard error of 0.0122. The estimated volatility in regime 2 is 

0.0464. The model identify regime 1 as a negative return, low volatility regime, and regime 2 

as a positive return, high volatility regime.  

 

In regime 1, the lagged S&P 500 log returns have a statistically significant negative 

correlation to the S&P 500 log returns, whereas the lagged VIX and TED spread have a 

positive correlation. The VIX is statistically significant, the TED spread is not statistically 

significant. In regime 2, the lagged S&P 500 log returns, VIX and TED spread all have a 

negative correlation to the S&P log returns. None of these coefficients are statistically 

significant. 

 

The R-squared is relatively high in regime 1, and the model is able to explain quite a lot of the 

variability of the S&P 500 log returns in regime 1. In regime 2, the R-squared is low, and the 

model is only able to explain a little bit of the variability of the S&P 500 log returns. 

According to the transition matrix, both regimes are quite unstable, with regime 1 being the 

least stable. The probability of staying in regime 1 is 0.699, and the probability of staying in 

regime 2 is 0.789.  

 

The IPO-VIX-TED-S&P500 regime switching model 

 

The results of fitting a regime switching model to a linear model where the log returns of the 

S&P 500 are regressed on its first lags and the first lags of the VIX, the TED spread and first 

day IPO returns is given in table 4.5. The time periods for when the model is in each regime is 

shown in figure 4.3. 
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Table 4.5. Results of the IPO-VIX-TED-S&P regime switching model. 𝜑1𝑗 represents the coefficient of the lagged S&P 500 

returns, 𝜑2𝑗 represents the coefficient of the lagged VIX, 𝜑3𝑗 represents the coefficient of the lagged TED spread and 𝜑4𝑗 

represents the coefficient of the lagged IPO first day returns. Subscript 𝑖0 represents regime 1, and subscript 𝑖1 represents 
regime 2.

Figure 4.3. The S&P 500 index from 1990 to 2020. The shaded areas represent when the IPO-VIX-TED-SP model is in regime 
2. 
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In regime 1, the estimated monthly log return of the S&P is 0.0067 with a standard error of 

0.0142. The estimated volatility in regime 1 is 0.0450. In regime 2 the estimated monthly log 

return is -0.0153 with a standard error of 0.0054. The estimated volatility in regime 2 is 

0.0203. The model identify regime 1 as a positive return, high volatility regime, and regime 2 

as a negative return, low volatility regime. 

 

In regime 1 the lagged S&P log returns, VIX and TED spread have a negative statistically 

non-significant correlation to the S&P log returns. The lagged IPO first day returns have a not 

statistically significant positive correlation to the S&P 500 log returns.  In regime 2 the lagged 

S&P log returns have a statistically significant negative correlation to the S&P 500 log 

returns. The lagged VIX has a statistically significant positive correlation to the S&P 500 log 

returns.  The TED spread and first day IPO returns have statistically non-significant positive 

correlation to the S&P 500 log returns.  

 

The R-squared in regime 1 is low, 0.0629, so the model explains very little of the variability 

of the S&P 500 log returns in regime 1. In regime 2, the R-squared is high, 0.4025, so the 

model is able to explain a lot of the variability in regime 2. 

According to the transition matrix, both regimes are quite unstable, with regime 1 being the 

most unstable. The probability of staying in regime 1 is 0.671, and the probability of staying 

in regime 2 is 0.751. 

 

Pseudo out sample forecasting 

 

The forecasted log returns of the S&P 500 for the first quarter of 2020 produced by the regime 

switching models are given in table 4.6. The only model that forecast negative returns is the 

VIX-TED-S&P500 model, the other models forecast positive returns for the period. The root 

mean squared forecast errors (RMSFE) for the regime switching models are given in table 

4.7. The model with the lowest RMSFE, and that performed the best during the forecast 

period is the VIX-TED-S&P500 model. This is as expected since this is the only model that 

forecasted a decline in the S&P 500, and as is now known, the financial markets worldwide 

experienced large declines during the first quarter of 2020 due to the coronavirus lockdown. 
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Table 4.6. Forecasted log returns and actual log returns for the first quarter of 2020. 

 

 

 

 

 

 

 

4.1.2 Portfolio optimization 

 

The no-switching model 

 

The efficient frontier of the no switching portfolios is given in figure 4.4. The optimal risky 

portfolio is marked with the triangle, and the tangent represents the optimal capital asset line. 

The Sharpe ratio of the optimal portfolio, and its asset weights is given in figure 4.5. The 

optimal weights for the no-switching model is 53.63% invested in the S&P 500 index and 

46.37% in the bond portfolio, resulting in a Sharpe of 0.1863. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. The efficient frontier of the no switching model.  

Table 4.7. Root mean squared errors of the models during the first quarter of 2020 
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The S&P 500 model regime switching model 

 

 

Regime 1 

 

The efficient frontier of the portfolios in regime 1 of the S&P 500 regime switching model is 

given in figure 4.6. The optimal risky portfolio is marked with the triangle, and the tangent 

represents the optimal capital asset line. The Sharpe ratio of the optimal portfolio, and its asset 

weights is given in figure 4.7. The optimal weights for regime 1 of the S&P 500 model is to 

be 100% invested in the S&P 500 index, resulting in a Sharpe of 1.1662. 

 

 

Figure 4.6 The efficient frontier of regime 1 of the S&P500 regime switching model. 

 

Figure 4.5. Sharpe and weights of the optimal risky portfolio.  
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Regime 2 

 

The efficient frontier of the portfolios in regime 2 of the S&P 500 regime switching model is 

given in figure 4.8. The optimal risky portfolio is marked with the triangle, and the tangent 

represents the optimal capital asset line. The Sharpe ratio of the optimal portfolio, and its asset 

weights is given in figure 4.9. The optimal weights for regime 2 of the S&P 500 model is to 

be 3.89% invested in the S&P 500 index and 96.11% invested in the bond portfolio, resulting 

in a Sharpe of 0.5360. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Sharpe and weights of the optimal risky portfolio. 

 

Figure 4.8. The efficient frontier of regime 2 of the S&P500 regime switching model. 
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The VIX-TED-S&P 500 model 

 

Regime 1 

 

The efficient frontier of the portfolios in regime 1 of the VIX-TED-S&P 500 regime 

switching model is given in figure 4.10. The optimal risky portfolio is marked with the 

triangle, and the tangent represents the optimal capital asset line. The Sharpe ratio of the 

optimal portfolio, and its asset weights is given in figure 4.11. The optimal weights for regime 

1 of the VIX-TED-S&P500 model is to be 68.73% invested in the S&P 500 index and 31.27% 

invested in the bond portfolio, resulting in a Sharpe of 0.6440. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Sharpe and weights of the optimal risky portfolio. 

Figure 4.10. The efficient frontier of regime 1 of the VIX-TED-S&P500 regime switching model. 
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Regime 2 

 

The efficient frontier of the portfolios in regime 2 of the VIX-TED-S&P 500 regime 

switching model is given in figure 4.12. Because most of the points have negative returns, the 

figure is not able to mark the optimal risky portfolio and optimal capital asset line. The Sharpe 

ratio of the optimal portfolio, and its asset weights is given in figure 4.13. The optimal 

weights for regime 2 of the VIX-TED-S&P500 model is to 100% invested in the bond 

portfolio, resulting in a negative Sharpe of -0.4912, which means that this portfolio performs 

worse than the risk-free asset. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Sharpe and weights of the optimal risky portfolio. 

Figure 4.12. The efficient frontier of regime 2 of the VIX-TED-S&P500 regime switching model. 
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The IPO-VIX-TED-S&P 500 model 

 

Regime 1 

 

The efficient frontier of the portfolios in regime 1 of the IPO-VIX-TED-S&P 500 regime 

switching model is given in figure 4.14. Because most of the points have negative returns, the 

figure is not able to mark the optimal risky portfolio and optimal capital asset line. The Sharpe 

ratio of the optimal portfolio, and its asset weights is given in figure 4.15. The optimal 

weights for regime 1 of the IPO-VIX-TED-S&P500 model is to be 100% invested in the bond 

portfolio, resulting in a negative Sharpe of -0.4030, and the portfolio is performing worse than 

the risk-free asset. 

Figure 4.13. Sharpe and weights of the optimal risky portfolio. 
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Regime 2 

 

The efficient frontier of the portfolios in regime 2 of the IPO-VIX-TED-S&P 500 regime 

switching model is given in figure 4.16. The optimal risky portfolio is marked with the 

triangle, and the tangent represents the optimal capital asset line. The Sharpe ratio of the 

optimal portfolio, and its asset weights is given in figure 4.17. The optimal weights for regime 

Figure 4.14. The efficient frontier of regime 1 of the IPO-VIX-TED-S&P500 regime switching model. 

Figure 4.15. Sharpe and weights of the optimal risky portfolio. 
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2 of the IPO-VIX-TED-S&P500 model is to be 84.55% invested in the S&P 500 index and 

15.45% invested in the bond portfolio, resulting in a Sharpe of 0.7070. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Holding period returns 

 

The holding period returns (HPR) is given in table 4.8. In terms of the holding period returns, 

the best performing model is the IPO-VIX-TED-S&P 500 regime switching model with a 

HPR of 313.53%, which is marginally better that the S&P500 regime switching model with a 

HPR of 313.23%.  

Figure 4.16. The efficient frontier of regime 2 of the IPO-VIX-TED-S&P500 regime switching model. 

Figure 4.17. Sharpe and weights of the optimal risky portfolio. 
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The log HPR was converted to simple HPR by: 

 

𝐻𝑃𝑅 = exp(𝑙𝑜𝑔𝐻𝑃𝑅) − 1                                                                                                               (4.1) 

 

 

4.1.3 GARCH(1,1) model 

 

The estimated parameters of GARCH(1,1) model is given in table 4.9. All the estimated 

coefficients are statistically significant at a 95% significance level, giving the model: 

 

𝜎𝑡−1
2 = 0.000077+ 0.188700𝑢𝑡−1

2 + 0.777092𝜎𝑡−1
2                                                                 (4.2) 

 

 

 

 

 

 

 

 

In figure 4.18 the squared residuals and the estimated conditional variance estimated by the 

GARCH(1,1) model in during the training period is shown. The plot has a typical GARCH-

patterns, where there are periods with high variance clustered together and periods of 

relatively low variance. The volatility spikes occurs where they are expected to occur, in the 

early 1990’s with the oil price shock, late 1990’s with the Asian financial crisis  and the 

Russian financial crisis, in the early 2000’s with the dotcom bubble and in the late 2000’s 

with the financial crisis. During the two years preceding 2020, volatility starts to rise again, 

after a period characterized by relatively low volatility.    

Table 4.8. Holding period returns for the models. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.9. GARCH parameters 
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The forecasted variance for the first quarter of 2020, together with the variance seen during 

2019, is shown in figure 4.19. As seen, the forecasted variance is not expected to change 

much from the conditional variance observed in December 2019. Figure 4.20 shows the 

squared residuals and the estimated conditional variance for the complete time period of the 

data, from January 1990 to March 2020. The plot shows that the conditional variance is 

increasing a lot during the first quarter of 2020, due the coronavirus recession. The fall in the 

global stock markets started on the 20th of February. From the 24th to the 28th of February 

many stock markets around the world reported the worst one-week performance since the 

financial crisis. On March 8th an oil price war broke out between Russia and OPEC, causing 

further falls in the global financial markets. The following week the S&P 500 and Dow Jones 

Industrial Average hit “circuit breakers” on several occasions, meaning that the trading will 

be halted to stop panic selling. These events led to a variance that is a lot higher than the 

variance forecasted by the model.  

Figure 4.18. GARCH model of the training period, January 1990 to December 2019. 
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The log returns forecasted by the GARCH(1,1) model for the first quarter of 2020 is given in 

table 4.10, together with the observed log returns and the calculated root mean square forecast 

error. 

Figure 4.19. The variance estimated from the training period GARCH model, zoomed in on the year 2019, together with the 
forecasted variance for the first quarter of 2020. Observation 13, 14 and 15 corresponds to January, February and March 
2020, respectively. 

Figure 4.2. GARCH model with the first quarter of 2020 included 
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4.2 Discussion 
 

As shown in table 4.5 for the IPO-VIX-TED-S&P500 regime switching model, the lagged 

first day IPO returns have a positive correlation to the S&P 500 log returns in both regimes, 

meaning that if the first day returns of the IPOs are negative, they would have a negative 

impact on the performance of the S&P 500. However, the coefficients are not statistically 

significant. In regime 2, which is the regime with negative mean log returns of the S&P 500, 

the coefficient has a p-value of 0.1915. In this regime it has lower likelihood of being created 

by noise, but it is still outside of the traditional levels of significance at 90% significance, or 

above. 

 

When looking at the pseudo out-of-sample forecasts in table 4.7, the model that best 

forecasted the log returns of the first quarter of 2020 is the VIX-TED-S&P500RS model, and 

the worst performing model is the IPO-VIX-TED-S&P500RS model. Based on the RMSFEs, 

adding the traditional risk metrics as regressors to the S&P500RS model will improve the 

forecasts for the testing period used in this thesis. However, adding the IPO-returns as a 

regressor to the VIX-TED-S&P500RS model does not add value to the forecast. In fact, the 

forecast got worse when the IPOs were added. 

 

The R-squared is generally low for the regime switching models, and the models were 

generally not able to explain a lot of the variation observed in the S&P 500 log returns. This 

supports the weak form of the efficient market hypothesis, which states that the future cannot 

be predicted by studying what happened in the past. However, in the negative returns regime 

of the VIX-TED-S&P500RS model and the IPO-VIX-TED-S&P500RS model the R-square 

was 0.3620 and 0.4025, respectively. And it seems that both of these models are able to 

explain quite a lot of the variation that is happening when the markets are falling. The model 

including the IPO returns does have a higher R-squared, but the act of adding more regressors 

Table 4.10. Forecast error of returns based on the GARCH(1,1) model 
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to a model generally increase value of the R-squared even when the added regressor does not 

add any explanatory power (Stock & Watson, 2015). It is therefore not possible to say that the 

model including IPO returns has better explanatory power based on the value of the R-

squared alone. 

 

When comparing the pseudo out-of-sample forecasts off the regime switching models with 

the GARCH model, table 4.10, the regime switching model with the lowest RMSFE, the VIX-

TED-S&P500RS model, outperforms the GARCH model. However, the GARCH model 

outperforms the other regime switching models.  

 

The models in this study did not use a rolling window and were not updated during the testing 

period. In the normal world, the models would be re-estimated between each point in the 

testing period, which could have affected the forecasting performance, as the increase in 

volatility experienced during the testing period would be included in the models.  

 

When comparing the holding period returns for the different models, table 4.8 shows that the 

S&P500RS model and the IPO-VIX-TED-S&P500RS model by far outperform the other two 

models. All the regime switching models outperformed the model that did not allow for 

switching. This shows that, for the time period that this study is concerned, applying a regime 

switching model to the S&P 500 log returns does add value, consistent with the previous 

research regarding regime switching models, see for example Ang & Bekaert (2002; 2004). 

 

The IPO-VIX-TED-S&P500RS model outperformed the S&P500RS on the first decimal, 

313.53% vs 313.23% returns respectively. This difference is negligible, and the trading costs 

are not taken onto account. When comparing figure 4.1 and figure 4.3, it is apparent that the 

IPO-VIX-TED-S&P500 RS model would lead to much higher trading costs, as it would 

require rebalancing of the portfolio 48 times, opposed to 9 rebalancing required by the 

S&P500RS model. The difference in stability of the models is also demonstrated in the 

transition matrixes, table 4.5-4.5, where the transition matrix of the S&P500 RS model shows 

that the stability of the regimes is very high, whereas for the other two regime switching 

models, the regimes are quite unstable, leading to many rebalancing required for these two 

models. 
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When comparing the Sharpe ratios, figures 4.5-4.17, the S&P500RS model have the superior 

Sharpe ratio in both regimes, compared to the other regime switching models, and its Sharpe 

ration is superior to the no-switching model in both regimes. The higher Sharpe ratio of the 

S&P500RS model compared to the IPO-VIX-TED-S&P500RS model, would allow an 

investor to apply leverage to the S&P500RS model without taking on more risk than the risk 

experienced by an investor using the IPO-VIX-TED-S&P500RS model. This leverage would 

increase the returns of the S&P500RS model, and lead to higher returns than the 0,3% higher 

returns experienced by the IPO-VIX-TED-S&P500RS model. 

 

5. Conclusion  

 

As noted in the data section, the IPO data had a lot of entries with missing values. The reason 

for this was not explored. Were they postponed, or did the offering not go through at all. This 

could be a topic for further research. 

 

The results of the study showed that IPO returns had a non-statistically significant positive 

correlation with the S&P 500 log returns, table 4.5. In the negative returns regime, the IPO 

returns showed the highest level of significance, with a p-value of 0.1915.  

 

When comparing the performance of the models using pseudo out-of-sample forecasts for the 

S&P 500 log returns during the first quarter of 2020, the model that included the IPO returns 

performed the worst. The best performing model in forecasting was the regime switching 

model that included the VIX and the TED spread as regressors. The VIX-TED-S&P500 

regime switching model had a lower RMSFE value than all the models, including the 

GARCH model. The GARCH model however, outperformed the other regime switching 

models in the pseudo out-of-forecast.  

 

When the regime switching models were back tested using portfolio optimization, the best 

performing model was the regime switching model that included the IPO returns, with a 

holding period return (HPR) of 313.53%. This model which marginally outperformed the 

S&P 500 regime switching model, with a HPR of 313.23%. These two models outperformed 

the regime switching model that included the VIX and TED spread as regressor and the model 

that did not allow for switching by a large margin, which had HPR of 242.53% and 323.06% 
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respectively. All the regime switching models outperformed the model that did not allow for 

regime switching, showing that in general regime switching models will outperform a linear 

model in portfolio optimization.  

 

The difference between the HPR of the regime switching model that included IPO returns and 

the S&P 500 regime switching model was 0.3%. The back testing was done without 

considering transaction costs associated with the rebalancing required at each regime shift. 

The S&P 500 regime switching model required rebalancing 9 times during the period, 

whereas the regime switching model that included the IPO returns required rebalancing 48 

times in the same time period. It is likely that the transaction costs associated with the 

rebalancing would eat up those 0.3% excess returns. In addition to transaction costs, the S&P 

500 regime switching model had a higher Sharpe ratio in both regimes, meaning that the risk 

adjusted returns for this model were higher than for the IPO regime switching model. This 

means that almost the same HPR was achieved for the period, but at a much lower risk for the 

S&P 500 regime switching model. 

 

The results in this study does not indicate that adding IPO returns to the modelling the S&P 

500 returns add much value. The coefficients for the IPO returns were not statistically 

significant. The regime switching model did not have the best performance in the pseudo out-

of-sample forecast. The optimal risky portfolio created by the IPO model was able to generate 

the highest holding period returns marginally beating the S&P 500 regime switching model, 

however this was with a much lower Sharpe ratio, so the risk adjusted returns for this 

portfolio was lower than for the S&P 500 ratio. 

 

This study used a different time horizon than most other studies on the interaction between the 

performance of IPOs and the performance of the stock market. Other studies tend to use 

longer time horizons, but this study was limited by the time horizon of the VIX index. This 

study was simplified by using monthly data, as opposed to using daily data commonly seen in 

research regarding IPOs. The IPO dataset collected from the Tomson Reuters Eikon database 

did have a lot of missing data. Further research could be done by investigating these planned 

offerings, and see if there is useful information contained in identifying if initial public 

offerings get postponed or cancelled. 
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Appendix A. Data preparation. 

1. library(quantmod) 
2. library(tidyverse) 
3. library(tseries) 
4. library(forecast) 
5. library(zoo) 
6.   
7. setwd("C:/Users/Kristoffer/Documents/Master/R scripts") 
8.   
9. # Create new environment 
10. sp500 <- new.env() 

11.   

12. # Download data for S&P500 

13. getSymbols("^GSPC", env = sp500, src = "yahoo", from = 

as.Date("1989-12-29"), to = as.Date("2020-03-31")) 

14.   

15. # Create tibble from the S&P500 data 

16. GSPC <- sp500$GSPC 

17. monthly <- to.monthly(GSPC) 

18. tib <- monthly %>% fortify.zoo %>% as_tibble() 

19.   

20. # Inspect tibble 

21. class(tib) 

22. head(tib) 

23. tail(tib) 

24. summary(tib) 

25.   

26. # Will work with the S&P closing data from 01/01/1960 to 31/03/2020 

27.   

28. # Plot the time series and test for stationarity 

29. ggplot(tib, aes(x = Index, y = GSPC.Close)) +  

30.   geom_line() 

31. adf.test(tib$GSPC.Close) 

32. # Both the plot and the ADF test show that the time series is not 

stationary 

33.   

34.   

35. # Take the returns and log returns of the time series 

36. log_close = log(tib$GSPC.Close) 

37. log_returns = log_close - lag(log_close, k = 1) 

38. log <- na.omit(log_returns) 

39. returns <- (tib$GSPC.Close - lag(tib$GSPC.Close, k = 

1))/lag(tib$GSPC.Close, k=1) 

40. returns 

41.   

42. # New tibble with returns and log returns added 

43. tib_returns <- add_column(tib, Returns = returns) %>% drop_na() 

44. str(tib_returns) 

45. tib_returns2 <- add_column(tib_returns, Log.Returns = log) %>% 

drop_na() 

46.   

47. # Returns are stationary in the adf test 

48. ggplot(tib_returns, aes(x = Index, y = Returns)) +  

49.   geom_line() 

50. adf.test(tib_returns$Returns) 

51.   

52.   

53. # Log returns are stationary  

54. ggplot(tib_returns2, aes(x = Index, y = Log.Returns)) +  
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55.   geom_line() 

56. adf.test(tib_returns2$Log.Returns) 

57.   

58. # Download data for VIX 

59. getSymbols("^VIX", env = sp500, src = "yahoo", from = 

as.Date("1990-01-01"), to = as.Date("2020-03-31")) 

60. vix <- sp500$VIX 

61. head(vix) 

62. vix_monthly <- to.monthly(vix) 

63. str(vix_monthly$vix.High) 

64.   

65.   

66. # Plot and check for stationarity in VIX. Stationary at a 90% 

significance level 

67. ggplot(vix_monthly, aes(x = Index, y = vix.High)) + 

68.   geom_line() 

69. adf.test(vix_monthly$vix.High) 

70.   

71. # Adding VIX to tibble 

72. head(tib_returns2) 

73. str(tib_returns2) 

74. vix_tb <- vix_monthly %>% fortify.zoo() %>%  as.tibble() 

75. joined_vix <- left_join(tib_returns2, vix_tb) 

76. head(joined_vix) 

77.   

78.   

79. # Load data for the TEDspread  

80. ted.rate <- read.csv("TEDRATE(1).csv") 

81. head(ted.rate) 

82. str(ted.rate) 

83. ted.rate$TEDRATE <- ted.rate$TEDRATE/100 

84.   

85. # Plot and check for stationarity in the TED spread. Stationary at 

95% significance level 

86. ts.plot(ted.rate$TEDRATE) 

87. adf.test(ted.rate$TEDRATE) 

88.   

89. # Adding TED spread to tibble 

90. ted_tb <- ted.rate %>% as.tibble() 

91. head(ted_tb) 

92. ted_month <- as.yearmon(ted_tb$DATE) 

93. ted_tb$DATE <- ted_month 

94. tedr <- rename(ted_tb, Index = DATE) 

95. head(tedr) 

96.   

97. joined_vix_ted <- left_join(joined_vix, tedr) 

98. head(joined_vix_ted) 

99.   

100. # Load data for IPOs 
101. ipos <- read.csv("Eikondata.csv", sep=';', stringsAsFactors = 

FALSE) %>%  as.tibble() 

102. head(ipos) 
103. ipos$Percent.Change.Offer.Price.to.First.Closing.Price <- gsub(",", 

".", ipos$Percent.Change.Offer.Price.to.First.Closing.Price) 

104. ipos$Offer.Price <- gsub(",", ".", ipos$Offer.Price) 
105. head(ipos) 
106.   
107. # Remove NAs from returns  
108. ipos$Returns <- 

sapply(ipos$Percent.Change.Offer.Price.to.First.Closing.Price, 

as.numeric)/100 
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109. head(ipos) 
110. ipos_no_na <- drop_na(ipos) 
111. head(ipos_no_na) 
112.   
113. # Remove IPOs where offer price is less than $5 
114. ipos_no_na$Offer.Price <- sapply(ipos_no_na$Offer.Price, 

as.numeric) 

115. ipos_no_low_offer <- ipos_no_na[which(ipos_no_na$Offer.Price >= 
5),] 

116. head(ipos_no_low_offer) 
117.   
118. # Select only date and first day returns 
119. ipo_returns <- ipos_no_low_offer[c("Issue.Date", "Returns")] 
120. head(ipo_returns) 
121. tail(ipo_returns) 
122. ipo_returns$Issue.Date <- as.Date(ipo_returns$Issue.Date, "%d. %m. 

%Y") 

123. ipo_returns$Issue.Date <- as.yearmon(ipo_returns$Issue.Date) 
124.   
125. # Take monthly average and prepare data for adding it to joined 

tibble 

126. ipo_average <- aggregate(Returns ~ Issue.Date, ipo_returns, mean) 
127. n <- dim(ipo_average)[1] 
128. asdf <- ipo_average %>% as.tibble() 
129. ipo_ready <- rename(asdf, Index = Issue.Date) 
130. ipo_ready <- rename(ipo_ready, FD.Returns = Returns) 
131. ipo_ready 
132.   
133. # Joined all data 
134. joined_vix_ted_ipos <- left_join(joined_vix_ted, ipo_ready) 
135. head(joined_vix_ted_ipos) 
136.   
137. # Make tibble with only the data that is needed 
138. data_set <- joined_vix_ted_ipos[c("Index", "GSPC.Close", "Returns", 

"Log.Returns", "vix.High", "TEDRATE", "FD.Returns")] 

139. head(data_set) 
140. data_set <- rename(data_set, SP.Close = GSPC.Close) 
141. data_set <- rename(data_set, Date = Index) 
142. data_set <- rename(data_set, SP.Log.Returns = Log.Returns) 
143. data_set <- rename(data_set, First.Day.Returns = FD.Returns) 
144. data_set <- rename(data_set, SP.Returns = Returns) 
145.   
146. # Replace NAs in first day returns with previous value 
147. ipo_dataset <- data_set 
148. ipo_dataset$First.Day.Returns <- 

na.locf(ipo_dataset$First.Day.Returns) 

149. ipo_dataset$First.Day.Returns 
150.   
151. # Check if ipo data are stationary. Stationary at a 95% sign level 
152. adf.test(ipo_dataset$First.Day.Returns) 
153.   
154. # Get data for Vanguard Total Bond Market Index Fund and add 

returns and log returns to dataset 

155. getSymbols("VBMFX", from = as.Date("1989-12-29"), to = 
as.Date("2020-03-31")) 

156. VBMFX_monthly <- to.monthly(VBMFX) 
157. head(VBMFX_monthly) 
158. VBMFX_tib <- VBMFX_monthly %>% fortify.zoo %>% as_tibble() 
159. VBMFX_returns <- (VBMFX_tib$VBMFX.Close - 

lag(VBMFX_tib$VBMFX.Close, k = 1))/lag(VBMFX_tib$VBMFX.Close, k=1) 

160. VBMFX_log_close <- log(VBMFX_tib$VBMFX.Close) 
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161. VBMFX_log_returns <- VBMFX_log_close - lag(VBMFX_log_close, k = 1) 
162. VBMFX.Returns <- na.omit(VBMFX_returns) 
163. VBMFX.Log.Returns <- na.omit(VBMFX_log_returns) 
164. VBMFX_returns <- add_column(ipo_dataset, VBMFX.Returns)  %>% 

drop_na() 

165. vbmfx_data <- add_column(VBMFX_returns, VBMFX.Log.Returns) %>% 
drop_na() 

166.   
167. # ADD 3-month T-bills as the risk free rate 
168. getSymbols("DGS3MO", src = "FRED", from = as.Date("1989-12-29"), to 

= as.Date("2020-03-31")) 

169. head(DGS3MO) 
170. t.bills <- to.monthly(DGS3MO) 
171. head(t.bills) 
172. ts.plot(t.bills$DGS3MO.Close) 
173. risk_free_percent <- t.bills$DGS3MO.Close 
174. risk_free <- risk_free_percent/100 
175. str(risk_free) 
176. rf <- (1+risk_free[97:459,])^(1/12) -1 
177. tail(rf) 
178. colnames(rf) <- "rf" 
179. head(rf) 
180. ts.plot(rf) 
181.   
182. final_data <- add_column(vbmfx_data, rf) 
183. head(final_data) 
184.   
185. # Save the dataset to csv file 
186. write_csv(final_data, "ipo_dataset.csv") 
187.  
188. # Plot all the time seres data 
189. ts.plot(final_data$SP.Close[1:360], ylab="S&P") 
190. ts.plot(final_data$vix.High[1:360], ylab="VIX") 
191. ts.plot(final_data$TEDRATE[1:360], ylab="TED") 
192. ts.plot(final_data$First.Day.Returns[1:360], ylab="IPO returns") 
193. ts.plot(final_data$rf[1:360], ylab="3 month T-bills") 
194. ts.plot(VBMFX_monthly$VBMFX.Close[2:361], ylab="Bond portfolio") 

  

Appendix B.1. Regime switching models. 

1. library(tidyverse) 
2. library(MSwM) 
3. library(tseries) 
4. library(stargazer) 
5. library(xts) 
6. library(zoo) 
7. set.seed(1234) 
8.   
9. # Set wd 
10. setwd("C:/Users/Kristoffer/Documents/Master/R scripts") 

11.   

12. # Load data 

13. ipo_data <- read.csv("ipo_dataset.csv", stringsAsFactors = FALSE) 

%>% as_tibble() 

14.   

15. # The dataset 

16. head(ipo_data) 
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17. tail(ipo_data) 

18.   

19. # Split into training dataset (1990-2019) and testing dataset 

(2020) 

20. training_data <- ipo_data[1:360,] 

21. tail(training_data) 

22. test_data <- ipo_data[361:363,] 

23. test_data 

24.   

25. SP.Returns <- training_data$SP.Returns 

26. SP.Log.Returns <- training_data$SP.Log.Returns 

27. VIX <- training_data$vix.High 

28. TEDRATE <- training_data$TEDRATE 

29. First.Day.Returns <- training_data$First.Day.Returns 

30.   

31. # Test for stationarity, S&P price is not stationary, log returns 

are stationary at a 95% significance level 

32. # All other time series are stationary at a 95% significance level 

33. adf.test(training_data$SP.Close) 

34. adf.test(training_data$SP.Log.Returns) 

35. adf.test(training_data$vix.High) 

36. adf.test(training_data$TEDRATE) 

37. adf.test(training_data$First.Day.Returns) 

38.   

39.  

40.  

41. # Model an AR(1) model of S&P500 log returns 

42. sp.model <- lm(SP.Log.Returns ~ lag(SP.Log.Returns, k = 1)) 

43. summary(sp.model) 

44.  

45. # Check Akaike information criteria for different lag lengths, 1 

lag is optimal lag length 

46. iterations <- 10 

47. variables <- 2 

48. output <- matrix(ncol = variables, nrow = iterations) 

49. aicvec <- c() 

50. for(i in 1:iterations){ 

51.   n <-AIC(sp.model, k = i) 

52.   output[i, ] <- c(i, n) 

53. } 

54. output  

55. stargazer(output, type = "html")  

56.  

57. # Autoregressive Markov Switching model fitted to S&P500 log 

returns 

58. sp.model.mswm <- msmFit(sp.model, k = 2, sw = c(TRUE, TRUE, TRUE)) 

59.   

60. # VIX-TED-S&P500 regime switching model 

61. vix.ted.sp.model <- lm(training_data$SP.Log.Returns ~ 

lag(SP.Log.Returns, k= 1) + 

62.                          lag(VIX, k = 1) + lag(TEDRATE, k = 1)) 

63. vix.ted.sp.model.mswm <- msmFit(vix.ted.sp.model, k = 2, sw = 

c(TRUE, TRUE, TRUE, TRUE, TRUE)) 

64.   

65. # IPO-VIX-TED-S&P500 regime switching model 

66. ipo.vix.ted.sp.model <- lm(training_data$SP.Log.Returns ~ 

lag(SP.Log.Returns, k= 1) + 

67.                              lag(VIX, k = 1) + lag(TEDRATE, k = 1) 

+ 

68.                              lag(First.Day.Returns, k = 1)) 
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69. ipo.vix.ted.sp.model.mswm <- msmFit(ipo.vix.ted.sp.model, k = 2, sw 

= c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE)) 

70.   

71. # Summary for each of the Markov switching models 

72. summary(sp.model.mswm) 

73. summary(vix.ted.sp.model.mswm) 

74. summary(ipo.vix.ted.sp.model.mswm) 

75.   

76. #================================================================== 

77.   

78. # Plotting 

79. par(mar=c(1,1,1,1)) 

80. tib <- as_tibble(training_data) 

81.  

82.   

83. # S&P 500 model 

84. # Regime 1: 25:78, 162:210, 269:304, 315:342, 355:359 

85. # Regime 2: 1:24, 79:161, 211:268, 305:314, 343:354, 360: 

86. sp.xone <- c(as.yearmon(training_data$Date[1]), 

as.yearmon(training_data$Date[79]), 

as.yearmon(training_data$Date[211]), 

as.yearmon(training_data$Date[305]), 

as.yearmon(training_data$Date[343]), 

as.yearmon(training_data$Date[360])) 

87. sp.xtwo <- c(as.yearmon(training_data$Date[25]), 

as.yearmon(training_data$Date[162]), 

as.yearmon(training_data$Date[269]), 

as.yearmon(training_data$Date[315]), 

as.yearmon(training_data$Date[355]), 

as.yearmon(training_data$Date[360])) 

88. sp.shade <- data.frame(x1 = sp.xone, x2 = sp.xtwo, y1=c(-0.2,-0.2), 

y2=c(0.2,0.2)) 

89. sp.shader <- sp.shade[1:5,] 

90.   

91. ggplot() + 

92.   ggtitle("S&P500 MODEL") +  

93.   theme(plot.title = element_text(hjust = 0.5)) + 

94.   labs(x = "Date", y = "S&P500") + 

95.   geom_line(data = tib, aes(x = as.yearmon(Date), y = SP.Close)) + 

96.   geom_rect(data=sp.shader, aes(xmin=x1, xmax=x2, ymin=0, 

ymax=3500), color="grey", alpha=0.5) 

97.   

98. # VIX TED SP model 

99. # Regime 1: 2:8, 20:23, 49:50, 90:92, 102, 114:115, 120:133, 

136:140, 144:151, 155:157, 209, 214:217, 221:228, 244, 257:259, 262, 

267, 307, 311:312, 336:338, 345:346 

100. # Regime 2: 1, 9:19, 24:48, 51:89, 93:101, 103:113, 116:119, 
134:135, 141:143, 152:154, 158:208, 210:213, 218:220, 229:243, 

245:256, 260:261, 263:266, 268:306, 308:310, 313:335, 339:344, 347: 

101. vtsp.xone <- c(as.yearmon(training_data$Date[1]), 
as.yearmon(training_data$Date[9]), 

as.yearmon(training_data$Date[24]), 

as.yearmon(training_data$Date[51]), 

as.yearmon(training_data$Date[93]), 

as.yearmon(training_data$Date[103]), 

as.yearmon(training_data$Date[116]), 

102.                as.yearmon(training_data$Date[134]), 
as.yearmon(training_data$Date[141]), 

as.yearmon(training_data$Date[152]), 

as.yearmon(training_data$Date[158]), 
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as.yearmon(training_data$Date[210]), 

as.yearmon(training_data$Date[218]), 

103.                as.yearmon(training_data$Date[229]), 
as.yearmon(training_data$Date[245]), 

as.yearmon(training_data$Date[260]), 

as.yearmon(training_data$Date[263]), 

as.yearmon(training_data$Date[268]), 

as.yearmon(training_data$Date[308]), 

104.                as.yearmon(training_data$Date[313]), 
as.yearmon(training_data$Date[339]), 

as.yearmon(training_data$Date[347]), 

as.yearmon(training_data$Date[360]), 

as.yearmon(training_data$Date[360])) 

105.   
106. vtsp.xtwo <- c(as.yearmon(training_data$Date[2]), 

as.yearmon(training_data$Date[20]), 

as.yearmon(training_data$Date[49]), 

as.yearmon(training_data$Date[90]), 

as.yearmon(training_data$Date[102]), 

as.yearmon(training_data$Date[114]), 

107.                as.yearmon(training_data$Date[120]), 
as.yearmon(training_data$Date[136]), 

as.yearmon(training_data$Date[144]), 

as.yearmon(training_data$Date[155]), 

as.yearmon(training_data$Date[209]), 

as.yearmon(training_data$Date[214]), 

108.                as.yearmon(training_data$Date[221]), 
as.yearmon(training_data$Date[244]), 

as.yearmon(training_data$Date[257]), 

as.yearmon(training_data$Date[262]), 

as.yearmon(training_data$Date[267]), 

as.yearmon(training_data$Date[307]), 

109.                as.yearmon(training_data$Date[311]), 
as.yearmon(training_data$Date[336]), 

as.yearmon(training_data$Date[345]), 

as.yearmon(training_data$Date[359]), 

as.yearmon(training_data$Date[360]), 

as.yearmon(training_data$Date[360])) 

110.                 
111. vtsp.shade <- data.frame(x1 = vtsp.xone, x2 = vtsp.xtwo, y1=c(-

0.2,-0.2), y2=c(0.2,0.2)) 

112. vtsp.shader <- vtsp.shade[1:21,] 
113.   
114. ggplot() + 
115.   labs(x = "Date", y = "S&P500") + 
116.   theme(plot.title = element_text(hjust = 0.5)) + 
117.   ggtitle("VIX-TEDRATE-S&P500 MODEL") +  
118.   geom_line(data = tib, aes(x = as.yearmon(Date), y = SP.Close)) + 
119.   geom_rect(data=vtsp.shader, aes(xmin=x1, xmax=x2, ymin=0, 

ymax=3500), color="grey", alpha=0.5)  

120.   
121.    
122. # IPO VIX TED SP model 
123. # Regime 1: 3, 6:8, 20:23, 49:50, 78, 90, 102, 114:115, 120:133, 

137:140, 144:151, 155:157, 170, 209, 214:217, 221:228, 244, 256:259, 

262, 267, 307, 311:312, 336:338, 345:346 

124. # Regime 2: 1:2, 4:5, 9:19, 24:48, 51:77, 79:89, 91:101, 103:113, 
116:119, 134:136, 141:143, 152:154, 158:169, 171:208, 210:213, 

218:220, 229:243, 245:255, 260:261, 263:266, 268:306, 308:310, 

313:335, 339:344, 347: 
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125. ivtsp.xone <- c(as.yearmon(training_data$Date[4]), 
as.yearmon(training_data$Date[9]), 

as.yearmon(training_data$Date[24]), 

as.yearmon(training_data$Date[51]), 

as.yearmon(training_data$Date[79]), 

126.                 as.yearmon(training_data$Date[91]), 
as.yearmon(training_data$Date[103]),  

as.yearmon(training_data$Date[116]), 

as.yearmon(training_data$Date[134]), 

as.yearmon(training_data$Date[141]),as.yearmon(training_data$Date[152

]), 

127.                 as.yearmon(training_data$Date[158]), 
as.yearmon(training_data$Date[171]), 

as.yearmon(training_data$Date[210]), 

as.yearmon(training_data$Date[218]), 

as.yearmon(training_data$Date[229]), 

as.yearmon(training_data$Date[245]), 

128.                 as.yearmon(training_data$Date[260]), 
as.yearmon(training_data$Date[263]), 

as.yearmon(training_data$Date[268]), 

as.yearmon(training_data$Date[308]), 

as.yearmon(training_data$Date[313]), 

as.yearmon(training_data$Date[339]), 

129.                 as.yearmon(training_data$Date[347]), 
as.yearmon(training_data$Date[359]), 

as.yearmon(training_data$Date[360])) 

130.   
131. ivtsp.xtwo <- c(as.yearmon(training_data$Date[3]), 

as.yearmon(training_data$Date[6]), 

as.yearmon(training_data$Date[20]), 

as.yearmon(training_data$Date[49]), 

as.yearmon(training_data$Date[78]), 

as.yearmon(training_data$Date[90]), 

132.                  as.yearmon(training_data$Date[102]), 
as.yearmon(training_data$Date[114]), 

as.yearmon(training_data$Date[120]), 

as.yearmon(training_data$Date[137]), 

as.yearmon(training_data$Date[144]), 

as.yearmon(training_data$Date[155]), 

133.                  as.yearmon(training_data$Date[170]), 
as.yearmon(training_data$Date[209]), 

as.yearmon(training_data$Date[214]), 

as.yearmon(training_data$Date[221]), 

as.yearmon(training_data$Date[244]), 

as.yearmon(training_data$Date[256]), 

134.                  as.yearmon(training_data$Date[262]), 
as.yearmon(training_data$Date[267]), 

as.yearmon(training_data$Date[307]), 

as.yearmon(training_data$Date[311]), 

as.yearmon(training_data$Date[336]), 

as.yearmon(training_data$Date[345]), 

135.                  as.yearmon(training_data$Date[359]), 
as.yearmon(training_data$Date[360])) 

136.   
137. ivtsp.shade <- data.frame(x1 = ivtsp.xone, x2 = ivtsp.xtwo, y1=c(-

0.2,-0.2), y2=c(0.2,0.2)) 

138. ivtsp.shader <- ivtsp.shade[1:24,] 
139.   
140. ggplot() + 
141.   ggtitle("IPO-VIX-TEDRATE-S&P500 MODEL") +  
142.   theme(plot.title = element_text(hjust = 0.5)) + 
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143.   labs(x = "Date", y = "S&P500") + 
144.   geom_line(data = tib, aes(x = as.yearmon(Date), y = SP.Close)) + 
145.   geom_rect(data=ivtsp.shader, aes(xmin=x1, xmax=x2, ymin=0, 

ymax=3500), color="grey", alpha=0.5)  

146.   
147. #================================================================== 
148.   
149. # Pseudo out of sampling forecast using transition matrix 
150.   
151. # S&P500 model 
152. sp.matrix <- as.matrix(sp.model.mswm@transMat) 
153. sp.matrix 
154.   
155. # In December 2019 the model is in regime 2 
156. sp.initial.state = c(0,1) 
157.   
158. sp.jan <- sp.matrix %*% sp.initial.state 
159. sp.jan 
160. sp.feb <- sp.matrix %*% sp.jan 
161. sp.feb 
162. sp.march <- sp.matrix %*% sp.feb 
163. sp.march 
164.   
165. # Predict that the model will be in regime 2 in all of 2020:Q1 
166.   
167. # RMSFE 
168. sp.forecast.log.returns.jan <- 0.01286700 - (0.19318686 * 

training_data$SP.Log.Returns[360]) 

169. sp.forecast.log.returns.feb <- 0.01286700 - (0.19318686 * 
test_data$SP.Log.Returns[1]) 

170. sp.forecast.log.returns.mar <- 0.01286700 - (0.19318686 * 
test_data$SP.Log.Returns[2]) 

171. sp.forecasterror.jan <- test_data$SP.Log.Returns[1] - 
sp.forecast.log.returns.jan 

172. sp.forecasterror.feb <- test_data$SP.Log.Returns[2] - 
sp.forecast.log.returns.feb 

173. sp.forecasterror.mar <- test_data$SP.Log.Returns[3] - 
sp.forecast.log.returns.mar 

174. sp.RMSFE <- sqrt(sp.forecasterror.jan^2 + sp.forecasterror.feb^2 + 
sp.forecasterror.mar^2) 

175.   
176. # Forecast VIX-TED-S&P500 model using transition matrix 
177. vt.matrix <- as.matrix(vix.ted.sp.model.mswm@transMat) 
178. vt.matrix 
179.   
180. # December 2019, model is in regime 2 
181. vt.initial.state = c(0,1) 
182.   
183. vt.jan <- vt.matrix %*% vt.initial.state 
184. vt.jan 
185. vt.feb <- vt.matrix %*% vt.jan 
186. vt.feb 
187. vt.mar <- vt.matrix %*% vt.feb 
188. vt.mar 
189.   
190. # Predict that the model will be in regime 2 in all of 2020:Q1 
191.   
192. # RMSFE 
193. vt.forecast.log.returns.jan <- 0.009936377 - (0.07794005 * 

training_data$SP.Log.Returns[360]) - (0.000737021 * 
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training_data$vix.High[360]) - (0.05794994 * 

training_data$TEDRATE[360]) 

194. vt.forecast.log.returns.feb <- 0.009936377 - (0.07794005 * 
test_data$SP.Log.Returns[1]) - (0.000737021 * test_data$vix.High[1]) 

- (0.05794994 * test_data$TEDRATE[1]) 

195. vt.forecast.log.returns.mar <- 0.009936377 - (0.07794005 * 
test_data$SP.Log.Returns[2]) - (0.000737021 * test_data$vix.High[2]) 

- (0.05794994 * test_data$TEDRATE[2]) 

196. vt.forecasterror.jan <- test_data$SP.Log.Returns[1] - 
vt.forecast.log.returns.jan 

197. vt.forecasterror.feb <- test_data$SP.Log.Returns[2] - 
vt.forecast.log.returns.feb 

198. vt.forecasterror.mar <- test_data$SP.Log.Returns[3] - 
vt.forecast.log.returns.mar 

199. vt.RMSFE <- sqrt(vt.forecasterror.jan^2 + vt.forecasterror.feb^2 + 
vt.forecasterror.mar^2) 

200.   
201. # Forecast IPO-VIX-TED-S&P500 model using transition matrix 
202. ip.matrix <- as.matrix(ipo.vix.ted.sp.model.mswm@transMat) 
203. ip.matrix 
204.   
205. # December 2019, model is in regime 1 
206. ip.initial.state = c(1,0) 
207.   
208. ip.jan <- ip.matrix %*% ip.initial.state 
209. ip.jan 
210. ip.feb <- ip.matrix %*% ip.jan 
211. ip.feb 
212. ip.march <- ip.matrix %*% ip.feb 
213. ip.march 
214.   
215. # Predict that the model will be in regime 1 in all of 2020:Q1 
216.   
217. # RMSFE 
218. ip.forecast.log.returns.jan <- -0.015263413 - (0.1782138 * 

training_data$SP.Log.Returns[360]) + (0.0016995085* 

training_data$vix.High[360]) + (0.007586086 * 

training_data$TEDRATE[360]) + (0.01454385 * 

training_data$First.Day.Returns[360]) 

219. ip.forecast.log.returns.feb <- -0.015263413 - (0.1782138 * 
test_data$SP.Log.Returns[1]) + (0.0016995085 * test_data$vix.High[1]) 

+ (0.007586086 * test_data$TEDRATE[1]) + (0.01454385 * 

test_data$First.Day.Returns[1]) 

220. ip.forecast.log.returns.mar <- -0.015263413 - (0.1782138 * 
test_data$SP.Log.Returns[2]) + (0.0016995085 * test_data$vix.High[2]) 

+ (0.007586086 * test_data$TEDRATE[2]) + (0.01454385 * 

test_data$First.Day.Returns[2]) 

221. ip.forecasterror.jan <- test_data$SP.Log.Returns[1] - 
ip.forecast.log.returns.jan 

222. ip.forecasterror.feb <- test_data$SP.Log.Returns[2] - 
ip.forecast.log.returns.feb 

223. ip.forecasterror.mar <- test_data$SP.Log.Returns[3] - 
ip.forecast.log.returns.mar 

224. ip.RMSFE <- sqrt(ip.forecasterror.jan^2 + ip.forecasterror.feb^2 + 
ip.forecasterror.mar^2) 

225.   
226. # Output table 
227. header <- c("", "S&P500 model", "VIX-TED-S&P500 model", "IPO-VIX-

TED-S&P500 model") 

228. RMSFE <- c("RMSFE", round(sp.RMSFE, 4), round(vt.RMSFE, 4), 
round(ip.RMSFE, 4)) 
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229. tabl <- rbind(header, RMSFE) 
230. stargazer(tabl, type="html") 
231.  
232. headr <- c("", "Jan 2020", "Feb 2020", "Mar 2020") 
233. row1 <- c("S&P500 model", round(sp.forecast.log.returns.jan, 4), 

round(sp.forecast.log.returns.feb, 4), 

round(sp.forecast.log.returns.mar, 4)) 

234. row2 <- c("VIX-TED-S&P500 model", 
round(vt.forecast.log.returns.jan, 4), 

round(vt.forecast.log.returns.feb, 4), 

round(vt.forecast.log.returns.mar, 4)) 

235. row3 <- c("IPO-VIX-TED-S&P500 model", 
round(ip.forecast.log.returns.jan, 4), 

round(ip.forecast.log.returns.feb, 4), 

round(ip.forecast.log.returns.mar, 4)) 

236. row4 <- c("Actual returns", round(test_data$SP.Log.Returns[1], 4), 
round(test_data$SP.Log.Returns[2], 4), 

round(test_data$SP.Log.Returns[3], 4)) 

237. tab <- rbind(headr, row1, row2, row3, row4) 
238. stargazer(tab, type="html") 

  

 

Appendix B.2. Portfolio optimization. 

1. library(tseries) 
2. library(stargazer) 
3. library(fPortfolio) 
4. set.seed(1234) 
5.   
6. # Set wd 
7. setwd("C:/Users/Kristoffer/Documents/Master/R scripts") 
8.   
9. # Load data 
10. ipo_data <- read.csv("ipo_dataset.csv", stringsAsFactors = FALSE) 

11.   

12. # The dataset 

13. head(ipo_data) 

14. tail(ipo_data) 

15.   

16. # Split into training dataset (1990-2019) and testing dataset 

(2020) 

17. training_data <- ipo_data[1:360,] 

18. test_data <- ipo_data[361:363,] 

19.   

20. # The mean risk free rate for the whole period will be used in all 

Sharpe calculations 

21. rf <- mean(training_data$rf) 

22.   

23. #================================================================== 

24.  

25. # S&P 500 model no switching 

26. R <- cbind(training_data$SP.Log.Returns, 

training_data$VBMFX.Log.Returns) 

27. head(R) 

28. colnames(R) <- c("SP", "VBMFX") 

29. dates <- seq.Date(as.Date("1990-01-01"), as.Date("2019-12-01"), by 

= "month") 
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30. date <- format(dates, "%Y-%m-%d") 

31. rownames(R) <- date 

32.   

33. # Efficient frontier 

34. portfolioreturns <- as.timeSeries(R) 

35. effFrontier <- portfolioFrontier(portfolioreturns, constraints = 

"LongOnly") 

36. plot(effFrontier,c(1,3)) 

37. frontierWeights <- getWeights(effFrontier) 

38. risk_return <- frontierPoints(effFrontier) 

39.   

40. # Tangency portfolio / Sharpe 

41. tangencyport <- tangencyPortfolio(portfolioreturns, spec = 

portfolioSpec(), constraints = "LongOnly") 

42. tangencyport 

43. tangency_weights <- getWeights(tangencyport) 

44. tangency_ret <- getTargetReturn(tangencyport) 

45. tangency_sd <- getTargetRisk(tangencyport) 

46. barplot(tangency_weights, main="No Switching Portfolio Weights", 

xlab = "Asset", ylab = "Weight in portfolio", 

col=cm.colors(ncol(frontierWeights)+2)) 

47. ns.shar <- ((tangency_ret[1]*12) - rf*12)/(tangency_sd[1]*sqrt(12)) 

48. ns.shar 

49. ns.weights <- round(tangency_weights, 4) 

50.   

51. # Holding period log returns 

52. ns.returns <- R * tangency_weights 

53. ns.holding.peroid.log.returns <- sum(ns.returns) 

54. ns.holding.peroid.log.returns 

55.   

56. # Weights table 

57. header1 <- c("Sharpe","") 

58. shar <- c(round(ns.shar, 4), "") 

59. header2 <- c("Weights","") 

60. headers <- c( "S&P 500", " Vanguard") 

61. weight <- c(ns.weights[1], ns.weights[2]) 

62. tabl <- rbind(header1, shar, header2, headers, weight) 

63. stargazer(tabl, type = "html") 

64.   

65.   

66. #================================================================== 

67.   

68. # S&P500 model 

69. sp.r1.sp.r <- c(training_data$SP.Log.Returns[25:75], 

training_data$SP.Log.Returns[162:210], 

70.                 training_data$SP.Log.Returns[269:304], 

training_data$SP.Log.Returns[315:342], 

71.                 training_data$SP.Log.Returns[355:359]) 

72.   

73. sp.r2.sp.r <- c(training_data$SP.Log.Returns[1:24], 

training_data$SP.Log.Returns[77:161], 

74.                 training_data$SP.Log.Returns[211:268], 

training_data$SP.Log.Returns[305:314], 

75.                 

training_data$SP.Log.Returns[343:354],training_data$SP.Log.Returns[36

0]) 

76.   

77.   

78. sp.r1.vb.r <- c(training_data$VBMFX.Log.Returns[25:75], 

training_data$VBMFX.Log.Returns[162:210], 
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79.                 training_data$VBMFX.Log.Returns[269:304], 

training_data$VBMFX.Log.Returns[315:342], 

80.                 training_data$VBMFX.Log.Returns[355:359]) 

81.   

82. sp.r2.vb.r <- c(training_data$VBMFX.Log.Returns[1:24], 

training_data$VBMFX.Log.Returns[77:161], 

83.                 training_data$VBMFX.Log.Returns[211:268], 

training_data$VBMFX.Log.Returns[305:314], 

84.                 training_data$VBMFX.Log.Returns[343:354], 

training_data$SP.Returns[360]) 

85.   

86. sp.r1.date <- c(date[25:75], date[162:210], 

87.                 date[269:304], date[315:342], 

88.                 date[355:359]) 

89.   

90. sp.r2.date <- c(date[1:24], date[77:161], 

91.                 date[211:268], date[305:314], 

92.                 date[343:354], date[360]) 

93.   

94. R1 <- cbind(sp.r1.sp.r, sp.r1.vb.r) 

95. head(R1) 

96. colnames(R1) <- c("SP", "VBMFX") 

97. head(sp.r1.date) 

98. rownames(R1) <- sp.r1.date 

99.   

100. # Efficient frontier 
101. portfolioreturns <- as.timeSeries(R1) 
102. effFrontier <- portfolioFrontier(portfolioreturns, constraints = 

"LongOnly") 

103. plot(effFrontier,c(1,3)) 
104. frontierWeights <- getWeights(effFrontier) 
105. risk_return <- frontierPoints(effFrontier) 
106.   
107. # Tangency portfolio / Sharpe 
108. tangencyport <- tangencyPortfolio(portfolioreturns, spec = 

portfolioSpec(), constraints = "LongOnly") 

109. tangencyport 
110. tangency_weights <- getWeights(tangencyport) 
111. tangency_ret <- getTargetReturn(tangencyport) 
112. tangency_sd <- getTargetRisk(tangencyport) 
113. barplot(tangency_weights, main="SP Regime 1 Portfolio Weights", 

xlab = "Asset", ylab = "Weight in portfolio", 

col=cm.colors(ncol(frontierWeights)+2)) 

114. sp.r1.shar <- ((tangency_ret[1]*12) - 
rf*12)/(tangency_sd[1]*sqrt(12)) 

115. sp.r1.shar 
116. sp.r1.weights <- round(tangency_weights, 4) 
117.   
118. # Holding period log returns 
119. sp.r1.returns <- R1 * tangency_weights 
120. sp.r1.holding.peroid.returns <- sum(sp.r1.returns) 
121. sp.r1.holding.peroid.returns 
122.   
123. # Weights table 
124. header1 <- c("Sharpe","") 
125. shar <- c(round(sp.r1.shar, 4), "") 
126. header2 <- c("Weights","") 
127. headers <- c( "S&P 500", " Vanguard") 
128. weights <-c(sp.r1.weights[1], sp.r1.weights[2]) 
129. tabl <- rbind(header1, shar, header2, headers, weights) 
130. stargazer(tabl, type = "html") 
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131.   
132.   
133. # Regime 2 
134. R2 <- cbind(sp.r2.sp.r, sp.r2.vb.r) 
135. head(R2) 
136. colnames(R2) <- c("SP", "VBMFX") 
137. rownames(R2) <- sp.r2.date 
138.   
139. # Efficient frontier 
140. portfolioreturns <- as.timeSeries(R2) 
141. effFrontier <- portfolioFrontier(portfolioreturns, constraints = 

"LongOnly") 

142. plot(effFrontier,c(1,3)) 
143. frontierWeights <- getWeights(effFrontier) 
144. risk_return <- frontierPoints(effFrontier) 
145.   
146. # Tangency portfolio / Sharpe 
147. tangencyport <- tangencyPortfolio(portfolioreturns, spec = 

portfolioSpec(), constraints = "LongOnly") 

148. tangencyport 
149. tangency_weights <- getWeights(tangencyport) 
150. tangency_ret <- getTargetReturn(tangencyport) 
151. tangency_sd <- getTargetRisk(tangencyport) 
152. barplot(tangency_weights, main="SP Regime 2 Portfolio Weights", 

xlab = "Asset", ylab = "Weight in portfolio", 

col=cm.colors(ncol(frontierWeights)+2)) 

153. sp.r2.shar <- ((tangency_ret[1]*12) - 
rf*12)/(tangency_sd[1]*sqrt(12)) 

154. sp.r2.shar 
155. sp.r2.weights <- round(tangency_weights, 4) 
156.   
157. # Holding period log returns 
158. sp.r2.returns <- R2 * tangency_weights 
159. sp.r2.holding.peroid.returns <- sum(sp.r2.returns) 
160. sp.r2.holding.peroid.returns 
161. sp.holding.peroid.log.returns <- sp.r1.holding.peroid.returns + 

sp.r2.holding.peroid.returns 

162.   
163. # Weights table 
164. header1 <- c("Sharpe","") 
165. shar <- c(round(sp.r2.shar, 4), "") 
166. header2 <- c("Weights","") 
167. headers <- c( "S&P 500", " Vanguard") 
168. weights <-c(sp.r2.weights[1], sp.r2.weights[2]) 
169. tabl <- rbind(header1, shar, header2, headers, weights) 
170. stargazer(tabl, type = "html") 
171.   
172. #================================================================== 
173.   
174. # VIX-TED-S&P500 model 
175. vt.r1.sp.r <- c(training_data$SP.Log.Returns[1], 

training_data$SP.Log.Returns[9:19], 

training_data$SP.Log.Returns[24:48], 

training_data$SP.Log.Returns[51:89], 

training_data$SP.Log.Returns[93:101], 

training_data$SP.Log.Returns[103:113], 

training_data$SP.Log.Returns[116:119], 

176.                 training_data$SP.Log.Returns[134:135], 
training_data$SP.Log.Returns[141:143], 

training_data$SP.Log.Returns[152:154], 

training_data$SP.Log.Returns[158:208], 
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training_data$SP.Log.Returns[210:213], 

training_data$SP.Log.Returns[218:220], 

177.                 training_data$SP.Log.Returns[229:243], 
training_data$SP.Log.Returns[245:256], 

training_data$SP.Log.Returns[260:261], 

training_data$SP.Log.Returns[263:266], 

training_data$SP.Log.Returns[268:306], 

training_data$SP.Log.Returns[308:310], 

178.                 training_data$SP.Log.Returns[313:335], 
training_data$SP.Log.Returns[339:344], 

training_data$SP.Log.Returns[347:360]) 

179.   
180. vt.r2.sp.r <- c(training_data$SP.Log.Returns[2:8], 

training_data$SP.Log.Returns[20:23], 

training_data$SP.Log.Returns[49:50], 

training_data$SP.Log.Returns[90:92], 

training_data$SP.Log.Returns[102], 

training_data$SP.Log.Returns[114:115], 

181.                 training_data$SP.Log.Returns[120:133], 
training_data$SP.Log.Returns[136:140], 

training_data$SP.Log.Returns[144:151], 

training_data$SP.Log.Returns[155:157], 

training_data$SP.Log.Returns[209], 

training_data$SP.Log.Returns[214:217], 

182.                 training_data$SP.Log.Returns[221:228], 
training_data$SP.Log.Returns[244], 

training_data$SP.Log.Returns[257:259], 

training_data$SP.Log.Returns[262], training_data$SP.Log.Returns[267], 

training_data$SP.Log.Returns[307], 

183.                 training_data$SP.Log.Returns[311:312], 
training_data$SP.Log.Returns[336:338], 

training_data$SP.Log.Returns[345:346]) 

184.   
185. vt.r1.vb.r <- c(training_data$VBMFX.Log.Returns[1], 

training_data$VBMFX.Log.Returns[9:19], 

training_data$VBMFX.Log.Returns[24:48], 

training_data$VBMFX.Log.Returns[51:89], 

training_data$VBMFX.Log.Returns[93:101], 

training_data$VBMFX.Log.Returns[103:113], 

training_data$VBMFX.Log.Returns[116:119], 

186.                 training_data$VBMFX.Log.Returns[134:135], 
training_data$VBMFX.Log.Returns[141:143], 

training_data$VBMFX.Log.Returns[152:154], 

training_data$VBMFX.Log.Returns[158:208], 

training_data$VBMFX.Log.Returns[210:213], 

training_data$VBMFX.Log.Returns[218:220], 

187.                 training_data$VBMFX.Log.Returns[229:243], 
training_data$VBMFX.Log.Returns[245:256], 

training_data$VBMFX.Log.Returns[260:261], 

training_data$VBMFX.Log.Returns[263:266], 

training_data$VBMFX.Log.Returns[268:306], 

training_data$VBMFX.Log.Returns[308:310], 

188.                 training_data$VBMFX.Log.Returns[313:335], 
training_data$VBMFX.Log.Returns[339:344], 

training_data$VBMFX.Log.Returns[347:360]) 

189.   
190. vt.r2.vb.r <- c(training_data$VBMFX.Log.Returns[2:8], 

training_data$VBMFX.Log.Returns[20:23], 

training_data$VBMFX.Log.Returns[49:50], 

training_data$VBMFX.Log.Returns[90:92], 
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training_data$VBMFX.Log.Returns[102], 

training_data$VBMFX.Log.Returns[114:115], 

191.                 training_data$VBMFX.Log.Returns[120:133], 
training_data$VBMFX.Log.Returns[136:140], 

training_data$VBMFX.Log.Returns[144:151], 

training_data$VBMFX.Log.Returns[155:157], 

training_data$VBMFX.Log.Returns[209], 

training_data$VBMFX.Log.Returns[214:217], 

192.                 training_data$VBMFX.Log.Returns[221:228], 
training_data$VBMFX.Log.Returns[244], 

training_data$VBMFX.Log.Returns[257:259], 

training_data$VBMFX.Log.Returns[262], 

training_data$VBMFX.Log.Returns[267], 

training_data$VBMFX.Log.Returns[307], 

193.                 training_data$VBMFX.Log.Returns[311:312], 
training_data$VBMFX.Log.Returns[336:338], 

training_data$VBMFX.Log.Returns[345:346]) 

194.   
195. vt.r1.date <- c(date[1], date[9:19], date[24:48], date[51:89], 

date[93:101], date[103:113], date[116:119], 

196.                 date[134:135], date[141:143], date[152:154], 
date[158:208], date[210:213], date[218:220], 

197.                 date[229:243], date[245:256], date[260:261], 
date[263:266], date[268:306], date[308:310], 

198.                 date[313:335], date[339:344], date[347:360]) 
199.   
200. vt.r2.date <- c(date[2:8], date[20:23], date[49:50], date[90:92], 

date[102], date[114:115], 

201.                 date[120:133], date[136:140], date[144:151], 
date[155:157], date[209], date[214:217], 

202.                 date[221:228], date[244], date[257:259], date[262], 
date[267], date[307], 

203.                 date[311:312], date[336:338], date[345:346]) 
204.   
205. # Regime 1 
206. R1 <- cbind(vt.r1.sp.r, vt.r1.vb.r) 
207. head(R1) 
208. colnames(R1) <- c("SP", "VBMFX") 
209. head(sp.r1.date) 
210. rownames(R1) <- vt.r1.date 
211.   
212. # Efficient frontier 
213. portfolioreturns <- as.timeSeries(R1) 
214. effFrontier <- portfolioFrontier(portfolioreturns, constraints = 

"LongOnly") 

215. plot(effFrontier, c(1,3)) 
216. frontierWeights <- getWeights(effFrontier) 
217. risk_return <- frontierPoints(effFrontier) 
218.   
219. # Tangency portfolio / Sharpe 
220. tangencyport <- tangencyPortfolio(portfolioreturns, spec = 

portfolioSpec(), constraints = "LongOnly") 

221. tangencyport 
222. tangency_weights <- getWeights(tangencyport) 
223. tangency_ret <- getTargetReturn(tangencyport) 
224. tangency_sd <- getTargetRisk(tangencyport) 
225. barplot(tangency_weights, main="VIX-TED-SP Regime 1 Portfolio 

Weights", xlab = "Asset", ylab = "Weight in portfolio", 

col=cm.colors(ncol(frontierWeights)+2)) 

226. vt.r1.shar <- ((tangency_ret[1]*12) - 
rf*12)/(tangency_sd[1]*sqrt(12)) 
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227. vt.r1.shar 
228. vt.r1.weights <- round(tangency_weights, 4) 
229.   
230. # Holding period log returns 
231. vt.r1.returns <- R1 * tangency_weights 
232. vt.r1.holding.peroid.returns <- sum(vt.r1.returns) 
233. vt.r1.holding.peroid.returns 
234.   
235. # Weights table 
236. header1 <- c("Sharpe","") 
237. shar <- c(round(vt.r1.shar, 4), "") 
238. header2 <- c("Weights","") 
239. headers <- c( "S&P 500", " Vanguard") 
240. weights <-c(vt.r1.weights[1], vt.r1.weights[2]) 
241. tabl <- rbind(header1, shar, header2, headers, weights) 
242. stargazer(tabl, type = "html") 
243.   
244. # Regime 2 
245. R2 <- cbind(vt.r2.sp.r, vt.r2.vb.r) 
246. head(R2) 
247. colnames(R2) <- c("SP", "VBMFX") 
248. rownames(R2) <- vt.r2.date 
249.   
250. # Efficient frontier 
251. portfolioreturns <- as.timeSeries(R2) 
252. effFrontier <- portfolioFrontier(portfolioreturns, constraints = 

"LongOnly") 

253. frontierWeights <- getWeights(effFrontier) 
254. risk_return <- frontierPoints(effFrontier) 
255. risk_return_points <- frontierPoints(effFrontier) 
256. plot(risk_return_points, pch = 16, cex=0.9, xlab = "Mean-Var Target 

Risk", ylab = "Target Return", main = "Efficient Frontier") 

257.   
258. # Tangency portfolio / Sharpe 
259. tangencyport <- tangencyPortfolio(portfolioreturns, spec = 

portfolioSpec(), constraints = "LongOnly") 

260. tangencyport 
261. tangency_weights <- getWeights(tangencyport) 
262. tangency_ret <- getTargetReturn(tangencyport) 
263. tangency_sd <- getTargetRisk(tangencyport) 
264. barplot(tangency_weights, main="VIX-TED-SP Regime 2 Portfolio 

Weights", xlab = "Asset", ylab = "Weight in portfolio", 

col=cm.colors(ncol(frontierWeights)+2)) 

265. vt.r2.shar <- ((tangency_ret[1]*12) - 
rf*12)/(tangency_sd[1]*sqrt(12)) 

266. vt.r2.shar 
267. vt.r2.weights <- round(tangency_weights, 4) 
268.   
269. # Holding period retuns 
270. vt.r2.returns <- R2 * tangency_weights 
271. vt.r2.holding.peroid.returns <- sum(vt.r2.returns) 
272. vt.r2.holding.peroid.returns 
273. vt.holding.peroid.log.returns <- vt.r1.holding.peroid.returns + 

vt.r2.holding.peroid.returns 

274. vt.holding.peroid.log.returns 
275.   
276. # Weights table 
277. header1 <- c("Sharpe","") 
278. shar <- c(round(vt.r2.shar, 4), "") 
279. header2 <- c("Weights","") 
280. headers <- c( "S&P 500", " Vanguard") 
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281. weights <-c(vt.r2.weights[1], vt.r2.weights[2]) 
282. tabl <- rbind(header1, shar, header2, headers, weights) 
283. stargazer(tabl, type = "html") 
284.   
285. #================================================================== 
286.   
287. # IPO-VIX-TED-S&P500 model 
288. ip.r1.sp.r <- c(training_data$SP.Log.Returns[3], 

training_data$SP.Log.Returns[6:8], 

training_data$SP.Log.Returns[20:23], 

289.                 training_data$SP.Log.Returns[49:50], 
training_data$SP.Log.Returns[78], training_data$SP.Log.Returns[90], 

290.                 training_data$SP.Log.Returns[102], 
training_data$SP.Log.Returns[114:115], 

training_data$SP.Log.Returns[120:133], 

291.                 training_data$SP.Log.Returns[137:140], 
training_data$SP.Log.Returns[144:151], 

training_data$SP.Log.Returns[155:157], 

292.                 training_data$SP.Log.Returns[170], 
training_data$SP.Log.Returns[209], 

training_data$SP.Log.Returns[214:217], 

293.                 training_data$SP.Log.Returns[221:228], 
training_data$SP.Log.Returns[244], 

training_data$SP.Log.Returns[256:259], 

294.                 training_data$SP.Log.Returns[262], 
training_data$SP.Log.Returns[267], training_data$SP.Log.Returns[307], 

295.                 training_data$SP.Log.Returns[311:312], 
training_data$SP.Log.Returns[336:338], 

training_data$SP.Log.Returns[345:346]) 

296.   
297. ip.r2.sp.r <- c(training_data$SP.Log.Returns[1:2], 

training_data$SP.Log.Returns[4:5], 

training_data$SP.Log.Returns[9:19], 

298.                 training_data$SP.Log.Returns[24:48], 
training_data$SP.Log.Returns[51:77], 

training_data$SP.Log.Returns[79:89], 

299.                 training_data$SP.Log.Returns[91:101], 
training_data$SP.Log.Returns[103:113], 

training_data$SP.Log.Returns[116:119], 

300.                 training_data$SP.Log.Returns[134:136], 
training_data$SP.Log.Returns[141:143], 

training_data$SP.Log.Returns[152:154], 

301.                 training_data$SP.Log.Returns[158:169], 
training_data$SP.Log.Returns[171:208], 

training_data$SP.Log.Returns[210:213], 

302.                 training_data$SP.Log.Returns[218:220], 
training_data$SP.Log.Returns[229:243], 

training_data$SP.Log.Returns[245:255], 

303.                 training_data$SP.Log.Returns[260:261], 
training_data$SP.Log.Returns[263:266], 

training_data$SP.Log.Returns[268:306], 

304.                 training_data$SP.Log.Returns[308:310], 
training_data$SP.Log.Returns[313:335], 

training_data$SP.Log.Returns[339:344], 

305.                 training_data$SP.Log.Returns[347:360]) 
306.   
307. ip.r1.vb.r <- c(training_data$VBMFX.Log.Returns[3], 

training_data$VBMFX.Log.Returns[6:8], 

training_data$VBMFX.Log.Returns[20:23], 
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308.                 training_data$VBMFX.Log.Returns[49:50], 
training_data$VBMFX.Log.Returns[78], 

training_data$VBMFX.Log.Returns[90], 

309.                 training_data$VBMFX.Log.Returns[102], 
training_data$VBMFX.Log.Returns[114:115], 

training_data$VBMFX.Log.Returns[120:133], 

310.                 training_data$VBMFX.Log.Returns[137:140], 
training_data$VBMFX.Log.Returns[144:151], 

training_data$VBMFX.Log.Returns[155:157], 

311.                 training_data$VBMFX.Log.Returns[170], 
training_data$VBMFX.Log.Returns[209], 

training_data$VBMFX.Log.Returns[214:217], 

312.                 training_data$VBMFX.Log.Returns[221:228], 
training_data$VBMFX.Log.Returns[244], 

training_data$VBMFX.Log.Returns[256:259], 

313.                 training_data$VBMFX.Log.Returns[262], 
training_data$VBMFX.Log.Returns[267], 

training_data$VBMFX.Log.Returns[307], 

314.                 training_data$VBMFX.Log.Returns[311:312], 
training_data$VBMFX.Log.Returns[336:338], 

training_data$VBMFX.Log.Returns[345:346]) 

315.   
316. ip.r2.vb.r <- c(training_data$VBMFX.Log.Returns[1:2], 

training_data$VBMFX.Log.Returns[4:5], 

training_data$VBMFX.Log.Returns[9:19], 

317.                 training_data$VBMFX.Log.Returns[24:48], 
training_data$VBMFX.Log.Returns[51:77], 

training_data$VBMFX.Log.Returns[79:89], 

318.                 training_data$VBMFX.Log.Returns[91:101], 
training_data$VBMFX.Log.Returns[103:113], 

training_data$VBMFX.Log.Returns[116:119], 

319.                 training_data$VBMFX.Log.Returns[134:136], 
training_data$VBMFX.Log.Returns[141:143], 

training_data$VBMFX.Log.Returns[152:154], 

320.                 training_data$VBMFX.Log.Returns[158:169], 
training_data$VBMFX.Log.Returns[171:208], 

training_data$VBMFX.Log.Returns[210:213], 

321.                 training_data$VBMFX.Log.Returns[218:220], 
training_data$VBMFX.Log.Returns[229:243], 

training_data$VBMFX.Log.Returns[245:255], 

322.                 training_data$VBMFX.Log.Returns[260:261], 
training_data$VBMFX.Log.Returns[263:266], 

training_data$VBMFX.Log.Returns[268:306], 

323.                 training_data$VBMFX.Log.Returns[308:310], 
training_data$VBMFX.Log.Returns[313:335], 

training_data$VBMFX.Log.Returns[339:344], 

324.                 training_data$VBMFX.Log.Returns[347:360]) 
325.   
326. ip.r1.date <- c(date[3], date[6:8], date[20:23], 
327.                 date[49:50], date[78], date[90], 
328.                 date[102], date[114:115], date[120:133], 
329.                 date[137:140], date[144:151], date[155:157], 
330.                 date[170], date[209], date[214:217], 
331.                 date[221:228], date[244], date[256:259], 
332.                 date[262], date[267], date[307], 
333.                 date[311:312], date[336:338], date[345:346]) 
334.   
335. ip.r2.date <- c(date[1:2], date[4:5], date[9:19], 
336.                 date[24:48], date[51:77], date[79:89], 
337.                 date[91:101], date[103:113], date[116:119], 
338.                 date[134:136], date[141:143], date[152:154], 
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339.                 date[158:169], date[171:208], date[210:213], 
340.                 date[218:220], date[229:243], date[245:255], 
341.                 date[260:261], date[263:266], date[268:306], 
342.                 date[308:310], date[313:335], date[339:344], 
343.                 date[347:360]) 
344.   
345. # Regime 1 
346. R1 <- cbind(ip.r1.sp.r, ip.r1.vb.r) 
347. head(R1) 
348. colnames(R1) <- c("SP", "VBMFX") 
349. head(ip.r1.date) 
350. rownames(R1) <- ip.r1.date 
351.   
352. # Efficient frontier 
353. portfolioreturns <- as.timeSeries(R1) 
354. effFrontier <- portfolioFrontier(portfolioreturns, constraints = 

"LongOnly") 

355. frontierWeights <- getWeights(effFrontier) 
356. risk_return <- frontierPoints(effFrontier) 
357. risk_return_points <- frontierPoints(effFrontier) 
358. plot(risk_return_points, pch = 16, cex=0.9, xlab = "Mean-Var Target 

Risk", ylab = "Target Return", main = "Efficient Frontier") 

359.   
360. # Tangency portfolio / Sharpe 
361. tangencyport <- tangencyPortfolio(portfolioreturns, spec = 

portfolioSpec(), constraints = "LongOnly") 

362. tangencyport 
363. tangency_weights <- getWeights(tangencyport) 
364. tangency_ret <- getTargetReturn(tangencyport) 
365. tangency_sd <- getTargetRisk(tangencyport) 
366. barplot(tangency_weights, main="IPO VIX TED S&P Regime 1 Portfolio 

Weights", xlab = "Asset", ylab = "Weight in portfolio", 

col=cm.colors(ncol(frontierWeights)+2)) 

367. ip.r1.shar <- ((tangency_ret[1]*12) - 
rf*12)/(tangency_sd[1]*sqrt(12)) 

368. ip.r1.shar 
369. ip.r1.weights <- round(tangency_weights, 4) 
370.   
371. # Holding period log returns 
372. ip.r1.returns <- R1 * tangency_weights 
373. ip.r1.holding.peroid.returns <- sum(ip.r1.returns) 
374. ip.r1.holding.peroid.returns 
375.   
376. # Weights table 
377. header1 <- c("Sharpe","") 
378. shar <- c(round(ip.r1.shar, 4), "") 
379. header2 <- c("Weights","") 
380. headers <- c( "S&P 500", " Vanguard") 
381. weights <-c(ip.r1.weights[1], ip.r1.weights[2]) 
382. tabl <- rbind(header1, shar, header2, headers, weights) 
383. stargazer(tabl, type = "html") 
384.   
385. # Regime 2 
386. R2 <- cbind(ip.r2.sp.r, ip.r2.vb.r) 
387. head(R2) 
388. colnames(R2) <- c("SP", "VBMFX") 
389. rownames(R2) <- ip.r2.date 
390.   
391. # Efficient frontier 
392. portfolioreturns <- as.timeSeries(R2) 
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393. effFrontier <- portfolioFrontier(portfolioreturns, constraints = 
"LongOnly") 

394. plot(effFrontier,c(1,3)) 
395. frontierWeights <- getWeights(effFrontier) 
396. risk_return <- frontierPoints(effFrontier) 
397.   
398. # Tangency portfolio / Sharpe 
399. tangencyport <- tangencyPortfolio(portfolioreturns, spec = 

portfolioSpec(), constraints = "LongOnly") 

400. tangencyport 
401. tangency_weights <- getWeights(tangencyport) 
402. tangency_ret <- getTargetReturn(tangencyport) 
403. tangency_sd <- getTargetRisk(tangencyport) 
404. barplot(tangency_weights, main="IPO VIX TED SP Regime 2 Portfolio 

Weights", xlab = "Asset", ylab = "Weight in portfolio", 

col=cm.colors(ncol(frontierWeights)+2)) 

405. ip.r2.shar <- ((tangency_ret[1]*12) - 
rf*12)/(tangency_sd[1]*sqrt(12)) 

406. ip.r2.shar 
407. ip.r2.weights <- round(tangency_weights, 4) 
408.   
409. # Holding period log returns 
410. ip.r2.returns <- R2 * tangency_weights 
411. ip.r2.holding.peroid.returns <- sum(ip.r2.returns) 
412. ip.r2.holding.peroid.returns 
413. ip.holding.peroid.log.returns <- ip.r1.holding.peroid.returns + 

ip.r2.holding.peroid.returns 

414. ip.holding.peroid.log.returns 
415.   
416. # Weights table 
417. header1 <- c("Sharpe","") 
418. shar <- c(round(ip.r2.shar, 4), "") 
419. header2 <- c("Weights","") 
420. headers <- c( "S&P 500", " Vanguard") 
421. weights <-c(ip.r2.weights[1], ip.r2.weights[2]) 
422. tabl <- rbind(header1, shar, header2, headers, weights) 
423. stargazer(tabl, type = "html") 
424.   
425. #================================================================== 
426.   
427. # Compare holding period log returns 
428. ns.holding.peroid.log.returns 
429. sp.holding.peroid.log.returns 
430. vt.holding.peroid.log.returns 
431. ip.holding.peroid.log.returns 
432.   
433. # Relative holding period returns 
434. ns.holding.period.returns <- exp(ns.holding.peroid.log.returns) - 1 
435. sp.holding.period.returns <- exp(sp.holding.peroid.log.returns) - 1 
436. vt.holding.period.returns <- exp(vt.holding.peroid.log.returns) - 1 
437. ip.holding.period.returns <- exp(ip.holding.peroid.log.returns) - 1 
438.  
439. # Output 
440. hed <- c("No switching model", "S&P500 model", "VIX-TED-S&P500 

model", "IPO-VIX-TED-S&P500 model") 

441. row1 <- c(ns.holding.peroid.log.returns, 
sp.holding.peroid.log.returns, vt.holding.peroid.log.returns, 

ip.holding.peroid.log.returns) 

442. row2 <- c(ns.holding.period.returns, sp.holding.period.returns, 
vt.holding.period.returns, ip.holding.period.returns) 

443. tabl <- rbind(hed, row1, row2) 
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444. stargazer(tabl, type="html") 

 

 

Appendix B.3. GARCH model. 
 

1. library(tidyverse) 
2. library(rmgarch) 
3. library(zoo) 
4. library(stargazer) 
5.   
6. setwd("C:/Users/Kristoffer/Documents/Master/R scripts") 
7.   
8. # Load data 
9. data <- read.csv("ipo_dataset.csv", stringsAsFactors = FALSE) 
10.   

11. log.return <- data$SP.Log.Returns 

12. log.return 

13.   

14.   

15. # Use the training data 

16. sp.returns <- log.return[0:360] 

17.   

18. # Specify that we use an ARIMA(1,0) i.e. AR(1) model 

19. ug_spec <- ugarchspec(mean.model = list(armaOrder=c(1,0))) 

20.   

21. ug_fit <- ugarchfit(spec = ug_spec, data = sp.returns) 

22. ug_fit@fit$coef 

23. ug_var <- ug_fit@fit$var 

24. ug_res2 <- (ug_fit@fit$residuals)^2 

25.   

26. plot(ug_res2, type ="l", ylab = "S&P 500 volatility") 

27. lines(ug_var, col="green") 

28.   

29. ug.df <- cbind(data$Date[0:360], ug_res2, ug_var) 

30. colnames(ug.df) <- c("Date", "Res", "Var") 

31. tib <- as_tibble(ug.df) 

32. tib$Res <- as.numeric(tib$Res) 

33. tib$Var <- as.numeric(tib$Var) 

34.   

35. colors <- c("Squared residuals" = "black", "Conditional variances" 

= "green") 

36.   

37. ggplot(data = tib) + 

38.   geom_line(aes(x = as.yearmon(Date), y = Res, group=1, color = 

"Squared residuals")) + 

39.   geom_line(aes(x = as.yearmon(Date), y = Var, group=1, color = 

"Conditional variances")) + 

40.   labs(x = "", y = "", color = "Legend") + 

41.   theme_bw() + 

42.   ggtitle("GARCH(1,1)") + 

43.   theme(plot.title = element_text(hjust = 0.5)) + 

44.   scale_color_manual(values = color) + 

45.   theme(legend.position = c(0.85,0.9)) 

46.   

47.   
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48. # Forecasting 

49. ug_fore <- ugarchforecast(ug_fit, n.ahead=3) 

50. ug_fore 

51.   

52. ug_f <- ug_fore@forecast$sigmaFor 

53. plot(ug_f, type="l", ylab = "Forecasted variance", xlab = "Month", 

ylim = c(0, 0.05)) 

54.   

55. ug_var_t <- c(tail(ug_var, 12), rep(NA,3)) 

56. ug_res2_t <- c(tail(ug_res2, 12), rep(NA, 3)) 

57. ug_f <- c(rep(NA, 12), (ug_f)^2) 

58.   

59. plot(ug_res2_t, type="l", ylab = "Variance", xlab = "Month", main = 

"GARCH(1,1)") 

60. lines(ug_f, col="orange") 

61. lines(ug_var_t, col="green") 

62. legend(10,0.005,legend = c("Squared residuals", "Conditional 

variance", "Forecasted variance"), col = c("Black", "Green", 

"Orange"), lty=1) 

63.   

64. # Model with complete dataset 

65. complete.ug_fit <- ugarchfit(spec = ug_spec, data = log.return) 

66. complete.ug_fit@fit$coef 

67. complete.ug_var <- complete.ug_fit@fit$var 

68. complete.ug_res2 <- (complete.ug_fit@fit$residuals)^2 

69.   

70. complete.ug.df <- cbind(data$Date, complete.ug_res2, 

complete.ug_var) 

71. colnames(complete.ug.df) <- c("Date", "Res", "Var") 

72. tib <- as_tibble(complete.ug.df) 

73. tib$Res <- as.numeric(tib$Res) 

74. tib$Var <- as.numeric(tib$Var) 

75.   

76. colors <- c("Squared residuals" = "black", "Conditional variances" 

= "green") 

77. tail(tib) 

78.   

79. ggplot(data = tib) + 

80.   geom_line(aes(x = as.yearmon(Date), y = Res, group=1, color = 

"Squared residuals")) + 

81.   geom_line(aes(x = as.yearmon(Date), y = Var, group=1, color = 

"Conditional variances")) + 

82.   labs(x = "", y = "", color = "Legend") + 

83.   theme_bw() + 

84.   ggtitle("GARCH(1,1)") + 

85.   theme(plot.title = element_text(hjust = 0.5)) + 

86.   scale_color_manual(values = color) + 

87.   theme(legend.position = c(0.85,0.9)) 

88.   

89. # Forecast error 

90. jan.2020 <- (ug_fore@forecast$seriesFor[1] - 

data$SP.Log.Returns[361])^2 

91. feb.2020 <- (ug_fore@forecast$seriesFor[2] - 

data$SP.Log.Returns[362])^2  

92. mar.2020 <- (ug_fore@forecast$seriesFor[3] - 

data$SP.Log.Returns[363])^2 

93. RMSFE <- sqrt((jan.2020 + feb.2020 + mar.2020)/3) 

94. header <- c("Jan 2020", "Feb 2020", "March", "RMSFE") 

95. estimates <- c(round(ug_fore@forecast$seriesFor[1], 4), 

round(ug_fore@forecast$seriesFor[2], 4), 

round(ug_fore@forecast$seriesFor[3], 4)) 
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96. observed <- c(round(data$SP.Log.Returns[361], 4), 

round(data$SP.Log.Returns[362], 4), round(data$SP.Log.Returns[363], 

4)) 

97. row <- c(round(jan.2020, 4), round(feb.2020, 4), round(mar.2020, 

4), round(RMSFE, 4)) 

98. tabl <- rbind(header, estimates, observed, row)  

99. stargazer(tabl, type="html") 

  

Appendix C.1 Results of the S&P500 regime switching model 
 
Markov Switching Model 
 
Call: msmFit(object = sp.model, k = 2, sw = c(TRUE, TRUE, TRUE)) 
 
        AIC       BIC   logLik 
  -1343.032 -1303.965 675.5159 
 
Coefficients: 
 
Regime 1  
--------- 
                              Estimate Std. Error t value Pr(>|t|) 
(Intercept)(S)                  0.0023     0.0039  0.5897   0.5554 
lag(SP.Log.Returns, k = 1)(S)   0.0596     0.0741  0.8043   0.4212 
 
Residual standard error: 0.05229265 
Multiple R-squared: 0.003487 
 
Standardized Residuals: 
         Min           Q1          Med           Q3          Max  
-0.182216704 -0.006466105  0.001145065  0.011132658  0.104290533  
 
Regime 2  
--------- 
                              Estimate Std. Error t value  Pr(>|t|)     
(Intercept)(S)                  0.0129     0.0021  6.1429 8.103e-10 *** 
lag(SP.Log.Returns, k = 1)(S)  -0.1932     0.0828 -2.3333   0.01963 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.02181118 
Multiple R-squared: 0.04346 
 
Standardized Residuals: 
          Min            Q1           Med            Q3           Max  
-0.0568646128 -0.0052576090  0.0005339147  0.0072434052  0.0388749132  
 
Transition probabilities: 
           Regime 1   Regime 2 
Regime 1 0.97025881 0.03696034 
Regime 2 0.02974119 0.96303966 

 

Appendix C.2 Results of the VIX-TED-S&P500 regime switching 

model 
 
Markov Switching Model 
 
Call: msmFit(object = vix.ted.sp.model, k = 2, sw = c(TRUE, TRUE, TRUE,  
    TRUE, TRUE)) 
 
        AIC       BIC   logLik 
  -1361.246 -1283.113 688.6229 
 
Coefficients: 
 
Regime 1  
--------- 
                              Estimate Std. Error t value Pr(>|t|) 
(Intercept)(S)                  0.0099     0.0122  0.8115   0.4171 
lag(SP.Log.Returns, k = 1)(S)  -0.0779     0.1138 -0.6845   0.4937 
lag(VIX, k = 1)(S)             -0.0007     0.0005 -1.4000   0.1615 
lag(TEDRATE, k = 1)(S)         -0.0006     0.0006 -1.0000   0.3173 
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Residual standard error: 0.04642525 
Multiple R-squared: 0.05466 
 
Standardized Residuals: 
         Min           Q1          Med           Q3          Max  
-0.142950955 -0.002683327  0.009145703  0.018694798  0.110592186  
 
Regime 2  
--------- 
                              Estimate Std. Error t value  Pr(>|t|)     
(Intercept)(S)                 -0.0146     0.0055 -2.6545  0.007943 **  
lag(SP.Log.Returns, k = 1)(S)  -0.1767     0.0557 -3.1724  0.001512 **  
lag(VIX, k = 1)(S)              0.0016     0.0003  5.3333 9.644e-08 *** 
lag(TEDRATE, k = 1)(S)          0.0003     0.0005  0.6000  0.548506     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.02122698 
Multiple R-squared: 0.362 
 
Standardized Residuals: 
         Min           Q1          Med           Q3          Max  
-0.035506057 -0.013625254 -0.002066081  0.009259954  0.039065222  
 
Transition probabilities: 
          Regime 1  Regime 2 
Regime 1 0.6992455 0.2108881 
Regime 2 0.3007545 0.7891119 

 

Appendix C.3 Results of the IPO-VIX-TED-S&P500 regime 

switching model 
 
Markov Switching Model 
 
Call: msmFit(object = ipo.vix.ted.sp.model, k = 2, sw = c(TRUE, TRUE,  
    TRUE, TRUE, TRUE, TRUE)) 
 
        AIC       BIC   logLik 
  -1360.423 -1262.756 690.2113 
 
Coefficients: 
 
Regime 1  
--------- 
                                 Estimate Std. Error t value Pr(>|t|) 
(Intercept)(S)                     0.0067     0.0138  0.4855   0.6273 
lag(SP.Log.Returns, k = 1)(S)     -0.0762     0.1222 -0.6236   0.5329 
lag(VIX, k = 1)(S)                -0.0008     0.0005 -1.6000   0.1096 
lag(TEDRATE, k = 1)(S)            -0.0534     0.0542 -0.9852   0.3245 
lag(First.Day.Returns, k = 1)(S)   0.0145     0.0299  0.4849   0.6277 
 
Residual standard error: 0.04502278 
Multiple R-squared: 0.06282 
 
Standardized Residuals: 
         Min           Q1          Med           Q3          Max  
-0.139855365 -0.002424712  0.009663693  0.019358460  0.111580936  
 
Regime 2  
--------- 
                                 Estimate Std. Error t value  Pr(>|t|)     
(Intercept)(S)                    -0.0153     0.0054 -2.8333 0.0046070 **  
lag(SP.Log.Returns, k = 1)(S)     -0.1783     0.0529 -3.3705 0.0007503 *** 
lag(VIX, k = 1)(S)                 0.0017     0.0003  5.6667 1.456e-08 *** 
lag(TEDRATE, k = 1)(S)             0.0084     0.0498  0.1687 0.8660326     
lag(First.Day.Returns, k = 1)(S)   0.0144     0.0109  1.3211 0.1864680     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.02032249 
Multiple R-squared: 0.4014 
 
Standardized Residuals: 
         Min           Q1          Med           Q3          Max  
-0.034094009 -0.012431139 -0.002353037  0.008120321  0.035926625  
 
Transition probabilities: 
         Regime 1  Regime 2 
Regime 1 0.672469 0.2471704 
Regime 2 0.327531 0.7528296 
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