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Abstract 

This study compares building electric energy prediction approaches that use a traditional 
statistical method (linear regression) and artificial neural network (ANN) algorithms. We 
investigate how significantly occupancy rates and local environmental conditions, such as 
temperature, humidity ratio, solar radiation, cloud type, and wind speed, impact the actual 
electric energy consumption of a campus building for both working and non-working days. To 
analyze the degree of impact of each input data type element, an impact value factor was 
applied to these data sets. The results illustrate that the ANN modeling was more accurate 
and stable than the linear regression method in predicting the electricity consumption for 
working days. By impact factor analysis for working days, occupancy rates were found to 
strongly dominate the electricity consumption in the building, while temperature and humidity 
also affected the results. However, there were no accuracy differences between the two 
models in predicting electricity consumption on non-working days because different data type 
elements had similar impact on the non-working day results. The two models—linear 
regression and ANN with a Levenberg–Marquardt Back Propagation (LM-BP) algorithm—
were able to meet the long-term and real-time hourly prediction requirements for electricity 
consumption of an actual building based on occupancy rates and local environmental 
conditions. The analysis of the input element changes on a macroscopic scale is helpful in 
predicting how each element influences electric energy consumption in buildings with 
numerical impact factor. The proposed ANN method with LM-BP algorithm can be used as a 
reliable approach, compared with the linear regression modeling, for predicting the electricity 
consumption of a building. 

Keywords: linear regression; artificial neural network; energy prediction; occupancy rates; 
environmental elements 

1. Introduction

Building sectors account for a large portion of the global greenhouse gas emissions and total 
primary energy consumption (Agency, 2008; A. S. Ahmad et al., 2014; Becerik-Gerber et al., 
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2014; de Ia Rue du Can & Price, 2008; Programme, 2009). Therefore, predictions of building 
energy use is crucial for building performance improvements, energy management and 
savings, fault detection and diagnosis, and optimization of smart building practices (Lü, Lu, 
Kibert, & Viljanen, 2015; Walter & Sohn, 2016; Zeng, Liu, & Yu, 2019). Literatures described 
how climate changes impact on building energy consumption and suggested solutions to 
reduce the impact (Andrić, Koc, & Al-Ghamdi, 2019; Chen, Yang, & Zhao, 2007; M. K. Kim, 
Baldini, Leibundgut, & Wurzbacher, 2019; M. K. Kim & Choi, 2019; Yau & Hasbi, 2013; Zhai 
& Chen, 2005; Zhai & Helman, 2019). Many studies also have provided methods for predicting 
building energy consumption with good accuracy (Bordass, Cohen, Standeven, & Leaman, 
2001; Haberl & Bou-Saada, 1998; Y.-S. Kim, Heidarinejad, Dahlhausen, & Srebric, 2017; Y.-
S. Kim & Srebric, 2017). However, the predicted and actual energy consumption rates show 
discrepancies due to actual occupancy and weather conditions that could significantly impact 
building energy consumption (Azar & Menassa, 2012; Farah, Whaley, Saman, & Boland, 2019; 
Y.-S. Kim et al., 2017; Lupato & Manzan, 2019; Moazami, Nik, Carlucci, & Geving, 2019). 
Building energy consumption is influenced by the building envelope (construction materials, 
window size, and material shape and volume), lighting, heating, cooling, air ventilation, and 
the occupants’ electricity demands. Normally, the building envelope construction sets are fixed; 
however, lighting, heating, cooling, air ventilation, and electricity demands are affected by 
occupancy diversity and local weather conditions (Baldini, Kim, & Leibundgut, 2014; Capeluto, 
2003; M. K. Kim et al., 2019; M. K. Kim & Choi, 2019; Pombeiro, Santos, Carreira, Silva, & 
Sousa, 2017; Sabzi, Haseli, Jafarian, Karimi, & Taheri, 2015; Yalcintas & Akkurt, 2005). 
Therefore, this study investigates the prediction of how significantly occupancy rates and 
weather conditions impact energy consumption of a campus building.  
 
For electricity consumption prediction modeling, various mathematical algorithms have been 
proposed and developed (M. W. Ahmad, Mourshed, & Rezgui, 2017; Deb & Lee, 2018; Deb, 
Zhang, Yang, Lee, & Shah, 2017; Hsu, 2015; Shi, Liu, & Wei, 2016; Xie, Ouyang, & Gao, 2016; 
Ye & Kim, 2018) such as fuzzy mathematics, wavelet analysis, support vector machine, 
artificial neural network (ANN), grey system method, and linear regression analysis (A. S. 
Ahmad et al., 2014; M. W. Ahmad et al., 2017; Khalid, Javaid, Rahim, Aslam, & Sher, 2019; 
Ma et al., 2019; Maghyereh, Awartani, & Abdoh, 2019; Shi et al., 2016; Trigo-González et al., 
2019; Walter & Sohn, 2016; Xie et al., 2016; Ye & Kim, 2018; Zeng et al., 2019). In particular, 
traditional linear regression and the ANN technique is one of the main algorithms currently 
utilized for predicting electricity consumption in buildings (A. S. Ahmad et al., 2014; M. W. 
Ahmad et al., 2017; Y.-S. Kim et al., 2017; Y.-S. Kim & Srebric, 2017; Ye & Kim, 2018). 
Traditional linear regression methods have been widely used to determine the degree of 
similarity between elements by measuring the quadratic error (Chung, 2012; Pombeiro et al., 
2017; Hideo Tanaka, 1987; Hideo Tanaka, Hayashi, & Watada, 1989; H. Tanaka & Watada, 
1988). ANNs mimic the function and structure of the human brain by performing nonlinear 
processing (A. S. Ahmad et al., 2014; M. W. Ahmad et al., 2017; Deb et al., 2017; Ye & Kim, 
2018). In addition, it has large-scale parallel structure computing with a distributed large 
storage capacity (M. W. Ahmad et al., 2017; Ye & Kim, 2018). To adapt to variable 
environments, the neural network system approaches with self-learning dealing with various 
information types (A. S. Ahmad et al., 2014; Ye & Kim, 2018). Thus, they have been widely 
used in pattern recognition for prediction, decision-making, process control, and other tasks 
(Đozić & Gvozdenac Urošević, 2019; Elsheikh et al., 2019; Mohandes, Zhang, & Mahdiyar, 
2019). Many studies have applied the Levenberg-Marquardt Back Propagation (LM-BP) 
algorithm to improve the neural network’s slow convergence, limited accuracy, and relatively 
low efficiency (K. M. Kim et al., 2019; Singh, Gupta, & Gupta, 2007; Xia et al., 2018; Ye & Kim, 
2018). Recently, utilizing of the sensitivity of prediction of building energy consumption model 
is developed because the sensitivity is related to the robustness and performance of the 
prediction model (Feedback Control, 2010; K. M. Kim et al., 2019). However, this study 
presents how each element dominates the total electricity consumption in buildings with ANNs.    
 



In this study, we propose a building energy prediction approach that uses traditional statistical 
method (linear regression) and ANN algorithms with sensitivity analyses using impact factors 
of occupancy ratio and local weather condition. Many studies involved the building energy 
prediction methods with ANNs algorithm, however, this study investigates how significantly 
the occupancy rates and environmental elements—such as temperature, humidity ratio, wind 
speed, solar radiation, and cloud type—dominate the actual electricity energy consumption of 
a campus building using two main prediction methods. Additionally, as a sensitivity analysis, 
this study explores novel approaches as to how occupancy ratio and local climate variations 
can influence the actual electric energy consumption of an office building using a traditional 
linear regression model and ANN approach with the help of numerical impact factor. As a 
further study, we can forecast electricity consumption in various building spaces such as office, 
shopping mall, and industrial buildings using occupancy ratio and local weather conditions 
based on the advanced training methods of ANNs.  

2. Building energy consumption models 

2.1. Linear regression 
 

To define the baseline energy consumption methods of a building, the international 
measurement and verification protocol accepts linear regression models as a framework to 
implement and predicts energy consumption (G.Woodal, 2012; Pombeiro et al., 2017). This 
model needs a large number of characterization variables to improve the accuracy of linear 
regression models in complex design process (Gabbar, Bondarenko, Hussain, Musharavati, 
& Pokharel, 2014; Pombeiro et al., 2017). The linear regression method can indicate the 
similarity between two data elements; the results are presented as a linear model with a 
coefficient to explain the relations (Pombeiro et al., 2017). With linear relations, the model is 
well accepted in the definition of the general consumption scenario; however, with non-linear 
relations, the model is quite limited in determining the relation with a variation of results as 
well (Bianco, Manca, & Nardini, 2009; G.Woodal, 2012; Pombeiro et al., 2017; Reddy, 2011; 
Toe & Kubota, 2013).   
 
A linear regression model presents the normality assumption, which pertains to the following: 
 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖 
(1) 

 

Here, y is the outcome variable, x is an independent variable, parameter β0 is the ȳ value when 
x = 0, and є represents the errors.  
 
A linear regression implements minimization of the total sum of squares—that is, the additional 
error of the sum of squares with the regression sum of squares (Pombeiro et al., 2017; Reddy, 
2011): 
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(2) 
 

where yk is the real value in observation k, ȳk is the mean value of yk in n observations, and ŷk 
is the value of y modeled by the regression model for observation k.  

2.2. Artificial neural network (ANN) 
 



Currently, several types of neural networks have been proposed (Amber, Aslam, & Hussain, 
2015; Chae, Horesh, Hwang, & Lee, 2016; Hsu, 2015; Kumar, Aggarwal, & Sharma, 2013; Li, 
Hu, Liu, & Xue, 2015). Among them, four main improved algorithms have been suggested: 
The backpropagation (BP) neural network, Hopfield neural network, Kohonen maps, and 
radial basis function (RBF) neural network. At present, BP neural networks have been mainly 
applied in areas—such as energy prediction modeling, pattern recognition, intelligent control, 
and information processing—and the predicted results have agreed well with actual 
experimental data (Amber et al., 2015; Chae et al., 2016; Hsu, 2015; K. M. Kim et al., 2019; 
Ye & Kim, 2018).  
 

A BP neural network is composed of three layers: input, hidden, and output (Bocheng Zhong, 
2015; K. M. Kim et al., 2019; Kumar et al., 2013; Xu, Zhang, Wang, Wang, & Zhang, 2015; Ye 
& Kim, 2018). Each layer system includes parallel computing neuron networks. These neuron 
networks are similar to biological nervous systems. Many neurons comprise a network with 
numerous functions. Each neuron is closely and completely interconnected with those of 
different layers, whereas neurons in the same layer are not connected with each other. The 
layer structure in a BP neural network is illustrated in Fig. 1.  

 

Figure 1 Three-layer BP neural network structure 

As shown in Fig. 1, X1, X2,…, Xn are the input variables in the input layer of the BP neural 
network, which are composed of the elements that influence electricity energy consumption in 
a building, such as occupancy rates, temperature, humidity ratio, solar radiation, and wind 
speed (Azadeh, Ghaderi, & Sohrabkhani, 2008; Ekici & Aksoy, 2009; Kumar et al., 2013; Neto 
& Fiorelli, 2008; Wong, Wan, & Lam, 2010; Xu et al., 2015). Y1, Y2, … Yn are the output values 
corresponding to the model for predicting electricity consumption in a building.  

a. Forward propagation in a BP neural network (Jia et al., 2015; K. M. Kim et al., 2019; Lek & 
Guégan, 1999; Xu et al., 2015; Ye & Kim, 2018; S. Yu, Zhu, & Diao, 2008). 

The output value of the hidden layer is as follows: 

𝑜𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 − 𝑑𝑗
𝑛
𝑖=1 )    𝑗 = 1,2, … , 𝑙                        (3)  



The output value of the output layer is as follows: 

𝑌𝑘 = 𝑓(∑ 𝑜𝑗𝑤𝑗𝑘 − 𝑑𝑘
𝑙
𝑗=1 )    𝑘 = 1,2, … , 𝑚            (4) 

Based on the BP neural network defined, the mean square error (MSE) is calculated for the 
predicted and actual output vectors. The function is defined as follows: 

𝐸𝑘 =
1

2
∑ (𝐹𝑘 − 𝑌𝑘)2

𝑘                                    (5) 

To calculate the accuracy of the results, this study used calibration standards: the normalized 
mean bias error (NMBE), and the coefficient of variation of the root mean square error 
(CVRMSE), widely accepted by ASHRAE Guideline 14-2002 (ASHRAE, 2002). The 
corresponding equations are shown as follows: 

𝐶𝑉𝑅𝑀𝑆𝐸 = 100 × 
[
1
𝑛

∑ (𝑦𝑖 − ȳ𝑖)2]𝑛
𝑖=1

1/2

ȳ
          (6)  

 

𝑁𝑀𝐵𝐸 =  
∑ (𝑦𝑖 − ȳ𝑖)𝑛

𝑖=1

ȳ
    × 100      (7)  

b. Error in a BP neural network (Azadeh et al., 2008; Bocheng Zhong, 2015; K. M. Kim et al., 
2019; Xu et al., 2015; Ye & Kim, 2018; F. Yu & Xu, 2014) 

By substituting (1) and (2) into (3), the performance error function is obtained as follows: 
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By the error function derivation of the weights and threshold of the output point, we have the 
following: 

𝜕𝐸𝑘

𝜕𝑤𝑗𝑘
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′                            (9) 

 

𝜕𝐸𝑘

𝜕𝑑𝑘
= (𝐹𝑘 − 𝑌𝑘)𝑓′(∑ 𝑂𝑗

𝑙
𝑗=1 𝑤𝑗𝑘 − 𝑑𝑘)                                       (10) 

We obtain the error of the output node as follows: 

𝛿𝑘 = (𝐹𝑘 − 𝑌𝑘)𝑓′(∑ 𝑂𝑗𝑤𝑗𝑘 − 𝑑𝑘
𝑙
𝑗=1 )                                        (11) 

By substituting (9) into (7) and (8), we obtain the following: 

𝜕𝐸𝑘

𝜕𝑤𝑗𝑘
= −𝛿𝑘𝑂𝑗

′                        (12) 

 

𝜕𝐸𝑘

𝜕𝑑𝑘
= 𝛿𝑘                                   (13) 

 



In the Levenberg-Marquardt (LM) algorithm, after a series of optimizations, the weights 
approximations and threshold are formulized into Eq. (10) (Bocheng Zhong, 2015; Hao, Li, & 
Wang, 2013; K. M. Kim et al., 2019; Ye & Kim, 2018; Yoo & Seul, 2017): 

 
𝑥(𝑘 + 1) = 𝑥(𝑘) − [𝑱𝑇𝑱 + 𝜇𝑰]−1𝑱𝑇𝑒  ,      (14) 

 
where J is the Jacobian matrix and the coefficient 𝝁 is a constant that is greater than zero. 𝑰 
is a unit matrix and e is the error. When 𝝁 is near zero, this method is equivalent to the Newton 
method. The Gauss–Newton method also denotes the performance in that when the error is 
closer to the minimum value, the accuracy is much higher, and the calculation is faster. 
Therefore, the LM algorithm model results can be sufficiently improved with the convergence 
speed, as well as ensuring better accuracy (Bocheng Zhong, 2015; Hao et al., 2013; K. M. 
Kim et al., 2019; Ye & Kim, 2018; Yoo & Seul, 2017). The neural network training process is 
illustrated in Fig. 2.  
 



 
Figure 2 Training process for the artificial neural network 

2.3. Data collection and analysis 
 

We collected the building occupancy rates and electricity consumption of a campus building 
in University Park, PA, in the U.S. The building area is 6939 m2 and it is composed of three 
stories that comprise 17.3 % lecture rooms, 41.5 % offices, 31 % common areas, and 9.6 % 
laboratories. To measure occupancy rates in the building, we placed an infrared thermal 
sensor (PC-THI60-N, Sensource) with a 5 % error in front of the main entrance. The sensor 
detects direction of movement and counts occupants coming and going from its field of view 
(Y.-S. Kim et al., 2017; Y.-S. Kim & Srebric, 2017). We collected a total of 157 days’ worth of 
hourly data of building occupancy rates and electricity consumption between August 14, 2013 
and April 28, 2014. Additionally, we used local weather data recorded in the National Solar 
Radiation Database (NSRDB) (Laboratory, 2019).  



 
The data collected were divided into two groups—working and non-working days—to analyze 
how significantly the occupancy rates and weather conditions impacted building electricity 
consumption in different operating environments. Moreover, to simulate electricity energy 
consumption using linear regression and ANN models, the working and non-working data 
groups were further separated into training (90 working and 40 non-working days) and test 
data (14 working and 7 non-working days). In the model, we defined the input nodes that 
impacted building electricity energy consumption as occupant number, temperature (o C), 
humidity ratio (g/kg), direct normal irradiance (DNI; W/m2), wind speed (m/s), and cloud type 
(0: clear–12: smoke). All corrected data are presented in Figure 3–9.   
 

 
Figure 3 Historical data: Number of occupants (157 days, August 14, 2013 to April 28, 2014) 

 

 
Figure 4 Historical data: Dry-bulb temperature (157 days, August 14, 2013 to April 28, 2014) 

 



 
Figure 5 Historical data: Humidity ratio (157 days, August 14, 2013 to April 28, 2014) 

 
Figure 6 Historical data: Direct normal irradiance (157 days, August 14, 2013 to April 28, 2014) 



 
Figure 7 Historical data: Cloud type (157 days, August 14, 2013 to April 28, 2014) 

 
Figure 8 Historical data: Wind speed (157 days, August 14, 2013 to April 28, 2014) 



 
Figure 9 Historical data: Electricity consumption (157 days, August 14, 2013 to April 28, 2014) 

Figure 10 shows the steps for predicting energy consumption with variable input parameters.  
 

 
Figure 10 Model for predicting electricity consumption with variable input parameters 

 

2.4. Comparison Methodology 
 
To evaluate correlation among the input parameters in this study, we used an impact factor 
value (IV), where the magnitude of the absolute value represents the magnitude of effect, and 
positive and negative values represent the direction of impact (K. M. Kim et al., 2019; Y. H. 
Liu, 2015; Ye & Kim, 2018). The IV evaluation calculates the impact of each input node 
parameter based on statistical approaches after the module training process. The IV is 
determined based on statistical calculations after training with input node and actual energy 
consumption values. The process for calculating the IV is as follows: Testing node values are 
adjusted by adding or subtracting 10 % of their original values to form new testing samples. 
The value is utilized as an impact of each element adding or subtracting because the impact 
value denotes a linear relation between the results changed. 
Subsequently, the adjusted testing nodes are simulated with an actual experimental value as 
a prediction. Finally, the differences between the predicted values using two test sample 
nodes originated and adjusted determine the IV. After the analysis, we could evaluate how 
much each element impact on electricity consumption and determine that an element is 
significantly necessary or neglected for the prediction.  



 

𝐼𝑚𝑝𝑎𝑐𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑣𝑎𝑙𝑢𝑒 (𝐼𝑉)

=  
|
𝑦𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 − 𝑦𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑤𝑖𝑡ℎ 𝑎𝑑𝑑𝑖𝑛𝑔 𝑜𝑟 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 10% 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 

𝑦𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡
× 100|

0.1
          (15) 

 
For determining the number of hidden nodes and layers, this study follows the formula (K. M. 
Kim et al., 2019; Tang Zhong, 2012; Y. H. Liu, 2015; Ye & Kim, 2018) 
 

𝑝 < √𝑛 + 𝑚 + 𝑎                   (16) 

 
where p is the range of numbers, n is the input node number, m is the output node number, 
and a is a positive integer that is less than 10 (Amber et al., 2015; Tang Zhong, 2012).  

3. Results 

In this study, we used two methods—linear regression and an ANN with an LM-BP algorithm—
to predict electricity consumption profiles for a campus office building. The models were 
trained on a total of 3778 hourly data representing 157 days of occupancy rates and weather 

parameters, temperature (C), humidity ratio (g/kg), normal direct irradiation (W/m2), cloud 
type (0-12), and wind speed (m/s). This study denotes the accuracy of each model and also 
estimates how significantly the occupancy rates and weather parameters influence the amount 
of electricity consumed in a building. Moreover, using this modeling, we can predict long-term 
energy consumption rates based on occupants’ diversity and climate variations. We used two 
prediction methods—Linear regression and an LM-BP neural network with occupant number, 
temperature, humidity ratio, normal direct irradiance, cloud type, and wind speed as the input 
layers, and electricity consumption as the output layer.  
 
The training data for the simulation set contained measured and historical data for 90 working 
days and 40 non-working days. The electricity consumption results were predicted for 14 
working days, and 7 non-working days using linear regression and ANN to validate each 
algorithm compared with the actual measured values. The two models were evaluated based 
on accuracy and error rate for two scenarios; the results are shown in Figure 11–14. In 
general, the linear regression and ANN models performed well at forecasting the electricity 
consumption of the campus office building for working and non-working days. Compared with 
the linear regression method results, those of the ANN model exhibited better performance 
with good accuracy in predicting the electricity consumption on working days in the building. 
However, there were no significant differences between linear regression and the ANN model 
in predicting the electricity consumption for non-working days, because none of the elements 
used as input factors had a significant impact on actual electricity consumption for non-working 
days. The details are shown in Figure 17 and 18.   
 



 
Figure 11 Prediction output of linear regression and ANN modeling compared with real values 
measured for working days 

 

 
Figure 12 Error rates of the two prediction models—linear regression and ANN—for working 
days 



 
Figure 13 Prediction output of linear regression and ANN modeling compared with real values 
measured for non-working days 

 

Figure 14 Error rates of the two prediction models—linear regression and ANN—for non-working 
days 

 

Table 1 Comparison of linear regression and ANN 

 Normalized mean bias error 
(NMBE) 

Coefficient of variation of the 
root mean square error 

(CVRMSE) 

Working Non-Working Working Non-Working 

Linear regression 17.61  13.80 11.54  5.04 

ANN 10.97  13.90  7.36 5.19 
 

The normalized mean bias error (NMBE) and coefficient of variation of the root mean square 
error (CVRMSE) results of each model are presented in Table 1. The NMBE and CVRMSE 



for the linear regression method in predicting electricity consumption on working days were 
17.61, and 11.54, respectively, which were higher than those of the ANN method, which 
corresponded to 10.97 and 7.36. Thus, NMBE and CVRMSE were improved with the ANN 
method. However, the differences of NMBE and CVRMSE values between the two models in 
predicting electricity consumption for non-working days were small at 0.1 and 0.15, 
respectively. Thus, the ANN method could maintain higher stability when predicting the 
electricity consumption of the building on working days. However, both methods to predict 
energy consumption for non-working days have large differences of accuracy and stability. 
Overall, this study illustrates that the ANN method achieves more stable and accurate 
predictions than the linear regression method—even if there is no special difference between 
the two models in predicting electricity energy consumption for non-working days.  
 
Figure 15 and 16 present how much each input elements impact on electricity consumption in 
the building on working days using the linear regression and ANN prediction methods, 
respectively. Occupancy rates mainly dominated the electricity consumption in both the linear 
regression and ANN methods. The former predicted that the occupancy rates more highly 
dominated electricity consumption compared with results ANN method. Three main 
parameters—occupancy rates, temperature, and humidity ratio—strongly impacted the actual 
electricity consumption in the building. Three other parameters—DNI, cloud type, and wind 
speed—could be neglected to consider the actual effect. Especially in the winter season, five 
environmental parameters—DNI, cloud type, wind speed, temperature, and humidity ratio—
had less of an impact on the building electricity consumption compared with other seasons. 
This study estimates that a centralized steam heating system does not impact electricity 
consumption; however, a chilled water supply for cooling and dehumidification could affect 
actual electricity consumption in a building. Additionally, the occupant numbers detected did 
not describe the occupant characteristics, such as student, lecturer, guest, or officer. For 
example, occupants stationed in the office would highly impact actual building electricity 
consumption relative to a guest, student, or lecturer who temporally reside in the building. On 
this basis, in further study, we could consider another parameter—such as plug-load data or 
guest numbers—to reduce error rates.     

 
Figure 15 Impact factor rates of input parameters for working days by linear regression method 

 



 
Figure 16 Impact factor rates of input parameters for working days by ANN method 

 

Figure 17 and 18 show the impact factors of each parameter for non-working days for the two 
prediction models. For non-working days, low occupancy rates and other environment 
parameters rarely influence the electricity consumption. Therefore, these parameters could be 
ignored to predict the electricity consumption on non-working days and holidays in the 
building. Accordingly, further study should find elements that more significantly impact non-
working-day energy consumption. For example, facility management plan, building 
maintenance, and building closing plan for holidays could be considered for predicting 
electricity consumption on non-working days and to find the dominant factors in simulation.  
 
The results presented that the ANN model was highly accurate and stable compared with the 
linear regression method in predicting the electricity consumption for working days. The ANN 
model with LM-BP algorithm has significant potential for forecasting electricity energy 
consumption in the campus building. By impact factor analysis, occupancy rates were found 
to highly impact the electricity consumption in the building, and temperature and humidity were 
also significant in the summer season. However, the last two elements did not significantly 
affect consumption in the winter season because the centralized steam heating system had 
little influence on the electricity consumption in the building. However, there are no special 
accuracy differences between two modeling in predicting electricity consumption for non-
working days because none of the input element had a significant impact on the results.  
 
In this study, several limitations remain to be explored via further research. A campus building 
was selected to measure occupancy rates and electricity consumption for this study. However, 
measured electricity consumption rates may differ according to building type, HVAC system 
design, building materials, energy sources, and space performance. As such, future studies 
should consider additional parameters to minimize the error rates of prediction results.     
 



 
Figure 17 Impact factor rates of input parameters for non-working days by linear regression 
method 

 

 

 
Figure 18 Impact factor rates of input parameters for non-working days by ANN method 

4. Conclusion 

This study explored predictive control strategies based on linear regression and an ANN with 
an LM-BP algorithm, where the latter was designed with input nodes from the occupancy rates 
and local environmental conditions (i.e., temperature, humidity ratio, DNI, cloud type, and wind 
speed) to predict the electricity consumption of a campus building. We evaluated the 
performance of each method using a training data set divided into two groups—working and 
non-working days—and compared the simulation results obtained with actual measured 
electricity consumption values comprising 157 days’ worth of hourly data for the building. The 
results showed that the ANN model was more accurate and stable than the linear regression 
method in predicting the electricity consumption of working days. By an impact factor analysis, 
the occupancy rate was found to strongly dominate the electricity consumption in the building 



while temperature and humidity also affected the results, but to a lesser extent. However, 
there were no accuracy differences between the two methods in predicting the electricity 
consumption of non-working days because the input elements had a similar impact on those 
days. Both the linear regression and ANN model with LM-BP algorithm were able to meet the 
long-term and real-time hourly predicting requirements for electricity consumption in an actual 
building, depending on the occupancy rates and local environmental conditions. For analyzing 
the input element changes at a macroscopic scale, the methods are helpful in predicting how 
each element impacts electricity consumption in buildings. Thus, they could be useful in 
understanding the functioning of buildings in terms of a long-term energy consumption. For 
example, it is possible to evaluate how significantly climate change and global warming could 
impact consumption in the future. The proposed ANN method can be used as a reliable 
approach compared with the linear regression model for predicting electricity consumption of 
a building. This ANN algorithm should be updated with additional parameters to improve the 
accuracy of predictions in the future. However, one technical limitation should be addressed 
in future research: A campus building was selected for this research and we considered 
occupancy rates and local weather conditions to predict the energy consumption. However, 
occupant characteristics, plug-load data, and HVAC types could significantly influence the 
actual long-term building electricity consumption. Therefore, to improve the accuracy of 
predicting the electricity consumption for non-working days, a further study should consider 
other input elements that may significantly affect the actual electricity.   
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