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Abstract 20 

This study explores approaches to evaluates correlation how significantly plug load data, 21 

occupancy rates, and local weather factors affect the actual electricity consumption of a 22 

commercial building in seasonal changes and it predicts electricity usage in buildings using 23 

four Back-propagation neural network (BP-NN) algorithms: Levenberg–Marquardt Back-24 

propagation (LMBP), Quasi-Newton Back-propagation (QNBP), scaled conjugate gradient 25 

(SCG), and Bayesian regularization (BR). In order to evaluate the impact performance of each 26 

input parameter, an impact value was used for these experimental datasets. The results 27 

demonstrated that the artificial neural network (ANN) model using the LMBP algorithm has 28 

better performance in forecasting electricity consumption in a building. Compared to the other 29 

three ANN method results, the LMBP model represented a higher accuracy of 1.07 to 2.23% 30 

and lower error rates. Through impact factor analysis, plug load data were found to highly 31 

impact the electricity consumption, and temperature had a significant impact in the summer. 32 

However, temperature did not largely influence the results in the winter because the gas boiler 33 

heating systems used in the building had little impact on the actual electricity consumption. 34 

These methods are helpful in analyzing input factors how each element influences energy 35 

consumption. The four proposed BP-NN methods can be used as reliable approaches. 36 

37 

Keywords: artificial neural network; energy prediction; plug load; occupancy rates; 38 

environmental elements; back-propagation 39 

1. Introduction40 

Buildings and construction areas are responsible for 24% of carbon dioxide emissions and 41 

over 40% of the world’s total final primary energy consumption (Agency, 2008; A. S. Ahmad 42 

et al., 2014; Becerik-Gerber et al., 2014; de Ia Rue du Can & Price, 2008; Programme, 2009). 43 

Therefore, estimating electricity consumption in buildings is a major concern for creating smart 44 

performance improvements, energy distribution, building facility management, operation and 45 

diagnosis, and smart building practices in future cities (Walter & Sohn, 2016; Zeng, Liu, & Yu, 46 

2019). Various studies have presented the effects of occupancy diversity and surrounding 47 

weather conditions on the total energy consumption and greenhouse gas emissions in 48 
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buildings (Yau & Hasbi, 2013; Zhai & Helman, 2019). Using artificial neural network prediction 49 

methods, many studies have provided methods to predict electricity consumption in buildings 50 

(Bordass, Cohen, Standeven, & Leaman, 2001; Haberl & Bou-Saada, 1998; Y.-S. Kim, 51 

Heidarinejad, Dahlhausen, & Srebric, 2017; Y.-S. Kim & Srebric, 2017). Energy consumption 52 

in buildings is affected by many factors such as building envelope (shape, size, and depth of 53 

materials), lighting, types of HVAC (heating, ventilation, and air conditioning), surrounding 54 

local weather conditions, and occupants’ energy demand (Azar & Menassa, 2012; Lupato & 55 

Manzan, 2019; Ren & Cao, 2019; Yalcintas & Akkurt, 2005; Yuan, Farnham, Azuma, & Emura, 56 

2018). In general, a building’s construction set, lighting, and HVAC are fixed elements in a 57 

building and do not significantly influence the actual electricity demand. However, occupancy 58 

rate, local weather elements, and plug load data can affect the total electricity demand and 59 

determine electricity consumption patterns in a building. The plug load data are the amounts 60 

of electric energy used by products powered through ordinary alternating current (AC) plugs 61 

and do not include energy uses such as HVAC and lighting ("Electronics Come of Age: A 62 

Taxonomy for Miscellaneous and LowPower Products," 2006). Therefore, this study is a 63 

sensitivity analysis that explores the prediction of how significantly plug load data, occupancy 64 

rates, and local surrounding weather conditions impact the electricity consumption of a 65 

commercial building. Numerous data-driven algorithms have been proposed and developed 66 

for energy prediction modeling (M. W. Ahmad, Mourshed, & Rezgui, 2017; Deb, Zhang, Yang, 67 

Lee, & Shah, 2017; Hsu, 2015; Li et al., 2018; Ye & Kim, 2018), such as linear and multi-layer 68 

regression, support vector machine, and artificial neural networks (ANNs) (Khalid, Javaid, 69 

Rahim, Aslam, & Sher, 2019; Walter & Sohn, 2016; Ye & Kim, 2018; Zeng et al., 2019). Recent 70 

review studies have provided variable classifications of the existing algorithms with good 71 

accuracy (Biswas, Robinson, & Fumo, 2016a; Li et al., 2018). Compared to regression and 72 

statistical methods, ANN algorithms have demonstrated better accuracy and brought forward 73 

the opportunity to predict energy consumption effectively (Magalhães, Leal, & Horta, 2017; 74 

Sekhar Roy, Roy, & Balas, 2018; Yuan et al., 2018). In particular, the ANN methods are some 75 

of the main algorithms currently used to predict electricity consumption in buildings (A. S. 76 

Ahmad et al., 2014; M. W. Ahmad et al., 2017). ANNs provide the function and structure of 77 

biochemical reactions such as in human brains by performing nonlinear processing (A. S. 78 

Ahmad et al., 2014; Deb et al., 2017; Ye & Kim, 2018). ANNs are self-learning systems and 79 

can constantly adjust their approach to adapt to variable environments when processing many 80 

types of information. Therefore, ANNs have been widely used in pattern recognition to forecast 81 

changes in processes, improve accuracy, optimize decision making, and other tasks (Ye & 82 

Kim, 2018).  83 

In this study, we propose novel analysis strategy how plug-load data, occupancy rate, and 84 

climate factor are correlated with building energy consumption in seasonal changes. And how 85 

each element significantly impacts on energy consumption in an office building in four seasons. 86 

The proposed predictive control strategy is based on four ANNs, back-propagation neural 87 

network (BP-NN) algorithms as a sensitivity analysis: Levenberg-Marquardt Back-propagation 88 

(LMBP), Quasi-Newton Back-propagation (QNBP), Scaled conjugate gradient (SCG) 89 

algorithm, and Bayesian regularization (BR). This study explores, with the help of applied 90 

impact factors designed with ANNs’ training and outputs using input elements, plug load data, 91 

occupancy rates, and weather factors such as solar irradiance, wind speed, temperature, and 92 

humidity ratio, and predicts the actual electrical energy consumption of a commercial building 93 

using these four BP-NN approaches.  94 

The main objectives of this study are: 95 

▪ Analysis of the variation in the plug load data, occupancy ratio, weather data and 96 

electricity consumption data based on experimental data in a commercial building.   97 

 98 

▪ Prediction of electricity consumption in a building using four BP-NN algorithms: 99 

Levenberg-Marquardt Back-propagation (LMBP), Quasi-Newton Back-propagation 100 



(QNBP), Scaled conjugate gradient (SCG) algorithm, and Bayesian regularization (BR) 101 

as a comparative analysis.  102 

 103 

▪ Investigation of the effect of plug-load data, occupancy ratio, and weather conditions 104 

which are temperature, humidity ratio, solar irradiance and wind speed on electricity 105 

consumption with sensitivity analysis. 106 

 107 

▪ Application of the predictive analysis in four seasons.  108 

2. Building energy consumption models 109 

2.1. Back-propagation Neural Networks  110 

 111 

Today, several algorithms of neural networks have been developed (Amber, Aslam, & 112 

Hussain, 2015; Chae, Horesh, Hwang, & Lee, 2016; Hsu, 2015; Kumar, Aggarwal, & Sharma, 113 

2013; Li, Hu, Liu, & Xue, 2015). Among them, four main algorithms have been currently 114 

proposed and used: the Hopfield neural network, Kohonen maps, back-propagation (BP) 115 

neural network, and radial basis function (RBF) neural network. Many studies have applied 116 

BP neural networks in areas such as information training and processing, electricity prediction 117 

and modeling in buildings, pattern recognition and applications, and intelligent control and 118 

distribution; the forecasting results have been in good agreement with actual data (Hsu, 2015). 119 

This study applied four BP-NN algorithms that exhibit good performance and are used widely: 120 

LMBP, QNBP, SCG, and BR (Amber et al., 2015; Hsu, 2015; K. M. Kim et al., 2019).  121 

A typical BP neural network consists of three interconnected layers in parallel: the input, 122 

hidden, and output layers (Bocheng Zhong, 2015; K. M. Kim et al., 2019; Kumar et al., 2013). 123 

Each layer has more than one neuron operating parallel computing networks and the neurons 124 

vary for each layer independently (Biswas, Robinson, & Fumo, 2016b). Figure 1 shows an 125 

example of a neural network.  126 

 127 

Figure 1 Three-layer BP neural network structure (Ye & Kim, 2018) 128 

As illustrated in Figure 1, X1, X2,…, Xn are the input elements in the input layer, which can 129 

represent the elements that can impact electricity consumption in a building, such as plug 130 

node data, occupancy rates, temperature, humidity ratio, solar irradiance, and wind speed 131 

(Azadeh, Ghaderi, & Sohrabkhani, 2008; Kumar et al., 2013; Neto & Fiorelli, 2008; Wong, 132 

Wan, & Lam, 2010; Xu, Zhang, Wang, Wang, & Zhang, 2015). Y1, Y2, … Yn are the output 133 

nodes corresponding to the model using input and hidden nodes to forecast electricity 134 

consumption. 135 



a. Forward propagation in a BP neural network (Jia et al., 2015; K. M. Kim et al., 2019; Lek & 136 

Guégan, 1999; S. Yu, Zhu, & Diao, 2008). 137 

The output node of the hidden layer is as follows: 138 

𝑜𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 − 𝑑𝑗
𝑛
𝑖=1 )    𝑗 = 1,2, … , 𝑙                        (1)  139 

Where f is a function, wij is the weight in the hidden layer and n is the number of input nodes 140 

and d is the threshold of each node 141 

The output node of the output layer is as follows: 142 

𝑌𝑘 = 𝑓(∑ 𝑜𝑗𝑤𝑗𝑘 − 𝑑𝑘
𝑙
𝑗=1 )    𝑘 = 1,2, … , 𝑚            (2) 143 

wjk is the weight in the output layer, l is the number of hidden layer, and m is the number of 144 

output nodes. 145 

Based on the BP neural network modeling, the mean square error (MSE) can be obtained 146 

from the predicted and actual measured values by the following function: 147 

𝐸𝑘 =
1

2
∑ (𝐹𝑘 − 𝑌𝑘)2

𝑘                                    (3) 148 

b. Error in a BP neural network (Azadeh et al., 2008; Bocheng Zhong, 2015; K. M. Kim et al., 149 

2019; Ye & Kim, 2018; F. Yu & Xu, 2014) 150 

By substituting (1) and (2) into (3), the performance error function is calculated as follows: 151 

𝐸𝑘 =
1

2
∑

(𝐹𝑘 − 𝑓 (∑ 𝑤𝑗𝑘𝑓 (∑ 𝑤𝑖𝑗𝑥𝑖 − 𝑑𝑗

𝑛

𝑖=1

)

𝑙

𝑗=1

− 𝑑𝑘))

2

          

(4)
𝑘

 152 

2.1.1. Levenberg-Marquardt Back-propagation (LMBP) 153 

 154 

The Levenberg-Marquardt Back-propagation (LMBP) algorithm was designed for loss 155 

functions. It is a popular alternative approach to the Gauss-Newton method for finding the 156 

minimum of squares of nonlinear functions. In the Levenberg-Marquardt (LM) algorithm, after 157 

a series of optimizations, the weight approximations of the Hessian matrix and threshold are 158 

formulized into Equations (5,6, and 7) (Bocheng Zhong, 2015; Hao, Li, & Wang, 2013; K. M. 159 

Kim et al., 2019; Yoo & Seul, 2017): 160 

 161 

𝐻 =  𝑱𝑇𝑱    (5) 162 

 163 

𝑔 =  𝑱𝑇𝒆    (6) 164 

 165 

𝑥(𝑘 + 1) = 𝑥(𝑘) − [𝑱𝑇𝑱 + 𝜇𝑰]−1𝑱𝑇𝑒        (7) 166 

 167 

where J is the Jacobian matrix and the coefficient 𝝁 is a constant that is greater than zero. 𝑰 168 

is a unit matrix and e is the error. When 𝝁 is near zero, this method is equivalent to the Gauss-169 

Newton method. 170 

 171 

This algorithm is one of the fast training functions for neural networks, and some studies have 172 

reported that LMBP has better accuracy and stability in relatively small scale networks; 173 

however, it requires more memory than other algorithms (Fun & Hagan, 1996; Magalhães et 174 

al., 2017).   175 



2.1.2. Quasi-Newton Back-propagation (QNBP) 176 

 177 

Newton’s algorithm is designed for fast optimization as an alternative to the conjugate gradient 178 

methods. The basic process of Newton’s method is as follows: 179 

 180 

  181 

𝑥(𝑘 + 1) = 𝑥(𝑘) − 𝐴(𝑘)−1𝑔(𝑘)       (8) 182 

 183 

Where 𝐴(𝑘)−1  is the Hessian matrix at the current values of the weight and biases, and 184 

𝑔(𝑘)  is the gradient. 185 

 186 

The Quasi-Newton Back-propagation (QNBP) model is used to decrease the deficiency of the 187 

conventional back-propagation structure. One of the main limitations of the QNBP model is 188 

that reduction of accuracy leads to delaying convergence (T. Ahmad & Chen, 2019). However, 189 

the overall predicting performance, speed, accuracy, and reliability of the QNBP model are 190 

better than data-mining and ensemble models (T. Ahmad & Chen, 2019).   191 
 192 

2.1.3. Scaled Conjugate Gradient (SCG) method 193 

 194 

The scaled conjugate gradient (SCG) method is considered a second-order information 195 

learning procedure (Amaral, Ribeiro, & de Aguiar, 2019; Ribeiro, Duque, & Romano, 2006). 196 

SCG illustrates a variation of the conjugate gradient method and it avoids the line-search per 197 

learning literation. The SCG method is as follows: 198 

 199 

𝑆𝑘 =
𝐸′(𝑤𝑘 + 𝜎𝑘𝑝𝑘) − 𝐸′(𝑤𝑘)

𝜎𝑘
+ 𝜆𝑘𝑝𝑘       (9) 200 

 201 

Where, 𝑆𝑘 is scaling factor,  𝐸′ is the gradient of the global error function, 𝜆𝑘 is initial value, 0 <202 

𝜎1 ≤ 10−6 , 𝑝𝑘 is conjugate weight vector, 𝑤𝑘 is a weight vector, and 𝜎𝑘 is initial value, 0 <203 

𝜎1 ≤ 10−4. 204 

 205 

This algorithm is faster and more effective than the standard back-propagation and gradient 206 

descent in training neural networks; SCG avoids the time consumption in line-searches per 207 

learning iteration (Møller, 1993).  208 

 209 

2.1.4. Bayesian Regularization (BR) 210 

 211 

The Bayesian regularization (BR) back-propagation method follows a network training 212 

function, updating the bias and weighting values according to Levenberg-Marquardt 213 

optimization (Ballabio & Vasighi, 2012; Lapuschkin, Binder, Montavon, Muller, & Samek, 214 

2016). The algorithm can reduce a combination of squared errors and weights. After that, it 215 

decides the correct combination that generalizes accurately (Heydecker & Wu, 2001; Sun, 216 

Chen, Li, Qin, & Wang, 2017). The BR method adds a term to this equation to improve the 217 

generation capability as follows (Sun et al., 2017):  218 

 219 

𝐹 =  𝛽𝐸𝐷 +  𝛼𝐸𝑤,         𝐸𝑤 =
1

2
∑ (𝑤𝑖)

2
𝑘=1       (10) 220 

 221 

Where F is the objective function,  𝐸𝐷 is the sum of squared errors, 𝐸𝑤 is the sum of squared 222 

network weights, and α and β are objective function parameters (MacKay, 1992).  223 

 224 



The BR method sometimes provides better performance when datasets are smaller; however, 225 

this is not always the case (Lapuschkin et al., 2016; Ploskas & Samaras, 2016). This algorithm 226 

can minimize the potential for overfitting and local solution errors.  227 

 228 

The neural network training processes used in this study are shown in Figure 2.  229 

 230 

 231 
Figure 2 Training process for the artificial neural network 232 

2.2. Data collection and analysis 233 

 234 

This study collected the plug loads, building occupancy rates, and electricity consumption of 235 

a commercial office building in Philadelphia, PA, USA. The building size was 6140 m2 and it 236 

consisted of three stories and a ground floor, and was made up of 40% office space and 60% 237 

common areas including conference rooms. The building had a sub-metering system to 238 

measure the electricity consumption of each plug load circuit. The sub-metering units 239 

monitored the energy loads of air handling units, condensing units, and lighting circuits, as 240 

well as whole-building power consumption. The power monitoring system used the Veris Multi-241 



Circuit meter (Version E31A) (Delgoshaei, Xu, Wagner, Sweetser, & Freihaut; Y.-S. Kim & 242 

Srebric, 2017). Video-based detecting sensors were used to collect occupancy rates in the 243 

building (PC-VID2-N, Sensource) (Y.-S. Kim et al., 2017) and the error rate of the sensors 244 

was within 5%.  245 

 246 

This study collected a total of 284 days’ worth of hourly data for the building’s plug loads, 247 

occupancy rates, and electricity consumption between May 1, 2013, and February 28, 2014. 248 

Additionally, we used the local hourly historical weather data of Philadelphia recorded in the 249 

National Solar Radiation Database (NSRDB) (Laboratory, 2019). The data collected for 250 

analysis were categorized into two groups: working and non-working days; however, we used 251 

only the working days’ data to predict the electricity consumption because the non-working 252 

days’ data were insufficient for training and testing. Through ANN simulations as sensitivity 253 

analysis, we investigated the effect of occupancy rates, plug loads, and local weather 254 

elements and conditions on the building’s total electricity consumption. Moreover, with the 255 

working-days’ data (185 working days or 4440 hours) were further separated into training (165 256 

working days or 3960 hours) and test data (20 working days or 480 hours). In the prediction 257 

model, this study determined the input nodes that influenced total building electricity 258 

consumption as plug loads, number of occupants, temperature (o C), humidity ratio (g/kg), 259 

Global Horizontal Irradiance (GHI; W/m2), and wind speed (m/s). All the collected data are 260 

illustrated in Figure 3.   261 
 262 

 263 
Figure 3 Collected data: Plug load (185 working days, May 1, 2013, to Feb 28, 2014) 264 

 265 

 266 
Figure 4 Collected data: Number of occupants (185 working days, May 1, 2013, to Feb 28, 2014) 267 

 268 



 269 
Figure 5 Weather data: Global Horizontal Irradiation (GHI), (185 working days, May 1, 2013, to 270 
Feb 28, 2014) 271 

 272 
Figure 6 Weather data: Wind Speed (185 working days, May 1, 2013, to Feb 28, 2014) 273 

 274 
Figure 7 Weather data: Dry-bulb temperature (185 working days, May 1, 2013, to Feb 28, 2014) 275 



 276 
Figure 8 Weather data: Humidity ratio (185 working days, May 1, 2013, to Feb 28, 2014) 277 

 278 
Figure 9 Historical data: Electricity consumption (185 working days, May 1, 2013, to Feb 28, 279 
2014) 280 

 281 

Figure 10 shows the steps for predicting energy consumption with various input parameters.  282 

 283 

 284 
Figure 10 Model for predicting electricity consumption with various input parameters 285 

 286 



2.3. Comparison Methodology 287 

 288 

In order to evaluate the correlation performance among the input elements, this study used 289 

an impact factor value (IV), where the differences in the values indicate the magnitude of 290 

impact, and positive and negative values show the directivity of the effect (Y. H. Liu, 2015). 291 

According to some studies, the effect of adjusting each node element calculates the impact 292 

factor values with statistical approaches after the ANNs training process (Ye & Kim, 2018).  293 

 294 

The process to calculate the IV is as follows: After the training process of the ANNs is 295 

completed, each testing parameter value is added or subtracted by 10% of its original value 296 

to create new testing samples. The value with 10% addition or subtraction is performed as an 297 

impact of each added or subtracted element because the analyzing impact value represents 298 

a linear relationship between the changed results. Subsequently, the adjusted testing nodes 299 

generate the results that are compared to an actual result value using the original testing node 300 

as a prediction.  301 

 302 

Finally, the magnitude difference between the predicted values determines the IV value and 303 

the results could evaluate the performance of the impact each parameter has on the total 304 

electricity consumption in a building (K. M. Kim et al., 2019).  305 

 306 

𝐼𝑚𝑝𝑎𝑐𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑣𝑎𝑙𝑢𝑒 (𝐼𝑉)307 

=  

𝑦𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑤𝑖𝑡ℎ 𝑎𝑑𝑑𝑖𝑛𝑔 𝑜𝑟 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 10% 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑦𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠  

𝑦𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡

0.1
          (11) 308 

 309 

To validate the accuracy and error rate of the four BP-NN algorithms, this study used the 310 

coefficient of variation of the root mean square error (CVRMSE), and the normalized mean 311 

bias error (NMBE). The  American Society of Heating, Refrigerating and Air-Conditioning 312 

Engineers (ASHRAE) Guideline 14-2002 indicates the equations for these two values as 313 

follows (ASHRAE, 2002):   314 

𝐶𝑉𝑅𝑀𝑆𝐸 (%) =  
[
1
𝑛

∑ (𝑦𝑖 − ȳ𝑖)
2]𝑛

𝑖=1

1/2

ȳ
 × 100         (12)  315 

 316 

𝑁𝑀𝐵𝐸 (%) =  
∑ (𝑦𝑖 − ȳ𝑖)

𝑛
𝑖=1

𝑁 × ȳ
    × 100      (13)  317 

3. Results 318 

This study illustrated approaches to evaluates correlation how significantly plug load data, 319 

occupancy rates, and local weather factors affect the actual electricity consumption of a 320 

commercial building in seasonal changes. This study used four BP-NN methods—LMBP, 321 

QNBP, SCG, and BR algorithm—to predict the electricity consumption profiles for an office 322 

building located in Philadelphia, USA. The models were trained on a dataset of a total of 185 323 

working days or 4440 hours of the building’s plug load (kW), occupancy rates, and weather 324 

parameters: Global Horizontal Irradiation (W/m2), wind speed (m/s), temperature (C), and 325 

humidity ratio (g/kg). This study presents the accuracy and error rate of the four BP-NN models 326 

and evaluates how significantly the plug load data, occupancy rates, and weather factors 327 

impact the total amount of electricity consumed in the building. Moreover, using ANN methods, 328 

we can forecast long-term electricity demand depending on the variation of plug load data, 329 

occupancy rate, and weather conditions. Training data of 165 working days (3960 hours) and 330 



test data of 20 working days (480 hours) were simulated to predict the total electricity 331 

consumption using the four models to validate each algorithm against the actual measured 332 

values. The performances of the models were evaluated on accuracy and error rates for 333 

various scenarios; the results are shown in Figures 12 and 13.  334 

 335 

Generally, all four BP-NN models performed well at predicting the electricity consumption of 336 

the office building for the working days. Of the four, the LMBP model represented better 337 

performance with a higher accuracy of 1.07 to 2.23% and lower error rates, and the QNBP 338 

indicated relatively higher error rates and lower accuracy with overfittings. However, there 339 

were no significant differences among the four models in predicting electricity consumption. 340 

The details are illustrated in Figures 11 and 12.   341 

 342 

The ANN models exhibited significantly higher error rates for the non-working hours (7 pm to 343 

8 am) than for the working hours (9 am to 6 pm). We estimated that the input parameters, i.e. 344 

plug load data, occupancy rate, and weather conditions could not significantly impact the 345 

electricity consumption during the non-working hours in the building. Accordingly, other 346 

elements could influence the results, such as building maintenance plans, facility management 347 

schedules, and other devices operating in non-working hours. Further study is required to find 348 

the elements that strongly affect electricity consumption during the non-working hours.   349 

 350 

 351 

 352 
Figure 11 Prediction of electricity consumption of the four  models compared with real values 353 
measured for working days 354 

 355 

 356 
Figure 12 Error rates of the four prediction models for working days 357 

 358 



Table 1 Comparison of Performance of the ANNs 359 

 
Back-propagation 

ANNs  

 
Coefficient of variation of the root 
mean square error (CVRMSE), % 

 
Normalized mean 

bias error (NMBE), % 

LMBP 18.09  2.90  

QNBP 21.78  3.13 

SCG 18.57 3.55 

BR 18.80 3.45 
 360 

Table 1 shows the CVRMSE and NMBE results of the four ANN models. The CVRMSE and 361 

NMBE values for the LMBP method (18.09 and 2.90) were lower than of the average values 362 

of other ANN methods (19.71 and 3.37). Thus, the LMBP model is a good choice in predicting 363 

electricity consumption in a building. However, the differences in the CVRMSE and NMBE 364 

among the ANN models’ performance were small at 0.48–3.69 and 0.23–0.65, respectively. 365 

Thus, the other three methods could equally maintain good stability when forecasting the 366 

electricity consumption of the building on the working days. However, compared with other 367 

models, the LMBP model requires more memory and increase training times as well (Ballabio 368 

& Vasighi, 2012; Hagan, Demuth, Beale, & Jesús).  369 

 370 

 371 
 372 

 373 
Figure 13 Average impact factors of input parameters in swing season (spring and autumn) of 374 
the four ANN models 375 

 376 
 377 
Figure 14 Average impact factors of input parameters in the cooling season (summer) of the 378 
four ANN models 379 



 380 
Figure 15 Average impact factors of input parameters in the heating season (winter) of the four 381 
ANN models 382 

 383 

Figures 13, 14 and 15 represent correlation and the impact each average input factor had on 384 

electricity consumption in the building for the four ANN prediction methods, respectively, under 385 

seasonal characteristics: the swing (spring and autumn), cooling (summer), and heating 386 

(winter) seasons. Plug loads dominated the electricity consumption in all ANN methods in all 387 

seasons, and the two other main elements—temperature and humidity ratio—had significant 388 

impact on the actual electricity consumption. The other three parameters—occupancy ratio, 389 

solar irradiance, and wind speed—had slight influences on the actual electricity consumption. 390 

In the swing season (spring and autumn), both plug loads and temperature had the highest 391 

impact on the building’s electricity consumption. In the cooling season (summer), temperature 392 

rise strongly influenced the total electricity consumption compared with other seasons. 393 

However, in the heating season (winter), temperature variation did not impact on electricity 394 

consumption; plug loads significantly affected the results. This study estimates that heating 395 

systems using gas boilers did not impact electricity consumption in the heating season 396 

(winter); however, the cooling systems, air handling units and condensing units for cooling 397 

and dehumidification in the building, were largely responsible for the actual electricity 398 

consumption. Occupancy rate also positively impacted the electricity consumption throughout 399 

the year, but not as much as plug loads had. Studies have described that plug loads strongly 400 

engage occupancy patterns (Anand, Cheong, Sekhar, Santamouris, & Kondepudi, 2019; 401 

Gandhi & Brager, 2016; Jenkins et al., 2019). We estimate that plug load data reflected the 402 

occupancy rate and electricity consumption in the building, thus, the actual impact of 403 

occupancy rate is lower than that of plug loads. Without the plug load input to predict the total 404 

electricity consumption in a building, we estimate that the impact of the occupancy rate could 405 

have strongly influenced the results. An interesting finding is that solar irradiance variation did 406 

not significantly impact electricity consumption throughout the year, but electricity had a high 407 

sensitivity to temperature. Additionally, wind velocity had a lower impact value than other 408 

parameters.   409 

 410 

Additionally, the directivity of the impact factor value of humidity ratio using the ANN models 411 

is not clearly shown because the input data did not indicate weather characteristics. 412 

Temperature directly engages cooling loads, and the humidity ratio can impact cooling loads, 413 

but the humidity impact should engage temperature as well. For example, a high humidity ratio 414 

on a sunny day in the summer increases cooling loads; however, a high humidity ratio on a 415 

rainy day does not increase cooling loads. Therefore, in Figures 13 and 14, the directivity of 416 

the average impact factor of humidity ratio is not stable in the ANN models. On this basis, 417 

further studies could consider another input element that considers both sensible and latent 418 

loads such as the dew point temperature or enthalpy value to determine the correlation and 419 

directivity clearly.   420 

 421 

The results indicated that the four BP-NN models can predict electricity consumption in a 422 

building with good accuracy and low error rates. The BP-NN model using the LM-BP algorithm 423 



had better potential for predicting electrical energy consumption in the office building 424 

compared with other three models. However, the differences in accuracy among the four ANN 425 

models are small; thus, the four ANN models could be used for forecasting electricity 426 

consumption. Through impact factor analysis, plug load data were found to highly impact the 427 

electricity consumption in the building, and temperature was also significant in the swing and 428 

summer seasons. However, temperature did not significantly influence the consumption in the 429 

winter because the gas boiler heating systems used had little impact on actual electricity 430 

consumption in the building. Thus, in winter, plug load data mainly dominated electricity 431 

consumption. Occupancy rate steadily affected the electricity consumption but not as much 432 

as plug load data did.   433 

 434 

In this study, we found several limitations remaining to be explored via further research. An 435 

office building was selected to measure occupancy rates, plug loads, and electricity 436 

consumption for working days. However, the accuracy and error rates of predicting electricity 437 

consumption on non-working days may differ because weather conditions and HVAC loads 438 

do not influence electricity consumption for non-working days in a building. In future study, we 439 

could consider another ANN algorithm developed recently such as Long Short –Term Memory 440 

(LSTM) neural network model to compare the prediction accuracy and validations.   441 
 442 

4. Conclusion 443 

This study proposed a novel analysis strategy how plug-load data, occupancy rate, and 444 

climate factor are correlated with building energy consumption in seasonal changes. And how 445 

correlation of each element significantly impacts on energy consumption in an office building 446 

depending on the seasonal changes. This study represented predictive control strategies 447 

using four BP-NN models to predict electricity consumption in an office building in 448 

Philadelphia, USA. The algorithms—LMBP, QNBP, SCG, and BR—were designed with input 449 

nodes from plug load data, occupancy rates, and local weather conditions (i.e., solar 450 

irradiance, wind speed, temperature, and humidity ratio). This study evaluated the 451 

performance of each ANN model using a training dataset and test set. The simulation results 452 

were compared with actual measured electricity consumption values taken over 185 working 453 

days (or 4400 hours) for the building. The results illustrated that the ANN model using the 454 

LMBP algorithm was more accurate and stable than the other three methods in predicting the 455 

electricity consumption of the working days. However, the other three methods had good 456 

agreement with the actual experimental data because the accuracy differences were small at 457 

0.48–3.69 for the CVRMSE and 0.23–0.65 for the NMBE. By analyzing the impact factor of 458 

the input factors, we found that the plug loads significantly dominated the actual electricity 459 

consumption in the building while temperature and humidity considerably affected the results, 460 

and other factors, such as occupancy rates, solar irradiance, and wind speed, had the least 461 

impact. Temperature strongly dominated the results in the cooling season (summer) but did 462 

not impact in the heating season (winter) because of air handling and condenser units were 463 

used for cooling in the summer, but gas boiler systems were used for heating in the winter. 464 

Thus, the impact factors of plug loads and temperature varied with the seasons. Occupancy 465 

rate positively impacted the electricity consumption in the entire year, but not as much as plug 466 

loads did. We estimate that the plug load data reflected the occupancy rate and electricity 467 

consumption in the building, thus, the actual impact of occupancy rate was lower than that of 468 

plug loads. These methods are quite helpful in predicting the impact each element has on 469 

building energy consumption. Thus, these approaches could be useful in understanding the 470 

building performance regarding a long-term prediction of energy consumption. For instance, 471 

building system types and performances could be evaluated on their impact on energy 472 

consumption in seasonal variations and climate change. The four tested ANN methods are 473 

reliable in predicting long-term energy consumption in buildings. In future works, these 474 

proposed BP-NN models should be developed with additional input elements and novel ANN 475 



models such as Long Short-Term Memory (LSTM) widely used recently could be proposed to 476 

improve the accuracy of the predictions. 477 
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